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EXACT SOLUTION AND THE MULTIDIMENSIONAL GODUNOV SCHEME
FOR THE ACOUSTIC EQUATIONS

Wasilij Barsukow* and Christian Klingenberg

Abstract. The acoustic equations derived as a linearization of the Euler equations are a valuable sys-
tem for studies of multi-dimensional solutions. Additionally they possess a low Mach number limit anal-
ogous to that of the Euler equations. Aiming at understanding the behaviour of the multi-dimensional
Godunov scheme in this limit, first the exact solution of the corresponding Cauchy problem in three
spatial dimensions is derived. The appearance of logarithmic singularities in the exact solution of the
4-quadrant Riemann Problem in two dimensions is discussed. The solution formulae are then used to
obtain the multidimensional Godunov finite volume scheme in two dimensions. It is shown to be su-
perior to the dimensionally split upwind/Roe scheme concerning its domain of stability and ability to
resolve multi-dimensional Riemann problems. It is shown experimentally and theoretically that despite
taking into account multi-dimensional information it is, however, not able to resolve the low Mach
number limit.
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1. Introduction

Hyperbolic systems of PDEs in multiple spatial dimensions exhibit a richer phenomenology than their one-
dimensional counterparts. In the context of ideal hydrodynamics the most prominent such feature is vorticity.
Vortical structures appear virtually everywhere in multi-dimensional flows, for example also in regions of hydro-
dynamical instability. Nontrivial incompressible flows also only exist in multiple spatial dimensions.

Numerical methods should reproduce such features. The methods that are dealt with in the paper are finite
volume methods. They interpret the discrete degrees of freedom as averages over the computational cells. The
temporal evolution of the averages is given by fluxes over the cell boundaries. One possibility to deal with the
multi-dimensionality is to compute these fluxes using only one-dimensional information perpendicular to the cell
boundary. Thus, for the complete cell update one-dimensional information is collected from different directions.
Such methods are called dimensionally split, and are widely used due to their simplicity.

Several shortcomings of such methods have been noticed e.g. in [12, 25, 41]. They concern the treatment of
vorticity and the incompressible (low Mach number) limit, i.e. a bad resolution of multi-dimensional features.
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Therefore it has been suggested to incorporate truly multi-dimensional information into the finite volume meth-
ods in a variety of ways: [3,10,15,16,32,41,47] and many others. Attempts to construct Godunov schemes using
exact solutions of multi-dimensional Riemann Problems (see e.g. [53]) suffer from the high complexity of the
occurring solutions.

A path that circumvents solving the Euler equations directly has been suggested e.g. in [8, 21, 47]. The
advective operator contained in the Euler equations is taken into account differently than the rest of the
equations (which often is called acoustic operator). Whereas the solution to advection in multiple dimensions is
not very different from its one-dimensional counterpart, acoustics exhibits a number of new features. This has
led [1, 2, 4, 5, 12,35,38,41] and others to studies of the linearized acoustic operator.

This paper aims at deriving the multi-dimensional Godunov scheme for linear acoustics using the exact
multi-dimensional solution, because – even if it is more complicated – one might expect it to fulfill more of
the fundamental properties of the PDE. The derivation of any numerical scheme makes use of a number of
approximations, and we aim at excluding as many as possible. The studies of this paper shall in particular help
understanding the influence of the approximations on the ability of the scheme to resolve the low Mach number
limit.

It has been shown in [25] that an exact one-dimensional Riemann solver introduces terms, which spoil the
numerical solution in the low Mach number limit – despite the fact that the solution of the Riemann problem
is exact. However, in one spatial dimension the incompressible limit is trivial, and there are also no low Mach
number artefacts [12]. The low Mach number artefacts found in [25] appear in multiple spatial dimensions when
the Riemann solver is used in a dimensionally split way. In view of the multi-dimensional nature of the low
Mach number limit, the natural question therefore is whether the dimensional splitting itself is responsible
for the artefacts – because otherwise the Riemann solver is exact and there is no other approximation apart
from the choice of the reconstruction. This is supported by the existence of multi-dimensional methods which
are low Mach number compliant without any fix [5]. Unfortunately, these methods lack a derivation from
first principles, which is commonly considered an advantage of Godunov schemes. This paper therefore studies
a multi-dimensional Godunov scheme thus excluding both dimensional splitting and approximate evolution as
reasons for the failure to resolve the low Mach number limit. The remaining approximations are of a fundamental
nature and cannot be removed without questioning the Godunov procedure itself.

