
ESAIM: M2AN 56 (2022) 105–120 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2021088 www.esaim-m2an.org

NUMERICAL COMPUTATION OF THE CUT LOCUS VIA A VARIATIONAL
APPROXIMATION OF THE DISTANCE FUNCTION

François Générau1, Edouard Oudet2,* and Bozhidar Velichkov3

Abstract. We propose a new method for the numerical computation of the cut locus of a compact
submanifold of R3 without boundary. This method is based on a convex variational problem with conic
constraints, with proven convergence. We illustrate the versatility of our approach by the approximation
of Voronoi cells on embedded surfaces of R3.
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1. Introduction

Let 𝑆 be a compact real analytic surface without boundary embedded in R3, and let 𝑏 ∈ 𝑆 be any point of
𝑆 (that can be thought of as a base point).

Definition 1.1. The cut locus of 𝑏 in 𝑆 can be defined as the closure of the set of points 𝑝 ∈ 𝑆 such that there
exist at least two minimizing geodesics of 𝑆 between 𝑝 and 𝑏. We will denote it by Cut𝑏(𝑆). Equivalently, it
is also the set of points of 𝑆 ∖ {𝑏} around which the distance function to the point 𝑏 – denoted by 𝑑𝑏 – is not
smooth.

The cut locus is a fundamental object in Riemannian geometry, and it is a natural problem to try and find
ways to compute it numerically. In this paper, we propose a numerical approximation of Cut𝑏(𝑆), based on a
convex variational problem on 𝑆, with proven convergence. It is not trivial to compute Cut𝑏(𝑆) because it is
not stable with respect to 𝐶1-small variations of 𝑆. See for instance Example 2 of [1]. In particular, one can’t
approximate the cut locus of 𝑆 with the cut locus of a piecewise linear approximation of 𝑆.
Related works. Let us review the techniques used in the past by different authors to approximate the cut
locus. We may divide them into two categories.
Geodesic approximation on parametrized surfaces. This approach was used in [14, 18]. In [18], on genus 1
parametrized surfaces, the authors computed a degree 4 polynomial approximation of the exponential map
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using the geodesic equation and deduced an approximation of the cut locus from there. In [14], the authors used
the deformable simplicial complexes (DSC) method and finite differences techniques for geodesic computations
to compute geodesic circles of increasing radius and their self-intersections, i.e. the cut locus. They applied the
method to genus 1 surfaces. These papers contain no proof of convergence of the computed cut locus.
Exact geodesic computation on discretized surfaces. This approach was used in [9, 13]. In [13], the authors
computed the geodesics on a convex triangulated surface. They deduced an approximation of the cut locus of
the triangulated surface and filtered it according to the angle formed by the geodesics meeting at a point of the
approximated cut locus, to make their approximation stable. They applied the method to ellipsoids. There is
no proof of convergence. In [9], the authors computed shortest curves on a graph obtained from a sufficiently
dense sample of points of the surface. From there they deduced an approximation of the cut locus and filtered it
according to the maximal distance (called spread) between the geodesics meeting at a point of the approximated
cut locus. They proved that the set they compute converges to the cut locus (see [9], Thm. 4.1).

We may also mention [4], where the authors used some more geometric tools to compute (numerically) the
cut locus of an ellipsoid or a sphere with some particular metric with singularities.
Our method. A natural approach to approximate a cut locus would be to use a fast marching method which
provides an efficient way to compute distance functions on a manifold. Unfortunately, classical algorithms do
not ensure any convergence result related to the gradient of the approximation. We believe that this absence
of estimate makes the approximation of the cut locus by these algorithms difficult to prove. In this article we
introduce a new regularized approach designed to fill this gap and to obtain a reliable localization of the cut
locus. Given a large constant 𝑚 > 0, let 𝑢𝑚 ∈ 𝐻1(𝑆) be the minimizer of the following variational problem

min
𝑢∈𝐻1(𝑆)

|∇𝑆
𝑢|≤1

𝑢(𝑏)=0

∫︁
𝑆

(︁
|∇

𝑆
𝑢|2 −𝑚𝑢

)︁
, (1.1)

where ∇
𝑆

denotes the gradient operator on the surface 𝑆. Intuitively, 𝑢𝑚 is a mollification away from 𝑏 of the
distance function to the point 𝑏 on 𝑆. For 𝜆 > 0 to be chosen small, we will use the set

𝐸𝑚,𝜆 :=
{︂

𝑥 ∈ 𝑆 ∖ {𝑏} : |∇
𝑆
𝑢𝑚(𝑥)|2 ≤ 1− 𝜆2

𝑢2
𝑚(𝑥)

}︂
as an approximation of Cut𝑏(𝑆). See Figure 1 for an illustration of the sensitivity of 𝑢𝑚 and 𝐸𝑚,𝜆 with respect
to parameters 𝑚 and 𝜆.

This is justified by some theoretical results obtained in [12], which will be summarized in Sections 3 and 4.
The Sections 2–4 are devoted to explaining how we arrived at such a set 𝐸𝑚,𝜆. For now, let us give a bit of
intuition about the different terms appearing in 𝐸𝑚,𝜆. When perturbing the surface 𝑆, we expect the same kind
of instabilities as the ones observed in [3] in the case of the medial axis. Thus, two kinds of new points may
appear in Cut𝑏(𝑆):

(1) points where some minimizing geodesics meet with an angle close to zero,
(2) points that are near the base point 𝑏.

Hence, to make Cut𝑏(𝑆) more stable (and so more computable), we need to select points that are not too
close to 𝑏 and such that some minimizing geodesics meet with an angle significantly larger than 0. Intuitively,
having |∇

𝑆
𝑢𝑚(𝑥)|2 ≤ 1− 𝛼2 for some constant 𝛼 > 0 ensures that we are selecting points 𝑥 where minimizing

geodesics meet with an angle significantly larger than 0, and replacing 𝛼2 by 𝜆2/𝑢2
𝑚 ensures that we are selecting

points that are away from 𝑏. Some other definitions of 𝐸𝑚,𝜆 would have been possible (for instance, the squares
are not needed), and this form has been chosen as it corresponds to the 𝜆-medial axis introduced in [7] (see
Sect. 2).

The rest of the paper is organized as follows. In Section 2, we recall the notion of 𝜆-medial axis that was
introduced in [7] and summarize some of its properties. In Section 3, following the strategy of the 𝜆-medial axis,
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Figure 1. Approximation of the sets 𝐸𝑚,𝜆 (green color) for 𝑚 = 10 (first row) and 𝑚 = 50
(second row) for three different values of 𝜆. The first three columns correspond to values of
𝜆 = 0.6, 0.2 and 0.06 respectively. The last column represents the associated solutions 𝑢𝑚.

we define a “𝜆-cut locus” Cut𝜆
𝑏 (𝑆) and show that it can be used as an approximation of the complete cut locus

for 𝜆 small enough. In Section 4, we recall the result from [12] which states that the set 𝐸𝑚,𝜆 defined above
is a good approximation of Cut𝜆

𝑏 (𝑆) if 𝑚 is big enough. In Section 5, we discretize problem (1.1) using finite
elements, to find a discrete minimizer 𝑢𝑚,ℎ, where ℎ > 0 is the step of the discretization. From this discrete
minimizer 𝑢𝑚,ℎ, we obtain a function 𝑢𝑙

𝑚,ℎ on 𝑆, and we show that the set

𝐸𝑚,𝜆,ℎ :=

⎧⎪⎨⎪⎩𝑥 ∈ 𝑆 ∖ {𝑏} :
⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ(𝑥)
⃒⃒2 ≤ 1− 𝜆2(︁

𝑢𝑙
𝑚,ℎ

)︁2

(𝑥)

⎫⎪⎬⎪⎭,

is a good approximation of 𝐸𝑚,𝜆 as ℎ → 0. In Section 6, we present the results of some numerical experiments.

