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A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND
ORDER ELLIPTIC EQUATIONS WITH DIRAC DELTA SOURCE

HA1TAO LENG AND YANPING CHEN*

Abstract. In this paper, we investigate a hybridizable discontinuous Galerkin method for second order
elliptic equations with Dirac measures. Under assumption that the domain is convex and the mesh is
quasi-uniform, a priori error estimate for the error in L-norm is proved. By duality argument and
Oswald interpolation, a posteriori error estimates for the errors in L%-norm and W'P-seminorm are
also obtained. Finally, numerical examples are provided to validate the theoretical analysis.
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1. INTRODUCTION
In this article, we consider the following problem

—Au =6y, inQ, (1.1a)
u=0 on Of. (1.1b)

where 0 C R? (d = 2, 3) is an open, bounded, polygonal or polyhedral domain with Lipschitz boundary 92, and
0z, 1s a Dirac measure concentrated at the interior point xo € Q. An instance of system (1.1) can be found in
the electric field generated by a point charge. Another instance appears in the PDE-constrained optimal control
problem [11,12] and in the acoustic monopoles or pollutant transport and degradation in an aquatic media [3].

Since the Dirac function §,, does not belong to H~1(), the solution of problem (1.1) is not in H*(£2). In spite
of the fact that the solution of problem (1.1) has a very low regularity, it still can be numerically approximated
by standard finite element methods. For d = 2, Babuska [8] obtained the convergence rate O(h'~¢) (e > 0) for
the error in L?-norm. In [33], Scott removed ¢ and yielded the convergence rate O(h>~%?2). For an arbitrary
Borel measure, Casas derived in [11] a similar result by using different techniques. As for the interior maximum
norm error estimates, it has been proved in [34] by Schatz and Wahlbin. It is worth noting that Eriksson [19]
proved a priori error estimates for L'- and W' !-errors on adequately refined meshes.

The singular nature of problem (1.1) suggests that the meshes adequately refined around the delta support
should be used to boost the accuracy of approximation. In [6], Apel et al. proved the L2-error estimates of
almost optimal order by using graded meshes on a convex and polygonal domain. In [2], adaptive finite element
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methods based on a posteriori error estimators were considered for d = 2. The efficient and reliable a posteriori
error estimators for LP-norm (p € (1,00)) and W1P-seminorm (p € (pg,2)) were obtained by using duality
argument, where pg € [1,2) is a real number depending on the largest inner angle of the domain 2. For the error
in fractional Sobolev space H*(Q) (s € (3,1)), the residual type a posteriori error estimators with specifically
tailored oscillation were derived by Gaspoz et al. [25]. In [7], Agnelli et al. developed a reliable and efficient
a posteriori error estimator for the weighted Hl-norm (e € 1 C (4 —1,4)).

In 2012, Houston and Wihler [26] studied the discontinuous Galerkin (DG) methods for problem (1.1) with
d = 2. The convergence rate O(h) for L%-error was proved under a constraint that zg lies in the interior of
an element. In addition, a posteriori error estimator, which is efficient and reliable for an extended L?-norm,
was also shown. It is well known that the DG method is very flexible when it is applied to solve the partial
differential equations, however too many globally coupled degrees of freedom are always used and the discrete
system is large in particular when the high order polynomial is utilized. Relatively, the HDG methods, proposed
by Cockburn et al. [15], not only can keep the advantage of DG methods, but also can get a system with
significantly reduced degrees of freedom by introducing the Lagrange multipliers. Currently, it has been used
for many problems such as elliptic [13,14], convection diffusion [21], fluid flow [16,28,32], and optimal control
[18,23,29], etc.. To the best of our knowledge, there still has no work on error analysis of HDG methods for
problems with Dirac measures.

Therefore, in this paper, we investigate error analysis of HDG methods for problem (1.1). In particular,
a priori error estimate with convergence rate O(h?~%/2) is obtained for the error in L?-norm. On the other
hand, a posteriori error estimator, which provides an upper and a lower bounds for the error in L?-norm, is
proved in a convex domain. Moreover, a posteriori error estimator that is efficient and reliable for the error
in W1P-seminorm is also derived in a non-convex Lipschitz polygon, where p € (P®,2) and P > 0 is a real
number depending on the largest inner angle of the domain (2. Finally, some numerical examples are presented
to validate the numerical analysis.

Compared with [2], we need introducing the Oswald interpolation to prove a posteriori error estimator
for W1lP-seminorm, moreover the a posteriori error estimators obtained in this paper incorporate the term
llun — Unllop,ox that does not appear in [2], see Lemma 4.4 and Section 4 for more detail, where (up,us) is
the HDG solution of problem (1.1). It is worth noting that Oswald interpolation is a very important tool in
a posteriori error analysis of HDG methods [4,5,14,17], because it provides a continuous approximation for a
discontinuous piecewise polynomial function. Compared with [26], we not only prove a priori and a posteriori
error estimates for L?-norm in two- and three-dimensional cases, but also derive a posteriori error estimate for
W1P_seminorm in two dimensional case.

The rest of this article is arranged as follows: In Section 2, notation and definition corresponding to Sobolev
spaces and meshes are provided. In addition, the HDG scheme and some known results are also presented in
this section. In Section 3, a priori error estimates are proved. In Sections 4 and 5, the reliability and efficiency
of a posteriori error estimators are shown respectively. In Section 6, some numerical examples are presented to
validate the numerical analysis. Finally, we end this paper by some conclusions in Section 7.

Throughout this paper, let ¢ with or without subscript be a generic positive constant independent of the
mesh size, which may be different in different places. For ease of exposition, we denote A < ¢B by A < B and
A=~Bby ASBZ<A.