In order to follow the reconstruction–evolution–average strategy the exact solution of the corresponding
Cauchy problem shall be used. In other words, the aim is to have a numerical scheme where the evolution
operator is exact.

The exact solution may be expressed in various representations, which differ by their applicability to the
derivation of a Godunov scheme. Using bicharacteristics, for example, in [38, 44] analytical relations of the
shape

𝑞(𝑡+ ∆𝑡) = 𝐿1[𝑞(𝑡)] +

𝑡+Δ𝑡∫︁
𝑡

d𝜏 𝐿2[𝑞(𝜏)] (1.1)

are derived, which connect the solution 𝑞(𝑡+∆𝑡) at time 𝑡+∆𝑡 with the data 𝑞(𝑡) at time 𝑡 via a so called mantle
integral. This latter involves the solution at all intermediate times. 𝐿1 and 𝐿2 are certain linear operators, see e.g.
equations (2.14)–(2.16) in [38] for details. E.g. in [38], numerical schemes are derived by carefully approximating
the integral in (1.1) (e.g. in [44], or [39], Eqs. (4.12)–(4-15), or [37], Eqs. (4.13)–(4.15)). Moreover, in order to
extend the methodology to the Euler equations, a local linearization is employed (e.g. in [38], p. 18).

The Godunov scheme studied here shall use an exact evolution operator and the only approximation is in the
reconstruction step. Therefore formulae derived and used in [38,39] cannot be employed here. An exact solution
operator is needed which relates the solution at time 𝑡+ ∆𝑡 solely to the data at time 𝑡.

Such operators have appeared in [14,17,46] under the assumption of smooth initial data. Having the Godunov
scheme in mind, however, it is necessary to study the Cauchy problem with discontinuous initial data. In order
to achieve this, it turns out to be necessary to consider distributional solutions. This paper thus for the first
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time gives a detailed derivation of the distributional solution to the Cauchy problem of linear acoustics, without
the restriction to smooth initial data. In this paper a formula is obtained for the exact evolution which expresses
the solution at time 𝑡 in function of the initial data at 𝑡 = 0 directly.

Our exact solution formulae are interesting from a theoretical viewpoint as well. Before using them for the
derivation of a numerical scheme, some of the analytical properties of solutions to linear acoustics are studied.
The new formulae are applied to a two-dimensional Riemann Problem for linear acoustics. In [36] the solution
outside the sonic circle is presented. Based on [1,19,20], in [2,35] (Chap. 6.2) the solution inside the sonic circle
is derived for linear acoustics using a self-similarity ansatz. It has been found that the velocity of the solution, in
general, is unbounded at the origin, and that measure-valued (Dirac delta) vorticity appears. This demonstrates
once more the need to interpret the solution to a multi-dimensional Riemann problem as a distributional one.
In this paper we justify the observed singularity by using the framework of distributional solutions. It is shown
that the singularity of the velocity is a logarithmic one, and its precise shape is obtained.

The exact solution is finally used to derive a Godunov method according to the reconstruction–evolution–
average strategy. This demonstrates that the exact solution formulae, despite their complexity, can be efficiently
used to derive numerical schemes, of which the Godunov scheme is only one example. A similar approach has
been followed in [7]. Here, the Godunov scheme is derived using the framework of distributional solutions, as
the initial data of a Riemann Problem are discontinuous. Focusing on the acoustic equations allows to study
the effects of an exact evolution step.

In order to reduce the work necessary for the derivation of the Godunov scheme, it is first shown that for
linear systems, evolution and average can be interchanged. The new strategy reconstruction–average–evolution
leads to the same scheme, but shortens the derivation considerably. A piecewise constant reconstruction is
thus found to be equivalent to a staggered bilinear reconstruction endowed with a different interpretation of
the discrete degree of freedom. This should not, however, be confused with bilinear reconstructions aimed at
deriving schemes of second order.

The paper is organized as follows. After deriving the equations of linear acoustics in Section 2, an exact solu-
tion in three spatial dimensions is presented in Section 3. The solution operator needs to allow for discontinuous
initial data. It is shown that the natural class in multiple spatial dimensions are distributional solutions. A
brief review of distributions is given in the Appendix A, followed by a detailed derivation in Appendix B. The
properties of the solution operator are discussed in Section 3.2, as it has a number of striking differences to
its one-dimensional counterpart. Section 3.3 exemplifies the formulae on a two-dimensional Riemann Problem
and in Section 4 a Godunov method is derived according to the reconstruction–evolution–average strategy.
Numerical examples are shown in Section 4.4. The ability of the method to resolve the low Mach number limit
is studied both theoretically and experimentally there as well.

