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A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND
ORDER ELLIPTIC EQUATIONS WITH DIRAC DELTA SOURCE

Haitao Leng and Yanping Chen*

Abstract. In this paper, we investigate a hybridizable discontinuous Galerkin method for second order
elliptic equations with Dirac measures. Under assumption that the domain is convex and the mesh is
quasi-uniform, a priori error estimate for the error in 𝐿2-norm is proved. By duality argument and
Oswald interpolation, a posteriori error estimates for the errors in 𝐿2-norm and 𝑊 1,𝑝-seminorm are
also obtained. Finally, numerical examples are provided to validate the theoretical analysis.
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1. Introduction

In this article, we consider the following problem

−∆𝑢 = 𝛿𝑥0 in Ω, (1.1a)
𝑢 = 0 on 𝜕Ω. (1.1b)

where Ω ⊂ R𝑑 (𝑑 = 2, 3) is an open, bounded, polygonal or polyhedral domain with Lipschitz boundary 𝜕Ω, and
𝛿𝑥0 is a Dirac measure concentrated at the interior point 𝑥0 ∈ Ω. An instance of system (1.1) can be found in
the electric field generated by a point charge. Another instance appears in the PDE-constrained optimal control
problem [11,12] and in the acoustic monopoles or pollutant transport and degradation in an aquatic media [3].

Since the Dirac function 𝛿𝑥0 does not belong to 𝐻−1(Ω), the solution of problem (1.1) is not in 𝐻1(Ω). In spite
of the fact that the solution of problem (1.1) has a very low regularity, it still can be numerically approximated
by standard finite element methods. For 𝑑 = 2, Babuška [8] obtained the convergence rate 𝑂(ℎ1−𝜖) (𝜖 > 0) for
the error in 𝐿2-norm. In [33], Scott removed 𝜖 and yielded the convergence rate 𝑂(ℎ2−𝑑/2). For an arbitrary
Borel measure, Casas derived in [11] a similar result by using different techniques. As for the interior maximum
norm error estimates, it has been proved in [34] by Schatz and Wahlbin. It is worth noting that Eriksson [19]
proved a priori error estimates for 𝐿1- and 𝑊 1,1-errors on adequately refined meshes.

The singular nature of problem (1.1) suggests that the meshes adequately refined around the delta support
should be used to boost the accuracy of approximation. In [6], Apel et al. proved the 𝐿2-error estimates of
almost optimal order by using graded meshes on a convex and polygonal domain. In [2], adaptive finite element

Keywords and phrases. Hybridizable discontinuous Galerkin method, a priori error estimate, a posteriori error estimate, elliptic
equation, Dirac measure.

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, P.R. China.
*Corresponding author: yanpingchen@scnu.edu.cn

c○ The authors. Published by EDP Sciences, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2022005
https://www.esaim-m2an.org
mailto:yanpingchen@scnu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


386 H. LENG AND Y. CHEN

methods based on a posteriori error estimators were considered for 𝑑 = 2. The efficient and reliable a posteriori
error estimators for 𝐿𝑝-norm (𝑝 ∈ (1,∞)) and 𝑊 1,𝑝-seminorm (𝑝 ∈ (𝑝0, 2)) were obtained by using duality
argument, where 𝑝0 ∈ [1, 2) is a real number depending on the largest inner angle of the domain Ω. For the error
in fractional Sobolev space 𝐻𝑠(Ω) (𝑠 ∈ ( 1

2 , 1)), the residual type a posteriori error estimators with specifically
tailored oscillation were derived by Gaspoz et al. [25]. In [7], Agnelli et al. developed a reliable and efficient
a posteriori error estimator for the weighted 𝐻1

𝛼-norm (𝛼 ∈ I ⊂ (𝑑
2 − 1, 𝑑

2 )).
In 2012, Houston and Wihler [26] studied the discontinuous Galerkin (DG) methods for problem (1.1) with

𝑑 = 2. The convergence rate 𝑂(ℎ) for 𝐿2-error was proved under a constraint that 𝑥0 lies in the interior of
an element. In addition, a posteriori error estimator, which is efficient and reliable for an extended 𝐿2-norm,
was also shown. It is well known that the DG method is very flexible when it is applied to solve the partial
differential equations, however too many globally coupled degrees of freedom are always used and the discrete
system is large in particular when the high order polynomial is utilized. Relatively, the HDG methods, proposed
by Cockburn et al. [15], not only can keep the advantage of DG methods, but also can get a system with
significantly reduced degrees of freedom by introducing the Lagrange multipliers. Currently, it has been used
for many problems such as elliptic [13, 14], convection diffusion [21], fluid flow [16, 28, 32], and optimal control
[18, 23, 29], etc.. To the best of our knowledge, there still has no work on error analysis of HDG methods for
problems with Dirac measures.

Therefore, in this paper, we investigate error analysis of HDG methods for problem (1.1). In particular,
a priori error estimate with convergence rate 𝑂(ℎ2−𝑑/2) is obtained for the error in 𝐿2-norm. On the other
hand, a posteriori error estimator, which provides an upper and a lower bounds for the error in 𝐿2-norm, is
proved in a convex domain. Moreover, a posteriori error estimator that is efficient and reliable for the error
in 𝑊 1,𝑝-seminorm is also derived in a non-convex Lipschitz polygon, where 𝑝 ∈ (𝑃Ω, 2) and 𝑃Ω > 0 is a real
number depending on the largest inner angle of the domain Ω. Finally, some numerical examples are presented
to validate the numerical analysis.

Compared with [2], we need introducing the Oswald interpolation to prove a posteriori error estimator
for 𝑊 1,𝑝-seminorm, moreover the a posteriori error estimators obtained in this paper incorporate the term
‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝑝,𝜕𝐾 that does not appear in [2], see Lemma 4.4 and Section 4 for more detail, where (𝑢ℎ, ̂︀𝑢ℎ) is
the HDG solution of problem (1.1). It is worth noting that Oswald interpolation is a very important tool in
a posteriori error analysis of HDG methods [4, 5, 14, 17], because it provides a continuous approximation for a
discontinuous piecewise polynomial function. Compared with [26], we not only prove a priori and a posteriori
error estimates for 𝐿2-norm in two- and three-dimensional cases, but also derive a posteriori error estimate for
𝑊 1,𝑝-seminorm in two dimensional case.

The rest of this article is arranged as follows: In Section 2, notation and definition corresponding to Sobolev
spaces and meshes are provided. In addition, the HDG scheme and some known results are also presented in
this section. In Section 3, a priori error estimates are proved. In Sections 4 and 5, the reliability and efficiency
of a posteriori error estimators are shown respectively. In Section 6, some numerical examples are presented to
validate the numerical analysis. Finally, we end this paper by some conclusions in Section 7.

Throughout this paper, let 𝑐 with or without subscript be a generic positive constant independent of the
mesh size, which may be different in different places. For ease of exposition, we denote 𝐴 ≤ 𝑐𝐵 by 𝐴 . 𝐵 and
𝐴 ≈ 𝐵 by 𝐴 . 𝐵 . 𝐴.

2. Weak formulation and HDG discretization

For any bounded and open set 𝐷 ⊂ R𝑑 or 𝐷 ⊂ R𝑑−1, 𝑊 𝑠,𝑞(𝐷) denotes the standard Sobolev space with
norm ‖ · ‖𝑠,𝑞,𝐷 and seminorm | · |𝑠,𝑞,𝐷. When 𝑞 = 2, the Sobolev space 𝑊 𝑠,2(𝐷) is denoted by 𝐻𝑠(𝐷) with norm
‖ · ‖𝑠,𝐷 and seminorm | · |𝑠,𝐷. If we further have 𝑠 = 0, then 𝐻0(𝐷) coincides with 𝐿2(𝐷), and the inner product
is described by (·, ·)𝐷 for 𝐷 ⊂ R𝑑 or ⟨·, ·⟩𝐷 for 𝐷 ⊂ R𝑑−1. For 𝑞 ∈ (1,∞), let 𝑞′ be the conjugate number of 𝑞
such that 1

𝑞 + 1
𝑞′ = 1, then the dual space to 𝑊 𝑠,𝑞

0 (Ω) is denoted by 𝑊−𝑠,𝑞′(Ω), where 𝑊 𝑠,𝑞
0 (Ω) is the closure of

𝐶∞0 (Ω) in the space 𝑊 𝑠,𝑞(Ω) [1]. If no confusion induced, we also use ⟨·, ·⟩ to denote the duality pairing between
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spaces 𝑊−𝑠,𝑞′(Ω) and 𝑊 𝑠,𝑞
0 (Ω). Finally, we define 𝐻(div,Ω) := {v ∈ (𝐿2(Ω))𝑑 : ∇·v ∈ 𝐿2(Ω)}, where ∇· is the

divergence operator.
The weak formulation of problem (1.1) is to find 𝑢 ∈𝑊 1,𝑝

0 (Ω), 𝑝 ∈ [1, 𝑑
𝑑−1 ), such that

𝑎(𝑢, 𝑣) =
∫︁

Ω

∇𝑢 · ∇𝑣𝑑𝑥 = 𝑣(𝑥0) ∀𝑣 ∈𝑊 1,𝑝′

0 (Ω). (2.1)

From the embedding theorem, we know that 𝑊 1,𝑝′

0 (Ω) →˓ 𝒞(Ω), hence 𝑣(𝑥0) is well-defined.

Remark 2.1. If the domain Ω is convex, we know from ([11], Thm. 2) and ([22], Thm. 2.1) that the weak
formulation (2.1) has a unique weak solution 𝑢 ∈ 𝑊 1,𝑝

0 (Ω) with 1 ≤ 𝑝 < 𝑑
𝑑−1 . If the domain Ω is only a

polygonal domain with Lipschitz boundary, the aforementioned result is also correct for 𝑑 = 2, see ([2], Sect. 2)
for more detail.