2. The 𝜆-medial axis

In this section, we recall briefly the notion of 𝜆-medial axis introduced by Chazal and Lieutier [7]. Given an
open subset Ω of R2, its medial axis ℳ(Ω) is defined as the set of points of Ω that have at least two closest
points on the boundary 𝜕Ω of Ω:

ℳ(Ω) := {𝑥 ∈ Ω : ∃𝑦, 𝑧 ∈ 𝜕Ω, 𝑦 ̸= 𝑧 and 𝑑𝜕Ω(𝑥) = |𝑥− 𝑦| = |𝑥− 𝑧|},

where for any 𝑥 ∈ Ω, 𝑑𝜕Ω(𝑥) is the distance from 𝑥 to 𝜕Ω:

𝑑𝜕Ω(𝑥) = min
{︀
|𝑥− 𝑦| : 𝑦 ∈ 𝜕Ω

}︀
.

The medial axis ℳ(Ω) is unstable with respect to small non-smooth perturbations of the boundary of Ω. To
deal with this issue, in [7] Chazal and Lieutier defined the so called 𝜆-medial axis of Ω by setting, for any 𝜆 > 0,

ℳ𝜆(Ω) := {𝑥 ∈ Ω : 𝑟(𝑥) ≥ 𝜆}, (2.1)



108 F. GÉNÉRAU ET AL.

where 𝑟(𝑥) is the radius of the smallest ball containing the set of all closest points to 𝑥 on 𝜕Ω, i.e. the set
{𝑧 ∈ 𝜕Ω : |𝑥− 𝑧| = 𝑑𝜕Ω(𝑥)}. The map 𝜆 ↦→ ℳ𝜆(Ω) is nonincreasing, and

ℳ(Ω) =
⋃︁
𝜆>0

ℳ𝜆(Ω).

It is further proved in Section 3, Theorem 2 of [7] that ℳ𝜆(Ω) has the same homotopy type as ℳ(Ω), for 𝜆
small enough. These facts justify that ℳ𝜆(Ω) is a good approximation of ℳ(Ω), for 𝜆 small enough. The crucial
difference though is that ℳ𝜆(Ω) is stable with respect to small variations of the boundary of Ω, whereas ℳ(Ω)
is not. We refer the reader to Section 4 of [7] for precise statements and proofs.

To motivate the next section, we will also use an alternative definition of the 𝜆-medial axis. Given a point
𝑥 ∈ Ω, let Θ(𝑥) be the center of the smallest ball containing all the closest points to 𝑥 on 𝜕Ω. In Section 2.1 of
[7], a vector field ∇𝑑𝜕Ω (originally denoted only by ∇) is defined on Ω by:

∇𝑑𝜕Ω(𝑥) :=
𝑥−Θ(𝑥)
𝑑𝜕Ω(𝑥)

·

This vector field coincides with the classical gradient of 𝑑𝜕Ω wherever 𝑑𝜕Ω is differentiable, so it can be thought
of as a generalized gradient of 𝑑𝜕Ω. Moreover, we have the following relation (see Eq. (1) in Sect. 2.1 of [7]):

|∇𝑑𝜕Ω(𝑥)|2 = 1− 𝑟2(𝑥)
𝑑2

𝜕Ω(𝑥)
·

Therefore, we have the following equivalent definition of the 𝜆-medial axis:

ℳ𝜆(Ω) =
{︂

𝑥 ∈ Ω : |∇𝑑𝜕Ω(𝑥)|2 ≤ 1− 𝜆2

𝑑2
𝜕Ω(𝑥)

}︂
· (2.2)

3. 𝜆-Cut locus

We want to define a set similar to the 𝜆-medial axis in the case of the cut locus Cut𝑏(𝑆). To this end, we
need a notion of generalized gradient for the distance function 𝑑𝑏. The notion of generalized gradient we use is
presented in Section 1.3 of [16] in the context of Alexandrov spaces and in Section 2.2 of [12]. Here, we introduce
the notion omitting the short proofs otherwise needed. First note that, as stated in Proposition 2.7 of [12], the
function 𝑑𝑏 is locally semiconcave on 𝑆 ∖ {𝑏}, which means that for any unit speed geodesic 𝛾 : [0, 1] → 𝑆 ∖ {𝑏},
there exists a constant 𝐶 > 0 such that the function 𝑡 ↦→ 𝐶𝑡2− 𝑑𝑏(𝛾(𝑡)) is convex on [0, 1]. From there, one gets
that for any point 𝑥 ∈ 𝑆 ∖ {𝑏} and any direction 𝑣 ∈ 𝑇𝑥𝑆, 𝑑𝑏 admits a directional derivative

𝜕+
𝑣 𝑑𝑏(𝑥) = lim

𝑡→0+

𝑑𝑏(exp𝑥(𝑡𝑣))− 𝑑𝑏(𝑥)
𝑡

where exp𝑥 denotes the Riemannian exponential map at 𝑥. Furthermore, for any 𝑥 ∈ 𝑆 ∖ {𝑏}, the map 𝑣 ↦→
𝜕+

𝑣 𝑑𝑏(𝑥) admits a unique maximizer 𝑣𝑥 on the closed ball 𝐵(0, 1) ⊂ 𝑇𝑥𝑆. The generalized gradient of 𝑑𝑏 is then
defined as

∇
𝑆
𝑑𝑏(𝑥) = 𝜕+

𝑣𝑥
𝑑𝑏(𝑥)𝑣𝑥.

What is more, we have the following formula

|∇
𝑆
𝑑𝑏(𝑥)| = max

(︃
0, sup

𝑣∈𝑇𝑥𝑆,|𝑣|=1

𝜕+
𝑣 𝑑𝑏(𝑥)

)︃
. (3.1)

See Lemma 3.3 for a geometric interpretation of the generalized gradient.
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Analogously to (2.2), for 𝜆 > 0, we define the 𝜆-cut locus as

Cut𝜆
𝑏 (𝑆) :=

{︂
𝑥 ∈ 𝑆 ∖ {𝑏} : |∇

𝑆
𝑑𝑏(𝑥)|2 ≤ 1− 𝜆2

𝑑2
𝑏(𝑥)

}︂
·

We have the following proposition from Proposition 2.9 of [12].

Proposition 3.1. The map 𝜆 ↦→ Cut𝜆
𝑏 (𝑆) is nonincreasing, and

Cut𝑏(𝑆) =
⋃︁
𝜆>0

Cut𝜆
𝑏 (𝑆).

In addition, the following proposition holds. We recall that Cut𝑏(𝑆) is always connected (see [15] for instance).

