Network models for nonlocal traffic flow
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 213-235

We present a network formulation for a traffic flow model with nonlocal velocity in the flux function. The modeling framework includes suitable coupling conditions at intersections to either ensure maximum flux or distribution parameters. In particular, we focus on 1-to-1, 2-to-1 and 1-to-2 junctions. Based on an upwind type numerical scheme, we prove the maximum principle and the existence of weak solutions on networks. We also investigate the limiting behavior of the proposed models when the nonlocal influence tends to infinity. Numerical examples show the difference between the proposed coupling conditions and a comparison to the Lighthill-Whitham-Richards network model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022002
Classification : 35L65, 65M12, 90B20
Keywords: Nonlocal scalar conservation laws, traffic flow networks, coupling conditions, upwind scheme
@article{M2AN_2022__56_1_213_0,
     author = {Friedrich, Jan and G\"ottlich, Simone and Osztfalk, Maximilian},
     title = {Network models for nonlocal traffic flow},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {213--235},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2022002},
     mrnumber = {4376274},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022002/}
}
TY  - JOUR
AU  - Friedrich, Jan
AU  - Göttlich, Simone
AU  - Osztfalk, Maximilian
TI  - Network models for nonlocal traffic flow
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 213
EP  - 235
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022002/
DO  - 10.1051/m2an/2022002
LA  - en
ID  - M2AN_2022__56_1_213_0
ER  - 
%0 Journal Article
%A Friedrich, Jan
%A Göttlich, Simone
%A Osztfalk, Maximilian
%T Network models for nonlocal traffic flow
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 213-235
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022002/
%R 10.1051/m2an/2022002
%G en
%F M2AN_2022__56_1_213_0
Friedrich, Jan; Göttlich, Simone; Osztfalk, Maximilian. Network models for nonlocal traffic flow. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 213-235. doi: 10.1051/m2an/2022002

[1] D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66 (2006) 896–920. | MR | Zbl | DOI

[2] A. Aw and M. Rascle, Resurrection of ``second order’’ models of traffic flow. SIAM J. Appl. Math. 60 (2000) 916–938. | MR | Zbl | DOI

[3] A. Bayen, A. Keimer, L. Pflug and T. Veeravalli, Modeling multi-lane traffic with moving obstacles by nonlocal balance laws. Preprint (2020). | MR

[4] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. | MR | DOI

[5] A. Bressan and W. Shen, Entropy admissibility of the limit solution for a nonlocal model of traffic flow. Preprint (2020). | arXiv | MR

[6] A. Bressan and W. Shen, On traffic flow with nonlocal flux: a relaxation representation. Arch. Ration. Mech. Anal. 237 (2020) 1213–1236. | MR | DOI

[7] F. Camilli, R. De Maio and A. Tosin, Measure-valued solutions to nonlocal transport equations on networks. J. Differ. Equ. 264 (2018) 7213–7241. | MR | DOI

[8] C. Chalons, P. Goatin and L. M. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws. SIAM J. Sci. Comput. 40 (2018) A288–A305. | MR | DOI

[9] F. A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: M2AN 52 (2018) 163–180. | MR | Zbl | Numdam | DOI

[10] F. A. Chiarello and P. Goatin, Non-local multi-class traffic flow models. Netw. Heterog. Media 14 (2019) 371–387. | MR | DOI

[11] F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich and O. Kolb, A non-local traffic flow model for 1-to-1 junctions. Eur. J. Appl. Math. (2019) 1–21. | MR

[12] F. A. Chiarello, J. Friedrich, P. Goatin and S. Göttlich, Micro-macro limit of a nonlocal generalized aw-rascle type model. SIAM J. Appl. Math. 80 (2020) 1841–1861. | MR | DOI

[13] J. Chien and W. Shen, Stationary wave profiles for nonlocal particle models of traffic flow on rough roads. NoDEA Nonlinear Differ. Equ. Appl. 26 (2019) 53. | MR | DOI

[14] I. Ciotir, R. Fayad, N. Forcadel and A. Tonnoir, A non-local macroscopic model for traffic flow. ESAIM: M2AN 55 (2021) 689–711. | MR | Zbl | Numdam | DOI

[15] G. M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks. SIAM J. Math. Anal. 42 (2010) 1761–1783. | MR | Zbl | DOI

[16] G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network. SIAM J. Math. Anal. 36 (2005) 1862–1886. | MR | Zbl | DOI

[17] G. M. Coclite, J.-M. Coron, N. De Nitti, A. Keimer and L. Pflug, A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels. Preprint (2020). | arXiv

[18] R. M. Colombo and A. Corli, Well posedness for multilane traffic models. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006) 291–301. | MR | Zbl | DOI