In order to describe the HDG discretization of problem (2.1), we consider a conforming and shape-regular
triangulation 𝒯ℎ of the domain Ω such that Ω =

⋃︀
𝐾∈𝒯ℎ

𝐾. Denote ℰ𝑜
ℎ the set of all interior faces of 𝒯ℎ and ℰ𝜕

ℎ

the set of all boundary faces. Then we define ℰℎ = ℰ𝑜
ℎ ∪ ℰ𝜕

ℎ and 𝜕𝒯ℎ = {𝜕𝐾 : 𝐾 ∈ 𝒯ℎ}, where 𝜕𝐾 denotes the
boundary of 𝐾. For any 𝐾 ∈ 𝒯ℎ and 𝐹 ∈ ℰℎ, let ℎ𝐾 and ℎ𝐹 be the diameters of 𝐾 and 𝐹 . Moreover we set
ℎ = max𝐾∈𝒯ℎ

ℎ𝐾 . For the interior face 𝐹 ∈ ℰ𝑜
ℎ, we define the jumps [𝑣]|𝐹 and [∇𝑣 · n]|𝐹 by

[𝑣]|𝐹 = 𝑣+ − 𝑣−, [∇𝑣 · n]|𝐹 = ∇𝑣+ · n+ +∇𝑣− · n−

where 𝑣+ and 𝑣− are the traces of 𝑣 on 𝐹 = 𝐾+∩𝐾−, and n+ and n− denote the unit vector normal to the face
𝐹 . As for 𝐹 ∈ ℰ𝜕

ℎ , we formally set [𝑣]|𝐹 = 𝑣|𝐹 and [∇𝑣 · n]|𝐹 = (∇𝑣)|𝐹 · n. Next, we define the mesh-dependent
inner products and norms:

(𝑣1, 𝑣2)𝐷 =
∑︁

𝐾∈𝐷

(𝑣1, 𝑣2)𝐾 , ⟨𝜇1, 𝜇2⟩𝜕𝐷 =
∑︁

𝐾∈𝐷

⟨𝜇1, 𝜇2⟩𝜕𝐾 , ∀𝐷 ⊂ 𝒯ℎ,

‖𝑣‖0,𝑝,𝒯ℎ
=

(︁ ∑︁
𝐾∈𝒯ℎ

‖𝑣‖𝑝
0,𝑝,𝐾

)︁1/𝑝

, 1 ≤ 𝑝 <∞

9(𝑣, 𝜇)92
1,ℎ = ‖∇𝑣‖20,𝒯ℎ

+
∑︁

𝐾∈𝒯ℎ

ℎ−1
𝐾 ‖𝑣 − 𝜇‖2𝐿2(𝜕𝐾),

For 𝑘 ≥ 1, the discontinuous finite element spaces corresponding to the partition 𝒯ℎ are given as follows:

𝑊 𝑘
ℎ = {𝑤 ∈ 𝐿2(Ω) : 𝑤|𝐾 ∈ 𝒫𝑘(𝐾), ∀𝐾 ∈ 𝒯ℎ},

𝑀𝑘
ℎ = {𝜇 ∈ 𝐿2(ℰℎ) : 𝜇|𝐹 ∈ 𝒫𝑘(𝐹 ), ∀𝐹 ∈ ℰℎ},

𝑀𝑘
ℎ,0 = {𝜇 ∈𝑀𝑘

ℎ : 𝜇|𝐹 = 0, ∀𝐹 ∈ ℰ𝜕
ℎ},

where 𝒫𝑘(𝐷) denotes the set of polynomials of degree no larger than 𝑘 on the domain 𝐷. Then the HDG
discretization of problem (2.1), that approximates the exact solution (𝑢, 𝑢|ℰℎ

), reads as follows: Find (𝑢ℎ, ̂︀𝑢ℎ) ∈
𝑊 𝑘

ℎ ×𝑀𝑘
ℎ,0 such that

𝑎ℎ(𝑢ℎ, ̂︀𝑢ℎ; 𝑣ℎ, 𝜇ℎ) =
1

♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

𝑣ℎ|𝐾(𝑥0) ∀(𝑣ℎ, 𝜇ℎ) ∈𝑊 𝑘
ℎ ×𝑀𝑘

ℎ,0, (2.2)

where 𝑇𝑥0 = {𝐾 ∈ 𝒯ℎ : 𝑥0 ∈ 𝐾}, ♯𝑇𝑥0 denotes the number of elements in 𝑇𝑥0 , and 𝑎ℎ is defined by

𝑎ℎ(𝑢ℎ, ̂︀𝑢ℎ; 𝑣ℎ, 𝜇ℎ) = (∇𝑢ℎ,∇𝑣ℎ)𝒯ℎ
− ⟨∇𝑣ℎ · n, 𝑢ℎ − ̂︀𝑢ℎ⟩𝜕𝒯ℎ

− ⟨∇𝑢ℎ · n, 𝑣ℎ − 𝜇ℎ⟩𝜕𝒯ℎ
+ ⟨𝜏(𝑢ℎ − ̂︀𝑢ℎ), 𝑣ℎ − 𝜇ℎ⟩𝜕𝒯ℎ

.
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Here 𝜏 is the stabilization parameter. According to the inverse estimate and trace inequality, we have

𝑎ℎ(𝑣ℎ, 𝜇ℎ; 𝑣ℎ, 𝜇ℎ) = ‖∇𝑣ℎ‖20,Ω + ‖𝜏1/2(𝑣ℎ − 𝜇ℎ)‖2𝐿2(𝜕𝒯ℎ) − 2⟨∇𝑣ℎ · n, 𝑣ℎ − 𝜇ℎ⟩𝜕𝒯ℎ

≥ 1
2
‖∇𝑣ℎ‖20,𝒯ℎ

+
∑︁

𝐾∈𝒯ℎ

∑︁
𝐹∈𝜕𝐾

(𝜏 − 𝑐

ℎ𝐾
)‖𝑣ℎ − 𝜇ℎ‖20,𝐹 , (2.3)

for any (𝑣ℎ, 𝜇ℎ) ∈𝑊 𝑘
ℎ ×𝑀𝑘

ℎ , where 𝑐 is a constant depending on the polynomial degree and shape-regularity of
the mesh. Therefore the bilinear form 𝑎ℎ is coercive with respect to the norm 9(·, ·)91,ℎ for 𝜏 = 𝜏0

ℎ𝐹
on each face

𝐹 ∈ ℰℎ with 𝜏0 sufficiently large. So the HDG formulation (2.2) has an unique solution (𝑢ℎ, ̂︀𝑢ℎ) ∈ 𝑊 𝑘
ℎ ×𝑀𝑘

ℎ,0

for 𝜏0 sufficiently large. Notice that the effect of 𝜏0 on the error will be discussed by numerical experiments in
Section 6.

Now we end this section by introducing some known results that will play an important role in the subsequent
proofs.

Lemma 2.2. For each element 𝐾 ∈ 𝒯ℎ and any given nonnegative integer 𝑗, the following estimates hold

|𝑣|𝑖,𝑝,𝐾 . ℎ
−𝑖+ 𝑑

𝑝−
𝑑
𝑞

𝐾 ‖𝑣‖𝑞,𝐾 , ∀𝑣 ∈ 𝒫𝑗(𝐾), 𝑖 = 0, 1, 1 ≤ 𝑝, 𝑞 ≤ ∞ (2.4)

‖𝑣‖0,𝑝,𝜕𝐾 . ‖𝑣‖1−1/𝑝
0,𝑝,𝐾 ‖𝑣‖1/𝑝

1,𝑝,𝐾 , ∀𝑣 ∈𝑊 1,𝑝(𝐾), 1 ≤ 𝑝 ≤ ∞. (2.5)

Proof. The approximation results (2.4) and (2.5) can be found in Lemma 4.5.3, Theorem 1.6.6 from [9]. �

Lemma 2.3. Let 𝐼 : 𝒞(Ω) → 𝑉 1
ℎ be the Lagrange interpolation operator, where 𝑉 1

ℎ denotes the space of contin-
uous piecewise linear polynomials. Then we have

|𝑣 − 𝐼𝑣|𝑖,𝑝,𝐾 . ℎ
2−𝑖
𝐾 |𝑣|2,𝑝,𝐾 , ∀𝑣 ∈𝑊 2,𝑝(𝐾), 𝑖 = 0, 1, 2,

𝑑

2
< 𝑝 <∞, (2.6)

|𝑣 − 𝐼𝑣|𝑖,𝑝,𝐾 . ℎ
1−𝑖
𝐾 |𝑣|1,𝑝,𝐾 , ∀𝑣 ∈𝑊 1,𝑝(𝐾), 𝑖 = 0, 1, 𝑑 < 𝑝 <∞, (2.7)

|𝑣 − 𝐼𝑣|0,∞,𝐾 . ℎ
2− 𝑑

𝑝

𝐾 |𝑣|2,𝑝,𝐾 , ∀𝑣 ∈𝑊 2,𝑝(𝐾),
𝑑

2
< 𝑝 <∞, (2.8)

|𝑣 − 𝐼𝑣|0,∞,𝐾 . ℎ
1− 𝑑

𝑝

𝐾 |𝑣|1,𝑝,𝐾 , ∀𝑣 ∈𝑊 1,∞(Ω), 𝑑 < 𝑝 <∞. (2.9)

Proof. The Lagrange interpolation error estimates can be found in Theorem 4.4.4, Corollary 4.4.7 from [9]. �

Lemma 2.4. Let ̃︀𝐼 : 𝑊 𝑠,𝑝 → 𝑉 1
ℎ be the Scott-Zhang interpolation. Then we have∑︁

𝐾∈𝒯ℎ

ℎ
𝑝(𝑟−𝑠)
𝐾 ‖𝑣 − ̃︀𝐼𝑣‖𝑝

𝑟,𝑝,𝐾 . |𝑣|
𝑝
𝑠,𝑝,Ω, ∀𝑣 ∈𝑊 𝑠,𝑝(Ω), (2.10)

where 0 ≤ 𝑟 ≤ 𝑠 ≤ 2 and 1 ≤ 𝑝 ≤ ∞.

Proof. The result can be found in Theorem 4.6.12 from [9]. �

The next result shows that the polynomial 𝑣ℎ ∈ 𝑊 𝑘
ℎ can be approximated by a continuous function ̃︀𝑣ℎ ∈

𝑊 𝑘
ℎ ∩𝐻1

0 (Ω). It is well-known that this is the so-called Oswald interpolation.

Lemma 2.5. For any 𝑣ℎ ∈𝑊 𝑘
ℎ , there exists a function ̃︀𝑣ℎ ∈𝑊 𝑘

ℎ ∩𝐻1
0 (Ω) such that∑︁

𝐾∈𝒯ℎ

‖𝑣ℎ − ̃︀𝑣ℎ‖𝑝
0,𝑝,𝐾 .

∑︁
𝐹∈ℰ𝑜

ℎ

ℎ𝐹 ‖[𝑣ℎ]‖𝑝
0,𝑝,𝐹 +

∑︁
𝐹∈ℰ𝜕

ℎ

ℎ𝐹 ‖𝑣ℎ‖𝑝
0,𝑝,𝐹 , (2.11)

∑︁
𝐾∈𝒯ℎ

‖∇(𝑣ℎ − ̃︀𝑣ℎ)‖𝑝
0,𝑝,𝐾 .