Proposition 3.2. If 𝑆 is a real analytic surface, then for 𝜆 > 0 small enough, one of the connected compo-
nents of Cut𝜆

𝑏 (𝑆) has the same homotopy type as Cut𝑏(𝑆), while the other connected components, if any, are
contractible.

These two propositions justify that Cut𝜆
𝑏 (𝑆) is a good approximation of Cut𝑏(𝑆), for 𝜆 > 0 small enough.

Before proving Proposition 3.2, we prove the following lemma.

Lemma 3.3. Let 𝑥 ∈ Cut𝑏(𝑆) be such that there exist two unit speed minimizing geodesics 𝛾1, 𝛾2 : [0, 𝑑𝑏(𝑥)] → 𝑆
such that 𝛾𝑖(0) = 𝑏 and 𝛾𝑖(𝑑𝑏(𝑥)) = 𝑥. Let 𝜃 ∈ (0, 𝜋] be the angle between 𝛾1 and 𝛾2 at 𝑥. Then, we have

|∇
𝑆
𝑑𝑏(𝑥)| ≤ cos(𝜃/2).

Proof. For 𝑖 = 1, 2, let us set 𝑣𝑖 = −𝛾𝑖(𝑑𝑏(𝑥)). Let us denote by exp𝑥 the Riemannian exponential map at the
point 𝑥. Let 𝑡0 ∈ (0, 𝑑𝑏(𝑥)) and 𝑥𝑖 = exp𝑥(𝑣𝑖𝑡0). Note that we have 𝑥 /∈ Cut𝑥𝑖(𝑆), so the function 𝑑𝑥𝑖 is smooth
at 𝑥, and its gradient is −𝑣𝑖. Given 𝑣 ∈ 𝑇𝑥𝑆 such that |𝑣| = 1, using 𝑑𝑏(𝑥) = 𝑑𝑥𝑖

(𝑥) + 𝑑𝑏(𝑥𝑖), we have

𝜕+
𝑣 𝑑𝑏(𝑥) = lim

𝑡→0+

𝑑𝑏(exp𝑥(𝑣𝑡))− 𝑑𝑏(𝑥)
𝑡

≤ lim
𝑡→0+

𝑑𝑥𝑖(exp𝑥(𝑣𝑡)) + 𝑑𝑏(𝑥𝑖)− (𝑑𝑥𝑖(𝑥) + 𝑑𝑏(𝑥𝑖))
𝑡

= lim
𝑡→0+

𝑑𝑥𝑖(exp𝑥(𝑣𝑡))− 𝑑𝑥𝑖(𝑥)
𝑡

= −𝑣 · 𝑣𝑖.

Given that the angle between 𝑣1 and 𝑣2 is 𝜃, there exists 𝑖 ∈ {1, 2}, such that the angle between 𝑣 and 𝑣𝑖 is at
most 𝜋 − 𝜃/2. Thus the last inequality gives 𝜕+

𝑣 𝑑𝑏(𝑥) ≤ cos(𝜃/2). This concludes the proof. �

Remark 3.4. In the previous lemma, in the case where there are exactly two minimizing geodesics arriving at
𝑥, one can show that the inequality is an equality.

Using Lemma 3.3, Proposition 3.2 will mainly be a consequence of Proposition 3.4 from [9], which is recalled
in Proposition 3.6 below. Following [9], we will use the following terminology. Let 𝐺 be a finite connected graph
embedded in 𝑆. A point 𝑥 of a finite connected graph 𝐺 is called a tree point if 𝑥 is a leaf of 𝐺 or 𝐺 ∖ {𝑥} has
a connected component whose closure is a tree. Otherwise, 𝑥 is called a cycle point. As shown in the proof of
Proposition 3.5 from [9], the closure of the set of cycle points of a finite connected graph 𝐺 is a deformation
retract of 𝐺, hence it is connected. We will also use the following lemma.

Lemma 3.5. Let 𝐺 be a finite connected graph. Let 𝒞 ⊂ 𝐺 be a closed connected set that contains all cycle
points of 𝐺. Then 𝒞 is a deformation retract of 𝐺.
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Proof. Let 𝑇1, . . . , 𝑇𝑘 be the connected components of 𝐺 ∖ 𝒞. As 𝒞 contains all cycle points of 𝐺, for any
1 ≤ 𝑖 ≤ 𝑘, 𝑇𝑖 is a tree and 𝑇𝑖 ∩ 𝒞 is a singleton {𝑥𝑖}. By contracting all 𝑇𝑖 to their roots 𝑥𝑖, we obtain that 𝒞 is
a deformation retract of 𝐺. �

Let 𝑥 ∈ 𝑆 be such that there exist two minimizing unit speed geodesics 𝛾1 and 𝛾2 from 𝑏 to 𝑥. Following [9],
the spread between 𝛾1 and 𝛾2 is defined as

𝑠𝑝𝑑(𝛾1, 𝛾2) = sup
𝑡

𝑑(𝛾1(𝑡), 𝛾2(𝑡)).

We recall that, as 𝑆 is real analytic, the cut locus Cut𝑏(𝑆) is a finite graph (see [15] in dimension 2 and [5] for
the generalization to arbitrary dimensions). In [9], the authors proved the following:

Proposition 3.6 ([9], Prop. 3.4). Let 𝑥 ∈ Cut𝑏(𝑆). If the spread of any two minimizing unit speed geodesics 𝛾1

and 𝛾2 from 𝑏 to 𝑥 is smaller than the injectivity radius of 𝑆, then 𝑥 is a tree point of Cut𝑏(𝑆).

Proof of Proposition 3.2. According to Lemma 3.3, given any 𝜃 > 0, if 𝜆 has been taken small enough, then for
any point 𝑥 ∈ Cut𝑏(𝑆) ∖Cut𝜆

𝑏 (𝑆), the angle between any two minimizing unit speed geodesics 𝛾1 and 𝛾2 from 𝑏
to 𝑥 is smaller than 𝜃 at 𝑥. As geodesics verify a second order differential equation, if their angle at 𝑥 is small,
then their spread is also small. Therefore, applying Proposition 3.6, we deduce that if 𝜆 has been taken small
enough, then any point 𝑥 ∈ Cut𝑏(𝑆)∖Cut𝜆

𝑏 (𝑆) is a tree point of Cut𝑏(𝑆). Stated otherwise, Cut𝜆
𝑏 (𝑆) contains all

cycle points of Cut𝑏(𝑆). Moreover, Cut𝜆
𝑏 (𝑆) is a closed set. Indeed, this is a consequence of the semiconcavity of

𝑑𝑏 and the lower semicontinuity of the norm of the gradient of semiconcave functions (see [12], Prop. 7.2). Thus,
Cut𝜆

𝑏 (𝑆) contains the closure of the cycle points of Cut𝑏(𝑆), which is connected. In particular, there exists a
connected component 𝒞 of Cut𝜆

𝑏 (𝑆) that contains the set of the cycle points of Cut𝑏(𝑆). By Lemma 3.5, 𝒞 is a
deformation retract of Cut𝑏(𝑆). This completes the proof. �

Therefore, we will use Cut𝜆
𝑏 (𝑆) as an approximation of Cut𝑏(𝑆) for 𝜆 small enough.