2. Acoustic equations

2.1. Linearization of the Euler equations

The acoustic equations are obtained as linearizations of the Euler equations. These latter govern the motion
of an ideal compressible fluid. In 𝑑 spatial dimensions, the state of the fluid is given by specifying a density
𝜌 : R+

0 × R𝑑 → R+ and a velocity v : R+
0 × R𝑑 → R𝑑. Additionally, the pressure 𝑝 of the fluid is needed to close

the system. Its role depends on the precise model of the fluid motion.
Consider the isentropic Euler equations

𝜕𝑡𝜌+ div (𝜌v) = 0
𝜕𝑡(𝜌v) + div (𝜌v ⊗ v + 𝑝1) = 0.

Here the pressure is a function of the density and is taken as 𝑝(𝜌) = 𝐾𝜌𝛾 (𝐾 > 1, 𝛾 ≥ 1). Linearization around
the state (𝜌,v) = (𝜌, 0) yields

𝜕𝑡𝜌+ 𝜌 div v = 0 (2.1)



320 W. BARSUKOW AND C. KLINGENBERG

𝜕𝑡v + 𝑐2
grad 𝜌
𝜌

= 0 (2.2)

where one defines 𝑐 =
√︀
𝑝′(𝜌). Linearization with respect to a fluid state moving at some constant speed U can

be easily removed or added via a Galilei transform.
The same system can be obtained from the Euler equations endowed with an energy equation

𝜕𝑡𝜌+ div (𝜌v) = 0
𝜕𝑡(𝜌v) + div (𝜌v ⊗ v + 𝑝1) = 0

𝜕𝑡𝑒+ div (v(𝑒+ 𝑝)) = 0

with the total energy density 𝑒 = 𝑝
𝛾−1 + 1

2𝜌|v|
2, 𝛾 > 1 which closes the system. Linearization around (𝜌,v, 𝑝) =

(𝜌, 0, 𝑝) yields

𝜕𝑡𝜌+ 𝜌div v = 0 (2.3)

𝜕𝑡v +
grad 𝑝
𝜌

= 0 (2.4)

𝜕𝑡𝑝+ 𝜌𝑐2 div v = 0. (2.5)

Equations (2.4) and (2.5) are (up to rescaling and renaming) the same as (2.1) and (2.2). Both can be linearly
transformed to the symmetric version

𝜕𝑡v + 𝑐 grad 𝑝 = 0 (2.6)
𝜕𝑡𝑝+ 𝑐div v = 0 (2.7)

𝑝 will be called pressure and v the velocity – just to have names. Due to the different linearizations and the
symmetrization they are not exactly the physical pressure or velocity any more, but still closely related. These
equations describe the time evolution of small perturbations to a constant state of the fluid.

It is to be noted that system (2.6) and (2.7) does not in general reduce to the usual wave equation, and thus
does not admit the usual Kirchhoff solution [13]. The equation for the scalar 𝑝 is indeed the usual scalar wave
equation

𝜕2
𝑡 𝑝− 𝑐2∆𝑝 = 0 (2.8)

but v fulfills

𝜕2
𝑡 v − 𝑐2grad div v = 0. (2.9)

The identity ∇× (∇× v) = ∇(∇ · 𝑣)−∆v links this operator to the vector Laplacian in 3-d. By (2.6)

𝜕𝑡(∇× v) = 0 (2.10)

but∇×v needs not be zero initially. Equation (2.9) cannot be split into scalar wave equations for the components.
This is why the solution to linear acoustics is more complicated than that of a scalar wave equation. Equation
(2.9) so far has not been given much attention in the literature. However, its behaviour differs from that of
the scalar wave equation, which manifests itself, for example, in the occurrence of a vorticity singularity in the
solution of a multi-dimensional Riemann Problem (as observed in [2]). This is a feature of the particular vector
wave equation (2.9) only. This singularity is studied in more detail in Section 3.3.
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2.2. Low Mach number limit