2. WEAK FORMULATION AND HDG DISCRETIZATION

For any bounded and open set D C R or D C R?~!, W#*9(D) denotes the standard Sobolev space with
norm || - ||s.4.p and seminorm |- |s 4 p. When g = 2, the Sobolev space W*?2(D) is denoted by H*(D) with norm
| -1ls,p and seminorm |- |5 p. If we further have s = 0, then H°(D) coincides with L?(D), and the inner product
is described by (-,-)p for D C R% or (-,-)p for D C R?~L. For ¢ € (1,0), let ¢’ be the conjugate number of ¢
such that % + % = 1, then the dual space to Wg4(Q) is denoted by W= (£2), where W§'?(£) is the closure of
C§°(Q) in the space W*1(Q) [1]. If no confusion induced, we also use (-, -) to denote the duality pairing between
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spaces W24 () and W9(Q). Finally, we define H(div, Q) := {v € (L2(Q))?: V-v € L2(Q)}, where V- is the
divergence operator.

The weak formulation of problem (1.1) is to find u € W, *(Q), p € [1, —4-), such that

a(u,v) = /QVU -Vodz = v(xg) Vv € Wol’p/ (Q). (2.1)

From the embedding theorem, we know that W, ” / () — C(Q), hence v(x) is well-defined.

Remark 2.1. If the domain ) is convex, we know from ([11], Thm. 2) and ([22], Thm. 2.1) that the weak

formulation (2.1) has a unique weak solution u € W, *(€) with 1 < p < 24 If the domain € is only a

polygonal domain with Lipschitz boundary, the aforementioned result is also correct for d = 2, see ([2], Sect. 2)
for more detail.

In order to describe the HDG discretization of problem (2.1), we consider a conforming and shape-regular

triangulation 7;, of the domain Q such that Q = |, K. Denote & the set of all interior faces of 7, and &P

the set of all boundary faces. Then we define &, = &7 U 5,? and 07, = {0K : K € Ty}, where 0K denotes the
boundary of K. For any K € 7, and F € &, let hx and hp be the diameters of K and F. Moreover we set
h = maxger, hi. For the interior face F' € &7, we define the jumps [v]|r and [Vv - n]|p by

Wlp=v"—v7, [Vo-n]lp=Vo"-nt+Vv~ -n~

where v+ and v~ are the traces of v on F = K*NK—, and nt and n~ denote the unit vector normal to the face
F. As for F € &2, we formally set [v]|r = v|r and [Vv-n]|r = (Vv)|r - n. Next, we define the mesh-dependent
inner products and norms:

(v1,v2)p = Y (v1,02), (W, p2)op = Y (pn, p2)ox, VD C T,
KeD KeD

1/p
Wlopa, = ( X2 Iolf,x) "+ 1<p<oo
KeTy,

o, I3 n = V0l 7, + Y- B o = plfegors
KeT,

For k > 1, the discontinuous finite element spaces corresponding to the partition 75 are given as follows:

Wl = {we L3(Q) : w|x € PHK), VK € T;,},
M ={p € L*(&,) : plr € PH(F), VF € &4},
Mfo={peMf:plp=0, VF € &},
where P*(D) denotes the set of polynomials of degree no larger than k on the domain D. Then the HDG

discretization of problem (2.1), that approximates the exact solution (u, u|g, ), reads as follows: Find (up,ap) €
W} x MF ; such that

1

an(Wn, Un; U, ) = 6T Z onlk (20)  V(vn, pn) € Wi X M}]f,o, (22)
zo KETLO

where T}, = {K € T}, : 79 € K}, #T,, denotes the number of elements in T}, and ay, is defined by

an(un, Up; vn, pr) = (Vup, Vop) 7, — (Yo, -0, up — U)o,
— (Vup - 0,05 — pn)or, + (T(up —Un), v — pn)oT, -
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Here 7 is the stabilization parameter. According to the inverse estimate and trace inequality, we have
an(Vn, s O, fin) = [ V0ull§ o + 172 (s — :uh)H%Q(aTh) = 2(Vop - m, v = pin)or,

*||Vvh||0 ity > T—* Mon = unllg p (2.3)

KeT, FEOK

for any (vp,, un) € WF x MF, where c is a constant depending on the polynomial degree and shape-regularity of
the mesh. Therefore the bilinear form ay, is coercive with respect to the norm [|(-, -)|[[1,» for 7 = 72 on each face
F € &, with 1y sufficiently large. So the HDG formulation (2.2) has an unique solution (up, ) € WF x M,’f,o
for 7y sufficiently large. Notice that the effect of 79 on the error will be discussed by numerical experiments in
Section 6.

Now we end this section by introducing some known results that will play an important role in the subsequent
proofs.

Lemma 2.2. For each element K € T, and any given nonnegative integer j, the following estimates hold

_j4d_d .
ol Shi " ol Vo PIEK), =01, 1<p.g < oo (2.9
[Wllopor S llello, i Il Yo € WH(E), 1<p < oo (2.5)
Proof. The approximation results (2.4) and (2.5) can be found in Lemma 4.5.3, Theorem 1.6.6 from [9]. O

Lemma 2.3. Let I : C(Q) — Vh1 be the Lagrange interpolation operator, where Vh1 denotes the space of contin-
uous piecewise linear polynomials. Then we have

v —Tv|ipr S h olapr, Yo€W?P(K), i=0,1,2, g <p < o0, (2.6)
v —TIv|iprx Shi 'olipr, YoeWHP(K), i=0,1, d<p< oo, (2.7)
[v —Iv|0,008 S hi;%|v|2,p,;<, Yo € W2P(K), g < p < o0, (2.8)
[v —Iv|0,00,8 S h;%|v|1,p,;{, Yo e WhHe(Q), d < p < . (2.9)
Proof. The Lagrange interpolation error estimates can be found in Theorem 4.4.4, Corollary 4.4.7 from [9]. O

Lemma 2.4. Let [ : WP — V,! be the Scott-Zhang interpolation. Then we have

o= Doll?, i SR, 0 Yo € WER(Q), (2.10)
KeTy,

where 0 <r <s<2andl <p<oo.