4. Approximation with a variational problem

For 𝑚 > 0, recall that 𝑢𝑚 is the minimizer in (1.1). For 𝜆 > 0, let us define the set 𝐸𝑚,𝜆 by

𝐸𝑚,𝜆 :=
{︂

𝑥 ∈ 𝑆 ∖ {𝑏} : |∇
𝑆
𝑢𝑚(𝑥)|2 ≤ 1− 𝜆2

𝑢2
𝑚(𝑥)

}︂
·

We have the following theorem (see [12], Thms. 1.1 and 1.3):

Theorem 4.1. There exists 𝑚0 > 0 such that for any 𝑚 > 𝑚0, the function 𝑢𝑚 is locally 𝐶1,1 on 𝑆 ∖ {𝑏}, and
𝑢𝑚 = 𝑑𝑏 in a neighborhood of 𝑏. For any 𝑚 > 𝑚′ > 𝑚0,

Cut𝑏(𝑆) ⊂ {|∇
𝑆
𝑢𝑚| < 1} ⊂ {|∇

𝑆
𝑢𝑚′ | < 1}. (4.1)

Moreover,
{|∇

𝑆
𝑢𝑚| < 1} −→

𝑚→+∞
Cut𝑏(𝑆) in the Hausdorff sense. (4.2)

Finally, for any 𝜀 > 0,

sup
𝑥∈𝐸𝑚,𝜆

𝑑
(︁
𝑥, Cut𝜆

𝑏 (𝑆)
)︁

−→
𝑚→+∞

0, and sup
𝑥∈Cut𝜆+𝜀

𝑏 (𝑆)

𝑑(𝑥, 𝐸𝑚,𝜆) −→
𝑚→+∞

0. (4.3)

Therefore, we can use 𝐸𝑚,𝜆 as an approximation of Cut𝜆
𝑏 (𝑆). All in all, we will use 𝐸𝑚,𝜆 as an approximation

of Cut𝑏(𝑆).
In the following, we will always assume that we have 𝑚 > 𝑚0.
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5. Discretization

5.1. Finite elements of order 𝑟 on a surface approximation of order 𝑘

In this section we introduce a discretization framework adapted to the variational problem (1.1), based on
finite elements. We follow the notations of [8, 11].

Let 𝑆 be a compact oriented smooth two-dimensional surface embedded in R3. For 𝑥 ∈ 𝑆, we denote by 𝜈(𝑥)
the oriented normal vector field on 𝑆. Let 𝑑 : R3 → R be the signed distance function to the surface 𝑆 and
𝑈𝜂 = {𝑥 ∈ R3, |𝑑(𝑥)| < 𝜂} the tubular neighborhood of 𝑆 of width 𝜂 > 0. It is well known that if 𝜂 is small
enough (for instance 0 < 𝜂 < min𝑖=1,2

1
|𝜅𝑖|𝐿∞(𝑆)

where the (𝜅𝑖) stand for the extremal principal curvatures of

S), then for every 𝑥 ∈ 𝑈𝜂, there exists a unique 𝑎(𝑥) ∈ 𝑆 such that

𝑥 = 𝑎(𝑥) + 𝑑(𝑥)𝜈(𝑎(𝑥)) = 𝑎(𝑥) + 𝑑(𝑥)∇𝑑(𝑥). (5.1)

We consider 𝑆ℎ a triangular approximation of 𝑆 whose vertices lie on 𝑆 and whose faces are quasi-uniform and
shape regular of diameter at most ℎ > 0. Moreover, we will assume that 𝒯ℎ, the set of triangular faces of 𝑆ℎ,
are contained in some tubular neighborhood 𝑈𝜂 such that the map 𝑎 defined by (5.1) is unique.

For 𝑘 ≥ 1 and for a triangle 𝑇 ∈ 𝒯ℎ, we consider the 𝑛𝑘 Lagrange basis functions Φ𝑘
1 , . . . Φ𝑘

𝑛𝑘
of degree 𝑘 and

define the discrete projection on 𝑆ℎ by:

𝑎𝑘(𝑥) =
𝑛𝑘∑︁
𝑗=1

𝑎(𝑥𝑗)Φ𝑘
𝑗 (𝑥) (5.2)

where 𝑥1, . . . , 𝑥𝑛𝑘
are the nodal points associated to the basis functions. Now we can define 𝑆𝑘

ℎ a polynomial
approximation of order 𝑘 of 𝑆 associated to 𝒯ℎ

𝑆𝑘
ℎ = {𝑎𝑘(𝑥), 𝑥 ∈ 𝑆ℎ}. (5.3)

Observe that by definition the image by 𝑎 of the nodal points are both on 𝑆 and on 𝑆𝑘
ℎ. Let us now introduce

the finite element spaces on 𝑆ℎ = 𝑆1
ℎ and 𝑆𝑘

ℎ for 𝑘 ≥ 2. For every integer 𝑟 ≥ 1, let

𝐿𝑟
ℎ =

{︀
𝜒 ∈ 𝐶0(𝑆ℎ), 𝜒|𝑇 ∈ P𝑟,∀𝑇 ∈ 𝒯ℎ

}︀
(5.4)

where P𝑟 is the family of polynomials of degree at most 𝑟. Analogously, for 𝑘 ≥ 2, let

𝐿𝑟,𝑘
ℎ =

{︀
𝜒̂ ∈ 𝐶0(𝑆𝑘

ℎ), 𝜒̂ = 𝜒 ∘ 𝑎−1
𝑘 , for some 𝜒 ∈ 𝐿𝑟

ℎ

}︀
. (5.5)

Analogously to (1.1), we will consider the following discrete variational problem:

min
𝑢∈𝐿𝑟,𝑘

ℎ⃒⃒
⃒⃒∇

𝑆𝑘
ℎ

𝑢

⃒⃒
⃒⃒≤1

𝑢(𝑏)=0

𝐹 𝑘
ℎ (𝑢) (5.6)

where 𝐹 𝑘
ℎ (𝑢) =

∫︀
𝑆𝑘

ℎ

(︂⃒⃒⃒
∇

𝑆𝑘
ℎ

𝑢
⃒⃒⃒2
−𝑚𝑢

)︂
and 𝑏 some fixed nodal point of the mesh 𝒯ℎ.

5.2. Convergence of the lifted minimizers

In order to prove the convergence of our numerical approach, let us first establish that our discrete problem
converges in values in the sense of Proposition 5.2. For a function 𝑢 defined on 𝑆𝑘

ℎ, we introduce its lifted
function 𝑢𝑙 defined on 𝑆, by the relation 𝑢𝑙(𝑎(𝑥)) = 𝑢(𝑥).

We focus our analysis on the piecewise linear case 𝑟 = 𝑘 = 1. We will use the notation 𝐹ℎ := 𝐹 1
ℎ and 𝐿ℎ := 𝐿1

ℎ.
For every ℎ > 0, the convex optimization problem (5.6) has a unique solution 𝑢𝑚,ℎ.
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Lemma 5.1. The differential of the projection 𝑎 : 𝑈𝜂 → R3 onto 𝑆, when restricted to the tangent space of 𝑆ℎ,
is the identity, up to order 1 in ℎ:

𝐷𝑎|𝑇 𝑆ℎ
= 𝐼𝑑

|R3

|𝑇 𝑆ℎ
+𝒪(ℎ).