∑︁
𝐹∈ℰ𝑜

ℎ

ℎ1−𝑝
𝐹 ‖[𝑣ℎ]‖𝑝

0,𝑝,𝐹 +
∑︁

𝐹∈ℰ𝜕
ℎ

ℎ1−𝑝
𝐹 ‖𝑣ℎ‖𝑝

0,𝑝,𝐹 , (2.12)

for 1 ≤ 𝑝 <∞.
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Proof. Here we only prove the error estimate (2.12). As for the error estimate (2.11), it can be proved similarly.
For the case of 𝑝 = 2, the approximation (2.12) has been proved in Theorem 2.2 from [27]. As for other cases,

the method of proof is similar.
Let 𝒩𝐾 = {𝑥(𝑗)

𝐾 , 𝑗 = 1, · · · ,𝑚} be the Lagrange nodes of 𝐾 and {𝜑(𝑗)
𝐾 , 𝑗 = 1, · · · ,𝑚} the corresponding

Lagrange basis functions. Then we have 𝑣ℎ =
∑︀

𝐾∈𝒯ℎ

∑︀𝑚
𝑗=1 𝛼

(𝑗)
𝐾 𝜑

(𝑗)
𝐾 and ̃︀𝑣ℎ =

∑︀
𝜈∈𝒩 𝛽(𝜈)𝜑(𝜈), where 𝒩 =⋃︀

𝐾∈𝒯ℎ
𝒩𝐾 and 𝜑(𝜈) is the Lagrange basis function of the node 𝜈. Here 𝛽(𝜈) is defined as that in Theorem 2.2

from [27]. Hence

∑︁
𝐾∈𝒯ℎ

‖∇(𝑣ℎ − ̃︀𝑣ℎ)‖𝑝
0,𝑝,𝐾 =

∑︁
𝐾∈𝒯ℎ

∫︁
𝐾

|
𝑚∑︁

𝑗=1

(𝛼(𝑗)
𝐾 − 𝛽

(𝑗)
𝐾 )∇𝜑(𝑗)

𝐾 |𝑝dx

.
∑︁

𝐾∈𝒯ℎ

𝑚∑︁
𝑗=1

|𝛼(𝑗)
𝐾 − 𝛽

(𝑗)
𝐾 |𝑝‖∇𝜑(𝑗)

𝐾 ‖𝑝
0,𝑝,𝐾 ,

where 𝛽(𝑗)
𝐾 = 𝛽(𝜈) whenever 𝑥(𝑗)

𝐾 = 𝜈. Since ‖∇𝜑(𝑗)
𝐾 ‖0,𝑝,𝐾 . ℎ

𝑑
𝑝−1

𝐾 , the above inequality and inverse estimate
(2.4) yield

∑︁
𝐾∈𝒯ℎ

‖∇(𝑣ℎ − ̃︀𝑣ℎ)‖𝑝
0,𝑝,𝐾 .

∑︁
𝐾∈𝒯ℎ

ℎ𝑑−𝑝
𝐾

𝑚∑︁
𝑗=1

|𝛼(𝑗)
𝐾 − 𝛽

(𝑗)
𝐾 |𝑝

.
∑︁

𝐹∈ℰ𝑜
ℎ

ℎ𝑑−𝑝
𝐹 ‖[𝑣ℎ]‖𝑝

0,∞,𝐹 +
∑︁

𝐹∈ℰ𝜕
ℎ

ℎ𝑑−𝑝
𝐹 ‖𝑣ℎ‖𝑝

0,∞,𝐹

.
∑︁

𝐹∈ℰ𝑜
ℎ

ℎ1−𝑝
𝐹 ‖[𝑣ℎ]‖𝑝

0,𝑝,𝐹 +
∑︁

𝐹∈ℰ𝜕
ℎ

ℎ1−𝑝
𝐹 ‖𝑣ℎ‖𝑝

0,𝑝,𝐹 .

�

3. A PRIORI error analysis

This section mainly focuses on a priori error analysis for the error ‖𝑢−𝑢ℎ‖0,Ω. To this end, we introduce the
following auxiliary problem:

−∆𝜑𝑓 = 𝑓 in Ω, (3.1a)
𝜑𝑓 = 0 on 𝜕Ω. (3.1b)

Theorem 3.1. The problem (3.1) has an unique weak solution which holds the following regularities from the
different cases:

(i) If 𝑓 ∈ 𝐿2(Ω) and the domain Ω is convex, we have

𝜑𝑓 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) and ‖𝜑𝑓‖2,Ω . ‖𝑓‖0,Ω. (3.2)

(ii) If 𝑓 ∈ 𝐿𝑝′(Ω), 𝑑 = 2 and the domain Ω is a non-convex Lipschtiz polygon, we have

𝜑𝑓 ∈𝑊 2,𝑝′

0 (Ω) and |𝜑𝑓 |2,𝑝′,Ω . ‖𝑓‖0,𝑝′,Ω, (3.3)

where (2− 𝜋
𝜃 )𝑝′ < 2 and 𝜃 > 𝜋 is the largest inner angle of the domain Ω.

Proof. The result of case (i) is well-known [10]. The result of case (ii) can be found in Section 4 from [2] and
Theorem 4.4.4.13 from [24]. �
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Following the approach in [26,33], we define 𝛿ℎ ∈𝑊 𝑘
ℎ such that 𝛿ℎ = 0 on 𝒯ℎ∖𝑇𝑥0 , and∫︁

𝐾

𝛿ℎ𝑣ℎ𝑑𝑥 = 𝑣ℎ|𝐾(𝑥0) ∀𝑣ℎ ∈ 𝒫𝑘(𝐾), 𝐾 ∈ 𝑇𝑥0 . (3.4)

Then with ([26], Subsect. 3.1) and inverse estimate (2.4), we can obtain

‖𝛿ℎ‖0,𝐾 ≈ ℎ
−𝑑/2
𝐾 , ∀𝐾 ∈ 𝑇𝑥0 . (3.5)

Furthermore, we define 𝜑𝛿ℎ
as the solution of problem (3.1) with 𝑓 = 1

♯𝑇𝑥0
𝛿ℎ, and the weak formulation is to

find 𝜑𝛿ℎ
∈ 𝐻1

0 (Ω) such that

𝑎(𝜑𝛿ℎ
, 𝑣) =

1
♯𝑇𝑥0

∫︁
Ω

𝛿ℎ𝑣dx, ∀𝑣 ∈ 𝐻1
0 (Ω). (3.6)

From now on, we assume in the rest of this section that the domain Ω is convex and the partition 𝒯ℎ is
quasi-uniform.

By a simple calculation, we can find 𝑢− 𝑢ℎ = 𝑢− 𝜑𝛿ℎ
+ 𝜑𝛿ℎ

− 𝑢ℎ, hence a priori error analysis for the error
‖𝑢− 𝑢ℎ‖0,Ω can be divided into two parts. Firstly, we are going to deal with the error ‖𝑢− 𝜑𝛿ℎ

‖0,Ω.

Lemma 3.2. Let 𝑢 ∈ 𝑊 1,𝑝
0 (Ω) (𝑝 ∈ [1, 𝑑

𝑑−1 )) and 𝜑𝛿ℎ
∈ 𝐻1

0 (Ω) be the solutions of problems (2.1) and (3.6). If
the domain Ω is convex and the mesh is quasi-uniform, it holds that

‖𝑢− 𝜑𝛿ℎ
‖0,Ω . ℎ

2−𝑑/2.

Proof. Let 𝜑𝑓 be the solution of problem (3.1) with 𝑓 ∈ 𝐿2(Ω). Let 𝜑𝑓,ℎ ∈ 𝑉 1
ℎ and 𝜑𝛿ℎ,ℎ ∈ 𝑉 1

ℎ be the standard
finite element approximations of 𝜑𝑓 and 𝜑𝛿ℎ

. Then we have the following standard error estimates (see, e.g.,
[10]):

‖𝜑𝑓 − 𝜑𝑓,ℎ‖𝐿∞(Ω) . ℎ
2−𝑑/2‖𝑓‖0,Ω, (3.7)

‖𝜑𝑓 − 𝜑𝑓,ℎ‖0,Ω + ℎ‖𝜑𝑓 − 𝜑𝑓,ℎ‖1,Ω . ℎ
2‖𝜑𝑓‖2,Ω . ℎ

2‖𝑓‖0,Ω. (3.8)

Moreover, integration by parts can yield∫︁
Ω

(𝑢− 𝜑𝛿ℎ
)𝑓 =

∫︁
Ω

∇(𝑢− 𝜑𝛿ℎ
) · ∇(𝜑𝑓 − 𝜑𝑓,ℎ) +

∫︁
Ω

∇(𝑢− 𝜑𝛿ℎ
) · ∇𝜑𝑓,ℎ

=
∫︁

Ω

∇(𝑢− 𝜑𝛿ℎ
) · ∇(𝜑𝑓 − 𝜑𝑓,ℎ)

= 𝜑𝑓 (𝑥0)− 𝜑𝑓,ℎ(𝑥0) +
∫︁

Ω

∇(𝜑𝛿ℎ,ℎ − 𝜑𝛿ℎ
) · ∇(𝜑𝑓 − 𝜑𝑓,ℎ)

. ℎ2−𝑑/2‖𝑓‖0,Ω + ℎ2−𝑑/2‖𝑓‖0,Ω,

by (3.5), (3.7) and (3.8), which concludes the proof. �

Now the remaining task is to estimate the error ‖𝜑𝛿ℎ
− 𝑢ℎ‖0,Ω. Obviously, according to the definitions of 𝜑𝛿ℎ

and 𝛿ℎ, we know that (𝑢ℎ, ̂︀𝑢ℎ) is an HDG approximation of 𝜑𝛿ℎ
. Hence from ([30], Thm. 2), we have

‖𝜑𝛿ℎ
− 𝑢ℎ‖0,Ω . ℎ

2|𝜑𝛿ℎ
|2,Ω, (3.9)

which, together with (3.5) and Lemma 3.2, yields the following a priori error estimate.