[19] R. M. Colombo, P. Goatin and M. D. Rosini, On the modelling and management of traffic. ESAIM: M2AN 45 (2011) 853–872. | MR | Zbl | Numdam | DOI

[20] M. Colombo, G. Crippa, E. Marconi and L. V. Spinolo, Local limit of nonlocal traffic models: convergence results and total variation blow-up, in Annales de l’Institut Henri Poincaré C, Analyse non linéaire. Elsevier (2020). | MR | Zbl | Numdam

[21] E. Dal Santo, C. Donadello, S. F. Pellegrino and M. D. Rosini, Representation of capacity drop at a road merge via point constraints in a first order traffic model. ESAIM: M2AN 53 (2019) 1–34. | MR | Zbl | Numdam | DOI

[22] J. Friedrich and O. Kolb, Maximum principle satisfying cweno schemes for nonlocal conservation laws. SIAM J. Sci. Comput. 41 (2019) A973–A988. | MR | DOI

[23] J. Friedrich, S. Göttlich and E. Rossi, Nonlocal approaches for multilane traffic models. Preprint (2020). | arXiv | MR

[24] J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media 13 (2018) 531–547. | MR | DOI

[25] M. Garavello and B. Piccoli, Traffic flow on networks, In vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, Conservation laws models (2006). | MR | Zbl

[26] M. Garavello, K. Han and B. Piccoli, Models for vehicular traffic on networks, In vol. 9 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2016). | MR

[27] P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media 11 (2016) 107–121. | MR | DOI

[28] P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit. Commun. Math. Sci. 15 (2017) 261–287. | MR | DOI

[29] P. Goatin, S. Göttlich and O. Kolb, Speed limit and ramp meter control for traffic flow networks. Eng. Optim. 48 (2016) 1121–1144. | MR | DOI

[30] J. M. Greenberg, A. Klar and M. Rascle, Congestion on multilane highways. SIAM J. Appl. Math. 63 (2003) 818–833. | MR | Zbl | DOI

[31] B. Haut, G. Bastin and Y. Chitour, A macroscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions, in Proceedings 16th IFAC World Congress, Prague, Czech Republic, July (2005). Tu-M01-TP/3.

[32] D. Helbing and A. Greiner, Modeling and simulation of multilane traffic flow. Phys. Rev. E 55 (1997) 5498. | DOI

[33] M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks. SIAM J. Sci. Comput. 25 (2003) 1066–1087. | MR | Zbl | DOI

[34] H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. 26 (1995) 999–1017. | MR | Zbl | DOI

[35] H. Holden and N. H. Risebro, Models for dense multilane vehicular traffic. SIAM J. Math. Anal. 51 (2019) 3694–3713. | MR | DOI

[36] A. Keimer and L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws. J. Differ. Equ. 263 (2017) 4023–4069. | MR | DOI

[37] A. Keimer and L. Pflug, Nonlocal conservation laws with time delay. Nonlinear Differ. Equ. Appl. NoDEA 26 (2019) 54. | MR | DOI

[38] A. Keimer and L. Pflug, On approximation of local conservation laws by nonlocal conservation laws. J. Math. Anal. Appl. 475 (2019) 1927–1955. | MR | DOI

[39] A. Keimer, L. Pflug and M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in traffic flow. SIAM J. Math. Anal. 50 (2018) 6271–6306. | MR | DOI

[40] O. Kolb, S. Göttlich and P. Goatin, Capacity drop and traffic control for a second order traffic model. Netw. Heterog. Media 12 (2017) 663–681. | MR | DOI

[41] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. 229 (1955) 317–345. | MR | Zbl | DOI

[42] S. Moridpour, M. Sarvi and G. Rose, Lane changing models: a critical review. Transp. Lett. 2 (2010) 157–173. | DOI

[43] J. Reilly, S. Samaranayake, M. L. Delle Monache, W. Krichene, P. Goatin and A. M. Bayen, Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering. J. Optim. Theory Appl. 167 (2015) 733–760. | MR | DOI

[44] P. I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. | MR | DOI

[45] J. Ridder and W. Shen, Traveling waves for nonlocal models of traffic flow. Discrete Contin. Dyn. Syst. 39 (2019) 4001–4040. | MR | DOI

[46] J. D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network. Preprint (2020). | MR

[47] M. Treiber and A. Kesting, Traffic flow dynamics. Data, models and simulation, Translated by Treiber and Christian Thiemann. Springer, Heidelberg (2013). | MR | DOI

[48] H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. B: Methodol. 36 (2002) 275–290. | DOI

Cité par Sources :