The system (2.6) and (2.7) has a low Mach number limit just as the Euler equations (compare [12] and for
the Euler case see e.g. [30, 31, 40]). One introduces a small parameter 𝜖 and inserts the scaling 𝜖−2 in front of
the pressure gradient in (2.4) such that the system and its symmetrized version read, respectively,

𝜕𝑡v +
1
𝜖2

grad 𝑝 = 0 (2.11)

𝜕𝑡𝑝+ 𝑐2 div v = 0 (2.12)

and

𝜕𝑡v +
𝑐

𝜖
grad 𝑝 = 0 (2.13)

𝜕𝑡𝑝+
𝑐

𝜖
div v = 0. (2.14)

In one spatial dimension the transformation which symmetrizes the Jacobian 𝐽 =
(︂

0 1
𝜖2

𝑐2 0

)︂
is

𝑆 =
(︂

1
𝑐𝜖

)︂
(2.15)

such that 𝐽 = 𝑆

(︂
0 𝑐

𝜖
𝑐
𝜖 0

)︂
𝑆−1. In multiple spatial dimensions the upper left entry in 𝑆 has to be replaced by

an appropriate block-identity-matrix. In the following preference is given to the symmetric version if nothing
else is stated. Regarding the low Mach number limit the non-symmetrized version is more natural and will be
reintroduced for studying the low Mach number properties of the scheme. The variables of the two systems are
given the same names to simplify notation.

3. Exact solution

Consider the Cauchy problem for the multi-dimensional linear hyperbolic system

𝜕𝑡𝑞 + (J · ∇)𝑞 = 0 𝑞 : R+
0 × R𝑑 → R𝑚 (3.1)

𝑞(0,x) = 𝑞0(x) (3.2)

where x ∈ R𝑑 and J is the vector of the Jacobians into the different directions1:

(J · ∇)𝑞 = 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞 + 𝐽𝑧𝜕𝑧𝑞

and 𝑚 is the size of the system. For the symmetrized system (2.6) and (2.7) in 3-d one has 𝑞 := (v, 𝑝) such that
𝑚 = 𝑑+ 1 and

J =

⎛⎜⎝
⎛⎜⎝ 0 𝑐

0
0

𝑐 0

⎞⎟⎠,
⎛⎜⎝0

0 𝑐
0

𝑐 0

⎞⎟⎠,
⎛⎜⎝ 0

0
0 𝑐
𝑐 0

⎞⎟⎠
⎞⎟⎠. (3.3)

The solution formula for (2.6) and (2.7) turns out to contain derivatives of the initial data (Sect. 3.1). This
makes it necessary to consider distributional solutions, in order to be able to differentiate a jump. A brief review
of distributions is given in Appendix A. This is needed in order to fix the notation used. For the sake of better
readability, the derivation of the distributional solution of linear acoustics is performed in Appendix B, whereas
Section 3.1 only states the resulting solution formulae.

1Only vectors with 𝑑 components are typeset in boldface letters. Indices never denote derivatives.
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3.1. Solution formulae for the multi-dimensional case

The following notation is used throughout: Choosing 𝑟 ∈ R+ and 𝑑 ∈ N+ the 𝑑-ball of radius 𝑟 is denoted by
𝐵𝑑

𝑟 := {x ∈ R𝑑 : |x| ≤ 𝑟} and let the sphere 𝑆𝑑−1
𝑟 denote its boundary.

Definition 3.1 (Evolution operator). The evolution operator 𝑇𝑡 maps suitable initial data 𝑞0(x) to the solution
of the corresponding Cauchy problem for (3.1) (that is assumed to exist and be unique) at time 𝑡:

(𝑇𝑡 𝑞0)(𝑡,x) = 𝑞(𝑡,x).

Obviously 𝑇0 = id.
The distributional solution cannot be stated prior to introducing corresponding notation. Therefore the full

theorem is stated as Theorem B.2 and proven in the Appendix B. Below only the case of smooth initial data is
shown to simplify the presentation.

