ESAIM: M2AN 56 (2022) 105-120 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051 /m2an/2021088 WWW.esalm-m2an.org

NUMERICAL COMPUTATION OF THE CUT LOCUS VIA A VARIATIONAL
APPROXIMATION OF THE DISTANCE FUNCTION

FRANGOIS GENERAU!, EDOUARD OUDET?*® AND BOZHIDAR VELICHKOV®

Abstract. We propose a new method for the numerical computation of the cut locus of a compact
submanifold of R® without boundary. This method is based on a convex variational problem with conic
constraints, with proven convergence. We illustrate the versatility of our approach by the approximation
of Voronoi cells on embedded surfaces of R3.
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1. INTRODUCTION

Let S be a compact real analytic surface without boundary embedded in R3, and let b € S be any point of
S (that can be thought of as a base point).

Definition 1.1. The cut locus of b in S can be defined as the closure of the set of points p € S such that there
exist at least two minimizing geodesics of S between p and b. We will denote it by Cut,(.S). Equivalently, it
is also the set of points of S\ {b} around which the distance function to the point b — denoted by d;, — is not
smooth.

The cut locus is a fundamental object in Riemannian geometry, and it is a natural problem to try and find
ways to compute it numerically. In this paper, we propose a numerical approximation of Cut,(S), based on a
convex variational problem on S, with proven convergence. It is not trivial to compute Cuty(S) because it is
not stable with respect to C''-small variations of S. See for instance Example 2 of [1]. In particular, one can’t
approximate the cut locus of S with the cut locus of a piecewise linear approximation of S.

Related works. Let us review the techniques used in the past by different authors to approximate the cut
locus. We may divide them into two categories.

Geodesic approzimation on parametrized surfaces. This approach was used in [14,18]. In [18], on genus 1
parametrized surfaces, the authors computed a degree 4 polynomial approximation of the exponential map
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using the geodesic equation and deduced an approximation of the cut locus from there. In [14], the authors used
the deformable simplicial complexes (DSC) method and finite differences techniques for geodesic computations
to compute geodesic circles of increasing radius and their self-intersections, i.e. the cut locus. They applied the
method to genus 1 surfaces. These papers contain no proof of convergence of the computed cut locus.

Ezact geodesic computation on discretized surfaces. This approach was used in [9,13]. In [13], the authors
computed the geodesics on a convex triangulated surface. They deduced an approximation of the cut locus of
the triangulated surface and filtered it according to the angle formed by the geodesics meeting at a point of the
approximated cut locus, to make their approximation stable. They applied the method to ellipsoids. There is
no proof of convergence. In [9], the authors computed shortest curves on a graph obtained from a sufficiently
dense sample of points of the surface. From there they deduced an approximation of the cut locus and filtered it
according to the maximal distance (called spread) between the geodesics meeting at a point of the approximated
cut locus. They proved that the set they compute converges to the cut locus (see [9], Thm. 4.1).

We may also mention [4], where the authors used some more geometric tools to compute (numerically) the
cut locus of an ellipsoid or a sphere with some particular metric with singularities.

Our method. A natural approach to approximate a cut locus would be to use a fast marching method which
provides an efficient way to compute distance functions on a manifold. Unfortunately, classical algorithms do
not ensure any convergence result related to the gradient of the approximation. We believe that this absence
of estimate makes the approximation of the cut locus by these algorithms difficult to prove. In this article we
introduce a new regularized approach designed to fill this gap and to obtain a reliable localization of the cut
locus. Given a large constant m > 0, let u,, € H'(S) be the minimizer of the following variational problem

min /<|Vsu|2—mu), (1.1)
ueH () Js

‘Vsu|§1
u(b)=0

where V denotes the gradient operator on the surface S. Intuitively, u,, is a mollification away from b of the
distance function to the point b on S. For A > 0 to be chosen small, we will use the set
2 A?
Epxi=qxeS\{b}:|Voup()]"<1—- ———
na = {r €S\ WoumP <1- 2
as an approximation of Cuty(9). See Figure 1 for an illustration of the sensitivity of w,, and E,, » with respect
to parameters m and .

