We propose a new method for the numerical computation of the cut locus of a compact submanifold of ℝ3 without boundary. This method is based on a convex variational problem with conic constraints, with proven convergence. We illustrate the versatility of our approach by the approximation of Voronoi cells on embedded surfaces of ℝ3.
Keywords: Calculus of variation, cut locus, relaxation, manifold
@article{M2AN_2022__56_1_105_0,
author = {G\'en\'erau, Fran\c{c}ois and Oudet, Edouard and Velichkov, Bozhidar},
title = {Numerical computation of the cut locus \protect\emph{via} a variational approximation of the distance function},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {105--120},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {1},
doi = {10.1051/m2an/2021088},
mrnumber = {4376271},
zbl = {1485.49020},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021088/}
}
TY - JOUR AU - Générau, François AU - Oudet, Edouard AU - Velichkov, Bozhidar TI - Numerical computation of the cut locus via a variational approximation of the distance function JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 105 EP - 120 VL - 56 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021088/ DO - 10.1051/m2an/2021088 LA - en ID - M2AN_2022__56_1_105_0 ER -
%0 Journal Article %A Générau, François %A Oudet, Edouard %A Velichkov, Bozhidar %T Numerical computation of the cut locus via a variational approximation of the distance function %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 105-120 %V 56 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021088/ %R 10.1051/m2an/2021088 %G en %F M2AN_2022__56_1_105_0
Générau, François; Oudet, Edouard; Velichkov, Bozhidar. Numerical computation of the cut locus via a variational approximation of the distance function. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 105-120. doi: 10.1051/m2an/2021088
[1] , On the stability of the cut locus. Nonlinear Anal. Theory Methods App. 136 (2016) 51–61. | MR | Zbl
[2] and , The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High Performance Optimization Springer (2000) 197–232. | MR | Zbl
[3] and , Modeling noise for a better simplification of skeletons. In: Proceedings of 3rd IEEE International Conference on Image Processing. Vol. 3. IEEE (1996) 13–16.
[4] , and , Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces. In: Geometric Control Theory and Sub-Riemannian Geometry. Springer (2014) 53–72. | MR | Zbl
[5] , Simplicial structure of the real analytic cut locus. Proc. Am. Math. Soc. 64 (1977) 118–121. | MR | Zbl
[6] , Riemannian Geometry: A Modern Introduction. Vol 98. Cambridge University Press (2006). | MR | Zbl
[7] and , The “-medial axis”. Graphical Models 67 (2005) 304–331. | Zbl
[8] , Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47 (2009) 805–827. | MR | Zbl
[9] and , Cut locus and topology from surface point data. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry. ACM (2009) 125–134. | Zbl
[10] , and , Jump: a modeling language for mathematical optimization. SIAM Rev. 59 (2017) 295–320. | MR | Zbl | DOI
[11] and , Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. | MR | Zbl | DOI
[12] , and , Cut locus on compact manifolds and uniform semiconcavity estimates for a variational inequality. Preprint [math] (2020). | arXiv | MR
[13] and , Thaw: a tool for approximating cut loci on a triangulation of a surface. Exp. Math. 13 (2004) 309–325. | MR | Zbl | DOI
[14] , , and , Cut locus construction using deformable simplicial complexes. In: 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering. IEEE (2011) 134–141.
[15] , Connections between differential geometry and topology II. Closed surfaces. Duke Math. J. 2 (1936) 95–102. | MR | JFM | Zbl | DOI
[16] , Semiconcave functions in Alexandrov’s geometry. Surv. Differ. Geom. 11 (2006) 137–202. | MR | Zbl | DOI
[17] and , , Getfem++. An open source generic C++ library for finite element methods (http://home.gna.org/getfem) (2006).
[18] and , Loki: software for computing cut loci. Exp. Math. 11 (2002) 1–25. | MR | Zbl | DOI
Cité par Sources :