Proof. The identity estimate on 𝐷𝑎 is a direct consequence of [11] equations (4.12), (4.13), (4.10) and (4.11).
�

Defining 𝐹 (𝑢) =
∫︀

𝑆

(︁
|∇

𝑆
𝑢|2 −𝑚𝑢

)︁
, we have the following proposition.

Proposition 5.2. Let 𝑢𝑚,ℎ be the solution of problem (5.6) for 𝑘 = 𝑟 = 1. Let 𝐿𝑢𝑙
𝑚,ℎ := 𝑢𝑙

𝑚,ℎ

max
(︁
|∇𝑆

𝑢𝑙
𝑚,ℎ|𝐿∞(𝑆)

,1
)︁

be the 1-Lipschitz normalization of 𝑢𝑙
𝑚,ℎ. Then, 𝐿𝑢𝑙

𝑚,ℎ ∈ 𝐻1(𝑆) and

𝐹
(︀
𝐿𝑢𝑙

𝑚,ℎ

)︀
= min

𝑢∈𝐻1(𝑆)

|∇𝑆
𝑢|≤1

𝑢(𝑏)=0

𝐹 (𝑢) +𝒪
(︁
ℎ

1
2

)︁
.

Proof. Step 1. Let 𝑢𝑚 be the solution of problem (1.1). For 𝜀 > 0, let 𝑤𝑚,𝜀 : 𝑆 → R be defined by:

𝑤𝑚,𝜀 =

{︃
𝑑𝑏(𝑥)2

2𝜀 if 𝑑𝑏(𝑥) ≤ 𝜀

𝑢𝑚(𝑥)− 𝜀
2 if 𝑑𝑏(𝑥) ≥ 𝜀.

Recall that we have 𝑢𝑚 = 𝑑𝑏 in a neighborhood of 𝑏 (Thm. 4.1). Therefore, for 𝜀 > 0 small enough, we
have 𝑢𝑚 = 𝑑𝑏 on the ball 𝐵(𝑏, 2𝜀). In particular, we deduce that 𝑤𝑚,𝜀 is 𝐶1 on 𝑆. As 𝑑2

𝑏 is smooth in a
neighborhood of 𝑏, the gradient of 𝑑2

𝑏/2𝜀 is 𝒪(𝜀−1)-Lipschitz on 𝐵(𝑏, 𝜀). Moreover, as 𝑢𝑚 = 𝑑𝑏 on 𝐵(𝑏, 2𝜀),
the gradient of 𝑢𝑚 is 𝒪(𝜀−1)-Lipschitz on 𝐵(𝑏, 2𝜀) ∖ 𝐵(𝑏, 𝜀). Recall that 𝑢𝑚 is also locally 𝐶1,1 on 𝑆 ∖ {𝑏}
(Thm. 4.1). Therefore its gradient is 𝒪(𝜀−1)-Lipschitz on 𝑆 ∖𝐵(𝑏, 𝜀). All in all, we obtain that 𝑤𝑚,𝜀 is 𝐶1,1

on 𝑆 and the Lipschitz constant of its gradient is 𝒪(𝜀−1). Furthermore, as 𝑑𝑏 and 𝑢𝑚 are both 1-Lipschitz,
we have |∇

𝑆
𝑤𝑚,𝜀| ≤ 1. Now for 𝜀 > 0, consider

𝑣ℎ,𝜀 :=
𝐼ℎ𝑤𝑚,𝜀⃒⃒⃒

∇
𝑆ℎ

𝐼ℎ𝑤𝑚,𝜀

⃒⃒⃒
𝐿∞(𝑆ℎ)

,

where 𝐼ℎ𝑤𝑚,𝜀 is the P1 Lagrange interpolation of 𝑤𝑚,𝜀 on 𝑆ℎ. Therefore, 𝑣ℎ,𝜀 is an admissible candidate in
the minimization problem (5.6). For 𝑥 ∈ 𝑆ℎ, observe that we have the relation 𝐼ℎ𝑤𝑚,𝜀(𝑥) = 𝐼ℎ(𝑤𝑚,𝜀 ∘ 𝑎)(𝑥)
which says that 𝐼ℎ𝑤𝑚,𝜀 is the standard (flat) interpolation of the composed function 𝑤𝑚,𝜀 ∘ 𝑎. As the map
𝑎 : 𝑈𝜂 → 𝑆 is smooth and the gradient of 𝑤𝑚,𝜀 is 𝒪(𝜀−1)-Lipschitz, we deduce that on every triangle of 𝑆ℎ,
the gradient of 𝑤𝑚,𝜀 ∘ 𝑎 is 𝒪(𝜀−1)-Lipschitz, uniformly in ℎ. By the quasi uniformity of the mesh, we obtain
the uniform interpolation estimates on 𝑆ℎ:

𝐼ℎ𝑤𝑚,𝜀(𝑥) = (𝑤𝑚,𝜀 ∘ 𝑎)(𝑥) +𝒪
(︀
𝜀−1ℎ2

)︀
(5.7)

and
∇

𝑆ℎ
𝐼ℎ𝑤𝑚,𝜀(𝑥) = ∇

𝑆ℎ
(𝑤𝑚,𝜀 ∘ 𝑎)(𝑥) +𝒪

(︀
𝜀−1ℎ

)︀
.

With Lemma 5.1, we deduce for all 𝑥 ∈ 𝑆ℎ,

∇
𝑆ℎ

𝐼ℎ𝑤𝑚,𝜀(𝑥) = ∇
𝑆
𝑤𝑚,𝜀(𝑎(𝑥)) +𝒪

(︀
𝜀−1ℎ

)︀
. (5.8)
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Recall that we have |∇
𝑆
𝑤𝑚,𝜀|𝐿∞(𝑆) = 1. Therefore the last identity yields⃒⃒⃒

∇
𝑆ℎ

𝐼ℎ𝑤𝑚,𝜀

⃒⃒⃒
𝐿∞(𝑆ℎ,𝜀)

= 1 +𝒪
(︀
𝜀−1ℎ

)︀
.

Thus, 𝑣ℎ,𝜀 = 𝐼ℎ𝑤𝑚,𝜀

(︀
1 +𝒪

(︀
𝜀−1ℎ

)︀)︀
, and so

𝐹ℎ(𝑣ℎ,𝜀) = 𝐹ℎ(𝐼ℎ𝑤𝑚,𝜀) +𝒪
(︀
𝜀−1ℎ

)︀
. (5.9)

Applying Lemma 5.1 again, with a simple change of variable, we find that for any function 𝑓 : 𝑆 → R,∫︁
𝑆ℎ

𝑓 ∘ 𝑎 =
∫︁

𝑆

𝑓 +𝒪(ℎ). (5.10)

Recalling (5.7) and (5.8), we obtain

𝐹ℎ(𝐼ℎ𝑤𝑚,𝜀) = 𝐹 (𝑤𝑚,𝜀) +𝒪
(︀
𝜀−1ℎ

)︀
. (5.11)

Furthermore, we have∫︁
𝑆

|𝑤𝑚,𝜀 − 𝑢𝑚| ≤ 𝒪(𝜀) and
∫︁

𝑆

⃒⃒⃒
|∇

𝑆
𝑤𝑚,𝜀|2 − |∇𝑆

𝑢𝑚|2
⃒⃒⃒
≤ 𝒪(𝜀2),

so
𝐹 (𝑤𝑚,𝜀) = 𝐹 (𝑢𝑚) +𝒪(𝜀).