This is justified by some theoretical results obtained in [12], which will be summarized in Sections 3 and 4.
The Sections 2-4 are devoted to explaining how we arrived at such a set Ey, ». For now, let us give a bit of
intuition about the different terms appearing in E,, . When perturbing the surface S, we expect the same kind
of instabilities as the ones observed in [3] in the case of the medial axis. Thus, two kinds of new points may
appear in Cut(95):

(1) points where some minimizing geodesics meet with an angle close to zero,
(2) points that are near the base point b.

Hence, to make Cut,(S) more stable (and so more computable), we need to select points that are not too
close to b and such that some minimizing geodesics meet with an angle significantly larger than 0. Intuitively,
having |V Sum(:c)|2 <1 - a? for some constant a > 0 ensures that we are selecting points  where minimizing
geodesics meet with an angle significantly larger than 0, and replacing o by A2 /u2, ensures that we are selecting
points that are away from b. Some other definitions of E,, » would have been possible (for instance, the squares
are not needed), and this form has been chosen as it corresponds to the A-medial axis introduced in [7] (see
Sect. 2).

The rest of the paper is organized as follows. In Section 2, we recall the notion of A-medial axis that was
introduced in [7] and summarize some of its properties. In Section 3, following the strategy of the A\-medial axis,



NUMERICAL COMPUTATION OF THE CUT LOCUS 107

0000
0000

FIGURE 1. Approximation of the sets E,, x» (green color) for m = 10 (first row) and m = 50
(second row) for three different values of A. The first three columns correspond to values of
A = 0.6, 0.2 and 0.06 respectively. The last column represents the associated solutions .

we define a “A-cut locus” Cuti‘(S ) and show that it can be used as an approximation of the complete cut locus
for A small enough. In Section 4, we recall the result from [12] which states that the set E,, » defined above
is a good approximation of Cuti‘(S) if m is big enough. In Section 5, we discretize problem (1.1) using finite
elements, to find a discrete minimizer u,, , where h > 0 is the step of the discretization. From this discrete
minimizer w,, », we obtain a function ufn , on S, and we show that the set

2
|2<1_ A

- <u£nh>2(x)

is a good approximation of E,, y as h — 0. In Section 6, we present the results of some numerical experiments.

)

Epani=qr€S\{b}: |Vsuin,h($)

2. THE A-MEDIAL AXIS

In this section, we recall briefly the notion of A-medial axis introduced by Chazal and Lieutier [7]. Given an
open subset © of R?, its medial axis M(Q) is defined as the set of points of 2 that have at least two closest
points on the boundary 92 of Q:

M(Q):={x€Q:Ty,z€ 0N, y#zand dgg(x) = |z —y| = |z — 2|},
where for any z € Q, dapq(z) is the distance from x to 0%

doo(z) =min {|z —y| : y € 0N}.

The medial axis M() is unstable with respect to small non-smooth perturbations of the boundary of €. To
deal with this issue, in [7] Chazal and Lieutier defined the so called A-medial azis of Q by setting, for any A > 0,

M) :={z € Q:r(z) > A}, (2.1)
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where r(z) is the radius of the smallest ball containing the set of all closest points to x on 9, i.e. the set
{z € 0Q: |z — z| = dsa(z)}. The map A — M (Q) is nonincreasing, and

M@Q) = | Ma(@).

A>0

It is further proved in Section 3, Theorem 2 of [7] that M (€2) has the same homotopy type as M(2), for A
small enough. These facts justify that M (£2) is a good approximation of M (), for A small enough. The crucial
difference though is that M (£2) is stable with respect to small variations of the boundary of €2, whereas M(2)
is not. We refer the reader to Section 4 of [7] for precise statements and proofs.

To motivate the next section, we will also use an alternative definition of the A-medial axis. Given a point
x € Q, let ©(x) be the center of the smallest ball containing all the closest points to 2 on 9. In Section 2.1 of
[7], a vector field Vdaq (originally denoted only by V) is defined on Q by:

x — O(z)

Vdsa(zx) := m.