Proof. The result can be found in Theorem 4.6.12 from [9]. O

The next result shows that the polynomial v, € W}’f can be approximated by a continuous function v €
WEN HL(S). Tt is well-known that this is the so-called Oswald interpolation.

Lemma 2.5. For any vy, € W[, there exists a function v, € WF N H}(Q) such that

S Non=nllb ke S helllwalllh,m+ Y helvnllf, e (2.11)
KeT, FeEp Feg?
1— 1—
S AV =T, S D0 hp Pl e+ > kg Pllonllb, e (2.12)
KeT, Feé&p Feg?

for 1 <p < oo.
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Proof. Here we only prove the error estimate (2.12). As for the error estimate (2.11), it can be proved similarly.

For the case of p = 2, the approximation (2.12) has been proved in Theorem 2.2 from [27]. As for other cases,
the method of proof is similar.

Let N = {x%), j =1,---,m} be the Lagrange nodes of K and {gb%), j =1,---,m} the corresponding
Lagrange basis functions. Then we have v, = ) Zm 1 a%)d) 9 and Uh = D en B¢ where N =
UKeTh Nk and ¢ is the Lagrange basis function of the node v. Here ) is defined as that in Theorem 2.2
from [27]. Hence

SV =T, = Y / |ZaK Vo P

KeTy, KeTy,
<y Z|a5? — BV,
KeT, j=1

where ﬂg) = () whenever :E(I?

(2.4) yield

= v. Since ||V¢(;?||o,p,K < h” , the above inequality and inverse estimate

~

STV -G,k S Y B ”Z| — gD

KeTy, KeT,
d— d—
<> R ”nm Moo+ > WG Pllonllf o p
Feé&p Fegp
1— 1—
SN g Pllnlls e+ > by Plloall g
Fegyp Fegp

3. A PRIORI ERROR ANALYSIS

This section mainly focuses on a priori error analysis for the error ||u—upl|o,o. To this end, we introduce the
following auxiliary problem:

—A¢r=f inQ, (3.1a)
¢s =0 on ON. (3.1b)

Theorem 3.1. The problem (3.1) has an unique weak solution which holds the following regularities from the
different cases:
(i) If f € L*() and the domain Q is convex, we have

pr € H*(Q) N Hy(Q) and (3.2)
(ii) If f € LPI(Q), d =2 and the domain Q is a non-convex Lipschtiz polygon, we have
¢r €W (Q) and |dslap 0 S [ fllow.0; (3.3)

where (2 — 7)p" <2 and 0 > w is the largest inner angle of the domain €.

Proof. The result of case (i) is well-known [10]. The result of case (ii) can be found in Section 4 from [2] and
Theorem 4.4.4.13 from [24]. O
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Following the approach in [26,33], we define 6, € W} such that §; = 0 on 7;\T},, and
/K Spondr = vp| k(o) Vop € PHK), K € T, (3.4)
Then with ([26], Subsect. 3.1) and inverse estimate (2.4), we can obtain

8nllo.sc = hi/?, VK € Ty, (3.5)

Furthermore, we define ¢s, as the solution of problem (3.1) with f = ﬁ%éh’ and the weak formulation is to
&)
find ¢5, € Hi(Q) such that

a(es,,v) = hTL/Qahvdx, Yo € HY(Q). (3.6)

From now on, we assume in the rest of this section that the domain 2 is convex and the partition 7 is
quasi-uniform.

By a simple calculation, we can find v — up, = u — ¢s, + @5, — up, hence a priori error analysis for the error
|lu — upllo.o can be divided into two parts. Firstly, we are going to deal with the error ||u — ¢s, [|o.a-

Lemma 3.2. Let u € W) P(Q) (p e 1, -4)) and ¢s, € HY(Q) be the solutions of problems (2.1) and (5.6). If
the domain ) is convex and the mesh is quasi-uniform, it holds that

[u— ¢, llo.0 S W2,

Proof. Let ¢; be the solution of problem (3.1) with f € L*(2). Let ¢5, € V;! and ¢s, n € V;! be the standard
finite element approximations of ¢ and ¢;,. Then we have the following standard error estimates (see, e.g.,
[10]):

o5 = dpnllLoe@ S H* 2 Flloo,

o5 = drnlloe +hllor —drnlie S A2 éslln S B2l fllo.0-

Moreover, integration by parts can yield

(4@—%&f=AVW—¢%%vwv—@wwgévw—¢%wvmﬁ
= [ V(u—¢s,) V(o — dsn)

o
= oyla0) = bpn(e0) + [ Tbsn = 65.) - V(05 = 610)
S H flloq + B2 fllo.0s
by (3.5), (3.7) and (3.8), which concludes the proof. O

Now the remaining task is to estimate the error ||¢s, — un|lo,o. Obviously, according to the definitions of ¢,
and dy,, we know that (uyp, ) is an HDG approximation of ¢;,. Hence from ([30], Thm. 2), we have

65, — unlloe S h?lds,]2,0, (3.9)
which, together with (3.5) and Lemma 3.2, yields the following a priori error estimate.

Theorem 3.3. Let u and (up,Uy) be the solutions of problems (2.1) and (2.2). If the domain Q is convex and
the mesh is quasi-uniform, we have

lu — upllo0 S B2~2.