Theorem 3.3. Let 𝑢 and (𝑢ℎ, ̂︀𝑢ℎ) be the solutions of problems (2.1) and (2.2). If the domain Ω is convex and
the mesh is quasi-uniform, we have

‖𝑢− 𝑢ℎ‖0,Ω . ℎ
2−𝑑/2.
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4. Reliability of A POSTERIORI error estimators

In this section, we consider a posteriori error analysis for the HDG scheme (2.2). Specifically, we will prove
a posteriori error estimators for the errors ‖𝑢− 𝑢ℎ‖0,Ω and ‖∇(𝑢− 𝑢ℎ)‖𝑠,Ω.

If 𝑥0 is a node of the partition 𝒯ℎ, we define the local error estimators 𝜂𝐾 and 𝜁𝐾,𝑠 by

𝜂2
𝐾 = ℎ4

𝐾‖∆𝑢ℎ‖20,𝐾 + 𝜏2
0ℎ𝐾‖𝑢ℎ − ̂︀𝑢ℎ‖20,𝜕𝐾 ,

𝜁𝑠
𝐾,𝑠 = ℎ𝑠

𝐾‖∆𝑢ℎ‖𝑠
0,𝑠,𝐾 + 𝜏𝑠

0ℎ
1−𝑠
𝐾 ‖𝑢ℎ − ̂︀𝑢ℎ‖𝑠

0,𝑠,𝜕𝐾 ,

otherwise,

𝜂2
𝐾 =

{︃
ℎ4−𝑑

𝐾 + ℎ4
𝐾‖∆𝑢ℎ‖20,𝐾 + 𝜏2

0ℎ𝐾‖𝑢ℎ − ̂︀𝑢ℎ‖20,𝜕𝐾 if 𝑥0 ∈ 𝐾,
ℎ4

𝐾‖∆𝑢ℎ‖20,𝐾 + 𝜏2
0ℎ𝐾‖𝑢ℎ − ̂︀𝑢ℎ‖20,𝜕𝐾 otherwise,

𝜁𝑠
𝐾,𝑠 =

{︃
ℎ2−𝑠

𝐾 + ℎ𝑠
𝐾‖∆𝑢ℎ‖𝑠

0,𝑠,𝐾 + 𝜏𝑠
0ℎ

1−𝑠
𝐾 ‖𝑢ℎ − ̂︀𝑢ℎ‖𝑠

0,𝑠,𝜕𝐾 if 𝑥0 ∈ 𝐾,
ℎ𝑠

𝐾‖∆𝑢ℎ‖𝑠
0,𝑠,𝐾 + 𝜏𝑠

0ℎ
1−𝑠
𝐾 ‖𝑢ℎ − ̂︀𝑢ℎ‖𝑠

0,𝑠,𝜕𝐾 otherwise.

Before proving a posteriori error estimates, we first show the following properties for the HDG scheme (2.2).

Lemma 4.1. Let (𝑢ℎ, ̂︀𝑢ℎ) be the solution of problem (2.2), then we have

[∇𝑢ℎ · n]|𝐹 =
𝜏0
ℎ𝐹

(𝑢+
ℎ − ̂︀𝑢ℎ) +

𝜏0
ℎ𝐹

(𝑢−ℎ − ̂︀𝑢ℎ), ℰ𝑜
ℎ ∋ 𝐹 = 𝐾+ ∩𝐾−, (4.1)

(∆𝑢ℎ, 𝑣ℎ)𝒯ℎ
= −⟨∇𝑣ℎ · n, 𝑢ℎ − ̂︀𝑢ℎ⟩𝜕𝒯ℎ

+
∑︁

𝐾∈𝒯ℎ

∑︁
𝐹∈𝜕𝐾

𝜏0
ℎ𝐹
⟨𝑢ℎ − ̂︀𝑢ℎ, 𝑣ℎ⟩𝐹

− 1
♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

𝑣ℎ|𝐾(𝑥0), (4.2)

for any 𝑣ℎ ∈𝑊 𝑘
ℎ .

Proof. By setting 𝑣ℎ = 0 in (2.2), we arrive at

⟨∇𝑢ℎ · n, 𝜇ℎ⟩𝜕𝒯ℎ
− ⟨𝜏(𝑢ℎ − ̂︀𝑢ℎ), 𝜇ℎ⟩𝜕𝒯ℎ

= 0, ∀𝜇ℎ ∈𝑀𝑘
ℎ,0,

where 𝜏 = 𝜏0
ℎ𝐹

on each face 𝐹 ∈ ℰℎ. Hence the result (4.1) can be obtained by the above equality. Moreover the
equality (4.2) can be derived directly by using (4.1), (2.2) and integration by parts. �

Now we are going to prove a posteriori error estimate for the error ‖𝑢− 𝑢ℎ‖0,Ω by the duality argument.

Lemma 4.2. Let 𝑢 and (𝑢ℎ, ̂︀𝑢ℎ) be the solutions of problems (2.1) and (2.2). If the domain Ω is convex, we
have

‖𝑢− 𝑢ℎ‖0,Ω .
(︁ ∑︁

𝐾∈𝒯ℎ

𝜂2
𝐾

)︁1/2

. (4.3)

Proof. Let 𝜑𝑓 be the solution of problem (3.1) with 𝑓 ∈ 𝐿2(Ω). From the case (i) of Theorem 3.1, we know that
the solution 𝜑𝑓 satisfies the regularity (3.2). Hence by integration by parts, we arrive at

(𝑢− 𝑢ℎ, 𝑓)Ω = (∇𝑢,∇𝜑𝑓 )Ω + (𝑢ℎ,∆𝜑𝑓 )𝒯ℎ

= 𝜑𝑓 (𝑥0) + (∆𝑢ℎ, 𝜑𝑓 )𝒯ℎ
+ ⟨∇𝜑𝑓 · n, 𝑢ℎ⟩𝜕𝒯ℎ

− ⟨∇𝑢ℎ · n, 𝜑𝑓 ⟩𝜕𝒯ℎ
.
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Insert (4.2) in the above equality to yield

(𝑢− 𝑢ℎ, 𝑓)Ω = 𝜑𝑓 (𝑥0)− 1
♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

𝑣ℎ|𝐾(𝑥0) + (∆𝑢ℎ, 𝜑𝑓 − 𝑣ℎ)𝒯ℎ

+ ⟨∇𝜑𝑓 · n, 𝑢ℎ⟩𝜕𝒯ℎ
− ⟨∇𝑣ℎ · n, 𝑢ℎ − ̂︀𝑢ℎ⟩𝜕𝒯ℎ

− ⟨∇𝑢ℎ · n, 𝜑𝑓 ⟩𝜕𝒯ℎ
+ ⟨𝜏(𝑢ℎ − ̂︀𝑢ℎ), 𝑣ℎ⟩𝜕𝒯ℎ

(4.4)

=
(︁
𝜑𝑓 (𝑥0)− 1

♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

𝑣ℎ|𝐾(𝑥0)
)︁

+ (∆𝑢ℎ, 𝜑𝑓 − 𝑣ℎ)𝒯ℎ

+ ⟨∇(𝜑𝑓 − 𝑣ℎ) · n, 𝑢ℎ − ̂︀𝑢ℎ⟩𝜕𝒯ℎ
+ ⟨𝜏(𝑢ℎ − ̂︀𝑢ℎ), 𝑣ℎ − 𝜑𝑓 ⟩𝜕𝒯ℎ

= 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4,

for any 𝑣ℎ ∈ 𝑊 𝑘
ℎ . Note that we have used (4.1) and the fact that ∇𝜑𝑓 ∈ 𝐻(div,Ω) in the derivation of (4.4).

Let 𝑣ℎ = 𝐼𝜑𝑓 in (4.4), we can get by (2.5) and (2.6)

𝐼2 .
∑︁

𝐾∈𝒯ℎ

ℎ2
𝐾‖∆𝑢ℎ‖0,𝐾 |𝜑𝑓 |2,𝐾 , (4.5)

and

𝐼3 + 𝐼4 .
∑︁

𝐾∈𝒯ℎ

(︀
‖∇(𝜑𝑓 − 𝐼𝜑𝑓 )‖1/2

0,𝐾‖∇(𝜑𝑓 − 𝐼𝜑𝑓 )‖1/2
1,𝐾

)︀
‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝜕𝐾

+
∑︁

𝐾∈𝒯ℎ

𝜏0
ℎ𝐾

(︀
‖𝜑𝑓 − 𝐼𝜑𝑓‖1/2

0,𝐾‖𝜑𝑓 − 𝐼𝜑𝑓‖1/2
1,𝐾

)︀
‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝜕𝐾 (4.6)

.
∑︁

𝐾∈𝒯ℎ

𝜏0ℎ
1/2
𝐾 ‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝜕𝐾 |𝜑𝑓 |2,𝐾 .

As for the term 𝐼1, if 𝑥0 is a node of the partition 𝒯ℎ, we have 𝐼1 = 0, otherwise, the Lagrange interpolation
error estimate (2.8) can get

𝐼1 =
1

♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

(𝜑𝑓 (𝑥0)− 𝐼𝜑𝑓 |𝐾(𝑥0)) ≤ 1
♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

‖𝜑𝑓 − 𝐼𝜑𝑓‖0,∞,𝐾 .
1

♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

ℎ
2− 𝑑

2
𝐾 |𝜑𝑓 |2,𝐾 . (4.7)

Hence the result (4.3) can be achieved by using (3.2) and (4.4)-(4.7). �

Remark 4.3. Since the function ∇𝜑𝑓 does not belong to 𝐻(𝑑𝑖𝑣,Ω) for any 𝜑𝑓 ∈ 𝑊 2,𝑝′

0 (Ω) (𝑝′ < 2), the
additional term ⟨∇𝜑𝑓 ·n, ̂︀𝑢ℎ⟩𝜕𝒯ℎ

can not be eliminated when a posteriori error estimate of ‖𝑢− 𝑢ℎ‖0,𝑝,Ω (𝑃Ω <
𝑝 < ∞) is proved by using the result introduced in case (ii) of Theorem 3.1, where 𝑃Ω = 2𝜃

𝜋 > 2. This is why
we have not provided a posteriori error analysis for ‖𝑢− 𝑢ℎ‖0,𝑝,Ω (𝑃Ω < 𝑝 <∞).