This vector field coincides with the classical gradient of dgn wherever dyq, is differentiable, so it can be thought

of as a generalized gradient of dggn. Moreover, we have the following relation (see Eq. (1) in Sect. 2.1 of [7]):

_ @)
d%sz(w)

Therefore, we have the following equivalent definition of the Ad-medial axis:

Vdaoa(z)|” =1

2 A?
M,\(Q)Z{.IEQ: |Vdaa(x)]| Sl—dgg(x)}- (2.2)

3. A-Cut Locus

We want to define a set similar to the A\-medial axis in the case of the cut locus Cuty(S). To this end, we
need a notion of generalized gradient for the distance function dp. The notion of generalized gradient we use is
presented in Section 1.3 of [16] in the context of Alexandrov spaces and in Section 2.2 of [12]. Here, we introduce
the notion omitting the short proofs otherwise needed. First note that, as stated in Proposition 2.7 of [12], the
function d is locally semiconcave on S\ {b}, which means that for any unit speed geodesic 7 : [0,1] — S\ {b},
there exists a constant C' > 0 such that the function t — Ct? — dy(y(¢)) is convex on [0, 1]. From there, one gets
that for any point € S\ {b} and any direction v € TS, d;, admits a directional derivative

aerb(x) — lim dp(exp, (tv)) — dp(z)

t—0t t

where exp,, denotes the Riemannian exponential map at x. Furthermore, for any « € S\ {b}, the map v —
9} dy(z) admits a unique maximizer v, on the closed ball B(0,1) C T,.S. The generalized gradient of d; is then
defined as

Vdy(z) = 07 dy(x)vs.

What is more, we have the following formula

veT,S,|v|=1

|V dp(z)| = max (0, sup ajdb(sc)> . (3.1)

See Lemma 3.3 for a geometric interpretation of the generalized gradient.
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Analogously to (2.2), for A > 0, we define the A-cut locus as

2 A?
cui(s) = {o e 5\ 0} Waa@l <1- s -

We have the following proposition from Proposition 2.9 of [12].
Proposition 3.1. The map A — Cut{,\(S) s nonincreasing, and
Cuty(5) = | Cut)(9).
A>0

In addition, the following proposition holds. We recall that Cut,(.S) is always connected (see [15] for instance).

Proposition 3.2. If S is a real analytic surface, then for A > 0 small enough, one of the connected compo-
nents of Cutb’\(S) has the same homotopy type as Cuty(S), while the other connected components, if any, are
contractible.

These two propositions justify that Cutb)‘(S) is a good approximation of Cut,(S), for A > 0 small enough.
Before proving Proposition 3.2, we prove the following lemma.

Lemma 3.3. Let x € Cuty,(S) be such that there exist two unit speed minimizing geodesics v1,7v2 : [0, dp(z)] — S
such that v;(0) = b and ~;(dy(z)) = z. Let 6 € (0, 7] be the angle between 1 and v2 at x. Then, we have

|V dy(z)] < cos(6/2).

Proof. For i = 1,2, let us set v; = —7;(dp(x)). Let us denote by exp, the Riemannian exponential map at the
point x. Let tg € (0,dp(x)) and z; = exp, (v;tg). Note that we have x ¢ Cut,,(S), so the function d,, is smooth
at x, and its gradient is —v;. Given v € T,.S such that |v| = 1, using dp(z) = dy, (z) + dp(z;), we have

O+ dy(z) = lim dy(exp, (vt)) — dp(x)

t—0+ t

< fim Qo (&XPe (VD)) + di(x:) — (de, () + dy(0))
t—0+ t

o e, (00) e (0
t—0+t t

= —U - V;.

Given that the angle between vy and vy is 0, there exists i € {1,2}, such that the angle between v and v; is at
most 7 — 6/2. Thus the last inequality gives 9,7 dy(2) < cos(#/2). This concludes the proof. O

Remark 3.4. In the previous lemma, in the case where there are exactly two minimizing geodesics arriving at
x, one can show that the inequality is an equality.

Using Lemma 3.3, Proposition 3.2 will mainly be a consequence of Proposition 3.4 from [9], which is recalled
in Proposition 3.6 below. Following [9], we will use the following terminology. Let G be a finite connected graph
embedded in S. A point x of a finite connected graph G is called a tree point if x is a leaf of G or G \ {z} has
a connected component whose closure is a tree. Otherwise, z is called a cycle point. As shown in the proof of
Proposition 3.5 from [9], the closure of the set of cycle points of a finite connected graph G is a deformation
retract of G, hence it is connected. We will also use the following lemma.

