Exact solution and the multidimensional Godunov scheme for the acoustic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 317-347

The acoustic equations derived as a linearization of the Euler equations are a valuable system for studies of multi-dimensional solutions. Additionally they possess a low Mach number limit analogous to that of the Euler equations. Aiming at understanding the behaviour of the multi-dimensional Godunov scheme in this limit, first the exact solution of the corresponding Cauchy problem in three spatial dimensions is derived. The appearance of logarithmic singularities in the exact solution of the 4-quadrant Riemann Problem in two dimensions is discussed. The solution formulae are then used to obtain the multidimensional Godunov finite volume scheme in two dimensions. It is shown to be superior to the dimensionally split upwind/Roe scheme concerning its domain of stability and ability to resolve multi-dimensional Riemann problems. It is shown experimentally and theoretically that despite taking into account multi-dimensional information it is, however, not able to resolve the low Mach number limit.

DOI : 10.1051/m2an/2021087
Classification : 35B08, 35B44, 35C05, 35E05, 35E15, 35F40, 35L03, 35Q35, 65M08
Keywords: Godunov scheme, multidimensional Riemann Problem, acoustic equations, linearized Euler equations
@article{M2AN_2022__56_1_317_0,
     author = {Barsukow, Wasilij and Klingenberg, Christian},
     title = {Exact solution and the multidimensional {Godunov} scheme for the acoustic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {317--347},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2021087},
     mrnumber = {4378545},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021087/}
}
TY  - JOUR
AU  - Barsukow, Wasilij
AU  - Klingenberg, Christian
TI  - Exact solution and the multidimensional Godunov scheme for the acoustic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 317
EP  - 347
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021087/
DO  - 10.1051/m2an/2021087
LA  - en
ID  - M2AN_2022__56_1_317_0
ER  - 
%0 Journal Article
%A Barsukow, Wasilij
%A Klingenberg, Christian
%T Exact solution and the multidimensional Godunov scheme for the acoustic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 317-347
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021087/
%R 10.1051/m2an/2021087
%G en
%F M2AN_2022__56_1_317_0
Barsukow, Wasilij; Klingenberg, Christian. Exact solution and the multidimensional Godunov scheme for the acoustic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 317-347. doi: 10.1051/m2an/2021087

[1] R. Abgrall, A genuinely multidimensional Riemann solver. hal:inria-00074814 (1993).

[2] D. Amadori and L. Gosse, Error Estimates for Well-Balanced Schemes on Simple Balance Laws: One-Dimensional Position-Dependent Models. BCAM Springer Briefs in Mathematics. Springer (2015). | MR

[3] D. S. Balsara, A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231 (2012) 7476–7503. | MR | Zbl

[4] W. Barsukow, Stationarity and vorticity preservation for the linearized Euler equations in multiple spatial dimensions. In: International Conference on Finite Volumes for Complex Applications. Springer (2017) 449–456. | MR

[5] W. Barsukow, Stationarity preserving schemes for multi-dimensional linear systems. Math. Comput. 88 (2019) 1621–1645. | MR

[6] W. Barsukow, P. V. F. Edelmann, C. Klingenberg, F. Miczek and F. K. Röpke, A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamics. J. Sci. Comput. 72 (2017) 623–646. | MR

[7] M. Brio, A. R. Zakharian and G. M. Webb, Two-dimensional Riemann solver for Euler equations of gas dynamics. J. Comput. Phys. 167 (2001) 177–195. | Zbl

[8] C. Chalons, M. Girardin and S. Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms. SIAM J. Sci. Comput. 35 (2013) A2874–A2902. | MR | Zbl

[9] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial Differential Equations. Interscience, New York (1962). | MR | Zbl

[10] P. Colella, Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 171–200. | MR | Zbl

[11] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978–1016. | MR | Zbl

[12] S. Dellacherie, P. Omnes and F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation. J. Comput. Phys. 229 (2010) 5315–5338. | MR | Zbl

[13] L. C. Evans, Partial differential equations. Graduate Stud. Math. 19 (1998) 7. | MR | Zbl

[14] T. A. Eymann and P. L. Roe, Multidimensional active flux schemes. In: 21st AIAA Computational Fluid Dynamics Conference (2013).

[15] M. Fey, Multidimensional upwinding. Part I. The method of transport for solving the Euler equations. J. Comput. Phys. 143 (1998) 159–180. | MR | Zbl

[16] M. Fey, Multidimensional upwinding. Part II. Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143 (1998) 181–199. | MR | Zbl

[17] E. Franck and L. Gosse, Stability of a Kirchhoff-Roe scheme for two-dimensional linearized Euler systems. Annali dell’Universita’ di Ferrara 64 (2018) 335–360. | MR

[18] I. M. Gel'Fand and G. E. Shilov, Generalized Functions. Vol. 1. Properties and Operations. Translated from the Russian by Eugene Saletan (1964). | MR

[19] H. Gilquin, J. Laurens and C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems: part II. In: Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Springer (1993) 284–290. | MR | Zbl