A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS 391

4. RELIABILITY OF A POSTERIORI ERROR ESTIMATORS

In this section, we consider a posteriori error analysis for the HDG scheme (2.2). Specifically, we will prove
a posteriori error estimators for the errors ||u — upljo,0 and ||V (u — up)||s,0-
If 2y is a node of the partition 7, we define the local error estimators nx and (ks by
My = hicllAunl§ g + 73R lun — a3 o5
1—
Cie,s = il Aunll§ o x + 70K *llun — Unllg s 0k

otherwise,

e — i+ Wi | Aunlf3 g + 78 e llun — Ul o if 20 € K,
K Wil Aunllg g + 76 hic|lun — nll§ o5 otherwise,

¢ = DRE Bl Al + i lun = @l sorc if w0 € K,
foos h?{HAUhHo,s,K"’TShl SHUh_UhHO’S,aK otherwise.

Before proving a posteriori error estimates, we first show the following properties for the HDG scheme (2.2).

Lemma 4.1. Let (up,up) be the solution of problem (2.2), then we have

[Vup - nllp = 2 (u —@n) + ~>(uy, — ), sgaF:FmF, (4.1)
hp hr
(Aup,vn) 7, = —(Von - noup — U)oz, + Z (un = Un,vn)F
KeTy, FG@K
Two > wnlk (@), (4.2)
KGT.nO

for any vy, € W,ff
Proof. By setting v, = 0 in (2.2), we arrive at

(Vup -0, pn)oz, — (T(un — Gn), pn)oz, =0, Vun € My,

where 7 = }% on each face F' € &,. Hence the result (4.1) can be obtained by the above equality. Moreover the
equality (4.2) can be derived directly by using (4.1), (2.2) and integration by parts. O

Now we are going to prove a posteriori error estimate for the error ||u — up||o,o by the duality argument.

Lemma 4.2. Let u and (up,up) be the solutions of problems (2.1) and (2.2). If the domain Q is convez, we
have

(2" (4.3

KeT,

Proof. Let ¢ be the solution of problem (3.1) with f € L?(2). From the case (i) of Theorem 3.1, we know that
the solution ¢ satisfies the regularity (3.2). Hence by integration by parts, we arrive at

(u—un, fla = (Vu,Vor)a + (un, Ady)z,
= ¢r(xo) + (Aup, ¢5)7;, + (Vs -0, un)or, — (Vun -n,éy)o7, -
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Insert (4.2) in the above equality to yield

(U - uhvf)ﬂ = ¢f($0) -

Z vn| i (20) + (Aun, ¢5 — vi) 7,

1
ﬁTﬂfo KETwO

+ (Vs -n,un)or, — (Vun -n,u, — Up)or,

— (Vup -0, ¢y)or, + (T(un — Un), vn)om, (4.4)
= (¢f(330) - ; Z Uh|K(iUo)) + (Aup, o5 — vn)T,
1T, KT,

+ (Vo5 = vn) -1y up = Un)or, + (T(un —un),vn = ¢y)om,
=L+ 1+ I3+ 14
for any vy, € WF. Note that we have used (4.1) and the fact that V¢, € H(div,{2) in the derivation of (4.4).
Let v, = I¢ in (4.4), we can get by (2.5) and (2.6)

LS Y Wil Aunllox|dslax, (4.5)
KeTy,

and

L+ $ Y (Vb = 1ol IV (6 — Iop) 1 5) lun — Gnlloox

KeTy,
70 1/2 1/2 ~
+ > = (les = Io4lk s — To71/5) lun — anlloox (4.6)
KeT,
<S> rohidllun = Tnllo.ox |6 ]2
KeTy,

As for the term Iy, if xg is a node of the partition 73, we have I; = 0, otherwise, the Lagrange interpolation
error estimate (2.8) can get

1 1 1 2_4d
Li=—— > (d5(x0) — 6k (w0)) < > llor = Idsllocex S Wi *lofle. (A7)
1Tz, KEeT, #Tx, KEeT, 1Tz, KEeT,
0 0 0
Hence the result (4.3) can be achieved by using (3.2) and (4.4)-(4.7). O

Remark 4.3. Since the function Vs does not belong to H(div,Q) for any ¢; € Wg’p/(Q) (p' < 2), the

additional term (V¢ - n, Uy ) s, can not be eliminated when a posteriori error estimate of ||u —upllop.0 (Po <
p < 00) is proved by using the result introduced in case (ii) of Theorem 3.1, where Py = % > 2. This is why
we have not provided a posteriori error analysis for ||u — upllop.o (Po < p < 00).

In order to prove a posteriori error estimate for |V (u — up)l|jo,p,o in two-dimensional case, we consider a
problem that is the same with that in [2]: Find w € W, () such that

a(w,v) = / -V, YveW,P), (4.8)
Q

for ¥ € (L? (Q))2. From [2], we know that if d = 2 and the domain € is a Lipschtiz polygon, the problem (4.8)
has an unique weak solution w € Wy* (Q) satisfying

lwhip o S I1¥]o.p.0: (4.9)

for p € (P%,2), where P := max{1,2/(1 + 7)), 0 is the largest inner angle of the domain Q and % + ﬁ =1.
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Lemma 4.4. Let u and (un,Up) be the solutions of problems (2.1) and (2.2). If d = 2 and the domain Q is a
Lipschitz polygon, the following error estimate holds

V0= wlopn < (3 Gy)

KeT,

where p € (P,2).