Lemma 3.5. Let G be a finite connected graph. Let C C G be a closed connected set that contains all cycle
points of G. Then C is a deformation retract of G.
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Proof. Let Ty, ..., T be the connected components of G \ C. As C contains all cycle points of G, for any
1<i<k, T;is atree and T; NC is a singleton {x;}. By contracting all T; to their roots x;, we obtain that C is
a deformation retract of G. [l

Let € S be such that there exist two minimizing unit speed geodesics 1 and 7, from b to x. Following [9],
the spread between v, and <5 is defined as

spd(y1,72) = sup d(71(t),72(t))-

We recall that, as S is real analytic, the cut locus Cuty(.S) is a finite graph (see [15] in dimension 2 and [5] for
the generalization to arbitrary dimensions). In [9], the authors proved the following;:

Proposition 3.6 ([9], Prop. 3.4). Let x € Cuty(S). If the spread of any two minimizing unit speed geodesics v,
and 7o from b to x is smaller than the injectivity radius of S, then x is a tree point of Cuty(S).

Proof of Proposition 3.2. According to Lemma 3.3, given any 6 > 0, if A has been taken small enough, then for
any point z € Cuty(S) \ Cuty (), the angle between any two minimizing unit speed geodesics v, and 7o from b
to = is smaller than 6 at x. As geodesics verify a second order differential equation, if their angle at x is small,
then their spread is also small. Therefore, applying Proposition 3.6, we deduce that if A has been taken small
enough, then any point € Cuty(S)\ Cut; (S) is a tree point of Cuty(S). Stated otherwise, Cutj (S) contains all
cycle points of Cuty(S). Moreover, Cuti (S) is a closed set. Indeed, this is a consequence of the semiconcavity of
dp and the lower semicontinuity of the norm of the gradient of semiconcave functions (see [12], Prop. 7.2). Thus,
Cut(S) contains the closure of the cycle points of Cuty(S), which is connected. In particular, there exists a
connected component C of Cut}(S) that contains the set of the cycle points of Cuty(S). By Lemma 3.5, C is a
deformation retract of Cut(S). This completes the proof. O

Therefore, we will use Cut;(S) as an approximation of Cut,(S) for A small enough.

4. APPROXIMATION WITH A VARIATIONAL PROBLEM

For m > 0, recall that u,, is the minimizer in (1.1). For A > 0, let us define the set E,, x by

Epy = {x e S\ {b}: |Vsum(ae)|2 <1-— u;\(x) }

We have the following theorem (see [12], Thms. 1.1 and 1.3):

Theorem 4.1. There exists mo > 0 such that for any m > my, the function u,y, is locally C** on S\ {b}, and
U, = dp 0 a neighborhood of b. For any m > m’ > my,

Cutp(S) C {|[Vum| < 1} C{|Vsum| < 1}. (4.1)
Moreover,
{|Vgum| <1} - Cutp(S) in the Hausdorff sense. (4.2)
Finally, for any e > 0,
sup d(x,Cutg‘(S)) — 0, and sup  d(z,Emn) — O. (4.3)
S m—too reCut} 4(8) m—to9

Therefore, we can use I, » as an approximation of Cutg‘ (S). All in all, we will use E,, ) as an approximation
of Cuty(95).
In the following, we will always assume that we have m > my.
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5. DISCRETIZATION

5.1. Finite elements of order r on a surface approximation of order k

In this section we introduce a discretization framework adapted to the variational problem (1.1), based on
finite elements. We follow the notations of [8,11].

Let S be a compact oriented smooth two-dimensional surface embedded in R3. For z € S, we denote by v(z)
the oriented normal vector field on S. Let d : R® — R be the signed distance function to the surface S and
U, = {z € R3, |d(z)| < n} the tubular neighborhood of S of width > 0. It is well known that if 7 is small

1

enough (for instance 0 < 1 < min;—1 » TRil Lo ) where the (k;) stand for the extremal principal curvatures of

S), then for every « € U,, there exists a unique a(z) € S such that
z = a(z) + d(z)v(a(z)) = a(z) + d(z)Vd(x). (5.1)

We consider Sy, a triangular approximation of S whose vertices lie on S and whose faces are quasi-uniform and
shape regular of diameter at most h > 0. Moreover, we will assume that 7j, the set of triangular faces of Sy,
are contained in some tubular neighborhood U, such that the map a defined by (5.1) is unique.