In order to prove a posteriori error estimate for ‖∇(𝑢 − 𝑢ℎ)‖0,𝑝,Ω in two-dimensional case, we consider a
problem that is the same with that in [2]: Find 𝑤 ∈𝑊 1,𝑝′

0 (Ω) such that

𝑎(𝑤, 𝑣) =
∫︁

Ω

Ψ · ∇𝑣, ∀𝑣 ∈𝑊 1,𝑝
0 (Ω), (4.8)

for Ψ ∈ (𝐿𝑝′(Ω))2. From [2], we know that if 𝑑 = 2 and the domain Ω is a Lipschtiz polygon, the problem (4.8)
has an unique weak solution 𝑤 ∈𝑊 1,𝑝′

0 (Ω) satisfying

|𝑤|1,𝑝′,Ω . ‖Ψ‖0,𝑝′,Ω, (4.9)

for 𝑝 ∈ (𝑃Ω, 2), where 𝑃Ω := max{1, 2/(1 + 𝜋
𝜃 )}, 𝜃 is the largest inner angle of the domain Ω and 1

𝑝 + 1
𝑝′ = 1.
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Lemma 4.4. Let 𝑢 and (𝑢ℎ, ̂︀𝑢ℎ) be the solutions of problems (2.1) and (2.2). If 𝑑 = 2 and the domain Ω is a
Lipschitz polygon, the following error estimate holds

‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝒯ℎ
.

(︁ ∑︁
𝐾∈𝒯ℎ

𝜁𝑝
𝐾,𝑝

)︁1/𝑝

,

where 𝑝 ∈ (𝑃Ω, 2).

Proof. Since 𝑢ℎ does not belong to the space 𝑊 1,𝑝(Ω), we can not apply the duality argument directly for 𝑢−𝑢ℎ

by (4.8). Here, let ̃︀𝑢ℎ be the Oswald interpolation of 𝑢ℎ, then using duality argument for 𝑢− ̃︀𝑢ℎ we have∫︁
Ω

∇(𝑢− ̃︀𝑢ℎ) ·Ψdx = (∇(𝑢− ̃︀𝑢ℎ),∇𝑤)Ω

= 𝑤(𝑥0) + (∇(𝑢ℎ − ̃︀𝑢ℎ),∇𝑤)𝒯ℎ
− (∇𝑢ℎ,∇𝑤)𝒯ℎ

= 𝑤(𝑥0) + (∇(𝑢ℎ − ̃︀𝑢ℎ),∇𝑤)𝒯ℎ
+ (∆𝑢ℎ, 𝑤)𝒯ℎ

− ⟨∇𝑢ℎ · n, 𝑤⟩𝜕𝒯ℎ
.

Insert (4.2) in the above equality to infer that∫︁
Ω

∇(𝑢− ̃︀𝑢ℎ) ·Ψdx =
(︁
𝑤(𝑥0)− 1

♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

𝑣ℎ|𝐾(𝑥0)
)︁

+ (∆𝑢ℎ, 𝑤 − 𝑣ℎ)𝒯ℎ

+ (∇(𝑢ℎ − ̃︀𝑢ℎ),∇𝑤)𝒯ℎ
− ⟨∇𝑣ℎ · n, 𝑢ℎ − ̂︀𝑢ℎ⟩𝜕𝒯ℎ

(4.10)
+ ⟨𝜏(𝑢ℎ − ̂︀𝑢ℎ), 𝑣ℎ − 𝑤⟩𝜕𝒯ℎ

= 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5.

for any 𝑣ℎ ∈𝑊 𝑘
ℎ .

Let 𝑣ℎ = 𝐼𝑤 ∈ 𝑉 1
ℎ in (4.10), the trace inequality (2.5) and Lagrange interpolation error estimate (2.7) can

get

𝐸2 .
∑︁

𝐾∈𝒯ℎ

ℎ𝐾‖∆𝑢ℎ‖0,𝑝,𝐾 |𝑤|1,𝑝′,𝐾 , (4.11)

and

𝐸4 + 𝐸5 .
∑︁

𝐾∈𝒯ℎ

‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝑝,𝜕𝐾

(︁
‖∇𝐼𝑤‖

1
𝑝

0,𝑝′,𝐾‖∇𝐼𝑤‖
1
𝑝′

1,𝑝′,𝐾

+
𝜏0
ℎ𝐾

‖𝑤 − 𝐼𝑤‖
1
𝑝

0,𝑝′,𝐾‖𝑤 − 𝐼𝑤‖
1
𝑝′

1,𝑝′,𝐾

)︁
(4.12)

.
∑︁

𝐾∈𝒯ℎ

𝜏0ℎ
1
𝑝−1

𝐾 ‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝑝,𝜕𝐾 |𝑤|1,𝑝′,𝐾 .

If 𝑥0 is a node of the partition 𝒯ℎ, 𝐸1 = 0, otherwise, we have

𝐸1 ≤
1

♯𝑇𝑥0

∑︁
𝐾∈𝑇𝑥0

‖𝑤 − 𝐼𝑤‖0,∞,𝐾 .
∑︁

𝐾∈𝑇𝑥0

ℎ
2
𝑝−1

𝐾 |𝑤|1,𝑝′,𝐾 . (4.13)
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by the Lagrange interpolation error estimate (2.9). As for the term 𝐸3, the Oswald interpolation error estimate
(2.12) can yield

𝐸3 .
(︁ ∑︁

𝐾∈𝒯ℎ

‖∇(𝑢ℎ − ̃︀𝑢ℎ)‖𝑝
0,𝑝,𝐾

)︁1/𝑝

|𝑤|1,𝑝′,Ω

.
(︁ ∑︁

𝐹∈ℰ𝑜
ℎ

ℎ1−𝑝
𝐹 ‖[𝑢ℎ]‖𝑝

0,𝑝,𝐹 +
∑︁

𝐹∈ℰ𝜕
ℎ

ℎ1−𝑝
𝐹 ‖𝑢ℎ‖𝑝

0,𝑝,𝐹

)︁1/𝑝

|𝑤|1,𝑝′,Ω (4.14)

.
(︁ ∑︁

𝐾∈𝒯ℎ

ℎ1−𝑝
𝐾 ‖𝑢ℎ − ̂︀𝑢ℎ‖𝑝

0,𝑝,𝜕𝐾

)︁1/𝑝

|𝑤|1,𝑝′,Ω.

Hence combining (4.9) and (4.10)–(4.14), we have

‖∇(𝑢− ̃︀𝑢ℎ)‖0,𝑝,Ω .
(︁ ∑︁

𝐾∈𝒯ℎ

𝜁𝑝
𝐾,𝑝

)︁1/𝑝

, (4.15)

which, together with the Oswald interpolation error estimate (2.12) and the triangle inequality, concludes the
proof. �

5. Efficiency of A POSTERIORI error estimators

In this section, we mainly prove the efficiency of a posteriori error estimators. Before this, we first introduce
the element and face bubble functions 𝐵𝐾 and 𝐵𝐹 as that in [35]. Following the approach in [2, 20], we define

𝜓𝐾(𝑥) =

{︃
𝐵2

𝐾(𝑥) |𝑥−𝑥0|2
ℎ2

𝐾
if 𝑥0 ∈ 𝐾,

𝐵2
𝐾(𝑥) otherwise,

for any 𝐾 ∈ 𝒯ℎ, and

𝜓𝐹 (𝑥) =

{︃
𝐵2

𝐹 (𝑥) |𝑥−𝑥0|2
ℎ2

𝐹
if 𝑥0 ∈ 𝑤𝐹 ,

𝐵2
𝐹 (𝑥) otherwise,

for 𝐹 ∈ ℰ𝑜
ℎ, where 𝑤𝐹 :=

⋃︀
{𝐾 : 𝐹 ⊂ 𝜕𝐾, 𝐾 ∈ 𝒯ℎ}.

Lemma 5.1. For each 𝐾 ∈ 𝒯ℎ and 𝐹 ∈ ℰ𝑜
ℎ, let 𝜓𝐾 and 𝜓𝐹 be defined as above. Then

𝜓𝐾 = ∇𝜓𝐾 · n = 0 on 𝜕𝐾, 𝜓𝐹 = ∇𝜓𝐹 · n = 0 on the boundary of 𝑤𝐹 , (5.1)

‖𝑣‖0,𝑝,𝐾 . ‖𝑣𝜓
1
𝑝

𝐾‖0,𝑝,𝐾 , ‖𝑤‖0,𝑝,𝐹 . ‖𝑤𝜓
1
𝑝

𝐹 ‖0,𝑝,𝐹 , (5.2)

for 𝑝 ∈ (1,∞), 𝑣 ∈ 𝒫𝑗(𝐾) and 𝑤 ∈ 𝒫𝑗(𝐹 ), where 𝑗 is a nonnegative integer.

Proof. The result (5.1) can be obtained directly by the definitions of 𝜓𝐾 and 𝜓𝐹 , and the approximation result
(5.2) can be derived by Lemma 3 from [20]. �

Lemma 5.2. Let 𝑢 and (𝑢ℎ, ̂︀𝑢ℎ) be the solutions of problems (2.1) and (2.2). Then we have

ℎ2
𝐾‖∆𝑢ℎ‖0,𝐾 . ‖𝑢− 𝑢ℎ‖0,𝐾 , ∀𝐾 ∈ 𝒯ℎ, (5.3)

and

ℎ𝐾‖∆𝑢ℎ‖0,𝑝,𝐾 . ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝐾 , (5.4)

for 𝑝 ∈ (𝑃Ω, 2).
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Proof. Let 𝑣ℎ = 𝜓𝐾∆𝑢ℎ, by (5.1), (5.2) and inverse estimate (2.4) we arrive at

‖∆𝑢ℎ‖20,𝐾 . (∆𝑢ℎ, 𝑣ℎ)𝐾 = (∆(𝑢ℎ − 𝑢), 𝑣ℎ)𝐾

= (𝑢ℎ − 𝑢,∆𝑣ℎ)𝐾 . ‖𝑢− 𝑢ℎ‖0,𝐾ℎ
−2
𝐾 ‖𝑣ℎ‖0,𝐾 (5.5)

. ℎ−2
𝐾 ‖𝑢− 𝑢ℎ‖0,𝐾‖∆𝑢ℎ‖0,𝐾 .

Hence the estimate (5.3) can be obtained by (5.5).
Similarly, let 𝑣ℎ = 𝜓𝐾∆𝑢ℎ, we have

‖∆𝑢ℎ‖20,𝐾 . (∆(𝑢ℎ − 𝑢), 𝑣ℎ)𝐾

= (∇(𝑢ℎ − 𝑢),∇𝑣ℎ)𝐾 . ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝐾ℎ
−1
𝐾 ‖𝑣ℎ‖0,𝑝′,𝐾 (5.6)

. ℎ−1
𝐾 ℎ

𝑑
𝑝′−

𝑑
2

𝐾 ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝐾‖∆𝑢ℎ‖0,𝐾 .