Proof. Since uy, does not belong to the space W1?(Q), we can not apply the duality argument directly for u—uy,
by (4.8). Here, let @, be the Oswald interpolation of up, then using duality argument for u — u;, we have

/QV(U —ap) - Udx = (V(u —ap), Vw)q
= w(l‘o) + (V(uh — ﬂh), Vw)T — (Vuh, V’LU)Th

= w(xo) + (V(up — up), V)1, + (Aup, w)r, — (Vup - n,w)sr, -

Insert (4.2) in the above equality to infer that

QVW—mywwz( 20) R S onlwo)) + (Aup,w — v,
0 KeTs,

+ (V(up — ap), Vw)Th — (Vg - n,up, — ap)or, (4.10)
+ (7 (un = Un), vn — w)aT,
=FE +Ey+ Es+ Ey+ Es.

for any v, € WF.

Let v, = Iw € V}! in (4.10), the trace inequality (2.5) and Lagrange interpolation error estimate (2.7) can
get

By S ) bl Aunllopxlwlpx, (4.11)
KeTy,

and

: 3
Evt Bs S Y llun = nllopor (V108 i1V Il

KEIJ—’L
1
+h—||w Tl sl = Tl ) (4.12)
Y rohie un — nllo.porc 0] 1
KeT,

If z¢ is a node of the partition 73, F1 = 0, otherwise, we have

1
EISﬁTm S lw=Twlosex S Y h el (4.13)

K€ETy,
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by the Lagrange interpolation error estimate (2.9). As for the term Ej5, the Oswald interpolation error estimate
(2.12) can yield

. 1/p
By 530 190 =@l ) lelo

KeTy,
1/p

1— 1—
(Z P fanlllf e+ Y B pHuhHOpF) w0 (4.14)
Fegp Feg?

_ N 1/p

SO B lun =l pox ) e

KeTy,

Hence combining (4.9) and (4.10)—(4.14), we have
1/p
IV =@lope s (D ko) (4.15)
KeTy,

which, together with the Oswald interpolation error estimate (2.12) and the triangle inequality, concludes the
proof. O

5. EFFICIENCY OF A POSTERIORI ERROR ESTIMATORS

In this section, we mainly prove the efficiency of a posteriori error estimators. Before this, we first introduce
the element and face bubble functions Bx and Bp as that in [35]. Following the approach in [2,20], we define

B2 (z)le=ml i g e K
ile) = e T e

Bi(x) otherwise,
for any K € 73, and

B2(z) =2l it 2 € w ,
wF(m) _ 127( ) hZ, 0 . F
B%.(z) otherwise,

for F € £, where wp := | J{K : F C 0K, K € Tp}.
Lemma 5.1. For each K € Tj, and F € &7, let Y and 1 be defined as above. Then
Y =V -n=0 ondK, ¢vp=Vyp-n=0 on the boundary of wg, (5.1)

1
lo.p.F S llwYpllop,rs (5.2)

1
[ollopc S lvibgcllopres  fw
forp € (1,00), v € PI(K) and w € P/(F), where j is a nonnegative integer.

Proof. The result (5.1) can be obtained directly by the definitions of ¥i and ¥, and the approximation result
(5.2) can be derived by Lemma 3 from [20)]. O

Lemma 5.2. Let u and (up,Uy) be the solutions of problems (2.1) and (2.2). Then we have

h | VK € Ty, (5.3)

and

hK||Auh

opk S IV —un)lop.x, (5.4)

for p € (P,2).
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Proof. Let vy, = ¥ Aup, by (5.1), (5.2) and inverse estimate (2.4) we arrive at
1AunllE kS (Aun, vn)k = (Alun —u),vn)x
= (un —u, Avp) g S Jlu— unllo.chi? onllo.x
S Wi llu = unlo, i | Aup o,
Hence the estimate (5.3) can be obtained by (5.5).
Similarly, let v, = ¥ Auy, we have
HAuh”(Q),K S (A(up —u),vn)k

= (V(up —u), Vo) S IV (= up)llop.xhi [onllop
d

S hthy

vl

IV (u = un)

lo.p. 5 || Aup o, -

So we can obtain the error estimate (5.4) by (5.6) and inverse estimate (2.4).
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For the case of x( is not a node of the partition 7, we know that the error estimators ngx and (x ¢ include
an additional term. In order to control this term, we define a cutoff function B, for the element K € T}, such

that
0<B;, <1 VzeQ,
By, =1 VxeQ: |x—x0|§£,
3t

By =0 Yz eQ: |z—x > T
|Ba:0|m,oo,wK StT™ o m = 13 2,

~

(5.7)
(5.8)

(5.9)
(5.10)

where wg := |J{K’ € 7, : KN K’ # 0}, and ¢ denotes the distance of 2y to the boundary of wy. Note that the

cutoff function has been used in [2]. Then using the fact that hx <t and (5.10), we have

- d ’ d ’_
|on‘m,p’7wx St mhK/p S hK/p ma m=1,2,1 Sp/ < oo.

Lemma 5.3. For any K € Ty, let By, and wk be defined as above. Then we have
2-¢ i ~
M * S llu—wnllows + D Tohfellun —Unlloox,
K'ewgk
and

1_1 N
opuw + Y Tohke |lun—Tnllopox
K'ewgk

2_9q
hi SIV(u—u)l

for p € (P,2).
Proof. Using (4.1), the definition of By, and (5.11), we can infer that
1 =By, (w0) = (V(u—un), VByy)7, + (Vun, VBy)T,
=— (u—up, AByy)wi — (Aup, Bag)wi
- <uh7 VBIQ : n>6w;( + <vuh : n) B10>87JJK
Y (IIU — unlo.r g2 + | Aunlo, e B

K'ewg

0,81{/%?71)/271)7

+To||uh —ah|

(5.11)

(5.12)

(5.13)

(5.14)
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where Qwg := {0K' : K' € wi }. Hence we can get (5.12) by using (5.14) and (5.3).
Similarly, we have

1 :(v(u - uh)7 vao)wK - (Auha B:L’o)wK + <Vuh -1, Bwo>8wK

< S (V= wn)lopacr b3 ™ + | Aunllo s 3 (5.15)

K'ewg

+ 7ollun — o p.or hil” _1>'
So we can obtain (5.13) by combining (5.15) and (5.4). O

Obviously, the remaining task is to bound the error estimator ||uy — Up||o.p,0x. But, seemingly, it is not an
easy task. First of all, we show the following relationships.

