Numerical computation of the cut locus via a variational approximation of the distance function
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 105-120

We propose a new method for the numerical computation of the cut locus of a compact submanifold of ℝ3 without boundary. This method is based on a convex variational problem with conic constraints, with proven convergence. We illustrate the versatility of our approach by the approximation of Voronoi cells on embedded surfaces of ℝ3.

DOI : 10.1051/m2an/2021088
Classification : 49J45, 35R35, 49M05, 35J25
Keywords: Calculus of variation, cut locus, relaxation, manifold
@article{M2AN_2022__56_1_105_0,
     author = {G\'en\'erau, Fran\c{c}ois and Oudet, Edouard and Velichkov, Bozhidar},
     title = {Numerical computation of the cut locus \protect\emph{via} a variational approximation of the distance function},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {105--120},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2021088},
     mrnumber = {4376271},
     zbl = {1485.49020},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021088/}
}
TY  - JOUR
AU  - Générau, François
AU  - Oudet, Edouard
AU  - Velichkov, Bozhidar
TI  - Numerical computation of the cut locus via a variational approximation of the distance function
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 105
EP  - 120
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021088/
DO  - 10.1051/m2an/2021088
LA  - en
ID  - M2AN_2022__56_1_105_0
ER  - 
%0 Journal Article
%A Générau, François
%A Oudet, Edouard
%A Velichkov, Bozhidar
%T Numerical computation of the cut locus via a variational approximation of the distance function
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 105-120
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021088/
%R 10.1051/m2an/2021088
%G en
%F M2AN_2022__56_1_105_0
Générau, François; Oudet, Edouard; Velichkov, Bozhidar. Numerical computation of the cut locus via a variational approximation of the distance function. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 105-120. doi: 10.1051/m2an/2021088

[1] P. Albano, On the stability of the cut locus. Nonlinear Anal. Theory Methods App. 136 (2016) 51–61. | MR | Zbl

[2] E. D. Andersen and K. D. Andersen, The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High Performance Optimization Springer (2000) 197–232. | MR | Zbl

[3] D. Attali and A. Montanvert, Modeling noise for a better simplification of skeletons. In: Proceedings of 3rd IEEE International Conference on Image Processing. Vol. 3. IEEE (1996) 13–16.

[4] B. Bonnard, O. Cots and L. Jassionnesse, Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces. In: Geometric Control Theory and Sub-Riemannian Geometry. Springer (2014) 53–72. | MR | Zbl

[5] M. A. Buchner, Simplicial structure of the real analytic cut locus. Proc. Am. Math. Soc. 64 (1977) 118–121. | MR | Zbl

[6] I. Chavel, Riemannian Geometry: A Modern Introduction. Vol 98. Cambridge University Press (2006). | MR | Zbl

[7] F. Chazal and A. Lieutier, The “ λ -medial axis”. Graphical Models 67 (2005) 304–331. | Zbl

[8] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47 (2009) 805–827. | MR | Zbl

[9] T. K. Dey and K. Li, Cut locus and topology from surface point data. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry. ACM (2009) 125–134. | Zbl

[10] I. Dunning, J. Huchette and M. Lubin, Jump: a modeling language for mathematical optimization. SIAM Rev. 59 (2017) 295–320. | MR | Zbl | DOI

[11] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. | MR | Zbl | DOI

[12] F. Générau, E. Oudet and B. Velichkov, Cut locus on compact manifolds and uniform semiconcavity estimates for a variational inequality. Preprint [math] (2020). | arXiv | MR

[13] J.-I. Itoh and R. Sinclair, Thaw: a tool for approximating cut loci on a triangulation of a surface. Exp. Math. 13 (2004) 309–325. | MR | Zbl | DOI

[14] M. K. Misztal, J. A. Bærentzen, F. Anton and S. Markvorsen, Cut locus construction using deformable simplicial complexes. In: 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering. IEEE (2011) 134–141.

[15] S. B. Myers, Connections between differential geometry and topology II. Closed surfaces. Duke Math. J. 2 (1936) 95–102. | MR | JFM | Zbl | DOI

[16] A. Petrunin, Semiconcave functions in Alexandrov’s geometry. Surv. Differ. Geom. 11 (2006) 137–202. | MR | Zbl | DOI

[17] Y. Renard and J. Pommier, , Getfem++. An open source generic C++ library for finite element methods (http://home.gna.org/getfem) (2006).

[18] R. Sinclair and M. Tanaka, Loki: software for computing cut loci. Exp. Math. 11 (2002) 1–25. | MR | Zbl | DOI

Cité par Sources :