Theorem 3.2 (Solution formulae). If 𝑝0 ∈ 𝐶2 ∩ 𝐿∞(R3) and v0 a 𝐶2 ∩ 𝐿∞ vector field, then

𝑝(𝑡,x) = 𝑝0(x) +
∫︁ 𝑐𝑡

0

d𝑟 𝑟
1

4𝜋

∫︁
𝑆2

1

dy (div grad 𝑝0)(x + 𝑟y)− 𝑐𝑡
1

4𝜋

∫︁
𝑆2

1

dy div v0(x + 𝑐𝑡y) (3.4)

v(𝑡,x) = v0(x) +
∫︁ 𝑐𝑡

0

d𝑟 𝑟
1

4𝜋

∫︁
𝑆2

1

dy (grad div v0)(x + 𝑟y)− 𝑐𝑡
1

4𝜋

∫︁
𝑆2

1

dy (grad 𝑝0)(x + 𝑐𝑡y) (3.5)

is solution to

𝜕𝑡𝑞 + J · ∇𝑞 = 0 𝑝(0,x) = 𝑝0(x) v(0,x) = v0(x)

with J given by (3.3), and with 𝑑 = 3.

The proof of this theorem is given in Appendix B (Thm. B.2 and Cor. B.3 therein). One observes the
appearance of a spherical average

1
4𝜋

∫︁
𝑆2

1

dy 𝑓(x + 𝑟y)

of a function 𝑓(x). The distributional analogue can be found in Definition A.11.
Spherical means appear already in the study of the scalar wave equation (see e.g. [13, 28]). As has been

discussed in Section 2.1, only the evolution of the scalar variable 𝑝 is governed by a scalar wave equation.
The equation for 𝑣 is a vector wave equation. However, usage of the Helmholtz decomposition allows to write
down a scalar wave equation for the curl-free part of v, whereas the time evolution of the curl is given by
𝜕𝑡(∇× v) = 0. The solution to the scalar wave equation can be used and the Helmholtz decomposition of the
two parts of the velocity conveniently reassembles into (3.4) and (3.5). The above formulae appear without
proof in [14] where they have been obtained by this analogy with the scalar wave equation. A similar approach
is taken in [17], again assuming that the solution is smooth enough. It is important to note however, that the
initial data onto which the solution formulae are applied in [14] are not sufficiently well-behaved for the second
derivatives to exist, such that a justification in the sense of distributions was needed. This is now accomplished
in Theorem B.2. However, the notational overhead of distribution theory might obscure interesting properties
of the solution operator that are discussed below. Although the formulae (upon reinterpretation) remain valid
for the distributional solution, the properties are presented using Theorem 3.2. The distributional solution is
presented as a self-contained Section B.

From the solution in equation (3.5) one observes that v changes in time by a gradient of a function. Applying
the curl, this gradient vanishes – indeed, the curl must be stationary due to equation (2.10).

The spatial derivatives that appear in the solution formulae (3.4) and (3.5) can be transformed into derivatives
with respect to 𝑟 only. The new formulae are more useful in certain situations (as will be seen later), and display
interesting properties of the solution that are discussed after stating the theorem.
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Corollary 3.3 (Solution formulae with radial derivatives only). Consider the setup of Theorem 3.2. For 𝐶2∩𝐿∞
initial data 𝑝0,v0 the solution (3.4) and (3.5) can be rewritten as

𝑝(𝑡,x) = 𝜕𝑟

(︃
𝑟

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0

)︃
− 1
𝑟
𝜕𝑟

(︃
𝑟2

1
4𝜋

∫︁
𝑆2

1

dy y · v0

)︃
(3.6)

v(𝑡,x) =
2
3
v0(x)− 1

𝑟
𝜕𝑟

(︃
𝑟2

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0y

)︃
+ 𝜕𝑟

(︃
𝑟

1
4𝜋

∫︁
𝑆2

1

dy (v0 · y)y

)︃

− 1
4𝜋

∫︁
𝑆2

1

dy [v0 − 3(v0 · y)y]−
∫︁ 𝑐𝑡

0

d𝑟
1
𝑟

1
4𝜋

∫︁
𝑆2

1

dy [v0 − 3(v0 · y)y] (3.7)

and equation (3.7) is equivalent to

v(𝑡,x) = v0(x)− 1
𝑟
𝜕𝑟

(︃
𝑟2

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0y

)︃
+
∫︁ 𝑐𝑡

0

d𝑟
1
𝑟
𝜕𝑟

[︃
1
𝑟
𝜕𝑟

(︃
𝑟3

1
4𝜋

∫︁
𝑆2

1

dy(v0 · y)y

)︃
− 𝑟

1
4𝜋

∫︁
𝑆2

1

dyv0

]︃
. (3.8)

Note: Everything (if not stated explicitly) is understood to be evaluated at x + 𝑟y, and wherever 𝑟 remains,
𝑟 = 𝑐𝑡 is to be taken at the very end. For example, the term 𝜕𝑟

(︁
𝑟 1

4𝜋

∫︀
𝑆2

1
dy 𝑝0

)︁
appearing in (3.6), if written

explicitly, reads

𝜕𝑟

(︃
𝑟

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0(x + 𝑟y)

)︃⃒⃒⃒⃒
⃒
𝑟=𝑐𝑡

.