Lemma 5.4. Let (up,uyp,) be the solution of problem (2.2). Then the following relationships hold

— _ T0 —~ 70 _ ~
7l 0 W1 € 27 (122 = G+ I =Tl pp)s (516)
and
TO o+ _ s\ p 0w — TP < op-l p P, =P P 1
g o = @l .+ 1177 (=)l 5, 5 I[Vun - l[6 .5 + 70 he" [[unlllo p.r ) (5.17)
for1<p< oo andé’ﬁBF:FﬂF.
Proof. To prove (5.16) and (5.17), we only need to prove the following results:
_ 1/ T . T, _
(Vs m]P? g ] < 27 (15 Gt = )P 5 (g = n)P), (5.18)
T N T, _ _
o = )P+ | (= )P < 27 ([ wl|P 4 7 fun] ). (5.19)
By using (4.1) and the definition of the jump [uy], we yield
— 70 ~ T, -~
(V- n]] o roh | S 17 = )] + 1 i — )]
F F
Hence we can get (5.18) by the above inequality.
On the other hand, by using the triangle inequality, we yield
T0 o~ 1 _ To ~ T0 _ ~
E(u;{ —un)| = §|TOhF1[Uh] + E(U: — un) + E(uh — un)|
1 _ 1
< grohp! lfunll + 5|[Vun - nll,
and
TO, — o~ 1 1
2 (wy, — )| < Sohp [un]| + 5|[Var -],
hr 2 2
Therefore the estimate (5.19) can be derived by the above two inequalities. ]

Now we are going to bound the error estimator ||[[Vuy - n]|[f , » for F' € &p.
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Lemma 5.5. Let u and (up,Up) be the solutions of problems (1.1) and (2.2). Then for each F € &7, we have

1
lo,wr + BE|[un]llo,F,

3
hillVun - nlllo.r < llu —un
and
1

hilVun - fllop.r S IV (w—=un)lopwe
for p € (P,2).
Proof. Let Pr : L™°(F) — L°(wp) be a continuation operator [35] such that

1 .
[1Prwllow, S hillwlor, VweP!(F),

for any nonnegative integer j. Let v = ¢p(Pr[Vuy, - n)).
By the trace inequality, the inverse estimate (2.4), Lemma 5.1 and (5.22), we can get

I[Vun - 0l[§ p < ([Vun-nl,0)p = [ V- (uVup)
(Aup, V)wp + (Vo, Vup)wp

< 8o [0l = (A0, = W + (0 - 1, [un])
1 _3
S 119un - 0]llo.r (1Aunllow i+ i lu = wnllo.ur
+ g Nunlllor )

Hence the approximation (5.20) can be obtained by (5.3) and the above estimate.
Similarly, we have

|Hvuh : n]Hg,F S (Auhvv)wF + (VU, V(uh - u))wF
d
< 19 - nlllo.r (n

Therefore, we can derive (5.21) by (5.4), the inverse estimate (2.4) and (5.23).

7%+% ﬁ 27 2
lopwr +hE IV (u —un)

||A’U,h

Combining Lemmas (4.2), (4.4), (5.2), (5.3), (5.4) and (5.5) we can get the following theorem.

ngng) .

(5.20)

(5.21)

(5.22)

(5.23)

Theorem 5.6. Let u and (up,up) be the solutions of problems (2.1) and (2.2). Let uy, be the Oswald interpo-

lation of up,.
(i) If the domain ) is convez, we have

_ ) 1/2
lu=wnlloo+ lu—inloe S (Y nk) .
KeT,

1/2 B
(> ) S mollu—unlloe+ lu=illos),
KeTy,

(ii) If d=2 and the domain ) is a Lipschitz polygon, we have
_ ~ 1/p 1/p
opt + (0 W~ Tl 0) S (2 G,)

Fe&y, KeTy,

IV (u = un)

/ ~ /
(X ) " IV —wlopa + (X mnk Pl Tull, )

KeTy, Feé&p

for p € (P9,2), where P = max{1,2/(1+ §)} and 6 is the largest inner angle of the domain €.

(5.24)

(5.25)

(5.26)

(5.27)
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Proof. By using Oswald interpolation error estimate (2.11), we infer that

- ~ 9 1/2
lu=nlloe < llu—wunlloo+ (3 llun —anl x )

KeTy,
1/2
Slu—wnlloo+ (Y hellwllir+ > hellunld ) (5.28)
Feé&y Feg?
1/2
S = wnlog+ (3 hucllun—anldon) -
KeTy,

Hence we can get (5.24) by combining (4.3) and (5.28).
In virtue of the results introduced in Lemmas 5.2, 5.3, 5.4 and 5.5, we yield

1/2 1/2
(> ) Slhu—wloa+ (Y Bhellwllir+ > whelunldr) (5.29)

KeT, Feé&p Feg?

and

1/p _ _ 1/p
(X )" SIv@=un)lopa, + (D2 Bhi P Munll e+ D hglunll, r)