So we can obtain the error estimate (5.4) by (5.6) and inverse estimate (2.4). �

For the case of 𝑥0 is not a node of the partition 𝒯ℎ, we know that the error estimators 𝜂𝐾 and 𝜁𝐾,𝑠 include
an additional term. In order to control this term, we define a cutoff function 𝐵𝑥0 for the element 𝐾 ∈ 𝑇𝑥0 such
that

0 ≤ 𝐵𝑥0 ≤ 1 ∀𝑥 ∈ Ω, (5.7)

𝐵𝑥0 = 1 ∀𝑥 ∈ Ω : |𝑥− 𝑥0| ≤
𝑡

4
, (5.8)

𝐵𝑥0 = 0 ∀𝑥 ∈ Ω : |𝑥− 𝑥0| ≥
3𝑡
4
, (5.9)

|𝐵𝑥0 |𝑚,∞,𝑤𝐾
. 𝑡−𝑚 𝑚 = 1, 2, (5.10)

where 𝑤𝐾 :=
⋃︀
{𝐾 ′ ∈ 𝒯ℎ : 𝐾 ∩𝐾 ′ ̸= ∅}, and 𝑡 denotes the distance of 𝑥0 to the boundary of 𝑤𝐾 . Note that the

cutoff function has been used in [2]. Then using the fact that ℎ𝐾 . 𝑡 and (5.10), we have

|𝐵𝑥0 |𝑚,𝑝′,𝑤𝐾
. 𝑡−𝑚ℎ

𝑑/𝑝′

𝐾 . ℎ𝑑/𝑝′−𝑚
𝐾 , 𝑚 = 1, 2, 1 ≤ 𝑝′ ≤ ∞. (5.11)

Lemma 5.3. For any 𝐾 ∈ 𝑇𝑥0 , let 𝐵𝑥0 and 𝑤𝐾 be defined as above. Then we have

ℎ
2− 𝑑

2
𝐾 . ‖𝑢− 𝑢ℎ‖0,𝑤𝐾

+
∑︁

𝐾′∈𝑤𝐾

𝜏0ℎ
1
2
𝐾′‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝜕𝐾′ , (5.12)

and

ℎ
2
𝑝−1

𝐾 . ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝑤𝐾
+

∑︁
𝐾′∈𝑤𝐾

𝜏0ℎ
1
𝑝−1

𝐾′ ‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝑝,𝜕𝐾′ , (5.13)

for 𝑝 ∈ (𝑃Ω, 2).

Proof. Using (4.1), the definition of 𝐵𝑥0 and (5.11), we can infer that

1 =𝐵𝑥0(𝑥0) = (∇(𝑢− 𝑢ℎ),∇𝐵𝑥0)𝒯ℎ
+ (∇𝑢ℎ,∇𝐵𝑥0)𝒯ℎ

=− (𝑢− 𝑢ℎ,∆𝐵𝑥0)𝑤𝐾
− (∆𝑢ℎ, 𝐵𝑥0)𝑤𝐾

− ⟨𝑢ℎ,∇𝐵𝑥0 · n⟩𝜕𝑤𝐾
+ ⟨∇𝑢ℎ · n, 𝐵𝑥0⟩𝜕𝑤𝐾

(5.14)

.
∑︁

𝐾′∈𝑤𝐾

(︁
‖𝑢− 𝑢ℎ‖0,𝐾′ℎ

𝑑/2−2
𝐾 + ‖∆𝑢ℎ‖0,𝐾′ℎ

𝑑/2
𝐾

+ 𝜏0‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝜕𝐾′ℎ
(𝑑−1)/2−1
𝐾

)︁
,
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where 𝜕𝑤𝐾 := {𝜕𝐾 ′ : 𝐾 ′ ∈ 𝑤𝐾}. Hence we can get (5.12) by using (5.14) and (5.3).
Similarly, we have

1 =(∇(𝑢− 𝑢ℎ),∇𝐵𝑥0)𝑤𝐾
− (∆𝑢ℎ, 𝐵𝑥0)𝑤𝐾

+ ⟨∇𝑢ℎ · n, 𝐵𝑥0⟩𝜕𝑤𝐾

.
∑︁

𝐾′∈𝑤𝐾

(︁
‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝐾′ℎ

2/𝑝′−1
𝐾 + ‖∆𝑢ℎ‖0,𝑝,𝐾′ℎ

2/𝑝′

𝐾 (5.15)

+ 𝜏0‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝑝,𝜕𝐾′ℎ
1/𝑝′−1
𝐾

)︁
.

So we can obtain (5.13) by combining (5.15) and (5.4). �

Obviously, the remaining task is to bound the error estimator ‖𝑢ℎ − ̂︀𝑢ℎ‖0,𝑝,𝜕𝐾 . But, seemingly, it is not an
easy task. First of all, we show the following relationships.

Lemma 5.4. Let (𝑢ℎ, ̂︀𝑢ℎ) be the solution of problem (2.2). Then the following relationships hold

‖[∇𝑢ℎ · n]‖𝑝
0,𝑝,𝐹 + 𝜏𝑝

0 ℎ
−𝑝
𝐹 ‖[𝑢ℎ]‖𝑝

0,𝑝,𝐹 . 2𝑝−1
(︁
‖ 𝜏0
ℎ𝐹

(𝑢+
ℎ − ̂︀𝑢ℎ)‖𝑝

0,𝑝,𝐹 + ‖ 𝜏0
ℎ𝐹

(𝑢−ℎ − ̂︀𝑢ℎ)‖𝑝
0,𝑝,𝐹

)︁
, (5.16)

and

‖ 𝜏0
ℎ𝐹

(𝑢+
ℎ − ̂︀𝑢ℎ)‖𝑝

0,𝑝,𝐹 + ‖ 𝜏0
ℎ𝐹

(𝑢−ℎ − ̂︀𝑢ℎ)‖𝑝
0,𝑝,𝐹 . 2𝑝−1

(︁
‖[∇𝑢ℎ · n]‖𝑝

0,𝑝,𝐹 + 𝜏𝑝
0 ℎ
−𝑝
𝐹 ‖[𝑢ℎ]‖𝑝

0,𝑝,𝐹

)︁
, (5.17)

for 1 ≤ 𝑝 <∞ and ℰ𝑜
ℎ ∋ 𝐹 = 𝐾+ ∩𝐾−.

Proof. To prove (5.16) and (5.17), we only need to prove the following results:

|[∇𝑢ℎ · n]|𝑝 + 𝜏𝑝
0 ℎ
−𝑝
𝐹 |[𝑢ℎ]|𝑝 . 2𝑝−1

(︁
| 𝜏0
ℎ𝐹

(𝑢+
ℎ − ̂︀𝑢ℎ)|𝑝 + | 𝜏0

ℎ𝐹
(𝑢−ℎ − ̂︀𝑢ℎ)|𝑝

)︁
, (5.18)

| 𝜏0
ℎ𝐹

(𝑢+
ℎ − ̂︀𝑢ℎ)|𝑝 + | 𝜏0

ℎ𝐹
(𝑢−ℎ − ̂︀𝑢ℎ)|𝑝 . 2𝑝−1

(︁
|[∇𝑢ℎ · n]|𝑝 + 𝜏𝑝

0 ℎ
−𝑝
𝐹 |[𝑢ℎ]|𝑝

)︁
. (5.19)

By using (4.1) and the definition of the jump [𝑢ℎ], we yield

|[∇𝑢ℎ · n]|+ 𝜏0ℎ
−1
𝐹 |[𝑢ℎ]| . | 𝜏0

ℎ𝐹
(𝑢+

ℎ − ̂︀𝑢ℎ)|+ | 𝜏0
ℎ𝐹

(𝑢−ℎ − ̂︀𝑢ℎ)|.

Hence we can get (5.18) by the above inequality.
On the other hand, by using the triangle inequality, we yield

| 𝜏0
ℎ𝐹

(𝑢+
ℎ − ̂︀𝑢ℎ)| =

1
2
|𝜏0ℎ−1

𝐹 [𝑢ℎ] +
𝜏0
ℎ𝐹

(𝑢+
ℎ − ̂︀𝑢ℎ) +

𝜏0
ℎ𝐹

(𝑢−ℎ − ̂︀𝑢ℎ)|

≤ 1
2
𝜏0ℎ

−1
𝐹 |[𝑢ℎ]|+ 1

2
|[∇𝑢ℎ · n]|,

and

| 𝜏0
ℎ𝐹

(𝑢−ℎ − ̂︀𝑢ℎ)| ≤ 1
2
𝜏0ℎ

−1
𝐹 |[𝑢ℎ]|+ 1

2
|[∇𝑢ℎ · n]|.

Therefore the estimate (5.19) can be derived by the above two inequalities. �

Now we are going to bound the error estimator ‖[∇𝑢ℎ · n]‖𝑝
0,𝑝,𝐹 for 𝐹 ∈ ℰ𝑜

ℎ.
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Lemma 5.5. Let 𝑢 and (𝑢ℎ, ̂︀𝑢ℎ) be the solutions of problems (1.1) and (2.2). Then for each 𝐹 ∈ ℰ𝑜
ℎ, we have

ℎ
3
2
𝐹 ‖[∇𝑢ℎ · n]‖0,𝐹 . ‖𝑢− 𝑢ℎ‖0,𝑤𝐹

+ ℎ
1
2
𝐹 ‖[𝑢ℎ]‖0,𝐹 , (5.20)

and

ℎ
1
𝑝

𝐹 ‖[∇𝑢ℎ · n]‖0,𝑝,𝐹 . ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝑤𝐹
, (5.21)

for 𝑝 ∈ (𝑃Ω, 2).

Proof. Let 𝑃𝐹 : 𝐿∞(𝐹 ) → 𝐿∞(𝑤𝐹 ) be a continuation operator [35] such that

‖𝑃𝐹𝑤‖0,𝑤𝐹
. ℎ

1
2
𝐹 ‖𝑤‖0,𝐹 , ∀𝑤 ∈ 𝒫𝑗(𝐹 ), (5.22)

for any nonnegative integer 𝑗. Let 𝑣 = 𝜓𝐹 (𝑃𝐹 [∇𝑢ℎ · n]).
By the trace inequality, the inverse estimate (2.4), Lemma 5.1 and (5.22), we can get

‖[∇𝑢ℎ · n]‖20,𝐹 . ⟨[∇𝑢ℎ · n], 𝑣⟩𝐹 =
∫︁

𝑤𝐹

∇ · (𝑣∇𝑢ℎ)

= (∆𝑢ℎ, 𝑣)𝑤𝐹
+ (∇𝑣,∇𝑢ℎ)𝑤𝐹

≤ ‖∆𝑢ℎ‖0,𝑤𝐹
‖𝑣‖0,𝑤𝐹

− (∆𝑣, 𝑢ℎ − 𝑢)𝑤𝐹
+ ⟨∇𝑣 · n, [𝑢ℎ]⟩𝐹

. ‖[∇𝑢ℎ · n]‖0,𝐹

(︁
‖∆𝑢ℎ‖0,𝑤𝐹

ℎ
1
2
𝐹 + ℎ

− 3
2

𝐹 ‖𝑢− 𝑢ℎ‖0,𝑤𝐹

+ ℎ−1
𝐹 ‖[𝑢ℎ]‖0,𝐹

)︁
.