For k > 1 and for a triangle T € 7}, we consider the n; Lagrange basis functions ®¥, ... @flk of degree k and
define the discrete projection on Sy by:

nk
an(@) = 3 ala;) @k () (5.2)
j=1
where z1,...,2,, are the nodal points associated to the basis functions. Now we can define S,’i a polynomial
approximation of order k of S associated to 7p,
Sy = {ay(x), x € Sy} (5.3)

Observe that by definition the image by a of the nodal points are both on S and on S;j. Let us now introduce
the finite element spaces on Sy, = S} and SF¥ for k > 2. For every integer r > 1, let

L, = {x € C°(Sh), x|r € P,,VT € Tp,} (5.4)
where P,. is the family of polynomials of degree at most r. Analogously, for & > 2, let
L;k: {x e COSE), X =xoa;", for some x € L} }. (5.5)
Analogously to (1.1), we will consider the following discrete variational problem:

min F,If(u) (5.6)
uEL;’k

v
u(b)=0

u

<1

2
where Fff(u) = fS';i (‘Vs,ﬁu‘ - mu) and b some fixed nodal point of the mesh 7.

5.2. Convergence of the lifted minimizers

In order to prove the convergence of our numerical approach, let us first establish that our discrete problem
converges in values in the sense of Proposition 5.2. For a function u defined on S,’f, we introduce its lifted
function u! defined on S, by the relation u!(a(r)) = u(z).

We focus our analysis on the piecewise linear case r = k = 1. We will use the notation Fy, := F}l and Lj, := L}.
For every h > 0, the convex optimization problem (5.6) has a unique solution t,y, j.
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Lemma 5.1. The differential of the projection a : U, — R® onto S, when restricted to the tangent space of S,

1s the identity, up to order 1 in h:
3
Dayyg, = Id;. + O(h).

I7s),

Proof. The identity estimate on Da is a direct consequence of [11] equations (4.12), (4.13), (4.10) and (4.11).
]

Defining F'(u) = [ <|Vsu|2 - mu), we have the following proposition.

1
m,h

1
max(|vs“m,h Loo(8) ’1)

u

Proposition 5.2. Let uyy, p be the solution of problem (5.6) for k=r=1. Let Lulm,h =

be the 1-Lipschitz normalization of uimh. Then, Lulm,h € HY(S) and

F(Lub, ) = uen}}ilr(ls) F(u)+ (’)(h%).
|Vgu|<1
u(b)=0

Proof. Step 1. Let u,, be the solution of problem (1.1). For € > 0, let wy, c : S — R be defined by:

{db(m)z if db(l‘) <e

Wm e = 2e -

' um(x) — 5 if dy(x) > e

Recall that we have u,, = dp in a neighborhood of b (Thm. 4.1). Therefore, for ¢ > 0 small enough, we
have u,, = d, on the ball B(b,2¢). In particular, we deduce that w,, . is C* on S. As di is smooth in a
neighborhood of b, the gradient of d7 /2 is O(¢~!)-Lipschitz on B(b, ). Moreover, as u,, = d, on B(b,2¢),
the gradient of u,, is O(e~1)-Lipschitz on B(b,2¢) \ B(b,¢). Recall that u,, is also locally C*! on S\ {b}
(Thm. 4.1). Therefore its gradient is O(e~!)-Lipschitz on S\ B(b,¢). All in all, we obtain that wy, . is C1:!
on S and the Lipschitz constant of its gradient is O(e~1). Furthermore, as dj, and u,, are both 1-Lipschitz,
we have |V wp, | < 1. Now for € > 0, consider

Ihwm,s

h,e ‘=
‘Vsh Ihwmvs

v

)

L= (Sh)

where Ipwy, . is the P! Lagrange interpolation of Wp,e on Sy,. Therefore, vy, . is an admissible candidate in
the minimization problem (5.6). For x € S}, observe that we have the relation I w., - (x) = I (W, © a)(z)
which says that Ipwy, . is the standard (flat) interpolation of the composed function w,, . © a. As the map
a: U, — S is smooth and the gradient of w, . is O(¢~')-Lipschitz, we deduce that on every triangle of Sy,
the gradient of w,, 0 a is O(e~1)-Lipschitz, uniformly in h. By the quasi uniformity of the mesh, we obtain
the uniform interpolation estimates on Sj:

I e(2) = (Wi e 0 a)(z) + O(e7'h?) (5.7)

and
Vo, Ihwme(x) =V (Wi 0a)(x)+ O(e'h).