KeT, Feé&p Fegp
~ 1/p
1—
= V(= w)lopz, + (D 05 lun = Tulll ) (5.30)
Fe&y,

Obviously, the approximation result (5.30) is the same as (5.27). Moreover the inverse estimate (2.4) and trace
inequality (2.5) result in

1 1 . 1 . 1 _ ~
hilfunlllo.r = hElllun — nlllo,r < hEllut —unllo.r + hElluy, —Unllo.r
S llwlt = anllo e+ + lluy, — Unllo,x- (5.31)

for any £ 3 F = K+ NK-. Hence
2 2 2 2 1/2 ~
(X Anellwndl e+ Y2 helunlir) S rollun = nllos (5.32)
Feé&p Feg}?
< ol — unllon + lu — Tllo.o).

which, together with (5.29), derives the approximation result (5.25).
Finally the approximation result (5.26) can be obtained by Lemma 4.4 and the fact that

~ 1/p
1— 1— ~
(X whi Pl =Tl ) S (2 bkl =l i)

Feé&y KeTy,

1/p

6. NUMERICAL EXPERIMENTS

In this section, some numerical experiments are provided to validate the theoretical analysis. For the adaptive
HDG algorithm designed by the obtained a posteriori error estimators, we use the following marking strategy

>tk =g

KeM
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TABLE 1. The convergence history of ||u — up||o,q for HDG scheme (2.2) for k = 1.

h  leullo,e (70 =15) Order |leu]lo,o (70 =25) Order |leullo,o (70 =100) Order
i 1.4376e-2 1.3591e-2 1.4455e-2

é 7.1722e-3 1.003 6.7986e-3 0.999 7.3180e-3 0.982
% 3.5832e-3 1.001 3.3979e-3 1.001 3.6712e-3 0.995
3% 1.7912e-3 1.000 1.6987e-3 1.000 1.8371e-3 0.999
6L4 8.9554e-4 1.000 8.4934e-4 1.000 9.1873e-4 1.000
ﬁ 4.4777e-4 1.000 4.2467e-4 1.000 4.5939e-4 1.000
. 2.2388e-4 1.000 2.1233e-4 1.000 2.2970e-4 1.000

™)
ot
[}

TABLE 2. The convergence history of ||u — up||o,q for HDG scheme (2.2) for k = 2.

h  leullo,e (7o =15) Order |leu]lo,o (7o =25) Order |leu|lo,o (o = 100)  Order
i 3.6253e-2 9.1561e-3 6.9934e-3

é 1.8224e-2 0.992 4.5782e-3 1.000 3.4990e-3 0.999
% 9.1121e-3 1.000 2.2891e-3 1.000 1.7495e-3 1.000
é 4.5560e-3 1.000 1.1446e-3 1.000 8.7477e-4 1.000
é 2.2780e-3 1.000 5.7228e-4 1.000 4.3738e-4 1.000
% 1.1390e-3 1.000 2.8614e-4 1.000 2.1869e-4 1.000
- 5.6950e-4 1.000 1.4307e-4 1.000 1.0935e-4 1.000

256

to select the marking set M, where v € (0,1], £ = n3 or ¢}, and {f is the restriction of § on the element K € 7j.
Here n3 = > KeT, n% and =2k T ¢h-. We refine the marking set M by bisections to generate a new mesh.

Note here that the figure of convergence history is plotted in log-log coordinates in this section. Moreover we
set e, = u — up, and

E = lleullo.n + [lu— tnllo.0,

L 1—s 1/s
osa+ (D whi lunllsar) -

Fe&y

Bz = [[Veu|

Example 6.1. Based on the domain Q = (0,1)%, we consider the problem (1.1) with zo = (0.5,0.5). In this
example, the Dirichlet boundary conditions are imposed so that the exact solution is given by

u(x) = —% log |x — 0.

We test this example under the constraint that zy be a vertex of all partitions.

In Tables 1 and 2, the convergence history and convergence order of the error |le,||o,o for different 7y and k
are provided on uniform meshes. We find that the convergence rate O(h) can be achieved. From the perspective
of error, we find from Figure 1 that the best choice of 79 may be 25 and 150 for £ = 1 and k& = 2. Furthermore,
in Figure 2 and Table 3, the convergence histories of ||u — upl|o,o for finite element methods (FEM) and HDG
methods are presented for £k = 1. Obviously, involving a suitable choice of 7y, we can expect that the HDG
methods of this paper are slightly better than the finite element methods.

From now on, we set 79 = 25 and we test this example with adaptive HDG algorithm. The meshes and the
corresponding surfaces of up, generated by 7o and (5, are provided in Figures 3 and 5 for £k = 1 and v = 0.2.
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Obviously, the mesh nodes are concentrated around xy. In Figure 4, we present the convergence histories of
N2 and |ley|lo,o for different k& and . We observe from the left graph of Figure 4 that the convergence rate
O(N_(’H‘l)/g) can be obtained. From the right graph of Figure 4, we can see that for the same numerical
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10° <107

34 5
32 45
3 4
28 35
S 26 g 3
s | =
_:l _3
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22 2 |
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18 1
16 05
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
: # T,
0 0

FIGURE 1. Left: The error ||u — up||o,o for different 7y for £ = 1. Right: The error ||u — up|lo,0

for different 19 for k = 2. Here we set h = 3—12

—FEM
——HDG (7,=15)

—o-HDG (7,=25)
~+HDG (7,=100)

10’ 10? 10° 10* 10°

Dofs

FIGURE 2. The convergence histories of |ju — upllo,o for finite element methods and HDG
methods. Here we set k = 1.

accuracy the number of required vertices will be increased as v becomes large.