This Corollary follows from its distributional counterpart Theorem B.6, proven in the Appendix B. Therein
it is in particular shown that the integral∫︁ 𝑐𝑡

0

d𝑟
1
𝑟

∫︁
𝑆2

1

dy [v0 − 3(v0 · y)y]

is finite for continuous v0. For 𝐶2 data (3.6)–(3.8) can be shown to follow directly from (3.4) and (3.5) by Gauss’
theorem for the sphere of radius 𝑟. For example, differentiating

𝜕𝑟

(︃
𝑟

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0(x + 𝑟y)

)︃
with respect to 𝑟 yields

𝜕2
𝑟

(︃
𝑟

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0(x + 𝑟y)

)︃
=

1
𝑟
𝜕𝑟

(︃
𝑟2𝜕𝑟

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0(x + 𝑟y)

)︃
by elementary manipulations. Differentiation with respect to 𝑟 can be replaced by y · ∇ inside the spherical
mean:

1
𝑟
𝜕𝑟

(︃
𝑟2𝜕𝑟

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0(x + 𝑟y)

)︃
=

1
𝑟
𝜕𝑟

(︃
𝑟2

1
4𝜋

∫︁
𝑆2

1

dy y · ∇𝑝0(x + 𝑟y)

)︃
and by Gauss theorem

=
1
𝑟
𝜕𝑟

∫︁ 𝑟

0

d𝑟′
(︃
𝑟′2

1
4𝜋

∫︁
𝑆2

1

dy∇ · ∇𝑝0(x + 𝑟′y)

)︃
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= 𝑟
1

4𝜋

∫︁
𝑆2

1

dy∇ · ∇𝑝0(x + 𝑟′y).

Integrating over 𝑟, and evaluating at 𝑟 = 𝑐𝑡 yields the sought identity

𝜕𝑟

(︃
𝑟

1
4𝜋

∫︁
𝑆2

1

dy 𝑝0(x + 𝑟y)

)︃⃒⃒⃒⃒
⃒
𝑟=𝑐𝑡

= 𝑝0(x) +
∫︁ 𝑐𝑡

0

d𝑟 𝑟
1

4𝜋

∫︁
𝑆2

1

dy∇ · ∇𝑝0(x + 𝑟y). (3.9)

In a similar but slightly more complicated way the equivalence of the other terms can be shown.

3.2. Properties of the solution

There is a number of striking differences to the one-dimensional case that appear in multiple spatial
dimensions.

For the one-dimensional problem only the values of the initial data appear in the solution formulae, not their
derivatives. This is different in multiple dimensions and can already be observed for the scalar wave equation (as
discussed e.g. in [13]). A similar statement is true for the solution to equations (2.6) and (2.7). (As explained in
Sect. 2.1 this system cannot be reduced to scalar wave equations.) Equations (3.4) and (3.5) make the impression
that second derivatives of the initial data need to be computed, but Corollary 3.3 states that the solution can
be rewritten into equation (3.7), which involves only first spatial derivatives.

In one spatial dimension, the solution at a point 𝑥 depends only on initial data at points 𝑦 for which |𝑦−𝑥| = 𝑐𝑡.
This motivates the following (compare e.g. [43], Chap. 14)

Definition 3.4 (Causal structure). Let (𝑡,x) ∈ R+
0 × R𝑑. The restriction of the initial data onto the set

T(𝑡,x) := {y : |x− y| < 𝑐𝑡}

is called timelike initial data for (𝑡,x). The restriction of the initial data onto the set

N(𝑡,x) := {y : |x− y| = 𝑐𝑡}

is called null initial data for (𝑡,x).

In one spatial dimension the solution to the acoustic equations depends on null initial data only. In multiple
spatial dimensions the situation is more complicated. The solution of just the scalar wave equation (2.8) depends
on null initial data for odd dimensions 𝑑 = 1, 3, 5, . . ., whereas in even spatial dimensions 𝑑 = 2, 4, . . . it also
depends on timelike initial data (see e.g. [13, 28]). For the acoustic system (2.6) and (2.7), which involves a
scalar as well as a vector wave equation (2.9), the solution depends on timelike initial data both in odd and even
number of spatial dimensions.