With Lemma 5.1, we deduce for all x € S},

Vs, Ihwme(x) =V wp (a(z)) + O(e7'h). (5.8)
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Recall that we have [V wnm e|pw(g) = 1. Therefore the last identity yields

‘vsh-[h m,e Sn.e) :1+O(€_1h)
h,e
Thus, v = Ihwm’g(l + O(E_lh)), and so
Fh(’l}hﬁ) = Fh(Ih’LUm,E) + O(é‘ilh). (59)

Applying Lemma 5.1 again, with a simple change of variable, we find that for any function f: S — R,
foaz/f+(9(h). (5.10)
Sh S
Recalling (5.7) and (5.8), we obtain
Fr(Inwpm.e) = F(wme) + (’)(sflh). (5.11)
Furthermore, we have

[ me = nl <0 and [ |1V = 950 < O,
S S

F(wm,e) = F(um) + O(e).

Combining this with (5.9) and (5.11), we find
Fp(vne) = Fum) +O(e7'h) + O(e).

Choosing ¢ = h%, this yields

min  Fp(u) < min F(w)+ O(iﬁ). (5.12)
u€Lp w€H(S)
|V, ul<1 |V gul<1
u(b)=0 u(b)=0

Step 2. Let u,, » be the solution of the discrete problem (5.6), ufmh = Um,p 0 (a)g, )=t its lifted version on S,
and

m,h

! 1
max(‘vsum,h‘mo(s), )

oa and Lemma 5.1 as before, we obtain that uniformly for x € Sy,

l —
Lumvh =

l

Using the equation u,, , = Uy
Vb, oa(z) = Vs, Um,n(z) + O(h). (5.13)

In particular, this implies

l _
’vsum,h’Loo(S) - ‘vsh’um’h‘Lw(Sh) + O(h) S 1+ O(h)>

and so
Lub, , = ub, ,(1+ O(h)). (5.14)
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From this identity we deduce
F(Lub, ) = F(ul, ;) + O(h).

Using the estimates (5.13) and (5.10) as in step one, we find
Fy(tm,n) = F(ub, ) + O(h).

The last two equations together yield F(Lulm,h) = Fp(tm,p) + O(h). With (5.12), this implies

min  F(u) < F(Lufn R) < min F(u)+ (’)(h%),

u€H(S) ’ u€H(S)
|Vgul<1 |[Vgul<1
u(b)=0 u(b)=0

which concludes the proof of the proposition.

In the proof of the next proposition, we will need the following lemma.

Lemma 5.3. Let L > 0. Let (fn)n>0 be a family of L-Lipschitz real functions on S such that |th|L1(S) —0
as h — 0 and for any h > 0, fr(b) =0. Then

|fh|L1(s) ]:JO'

Proof. Let e > 0 and S; := S\ (Cuty(S) U B(b,€)). We will use the polar coordinates (r, ) centered at b on S..
In these coordinates, the surface measure on S; is of the form dA = A(r, §)drd6, with

A(r,0) ~ r, uniformly in 6. (5.15)

r—0

Moreover, the surface S, is of the form
Se ={(r,0),0 €[0,27),r € [e,19)},

for some ryg > 0 that depends on 6 € [0,27). As the (fn)n>0 are L-Lipschitz and f(b) = 0, we have for any
0 €10,27), |fn(e,8)] < Le. Using this inequality, we have

/SEW - / / " 0)/ A, 0)rds

2m o 27 To
S/O /E |fh(r,t9)*fh(€,9)|A(r,9)drd9+/O /5 | fa(e, 0)|A(r, 0)drde

< /O " / Y 0) — f (e, 0) | A(r, 6)drdd + A(S)Le

/271' /Tg
0 €

27 9 r
< /0 / / |V fn(t,0)|dtA(r,0)drdd + A(S)Le. (5.16)

/T Or [ (t, H)dt‘A(r, 0)drdd + A(S)Le

From (5.15), we know that for some constants Cy, Co > 0, we have for any r > 0 and 0 € [0,27), C1r < A(r,0) <
Cy. In particular, for r >t > ¢, we get

t Co
A(r,0) < (Cy < Cy— < ==A(t,0).
(T7)_ 2 > 26_015 (7)
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Setting C := Cy/Cy, with (5.16), we find