Combining this with (5.9) and (5.11), we find

𝐹ℎ(𝑣ℎ,𝜀) = 𝐹 (𝑢𝑚) +𝒪
(︀
𝜀−1ℎ

)︀
+𝒪(𝜀).

Choosing 𝜀 = ℎ
1
2 , this yields

min
𝑢∈𝐿ℎ⃒⃒

⃒∇𝑆ℎ
𝑢
⃒⃒
⃒≤1

𝑢(𝑏)=0

𝐹ℎ(𝑢) ≤ min
𝑢∈𝐻1(𝑆)

|∇𝑆
𝑢|≤1

𝑢(𝑏)=0

𝐹 (𝑤) +𝒪
(︁
ℎ

1
2

)︁
. (5.12)

Step 2. Let 𝑢𝑚,ℎ be the solution of the discrete problem (5.6), 𝑢𝑙
𝑚,ℎ := 𝑢𝑚,ℎ ∘ (𝑎|𝑆ℎ

)−1 its lifted version on 𝑆,
and

𝐿𝑢𝑙
𝑚,ℎ :=

𝑢𝑙
𝑚,ℎ

max
(︂⃒⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ

⃒⃒⃒
𝐿∞(𝑆)

, 1
)︂ ·

Using the equation 𝑢𝑚,ℎ = 𝑢𝑙
𝑚,ℎ ∘ 𝑎 and Lemma 5.1 as before, we obtain that uniformly for 𝑥 ∈ 𝑆ℎ,

∇
𝑆
𝑢𝑙

𝑚,ℎ ∘ 𝑎(𝑥) = ∇
𝑆ℎ

𝑢𝑚,ℎ(𝑥) +𝒪(ℎ). (5.13)

In particular, this implies ⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ

⃒⃒
𝐿∞(𝑆)

=
⃒⃒⃒
∇

𝑆ℎ
𝑢𝑚,ℎ

⃒⃒⃒
𝐿∞(𝑆ℎ)

+𝒪(ℎ) ≤ 1 +𝒪(ℎ),

and so
𝐿𝑢𝑙

𝑚,ℎ = 𝑢𝑙
𝑚,ℎ(1 +𝒪(ℎ)). (5.14)
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From this identity we deduce
𝐹
(︀
𝐿𝑢𝑙

𝑚,ℎ

)︀
= 𝐹

(︀
𝑢𝑙

𝑚,ℎ

)︀
+𝒪(ℎ).

Using the estimates (5.13) and (5.10) as in step one, we find

𝐹ℎ(𝑢𝑚,ℎ) = 𝐹
(︀
𝑢𝑙

𝑚,ℎ

)︀
+𝒪(ℎ).

The last two equations together yield 𝐹
(︁
𝐿𝑢𝑙

𝑚,ℎ

)︁
= 𝐹ℎ(𝑢𝑚,ℎ) +𝒪(ℎ). With (5.12), this implies

min
𝑢∈𝐻1(𝑆)

|∇𝑆
𝑢|≤1

𝑢(𝑏)=0

𝐹 (𝑢) ≤ 𝐹
(︀
𝐿𝑢𝑙

𝑚,ℎ

)︀
≤ min

𝑢∈𝐻1(𝑆)

|∇𝑆
𝑢|≤1

𝑢(𝑏)=0

𝐹 (𝑢) +𝒪
(︁
ℎ

1
2

)︁
,

which concludes the proof of the proposition.
�

In the proof of the next proposition, we will need the following lemma.

Lemma 5.3. Let 𝐿 > 0. Let (𝑓ℎ)ℎ>0 be a family of 𝐿-Lipschitz real functions on 𝑆 such that |∇𝑓ℎ|𝐿1(𝑆) → 0
as ℎ → 0 and for any ℎ > 0, 𝑓ℎ(𝑏) = 0. Then

|𝑓ℎ|𝐿1(𝑆) −→
ℎ→0

0.

Proof. Let 𝜀 > 0 and 𝑆𝜀 := 𝑆 ∖ (Cut𝑏(𝑆)∪𝐵(𝑏, 𝜀)). We will use the polar coordinates (𝑟, 𝜃) centered at 𝑏 on 𝑆𝜀.
In these coordinates, the surface measure on 𝑆𝜀 is of the form d𝒜 = 𝐴(𝑟, 𝜃)d𝑟d𝜃, with

𝐴(𝑟, 𝜃) ∼
𝑟→0

𝑟, uniformly in 𝜃. (5.15)

Moreover, the surface 𝑆𝜀 is of the form

𝑆𝜀 = {(𝑟, 𝜃), 𝜃 ∈ [0, 2𝜋), 𝑟 ∈ [𝜀, 𝑟𝜃)},

for some 𝑟𝜃 > 0 that depends on 𝜃 ∈ [0, 2𝜋). As the (𝑓ℎ)ℎ>0 are 𝐿-Lipschitz and 𝑓ℎ(𝑏) = 0, we have for any
𝜃 ∈ [0, 2𝜋), |𝑓ℎ(𝜀, 𝜃)| ≤ 𝐿𝜀. Using this inequality, we have∫︁

𝑆𝜀

|𝑓ℎ| =
∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

|𝑓ℎ(𝑟, 𝜃)|𝐴(𝑟, 𝜃)d𝑟d𝜃

≤
∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

|𝑓ℎ(𝑟, 𝜃)− 𝑓ℎ(𝜀, 𝜃)|𝐴(𝑟, 𝜃)d𝑟d𝜃 +
∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

|𝑓ℎ(𝜀, 𝜃)|𝐴(𝑟, 𝜃)d𝑟d𝜃

≤
∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

|𝑓ℎ(𝑟, 𝜃)− 𝑓ℎ(𝜀, 𝜃)|𝐴(𝑟, 𝜃)d𝑟d𝜃 +𝒜(𝑆)𝐿𝜀

=
∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

⃒⃒⃒⃒∫︁ 𝑟

𝜀

𝜕𝑟𝑓ℎ(𝑡, 𝜃)d𝑡

⃒⃒⃒⃒
𝐴(𝑟, 𝜃)d𝑟d𝜃 +𝒜(𝑆)𝐿𝜀

≤
∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

∫︁ 𝑟

𝜀

|∇𝑓ℎ(𝑡, 𝜃)|d𝑡𝐴(𝑟, 𝜃)d𝑟d𝜃 +𝒜(𝑆)𝐿𝜀. (5.16)

From (5.15), we know that for some constants 𝐶1, 𝐶2 > 0, we have for any 𝑟 > 0 and 𝜃 ∈ [0, 2𝜋), 𝐶1𝑟 ≤ 𝐴(𝑟, 𝜃) ≤
𝐶2. In particular, for 𝑟 ≥ 𝑡 ≥ 𝜀, we get