3.3. Example of a singularity in the two-dimensional Riemann problem

In this section, the exact solution is applied to a two-dimensional Riemann problem. As the solution formulae
are applied to discontinuous initial data, here Theorem 3.2 and Corollary 3.3 are not sufficient, and the distribu-
tional versions B.2, B.6 need to be used. Therefore in this section, notation and results from Appendices A and B
are used. The reader might thus want to consult them first. The result of the computation is equation (3.11).

It shall be shown in the following how a multi-dimensional Riemann Problem can exhibit a logarithmic
singularity in its evolution. This is due to the fact that the acoustic system does not reduce to scalar wave
equations, but also contains the vector wave equation (2.9).

For computational convenience the Riemann Problem is considered in the 𝑥–𝑧-plane. The initial velocity shall
be v0 = (0, 0, 1)T in the first quadrant and vanish everywhere else (see Fig. 1). Also everywhere 𝑝0 = 0.

Denote the independent variable x =: (𝑥, 𝑦, 𝑧) and the components of v =: (𝑣𝑥, 𝑣𝑦, 𝑣𝑧), v0 =: (𝑣0𝑥, 𝑣0𝑦, 𝑣0𝑧).
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Figure 1. Setup of the 2-dimensional Riemann Problem. The only non-vanishing initial datum
is the 𝑧-velocity in the first quadrant, indicated by the arrow. As the problem is linear its
magnitude is of no importance and is chosen to be 1.

The distribution 𝜎𝑖𝑗 defined in Theorem B.4 acts onto test functions as

⟨𝜎𝑖𝑗(𝑐𝑡)|𝜓⟩ :=
∫︁ 𝑐𝑡

0

d𝑟
1
𝑟
𝜕𝑟

[︃
1
𝑟
𝜕𝑟

(︃
𝑟

∫︁
𝑆2

𝑟

dy
𝑦𝑖𝑦𝑗

|y|2
𝜓(y)

)︃
− 1
𝑟

∫︁
𝑆2

𝑟

dy𝜓(y)

]︃
.

Its components are denoted by 𝜎𝑥𝑥, 𝜎𝑥𝑦, . . . , 𝜎𝑧𝑧.
Define the components of y =: (𝑦𝑥, 𝑦𝑦, 𝑦𝑧). The Riemann initial data are conveniently written as 𝑣0𝑧(x) =

Θ(𝑥)Θ(𝑧) with the Heaviside function

Θ(𝑥) =

{︃
0 𝑥 < 0
1 𝑥 ≥ 0.

(3.10)

Inserting this and 𝑣0𝑥 = 𝑣0𝑦 = 0 into (B.17) gives

⟨𝑣𝑥(𝑡, ·)|𝜓⟩ =
1

4𝜋

⟨
𝜎𝑧𝑥(𝑐𝑡) * 𝑣0𝑧 |𝜓

⟩
=

1
4𝜋

∫︁ 𝑐𝑡

0

d𝑟
1
𝑟
𝜕𝑟

[︃
1
𝑟
𝜕𝑟

(︃
𝑟

∫︁
𝑆2

𝑟

dy
𝑦𝑥𝑦𝑧

|y|2

∫︁
dx Θ(𝑥)Θ(𝑧)𝜓(x + y)

)︃]︃
.

Compute first ∫︁
𝑆2

𝑟

dy
𝑦𝑥𝑦𝑧

|y|2

∫︁
dx Θ(𝑥)Θ(𝑧)𝜓(x + y) =

∫︁
dx
∫︁

𝑆2
𝑟

dy
𝑦𝑥𝑦𝑧

𝑟2
Θ(𝑥− 𝑦𝑥)Θ(𝑧 − 𝑦𝑧)𝜓(x).

This defines a regular distribution associated to∫︁
dy
𝑦𝑥𝑦𝑧

𝑟2
Θ(𝑥− 𝑦𝑥)Θ(𝑧 − 𝑦𝑧)
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Evaluating the integral for the special case of 𝑥 = 0 one obtains

=
∫︁ min(𝑟,𝑧)

−𝑟

d𝑦𝑧

∫︁ 0

−
√

𝑟2−𝑦2
𝑧

d𝑦𝑥
2𝑦𝑥𝑦𝑧

𝑟2
√︀

1− 𝑦2
𝑥 − 𝑦2

𝑧

=
2(𝑟2 − 𝑧2)

3
2

3𝑟
Θ(𝑟 − |𝑧|).