By a simple calculation, we have P = 1. Hence in the left graph of Figure 6, we give the convergence histories
of ¢, and [|Vey|lopq for k=1, v=0.2 and p = 1.2,1.5,1.8. The results show that these errors and estimators
can obtain the convergence rate O(N -1 2). In the right graph of Figure 6, we also plot the convergence histories

of (1.5 and ||Vey|lo,1.5,0 for different v. Obviously, the convergence rate decreases as «y increases.
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TABLE 3. The convergence history of ||u—wuplo,q for finite element methods and HDG methods

for k =1.

h  Jleullo,o (FEM) Order |leu]lo,o (HDG, 79 =25) Order
% 1.5426e-2 1.3591e-2

? 7.7780e-3 0.988 6.7986¢e-3 0.999
16 3.9028e-3 0.995 3.3979e-3 1.001
$ 1.9532¢-3 0.999 1.6987¢-3 1.000
&1 9.7683e-4 1.000 8.4934e-4 1.000
1%% 4.8844e-4 1.000 4.2467e-4 1.000
= 2.4422e-4 1.000 2.2970e-4 1.000

256

Fi1GURE 3. Top: The adaptive meshes, generated by 72, with 123, 636 and 3165 nodes. Bottom:
The corresponding surfaces of uy. Here we set k =1 and v = 0.2.

Example 6.2. In this example, we consider the problem (1.1) in the L-shaped domain Q = (—1,1)%\[0,1) x
(—1,0] with 29 = (0.5,0.5). The Dirichlet boundary conditions are imposed such that the exact solution is given
by

1 L
u(z) = 5 log | — xo| + |3t:|2/3 sm(?),

where ¥ € (0, 2T) denotes the angle.

The initial mesh consists of 12 triangles. According to the definition of P®, we know that P** = 1.2. Through-
out this section, let 7y = 15 and x( be a vertex of all partitions.

In Figure 7, the convergence histories of 7o and ||e,||o,o and the efficiency index 72/ E are given. The conver-
gence rate O(N~(*+1)/2) can be obtained. In Figure 8, the adaptive meshes, generated by (.3 and (; 5, after
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= —+—1, (7=0.2)
» e, (k=1) ] r +”§u”m "
- lleylly (k=1) <
10" ' —o-1, (7=0.4)
R Rl 10" —o-lleyllg o (1=0.4)
10? —=-lleylly o (k=2) ~-1, (120.8)
- —oN™) - o llelly o (1=08)
—ON?) —O(N")
10* v
10°
10°
10% 10*
107
10°
10°®
10° 10°
10° 102 10° 10 10° 10° 10’ 10% 10° 10* 10° 10°
Dofs Dofs

FIGURE 4. Left: The convergence histories of 7y and |lel|o,o for v = 0.4 and k£ = 1,2. Right:
The convergence histories of 72 and ||e, |0, for £k =1 and v = 0.2,0.4,0.8.

-0

F1cURE 5. Top: The adaptive meshes, generated by (1 5, with 124, 686 and 3513 nodes. Bottom:
The corresponding surfaces of uy. Here we set k =1 and v = 0.2.
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FIGURE 6. Left: The convergence histories for v = 0.2 and £ = 1. Right:
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histories for £ =1 and v = 0.2,0.4,0.8.
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FIGURE 7. Left: The convergence histories of |ley]lo,o and ns for £ = 1 and k = 2. Right: The
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efficiency index 72 /FE for k = 1 and k = 2. Here we set v = 0.3.

The convergence
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13, 19 and 25 iterations are shown for k = 1 and v = 0.3. We find that the mesh nodes are concentrated around
the point xy and the reentrant corner. In Figure 9, the convergence histories of ||Veyllo,s,0, E2,s, and (s are
performed for v = 0.3, £k = 1,2 and s = 1.3,1.5. The errors and estimators can all get the convergence rate

O(N—F/?),

Finally, we make a comparison between [2] and this paper for £k = 1 and v = 0.3. Note that the estimators
and errors obtained in [2] are labeled by ¢(R¢f and eR¢f. In Figure 10, the convergence histories are performed,
and the convergence rate O(N~'/2) can be obtained. Obviously, the error estimators and the errors derived in
this paper are smaller than that achieved by [2]. Therefore, from the perspective of error, the HDG result of
this paper is better than the FEM result of [2] for the suitable choice of 7.
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FI1GURE 8. Top: The adaptive meshes, generated by (; 3, after 13, 19 and 25 iterations. Bottom:
The adaptive meshes, generated by (7 5, after 13, 19 and 25 iterations. Here, we set v = 0.3

and k£ = 1.
0 0 —+1IVellys5q &=1)
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i ) —+—Ep15 (=1)
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FIGURE 9. Left: The convergence histories of || Vey|lo,1.3,0, (1.3 and Ez 1.3 for k=1 and k = 2.
Right: The convergence histories of ||Veyllo,1.5,0, .5 and Ea 15 for k =1 and k = 2. Here we
set v =0.3.
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F1GURE 10. The convergence histories for s = 1.3 and s = 1.5.

7. CONCLUSIONS

In this paper, we investigate HDG methods for elliptic problems with Dirac measures. Firstly, a priori error
estimate with convergence rate O(h) is proved for the error in L2-norm. Then, by duality argument and Oswald
interpolation, the efficient and reliable a posteriori error estimators for the errors in L2-norm and W!-P-seminorm
are obtained.

Finally the obtained a posteriori error estimators are used to design adaptive HDG algorithm, and some
numerical examples are provided to verify the theoretical analysis and show the performance of the obtained
a posteriori error estimators. By the numerical results, we find that the HDG scheme and error estimators of
this paper are slightly better than the finite element discretization and error estimators of [2] based on a suitable
choice of 79, see Figures 2 and 10.
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