𝐴(𝑟, 𝜃) ≤ 𝐶2 ≤ 𝐶2
𝑡

𝜀
≤ 𝐶2

𝐶1𝜀
𝐴(𝑡, 𝜃).
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Setting 𝐶 := 𝐶2/𝐶1, with (5.16), we find∫︁
𝑆𝜀

|𝑓ℎ| ≤
𝐶

𝜀

∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

∫︁ 𝑟

𝜀

|∇𝑓ℎ(𝑡, 𝜃)|𝐴(𝑡, 𝜃)d𝑡d𝑟d𝜃 +𝒜(𝑆)𝐿𝜀

=
𝐶

𝜀

∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

∫︁ 𝑟𝜃

𝑡

|∇𝑓ℎ(𝑡, 𝜃)|𝐴(𝑡, 𝜃)d𝑟d𝑡d𝜃 +𝒜(𝑆)𝐿𝜀

≤ 𝐶 diam(𝑆)
𝜀

∫︁ 2𝜋

0

∫︁ 𝑟𝜃

𝜀

|∇𝑓ℎ(𝑡, 𝜃)|𝐴(𝑡, 𝜃)d𝑡d𝜃 +𝒜(𝑆)𝐿𝜀

=
𝐶 diam(𝑆)

𝜀

∫︁
𝑆𝜀

|∇𝑓ℎ|+𝒜(𝑆)𝐿𝜀, (5.17)

where diam(𝑆) is the diameter of 𝑆. Note that because the (𝑓ℎ)ℎ>0 are 𝐿-Lipschitz and 𝑓ℎ(𝑏) = 0, we have∫︁
𝑆

|𝑓ℎ| =
∫︁

𝑆𝜀

|𝑓ℎ|+
∫︁

𝐵(𝑏,𝜀)

|𝑓ℎ| ≤
∫︁

𝑆𝜀

|𝑓ℎ|+𝒜(𝑆)𝐿𝜀.

Therefore the estimate (5.17) yields∫︁
𝑆

|𝑓ℎ| ≤
𝐶 diam(𝑆)

𝜀

∫︁
𝑆

|∇𝑓ℎ|+ 2𝒜(𝑆)𝐿𝜀.

In particular, for any 𝜀 > 0,

lim sup
ℎ→0

∫︁
𝑆

|𝑓ℎ| ≤ 2𝒜(𝑆)𝐿𝜀.

This concludes the proof. �

We can now establish the convergence of the minimizers:

Proposition 5.4. ⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ −∇𝑆
𝑢𝑚

⃒⃒2
𝐿2(𝑆)

= 𝒪
(︁
ℎ

1
2

)︁
and

⃒⃒
𝑢𝑙

𝑚,ℎ − 𝑢𝑚

⃒⃒
𝐿1(𝑆)

−→
ℎ→0

0.

Proof. Consider 𝑣 = 1
2

(︁
𝐿𝑢𝑙

𝑚,ℎ + 𝑢𝑚

)︁
. Then, 𝑣 is admissible for problem (1.1), so 𝐹 (𝑣) ≥ 𝐹 (𝑢𝑚). Moreover, the

following algebraic identity holds

𝐹 (𝑣) =
1
2
𝐹
(︀
𝐿𝑢𝑙

𝑚,ℎ

)︀
+

1
2
𝐹 (𝑢𝑚)− 1

4

∫︁
𝑆

⃒⃒
∇

𝑆
𝑢𝑚 −∇

𝑆
𝐿𝑢𝑙

𝑚,ℎ

⃒⃒2
.

Therefore, we have
1
2
𝐹
(︀
𝐿𝑢𝑙

𝑚,ℎ

)︀
− 1

2
𝐹 (𝑢𝑚) ≥ 1

4

∫︁
𝑆

⃒⃒
∇

𝑆
𝑢𝑚 −∇

𝑆
𝐿𝑢𝑙

𝑚,ℎ

⃒⃒2
,

which proves, together with Proposition 5.2, that⃒⃒
∇

𝑆
𝐿𝑢𝑙

𝑚,ℎ −∇𝑆
𝑢𝑚

⃒⃒2
𝐿2(𝑆)

= 𝒪
(︁
ℎ

1
2

)︁
. (5.18)

In particular, as 𝑆 is compact, the gradient of the function 𝐿𝑢𝑙
𝑚,ℎ − 𝑢𝑚 also goes to 0 in the 𝐿1(𝑆) norm as

ℎ → 0. Recall that the functions
(︁
𝐿𝑢𝑙

𝑚,ℎ

)︁
ℎ>0

and 𝑢𝑚 are uniformly Lipschitz, and 𝐿𝑢𝑙
𝑚,ℎ(𝑏) = 𝑢𝑚(𝑏) = 0, so

we may apply Lemma 5.3 to the functions (𝐿𝑢𝑙
𝑚,ℎ − 𝑢𝑚)ℎ>0, to find that⃒⃒

𝐿𝑢𝑙
𝑚,ℎ − 𝑢𝑚

⃒⃒
𝐿1(𝑆)

−→
ℎ→0

0. (5.19)

In the proof of Proposition 5.2, we showed that 𝐿𝑢𝑙
𝑚,ℎ = 𝑢𝑙

𝑚,ℎ(1 +𝒪(ℎ)) (Eq. (5.14)). Together with (5.18)
and (5.19), this concludes the proof. �
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We just proved that the gradient of the lifted minimizers of the discrete problems (5.6) converge with an
order at least 1/4 to the gradient of the minimizer of problem (1.1).

5.3. Convergence in measure of 𝐸𝑚,𝜆,ℎ

Let us recall that the set 𝐸𝑚,𝜆 is defined by

𝐸𝑚,𝜆 =
{︂

𝑥 ∈ 𝑆 ∖ {𝑏} : |∇
𝑆
𝑢𝑚(𝑥)|2 ≤ 1− 𝜆2

𝑢2
𝑚(𝑥)

}︂
·

Proposition 5.5. For any 𝜆 > 0, let us define

𝐸𝑚,𝜆,ℎ :=

⎧⎪⎨⎪⎩𝑥 ∈ 𝑆 ∖ {𝑏} :
⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ(𝑥)
⃒⃒2 ≤ 1− 𝜆2(︁

𝑢𝑙
𝑚,ℎ

)︁2

(𝑥)

⎫⎪⎬⎪⎭·
For any 𝜀 > 0 with 𝜀 < 𝜆/2, we have

|𝐸𝑚,𝜆+𝜀 ∖ 𝐸𝑚,𝜆,ℎ| = 𝒪
(︁
ℎ

1
4

)︁
and |𝐸𝑚,𝜆,ℎ ∖ 𝐸𝑚,𝜆−𝜀| = 𝒪

(︁
ℎ

1
4

)︁
·

Proof. By definition of 𝐸𝑚,𝜆 and 𝐸𝑚,𝜆,ℎ, we have

𝐸𝑚,𝜆+𝜀 ∖ 𝐸𝑚,𝜆,ℎ ⊂

⎧⎪⎨⎪⎩⃒⃒∇𝑆
𝑢𝑙

𝑚,ℎ

⃒⃒2 − |∇
𝑆
𝑢𝑚|2 >

(𝜆 + 𝜀)2

𝑢2
𝑚

− 𝜆2(︁
𝑢𝑙

𝑚,ℎ

)︁2

⎫⎪⎬⎪⎭·
Therefore, on 𝐸𝑚,𝜆+𝜀 ∖ 𝐸𝑚,𝜆,ℎ, we have

⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ

⃒⃒2 − |∇
𝑆
𝑢𝑚|2 >

(𝜆 + 𝜀)2 − 𝜆2

𝑢2
𝑚

+ 𝜆2

⎛⎜⎝ 1
𝑢2

𝑚

− 1(︁
𝑢𝑙

𝑚,ℎ

)︁2

⎞⎟⎠
≥ 2𝜀𝜆 + 𝜀2

(diam(𝑆))2
+ 𝜆2

⎛⎜⎝ 1
𝑢2

𝑚

− 1(︁
𝑢𝑙

𝑚,ℎ

)︁2

⎞⎟⎠, (5.20)

where diam(𝑆) is the diameter of 𝑆. Recall that, by Proposition 5.4, 𝑢𝑙
𝑚,ℎ converges to 𝑢𝑚 in 𝐿1(𝑆) as ℎ goes

to 0. As the functions 𝑢𝑚 and 𝑢𝑙
𝑚,ℎ are uniformly Lipschitz, this implies that 𝑢𝑙