Hence the approximation (5.20) can be obtained by (5.3) and the above estimate.
Similarly, we have

‖[∇𝑢ℎ · n]‖20,𝐹 . (∆𝑢ℎ, 𝑣)𝑤𝐹
+ (∇𝑣,∇(𝑢ℎ − 𝑢))𝑤𝐹

(5.23)

. ‖[∇𝑢ℎ · n]‖0,𝐹

(︁
ℎ

𝑑
𝑝′−

𝑑
2 + 1

2

𝐹 ‖∆𝑢ℎ‖0,𝑝,𝑤𝐹
+ ℎ

𝑑
𝑝′−

𝑑
2−

1
2

𝐹 ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝑤𝐹

)︁
.

Therefore, we can derive (5.21) by (5.4), the inverse estimate (2.4) and (5.23). �

Combining Lemmas (4.2), (4.4), (5.2), (5.3), (5.4) and (5.5) we can get the following theorem.

Theorem 5.6. Let 𝑢 and (𝑢ℎ, ̂︀𝑢ℎ) be the solutions of problems (2.1) and (2.2). Let ̃︀𝑢ℎ be the Oswald interpo-
lation of 𝑢ℎ.

(i) If the domain Ω is convex, we have

‖𝑢− 𝑢ℎ‖0,Ω + ‖𝑢− ̃︀𝑢ℎ‖0,Ω .
(︁ ∑︁

𝐾∈𝒯ℎ

𝜂2
𝐾

)︁1/2

, (5.24)

(︁ ∑︁
𝐾∈𝒯ℎ

𝜂2
𝐾

)︁1/2

. 𝜏0(‖𝑢− 𝑢ℎ‖0,Ω + ‖𝑢− ̃︀𝑢ℎ‖0,Ω), (5.25)

(ii) If d=2 and the domain Ω is a Lipschitz polygon, we have

‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝒯ℎ
+

(︁ ∑︁
𝐹∈ℰℎ

𝜏𝑝
0 ℎ

1−𝑝
𝐹 ‖[𝑢ℎ − ̃︀𝐼𝑢]‖𝑝

0,𝑝,𝐹

)︁1/𝑝

.
(︁ ∑︁

𝐾∈𝒯ℎ

𝜁𝑝
𝐾,𝑝

)︁1/𝑝

, (5.26)

(︁ ∑︁
𝐾∈𝒯ℎ

𝜁𝑝
𝐾,𝑝

)︁1/𝑝

. ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,Ω +
(︁ ∑︁

𝐹∈ℰℎ

𝜏𝑝
0 ℎ

1−𝑝
𝐹 ‖[𝑢ℎ − ̃︀𝐼𝑢]‖𝑝

0,𝑝,𝐹

)︁1/𝑝

, (5.27)

for 𝑝 ∈ (𝑃Ω, 2), where 𝑃Ω = max{1, 2/(1 + 𝜋
𝜃 )} and 𝜃 is the largest inner angle of the domain Ω.
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Proof. By using Oswald interpolation error estimate (2.11), we infer that

‖𝑢− ̃︀𝑢ℎ‖0,Ω ≤ ‖𝑢− 𝑢ℎ‖0,Ω +
(︁ ∑︁

𝐾∈𝒯ℎ

‖𝑢ℎ − ̃︀𝑢ℎ‖20,𝐾

)︁1/2

. ‖𝑢− 𝑢ℎ‖0,Ω +
(︁ ∑︁

𝐹∈ℰ𝑜
ℎ

ℎ𝐹 ‖[𝑢ℎ]‖20,𝐹 +
∑︁

𝐹∈ℰ𝜕
ℎ

ℎ𝐹 ‖𝑢ℎ‖20,𝐹

)︁1/2

(5.28)

. ‖𝑢− 𝑢ℎ‖0,Ω +
(︁ ∑︁

𝐾∈𝒯ℎ

ℎ𝐾‖𝑢ℎ − ̂︀𝑢ℎ‖20,𝜕𝐾

)︁1/2

.

Hence we can get (5.24) by combining (4.3) and (5.28).
In virtue of the results introduced in Lemmas 5.2, 5.3, 5.4 and 5.5, we yield(︁ ∑︁

𝐾∈𝒯ℎ

𝜂2
𝐾

)︁1/2

. ‖𝑢− 𝑢ℎ‖0,Ω +
(︁ ∑︁

𝐹∈ℰ𝑜
ℎ

𝜏2
0ℎ𝐹 ‖[𝑢ℎ]‖20,𝐹 +

∑︁
𝐹∈ℰ𝜕

ℎ

𝜏2
0ℎ𝐹 ‖𝑢ℎ‖20,𝐹

)︁1/2

, (5.29)

and (︁ ∑︁
𝐾∈𝒯ℎ

𝜁𝑝
𝐾,𝑝

)︁1/𝑝

. ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝒯ℎ
+

(︁ ∑︁
𝐹∈ℰ𝑜

ℎ

𝜏𝑝
0 ℎ

1−𝑝
𝐹 ‖[𝑢ℎ]‖𝑝

0,𝑝,𝐹 +
∑︁

𝐹∈ℰ𝜕
ℎ

𝜏𝑝
0 ℎ

1−𝑝
𝐹 ‖𝑢ℎ‖𝑝

0,𝑝,𝐹

)︁1/𝑝

= ‖∇(𝑢− 𝑢ℎ)‖0,𝑝,𝒯ℎ
+

(︁ ∑︁
𝐹∈ℰℎ

𝜏𝑝
0 ℎ

1−𝑝
𝐹 ‖[𝑢ℎ − ̃︀𝐼𝑢]‖𝑝

0,𝑝,𝐹

)︁1/𝑝

. (5.30)

Obviously, the approximation result (5.30) is the same as (5.27). Moreover the inverse estimate (2.4) and trace
inequality (2.5) result in

ℎ
1
2
𝐹 ‖[𝑢ℎ]‖0,𝐹 = ℎ

1
2
𝐹 ‖[𝑢ℎ − ̃︀𝑢ℎ]‖0,𝐹 ≤ ℎ

1
2
𝐹 ‖𝑢

+
ℎ − ̃︀𝑢ℎ‖0,𝐹 + ℎ

1
2
𝐹 ‖𝑢

−
ℎ − ̃︀𝑢ℎ‖0,𝐹

. ‖𝑢+
ℎ − ̃︀𝑢ℎ‖0,𝐾+ + ‖𝑢−ℎ − ̃︀𝑢ℎ‖0,𝐾− , (5.31)

for any ℰ𝑜
ℎ ∋ 𝐹 = 𝐾+ ∩𝐾−. Hence(︁ ∑︁

𝐹∈ℰ𝑜
ℎ

𝜏2
0ℎ𝐹 ‖[𝑢ℎ]‖20,𝐹 +

∑︁
𝐹∈ℰ𝜕

ℎ

𝜏2
0ℎ𝐹 ‖𝑢ℎ‖20,𝐹

)︁1/2

. 𝜏0‖𝑢ℎ − ̃︀𝑢ℎ‖0,Ω (5.32)

. 𝜏0(‖𝑢− 𝑢ℎ‖0,Ω + ‖𝑢− ̃︀𝑢ℎ‖0,Ω),

which, together with (5.29), derives the approximation result (5.25).
Finally the approximation result (5.26) can be obtained by Lemma 4.4 and the fact that(︁ ∑︁

𝐹∈ℰℎ

𝜏𝑝
0 ℎ

1−𝑝
𝐹 ‖[𝑢ℎ − ̃︀𝐼𝑢]‖𝑝

0,𝑝,𝐹

)︁1/𝑝

.
(︁ ∑︁

𝐾∈𝒯ℎ

𝜏𝑝
0 ℎ

1−𝑝
𝐾 ‖𝑢ℎ − ̂︀𝑢ℎ‖𝑝

0,𝑝,𝐾

)︁1/𝑝

.

�

6. Numerical experiments

In this section, some numerical experiments are provided to validate the theoretical analysis. For the adaptive
HDG algorithm designed by the obtained a posteriori error estimators, we use the following marking strategy∑︁

𝐾∈ℳ
𝜉𝐾 ≥ 𝛾𝜉
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Table 1. The convergence history of ‖𝑢− 𝑢ℎ‖0,Ω for HDG scheme (2.2) for 𝑘 = 1.

ℎ ‖𝑒𝑢‖0,Ω (𝜏0 = 15) Order ‖𝑒𝑢‖0,Ω (𝜏0 = 25) Order ‖𝑒𝑢‖0,Ω (𝜏0 = 100) Order

1
4

1.4376e-2 1.3591e-2 1.4455e-2
1
8

7.1722e-3 1.003 6.7986e-3 0.999 7.3180e-3 0.982
1
16

3.5832e-3 1.001 3.3979e-3 1.001 3.6712e-3 0.995
1
32

1.7912e-3 1.000 1.6987e-3 1.000 1.8371e-3 0.999
1
64

8.9554e-4 1.000 8.4934e-4 1.000 9.1873e-4 1.000
1

128
4.4777e-4 1.000 4.2467e-4 1.000 4.5939e-4 1.000

1
256

2.2388e-4 1.000 2.1233e-4 1.000 2.2970e-4 1.000

Table 2. The convergence history of ‖𝑢− 𝑢ℎ‖0,Ω for HDG scheme (2.2) for 𝑘 = 2.