C 27 To r
/Sg|fh|§é_/0 / /g|th(t,9)\A(t,9)dtdrd0+A(S)L5

27 ro ro
B Q/ / / IV fn(t,0)|A(t, 0)drdtdd + A(S)Le

- Cdmm/%/ |V fu(t, )| A(t, 0)dtdd + A(S) Le

M/ |V fn| + A(S)Le (5.17)

where diam(S) is the diameter of S. Note that because the (fp)n~0 are L-Lipschitz and f;(b) = 0, we have

JIE /|fh|+/ g |fh\</ al + A(S

Therefore the estimate (5.17) yields
C diam(S
[l < S [ 195 +-24(5) Lo
s s

In particular, for any ¢ > 0,

limsup/|fh| < 2A(S)Le
s

h—0
This concludes the proof. (Il

We can now establish the convergence of the minimizers:

Proposition 5.4.

2 1
|vsugm7h7VSUm|L2(S) :O<h2> and ’Umh um|L1(S ;:60

Proof. Consider v = (Lu nt um) Then, v is admissible for problem (1.1), so F(v) > F(u,,). Moreover, the
following algebraic identity holds

1 1 1
F(v) = §F(Lufnh) + §F(um) ~1 /S’VSum — VSLuimh‘?.

Therefore, we have
%F(Lum W) — ;F(um) > i/swsum — VL, |
which proves, together with Proposition 5.2, that
VoLt = Vst ) = O(h%). (5.18)

In particular, as S is compact, the gradient of the function Lufn’h — Uy, also goes to 0 in the L!(S) norm as
h — 0. Recall that the functions (Lu%7h> heo and w,, are uniformly Lipschitz, and Luﬁn’h(b) = um(b) =0, so
we may apply Lemma 5.3 to the functions (Lufn)h — Um )h>0, to find that
1
|Lum7

hiUm‘Ll(S),:(})O' (5.19)

In the proof of Proposition 5.2, we showed that Lul,, , = ul, ,(1+ O(h)) (Eq. (5.14)). Together with (5.18)
and (5.19), this concludes the proof. (]
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We just proved that the gradient of the lifted minimizers of the discrete problems (5.6) converge with an
order at least 1/4 to the gradient of the minimizer of problem (1.1).

5.3. Convergence in measure of E,, 1

Let us recall that the set Ey, » is defined by

Epy = {x € S\{b} 5 |V stm(@)P <1— — }

Proposition 5.5. For any A > 0, let us define
Emani=_xeS\{b}:|Vaul, (@) <1-

For any € > 0 with e < \/2, we have

|Emate \ Eman| = (’)(h%) and  |Epan \ Ema—c| = (’)(hi).

Proof. By definition of E,, » and Ep, \ n, we have

A+e)? N

2
Em,)\JrE \Em)\,h C ’vsuin,h’ - |Vsum|2 >

Therefore, on Ey, ate \ Em an, We have

2 2 (A+e)?2 =22 1 1
’VSuin’h’ - |Vsum| > 71112 )\2 UT -3
m m (ul )
m,h
2e\ + &2 o 1 1

s — - 5.20
= Wam(s)? M | 2, () (520)

m,h

where diam(.S) is the diameter of S. Recall that, by Proposition 5.4, Ufn,h converges to u,, in L*(S) as h goes
to 0. As the functions w,, and uin ,, are uniformly Lipschitz, this implies that uin ,, converges to w,, in L>(S).
Moreover, by definition of E,, x, we also have E,, x1e C {um > (A+¢)}, so on Epp ate \ Em o, the difference

(711277 — (ullh)z> converges uniformly to 0 as h goes to 0. With (5.20), this implies that for i small enough, we
have on Ep ate \ Emah,
2 5 2e\ + €2
Vot | = IVum|® > s
|Vstimn|” = Vsuml|” > 2(diam(S))2

In particular, setting n := 2«1212’}117*&3)2 and using Proposition 5.4, we obtain

|Em7/\+a \ Em,khl

IN

‘{‘Vsru’in,h‘2 - |vsum|2 > 77}‘
1 l 2 2
E/S"vsum,h’ - |vsum| ‘

:O(h%).