𝑚,ℎ converges to 𝑢𝑚 in 𝐿∞(𝑆).
Moreover, by definition of 𝐸𝑚,𝜆, we also have 𝐸𝑚,𝜆+𝜀 ⊂ {𝑢𝑚 ≥ (𝜆 + 𝜀)}, so on 𝐸𝑚,𝜆+𝜀 ∖ 𝐸𝑚,𝜆,ℎ, the difference(︂

1
𝑢2

𝑚
− 1

(𝑢𝑙
𝑚,ℎ)2

)︂
converges uniformly to 0 as ℎ goes to 0. With (5.20), this implies that for ℎ small enough, we

have on 𝐸𝑚,𝜆+𝜀 ∖ 𝐸𝑚,𝜆,ℎ, ⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ

⃒⃒2 − |∇
𝑆
𝑢𝑚|2 ≥

2𝜀𝜆 + 𝜀2

2(diam(𝑆))2
·

In particular, setting 𝜂 := 2𝜀𝜆+𝜀2

2(diam(𝑆))2 and using Proposition 5.4, we obtain

|𝐸𝑚,𝜆+𝜀 ∖ 𝐸𝑚,𝜆,ℎ| ≤
⃒⃒⃒{︁⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ

⃒⃒2 − |∇
𝑆
𝑢𝑚|2 > 𝜂

}︁⃒⃒⃒
≤ 1

𝜂

∫︁
𝑆

⃒⃒⃒⃒⃒
∇

𝑆
𝑢𝑙

𝑚,ℎ

⃒⃒2 − |∇
𝑆
𝑢𝑚|2

⃒⃒⃒
= 𝒪

(︁
ℎ

1
4

)︁
.

This concludes the proof of the first estimate. The other estimate is proved by the same method. �
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Figure 2. Artifacts using low order approximation.

Remark 5.6. The function 𝑢𝑚 is generically suspected to be no more than 𝒞1,1 regular. This important dif-
ficulty makes the extension of the previous convergence analysis to higher order elements not straightforward.
However, based on our numerical experiments (see the following paragraph), we believe that a (𝑘, 𝑟) approxi-
mation improves the order of convergence without being able to provide a complete analysis of this order due
to this lack of regularity.

Sections 3–5 together justify the claim that the set 𝐸𝑚,𝜆,ℎ is a good approximation of the cut locus of 𝑏 in 𝑆,
if 𝑚 is big enough and 𝜆 and ℎ are small enough. We tried to estimate numerically the order of convergence of
our approximation. Unfortunately, the precision of our simulations was not enough to determine if the expected
order of convergence 1/4 is optimal or not.

6. Numerical illustrations

6.1. Cut locus approximation

We established the convergence of the minimizers of problem (5.6) when ℎ tends to 0. For a fixed ℎ > 0, this
convex discrete problem is of quadratic type with an infinite number of conic pointwise constraints. By the way,
it is important to observe that for 𝑘 = 𝑟 = 1, the gradient pointwise bounds for a function of P1 is equivalent
to a single discrete conic constraint on every triangle with respect to the degrees of freedom of P1(𝒯ℎ). In this
simplified context, we observed in our experiments that using P1 elements may lead to approximated cut loci
with some tiny artificial connected components (see Fig. 2). Observe that these artifacts do not contradict our
convergence estimates in Proposition 5.5. Motivated by this lack of precision, we use in all following illustrations
elements of order 𝑟 > 1.

For the general case 𝑟 > 1, the bound constraint on the gradient cannot be easily reduced to a finite set
of discrete constraints. In our computations, we approximated the constraint |∇

𝑆𝑘
ℎ

𝑢|𝐿∞(𝑆𝑘
ℎ) ≤ 1 by forcing the

inequality only on a finite number of points of the mesh. In practice, we imposed these constraints on 𝑔 Gauss
quadrature points on every triangle of 𝒯ℎ.

We illustrate in Figures 3–6 the approximation of the cut locus provided by our approach. These computations
have been carried out on meshes of approximately 105 triangles for 𝑘 = 2 and 𝑟 = 3 using a high precision
quadrature formula associated to 17 Gauss points on every element of the mesh. Moreover, for 𝑟 = 3, we
imposed the conic gradient constraints on the 𝑔 = 9 Gauss points of every triangle. In order to solve the
resulting linear conic constrained quadratic optimization problem, we used the JuMP modeling language and
the finite elements library Getfem++ [10, 17] combined with the MOSEK optimization solver [2]. For such a
precision, the optimization solver identified a solution in less than one hour on a standard computer.

Observe that our approximations of cut loci provide sets with a number of handles equal to twice the genus of
the supporting surfaces. This fact is in agreement with Proposition 3.2 since the cut locus has he same homotopy
group as the surface (see [6] for instance).
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Figure 3. Three different views of the approximation of a cut locus on a standard torus.

Figure 4. Three different views of the approximation of a cut locus on a standard torus,
without representing the surface.

Figure 5. Three different views of the approximation of a cut locus on a torus of genus 2.

Figure 6. Three different views of the approximation of a cut locus on a torus of genus 2,
without representing the surface.

6.2. Approximation of the boundary of Voronoi cells

All previous theoretical results still hold if we replace the source point 𝑏 by any compact subset of the surface
𝑆. For instance, if 𝑏 is replaced by a set of points, the singular set of the distance function can be decomposed
as the union of the boundary of Voronoi cells and the cut loci of every point intersected with its Voronoi cell.
As a consequence, if the distribution of source points is homogeneous enough, that is every Voronoi cell is small
enough, the singular part of the distance function will be exactly equal to the boundary of the Voronoi cells. We
illustrate this remark in the following experiments. We used exactly the same framework as in previous sections
and just replaced the pointwise condition at 𝑏 with the analogous pointwise Dirichlet conditions at every source



NUMERICAL COMPUTATION OF THE CUT LOCUS 119

Figure 7. Approximation of the Voronoi cells on a torus of genus 2 of 10, 30 and 100 points.
Every column represents two different views.

Figure 8. Approximation of the Voronoi cells on a torus of genus 3 of 10, 30 and 100 points.
Every column represents two different views.

point. Figures 7 and 8 represent the Voronoi diagrams obtained with 10, 30 and 100 points for surfaces of genus
2 and 3. The computational complexity is exactly of the same order as with a single source point.
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