ℎ ‖𝑒𝑢‖0,Ω (𝜏0 = 15) Order ‖𝑒𝑢‖0,Ω (𝜏0 = 25) Order ‖𝑒𝑢‖0,Ω (𝜏0 = 100) Order

1
4

3.6253e-2 9.1561e-3 6.9934e-3
1
8

1.8224e-2 0.992 4.5782e-3 1.000 3.4990e-3 0.999
1
16

9.1121e-3 1.000 2.2891e-3 1.000 1.7495e-3 1.000
1
32

4.5560e-3 1.000 1.1446e-3 1.000 8.7477e-4 1.000
1
64

2.2780e-3 1.000 5.7228e-4 1.000 4.3738e-4 1.000
1

128
1.1390e-3 1.000 2.8614e-4 1.000 2.1869e-4 1.000

1
256

5.6950e-4 1.000 1.4307e-4 1.000 1.0935e-4 1.000

to select the marking set ℳ, where 𝛾 ∈ (0, 1], 𝜉 = 𝜂2
2 or 𝜁𝑝

𝑝 , and 𝜉𝐾 is the restriction of 𝜉 on the element 𝐾 ∈ 𝒯ℎ.
Here 𝜂2

2 =
∑︀

𝐾∈𝒯ℎ
𝜂2

𝐾 and 𝜁𝑝
𝑝 =

∑︀
𝐾∈𝒯ℎ

𝜁𝑝
𝐾 . We refine the marking set ℳ by bisections to generate a new mesh.

Note here that the figure of convergence history is plotted in log-log coordinates in this section. Moreover we
set 𝑒𝑢 = 𝑢− 𝑢ℎ and

𝐸 = ‖𝑒𝑢‖0,Ω + ‖𝑢− 𝑢̃ℎ‖0,Ω,

𝐸2,𝑠 = ‖∇𝑒𝑢‖0,𝑠,Ω +
(︁ ∑︁

𝐹∈ℰℎ

𝜏𝑠
0ℎ

1−𝑠
𝐹 ‖[𝑢ℎ]‖𝑠

0,𝑠,𝐹

)︁1/𝑠

.

Example 6.1. Based on the domain Ω = (0, 1)2, we consider the problem (1.1) with 𝑥0 = (0.5, 0.5). In this
example, the Dirichlet boundary conditions are imposed so that the exact solution is given by

𝑢(x) = − 1
2𝜋

log |x− 𝑥0|.

We test this example under the constraint that 𝑥0 be a vertex of all partitions.
In Tables 1 and 2, the convergence history and convergence order of the error ‖𝑒𝑢‖0,Ω for different 𝜏0 and 𝑘

are provided on uniform meshes. We find that the convergence rate 𝑂(ℎ) can be achieved. From the perspective
of error, we find from Figure 1 that the best choice of 𝜏0 may be 25 and 150 for 𝑘 = 1 and 𝑘 = 2. Furthermore,
in Figure 2 and Table 3, the convergence histories of ‖𝑢− 𝑢ℎ‖0,Ω for finite element methods (FEM) and HDG
methods are presented for 𝑘 = 1. Obviously, involving a suitable choice of 𝜏0, we can expect that the HDG
methods of this paper are slightly better than the finite element methods.

From now on, we set 𝜏0 = 25 and we test this example with adaptive HDG algorithm. The meshes and the
corresponding surfaces of 𝑢ℎ, generated by 𝜂2 and 𝜁1.5, are provided in Figures 3 and 5 for 𝑘 = 1 and 𝛾 = 0.2.
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Figure 1. Left: The error ‖𝑢− 𝑢ℎ‖0,Ω for different 𝜏0 for 𝑘 = 1. Right: The error ‖𝑢− 𝑢ℎ‖0,Ω

for different 𝜏0 for 𝑘 = 2. Here we set ℎ = 1
32 .

Figure 2. The convergence histories of ‖𝑢 − 𝑢ℎ‖0,Ω for finite element methods and HDG
methods. Here we set 𝑘 = 1.

Obviously, the mesh nodes are concentrated around 𝑥0. In Figure 4, we present the convergence histories of
𝜂2 and ‖𝑒𝑢‖0,Ω for different 𝑘 and 𝛾. We observe from the left graph of Figure 4 that the convergence rate
𝑂(𝑁−(𝑘+1)/2) can be obtained. From the right graph of Figure 4, we can see that for the same numerical
accuracy the number of required vertices will be increased as 𝛾 becomes large.

By a simple calculation, we have 𝑃Ω = 1. Hence in the left graph of Figure 6, we give the convergence histories
of 𝜁𝑝 and ‖∇𝑒𝑢‖0,𝑝,Ω for 𝑘 = 1, 𝛾 = 0.2 and 𝑝 = 1.2, 1.5, 1.8. The results show that these errors and estimators
can obtain the convergence rate 𝑂(𝑁−1/2). In the right graph of Figure 6, we also plot the convergence histories
of 𝜁1.5 and ‖∇𝑒𝑢‖0,1.5,Ω for different 𝛾. Obviously, the convergence rate decreases as 𝛾 increases.
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Table 3. The convergence history of ‖𝑢−𝑢ℎ‖0,Ω for finite element methods and HDG methods
for 𝑘 = 1.

ℎ ‖𝑒𝑢‖0,Ω (FEM) Order ‖𝑒𝑢‖0,Ω (HDG, 𝜏0 = 25) Order

1
4

1.5426e-2 1.3591e-2
1
8

7.7780e-3 0.988 6.7986e-3 0.999
1
16

3.9028e-3 0.995 3.3979e-3 1.001
1
32

1.9532e-3 0.999 1.6987e-3 1.000
1
64

9.7683e-4 1.000 8.4934e-4 1.000
1

128
4.8844e-4 1.000 4.2467e-4 1.000

1
256

2.4422e-4 1.000 2.2970e-4 1.000

Figure 3. Top: The adaptive meshes, generated by 𝜂2, with 123, 636 and 3165 nodes. Bottom:
The corresponding surfaces of 𝑢ℎ. Here we set 𝑘 = 1 and 𝛾 = 0.2.

Example 6.2. In this example, we consider the problem (1.1) in the L-shaped domain Ω = (−1, 1)2∖[0, 1) ×
(−1, 0] with 𝑥0 = (0.5, 0.5). The Dirichlet boundary conditions are imposed such that the exact solution is given
by

𝑢(𝑥) = − 1
2𝜋

log |𝑥− 𝑥0|+ |𝑥|2/3 sin(
2𝜗
3

),

where 𝜗 ∈ (0, 3𝜋
2 ) denotes the angle.

The initial mesh consists of 12 triangles. According to the definition of 𝑃Ω, we know that 𝑃Ω = 1.2. Through-
out this section, let 𝜏0 = 15 and 𝑥0 be a vertex of all partitions.

In Figure 7, the convergence histories of 𝜂2 and ‖𝑒𝑢‖0,Ω and the efficiency index 𝜂2/𝐸 are given. The conver-
gence rate 𝑂(𝑁−(𝑘+1)/2) can be obtained. In Figure 8, the adaptive meshes, generated by 𝜁1.3 and 𝜁1.5, after
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Figure 4. Left: The convergence histories of 𝜂2 and ‖𝑒‖0,Ω for 𝛾 = 0.4 and 𝑘 = 1, 2. Right:
The convergence histories of 𝜂2 and ‖𝑒𝑢‖0,Ω for 𝑘 = 1 and 𝛾 = 0.2, 0.4, 0.8.

Figure 5. Top: The adaptive meshes, generated by 𝜁1.5, with 124, 686 and 3513 nodes. Bottom:
The corresponding surfaces of 𝑢ℎ. Here we set 𝑘 = 1 and 𝛾 = 0.2.
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Figure 6. Left: The convergence histories for 𝛾 = 0.2 and 𝑘 = 1. Right: The convergence
histories for 𝑘 = 1 and 𝛾 = 0.2, 0.4, 0.8.

Figure 7. Left: The convergence histories of ‖𝑒𝑢‖0,Ω and 𝜂2 for 𝑘 = 1 and 𝑘 = 2. Right: The
efficiency index 𝜂2/𝐸 for 𝑘 = 1 and 𝑘 = 2. Here we set 𝛾 = 0.3.

13, 19 and 25 iterations are shown for 𝑘 = 1 and 𝛾 = 0.3. We find that the mesh nodes are concentrated around
the point 𝑥0 and the reentrant corner. In Figure 9, the convergence histories of ‖∇𝑒𝑢‖0,𝑠,Ω, 𝐸2,𝑠, and 𝜁𝑠 are
performed for 𝛾 = 0.3, 𝑘 = 1, 2 and 𝑠 = 1.3, 1.5. The errors and estimators can all get the convergence rate
𝑂(𝑁−𝑘/2).

Finally, we make a comparison between [2] and this paper for 𝑘 = 1 and 𝛾 = 0.3. Note that the estimators
and errors obtained in [2] are labeled by 𝜁Ref

𝑠 and 𝑒Ref
𝑢 . In Figure 10, the convergence histories are performed,

and the convergence rate 𝑂(𝑁−1/2) can be obtained. Obviously, the error estimators and the errors derived in
this paper are smaller than that achieved by [2]. Therefore, from the perspective of error, the HDG result of
this paper is better than the FEM result of [2] for the suitable choice of 𝜏0.
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Figure 8. Top: The adaptive meshes, generated by 𝜁1.3, after 13, 19 and 25 iterations. Bottom:
The adaptive meshes, generated by 𝜁1.5, after 13, 19 and 25 iterations. Here, we set 𝛾 = 0.3
and 𝑘 = 1.

Figure 9. Left: The convergence histories of ‖∇𝑒𝑢‖0,1.3,Ω, 𝜁1.3 and 𝐸2,1.3 for 𝑘 = 1 and 𝑘 = 2.
Right: The convergence histories of ‖∇𝑒𝑢‖0,1.5,Ω, 𝜂1.5 and 𝐸2,1.5 for 𝑘 = 1 and 𝑘 = 2. Here we
set 𝛾 = 0.3.
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Figure 10. The convergence histories for 𝑠 = 1.3 and 𝑠 = 1.5.

7. Conclusions

In this paper, we investigate HDG methods for elliptic problems with Dirac measures. Firstly, a priori error
estimate with convergence rate 𝑂(ℎ) is proved for the error in 𝐿2-norm. Then, by duality argument and Oswald
interpolation, the efficient and reliable a posteriori error estimators for the errors in 𝐿2-norm and𝑊 1,𝑝-seminorm
are obtained.

Finally the obtained a posteriori error estimators are used to design adaptive HDG algorithm, and some
numerical examples are provided to verify the theoretical analysis and show the performance of the obtained
a posteriori error estimators. By the numerical results, we find that the HDG scheme and error estimators of
this paper are slightly better than the finite element discretization and error estimators of [2] based on a suitable
choice of 𝜏0, see Figures 2 and 10.
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