[20] H. Gilquin, J. Laurens and C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems. ESAIM: M2AN 30 (1996) 527–548. | MR | Zbl | Numdam

[21] E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Vol 118. Springer Science & Business Media (2013). | MR | Zbl

[22] S. K. Godunov, Vospominaniya o raznostnyh shemah: doklad na mezhdunarodnom simpoziume “Metod Godunova v gazovoy dinamike” Michigan 1997. Nauchnaya Kniga (1997). | Zbl

[23] S. K. Godunov, Reminiscences about numerical schemes. Jou. Preprint (2008). | arXiv

[24] S. K. Godunov, A. V. Zabrodin, M. I. Ivanov, A. N. Kraĭko and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics. Vol. 1. Moscow Izdatel Nauka (1976). | MR

[25] H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. | Zbl

[26] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. | MR | Zbl

[27] L. Hörmander, Linear Partial Differential Operators. Vol. 116. Springer (2013). | MR

[28] F. John, Partial differential equations. Appl. Math. Sci. 1 (1978) 198. | MR

[29] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations. Springer-Verlag, Berlin-Heidelberg-New York (1981). | MR | Zbl

[30] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. | MR | Zbl

[31] R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimensional flow. J. Comput. Phys. 121 (1995) 213–237. | MR | Zbl

[32] R. J. Leveque, Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131 (1997) 327–353. | Zbl

[33] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems. Vol. 31. Cambridge University Press (2002). | MR | Zbl

[34] X.-S. Li and C.-W. Gu, Mechanism of Roe-type schemes for all-speed flows and its application. Comput. Fluids 86 (2013) 56–70. | MR | Zbl

[35] T. Li and W. Sheng, The general Riemann problem for the linearized system of two-dimensional isentropic flow in gas dynamics. J. Math. Anal. App. 276 (2002) 598–610. | MR | Zbl

[36] J. Li, M. Lukáčová-Medvidová and G. Warnecke, Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Dyn. Syst. 9 (2003) 559–576. | MR | Zbl

[37] M. Lukáčová-Medvidová, K. Morton and G. Warnecke, Evolution Galerkin methods for hyperbolic systems in two space dimensions. Math. Comput. Am. Math. Soc. 69 (2000) 1355–1384. | MR | Zbl

[38] M. Lukáčová-Medvidová, K. W. Morton and G. Warnecke, Finite volume evolution Galerkin methods for hyperbolic systems. SIAM J. Sci. Comput. 26 (2004) 1–30. | MR | Zbl

[39] M. Lukáčová-Medvidová, J. Saibertová, G. Warnecke and Y. Zahaykah, On evolution Galerkin methods for the Maxwell and the linearized Euler equations. App. Math. 49 (2004) 415–439. | MR | Zbl

[40] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158 (2001) 61–90. | MR | Zbl

[41] K. W. Morton and P. L. Roe, Vorticity-preserving Lax–Wendroff-type schemes for the system wave equation. SIAM J. Sci. Comput. 23 (2001) 170–192. | MR | Zbl

[42] K. Oßwald, A. Siegmund, P. Birken, V. Hannemann and A. Meister, L 2 Roe : a low dissipation version of Roe’s approximate Riemann solver for low Mach numbers. Int. J. Numer. Methods Fluids 81 (2016) 71–86. | MR

[43] B. O’Neill, Semi-Riemannian Geometry With Applications to Relativity. Vol 103. Academic Press (1983). | MR | Zbl

[44] S. Ostkamp, Multidimensional characteristic Galerkin methods for hyperbolic systems. Math. Methods Appl. Sci. 20 (1997) 1111–1125. | MR | Zbl

[45] J. Rauch, Partial differential equations. In: Vol. 128 of Graduate Texts in Mathematics (1991). | MR | Zbl

[46] P. Roe, Is discontinuous reconstruction really a good idea? J. Sci. Comput. 73 (2017) 1094–1114. | MR

[47] P. Roe, Multidimensional upwinding. Handb. Numer. Anal. 18 (2017) 53–80. | MR

[48] W. Rudin, Functional Analysis. International Series in Pure and Applied Mathematics. MacGraw Hill Inc., New York (1991). | MR | Zbl

[49] L. Schwartz, Théorie des distributions. Hermann Paris (1978). | Zbl

[50] M. E. Taylor, Partial Differential Equations. I. Basic Theory. Springer (1996). | MR | Zbl

[51] B. J. R. Thornber and D. Drikakis, Numerical dissipation of upwind schemes in low Mach flow. Int. J. Numer. Methods Fluids 56 (2008) 1535–1541. | MR | Zbl | DOI

[52] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media (2009). | MR | Zbl | DOI

[53] Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems. Springer Science & Business Media (2001). | MR | Zbl | DOI

[54] C. Zuily, Éléments de distributions et d’équations aux dérivées partielles: cours et problèmes résolus. Vol 130. Dunod (2002).

Cité par Sources :