This concludes the proof of the first estimate. The other estimate is proved by the same method. (]

IN
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F1cURE 2. Artifacts using low order approximation.

Remark 5.6. The function u,, is generically suspected to be no more than C'! regular. This important dif-
ficulty makes the extension of the previous convergence analysis to higher order elements not straightforward.
However, based on our numerical experiments (see the following paragraph), we believe that a (k,r) approxi-
mation improves the order of convergence without being able to provide a complete analysis of this order due
to this lack of regularity.

Sections 3-5 together justify the claim that the set E,, » ; is a good approximation of the cut locus of b in S,
if m is big enough and A\ and h are small enough. We tried to estimate numerically the order of convergence of
our approximation. Unfortunately, the precision of our simulations was not enough to determine if the expected
order of convergence 1/4 is optimal or not.

6. NUMERICAL ILLUSTRATIONS

6.1. Cut locus approximation

We established the convergence of the minimizers of problem (5.6) when h tends to 0. For a fixed h > 0, this
convex discrete problem is of quadratic type with an infinite number of conic pointwise constraints. By the way,
it is important to observe that for k = r = 1, the gradient pointwise bounds for a function of P! is equivalent
to a single discrete conic constraint on every triangle with respect to the degrees of freedom of P!(7}). In this
simplified context, we observed in our experiments that using P! elements may lead to approximated cut loci
with some tiny artificial connected components (see Fig. 2). Observe that these artifacts do not contradict our
convergence estimates in Proposition 5.5. Motivated by this lack of precision, we use in all following illustrations
elements of order r > 1.

For the general case » > 1, the bound constraint on the gradient cannot be easily reduced to a finite set
of discrete constraints. In our computations, we approximated the constraint |VS§u| Loo (k) < 1 by forcing the

inequality only on a finite number of points of the mesh. In practice, we imposed these constraints on g Gauss
quadrature points on every triangle of 7.

We illustrate in Figures 3-6 the approximation of the cut locus provided by our approach. These computations
have been carried out on meshes of approximately 10° triangles for £ = 2 and r = 3 using a high precision
quadrature formula associated to 17 Gauss points on every element of the mesh. Moreover, for r = 3, we
imposed the conic gradient constraints on the ¢ = 9 Gauss points of every triangle. In order to solve the
resulting linear conic constrained quadratic optimization problem, we used the JuMP modeling language and
the finite elements library Getfem++ [10,17] combined with the MOSEK optimization solver [2]. For such a
precision, the optimization solver identified a solution in less than one hour on a standard computer.

Observe that our approximations of cut loci provide sets with a number of handles equal to twice the genus of
the supporting surfaces. This fact is in agreement with Proposition 3.2 since the cut locus has he same homotopy
group as the surface (see [6] for instance).
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= O ()

F1GURE 3. Three different views of the approximation of a cut locus on a standard torus.

FIGURE 4. Three different views of the approximation of a cut locus on a standard torus,
without representing the surface.
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F1cURE 5. Three different views of the approximation of a cut locus on a torus of genus 2.
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FI1GURE 6. Three different views of the approximation of a cut locus on a torus of genus 2,
without representing the surface.

6.2. Approximation of the boundary of Voronoi cells

All previous theoretical results still hold if we replace the source point b by any compact subset of the surface
S. For instance, if b is replaced by a set of points, the singular set of the distance function can be decomposed
as the union of the boundary of Voronoi cells and the cut loci of every point intersected with its Voronoi cell.
As a consequence, if the distribution of source points is homogeneous enough, that is every Voronoi cell is small
enough, the singular part of the distance function will be exactly equal to the boundary of the Voronoi cells. We
illustrate this remark in the following experiments. We used exactly the same framework as in previous sections
and just replaced the pointwise condition at b with the analogous pointwise Dirichlet conditions at every source
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FI1GURE 7. Approximation of the Voronoi cells on a torus of genus 2 of 10, 30 and 100 points.
Every column represents two different views.

» » &
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F1GURE 8. Approximation of the Voronoi cells on a torus of genus 3 of 10, 30 and 100 points.
Every column represents two different views.

point. Figures 7 and 8 represent the Voronoi diagrams obtained with 10, 30 and 100 points for surfaces of genus
2 and 3. The computational complexity is exactly of the same order as with a single source point.
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