Here the first fundamental form of the unit sphere
(︀
1− 𝑦2

𝑥 − 𝑦2
𝑧

)︀− 1
2 was used to express the surface integral.

The velocity becomes

𝑣𝑥(𝑡,x) =
1

4𝜋

∫︁ 𝑐𝑡

𝑧

d𝑟
1
𝑟
𝜕𝑟

[︂
1
𝑟
𝜕𝑟

(︂
𝑟

2(𝑟2 − 𝑧2)3/2

3𝑟

)︂]︂
and using that for any function 𝑓

1
𝑟
𝜕𝑟𝑓(𝑟2) = 2𝑓 ′(𝑟2)

one obtains

𝑣𝑥(𝑡,x) =
1

2𝜋

∫︁ 𝑐𝑡

𝑧

d𝑟(𝑟2 − 𝑧2)−1/2 =
1

2𝜋
L
(︁ 𝑧
𝑐𝑡

)︁
(3.11)

having defined

L (𝑠) := ln
1 +

√
1− 𝑠2

𝑠
= − ln

𝑠

2
− 𝑠2

4
+𝒪(𝑠4).

One can verify that e−L (𝑠) = tan
arcsin 𝑠

2
.

Note that due to the appearance of the factor Θ(𝑟−|𝑧|) above, 𝑣𝑥(𝑡,x) vanishes outside |x| ≤ 𝑐𝑡 by causality.
Therefore the 𝑥-component of the velocity has a logarithmic singularity at the origin, which is the corner of the

initial discontinuity of the 𝑧-component. Such a behaviour of the solution does not have analogues in one spatial
dimension because two different components of the velocity v are involved. The appearance of singularities
has already been mentioned in [2] in the context of self-similar solutions to Riemann Problems. Here it has
been obtained by application of the general formula (B.15)–(B.17) which is not restricted to self-similar time
evolution. Moreover a careful derivation using distributional solutions, adequate for the low regularity of the
initial data, has been presented.

The solution obtained so far was restricted to 𝑥 = 0 to simplify the presentation. This was also sufficient in
order to study the appearance of a singularity. For Figures 2 and 3 the integrals in (B.17) have been computed
in the 𝑥–𝑧-plane numerically using standard quadratures. They give an impression of the entire solution of the
two-dimensional Riemann Problem. It is not very difficult to obtain analytic expressions in all the plane by
slightly adapting the above calculations.

A vector plot of the flow is shown in Figure 3.

4. Godunov finite volume scheme

The exact evolution operator for linear acoustics (2.7), (2.6) already appears in [14, 47], albeit without the
justification as distributional solution. It has been taken as inspiration for a new kind of numerical schemes in
[14]: the active flux method contains additional, pointwise degrees of freedom which are evolved in time exactly.
A finite volume scheme of the usual kind was derived in [17], but has taken only an approximation of this exact
solution into account. Among others, Lukacova-Medvidova et al. [37] considered the bicharacteristics relation
[9] in order to derive schemes which incorporate multi-dimensional information. However, the bicharacteristics
involve mantle integrals along the characteristic cone and do not allow to write down the solution as a function
of initial data directly. Thus again, these schemes only use an approximation of the exact relation.
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Figure 2. Solution of Riemann problem at time 𝑐𝑡 = 0.25. Left: pressure. Center: 𝑥-velocity.
Right: 𝑦-velocity. The smoothed out discontinuities are due to finite size sampling of the solu-
tion. In green the location of the initial discontinuity.

Figure 3. Solution of Riemann problem at time 𝑐𝑡 = 0.2. The direction of the velocity v(𝑡,x)
is indicated by the arrows, colour coded is the absolute value |v|.

The conceptually simplest finite volume is a Godunov scheme with the Riemann Problem as a building block,
[1,2,35] studied the solutions to multi-dimensional Riemann Problems for linear acoustics using a self-similarity
ansatz. However, no numerical scheme has been derived there.

This paper presents a full derivation of such a scheme and discusses numerical results obtained with it. This
is similar in spirit to an idea by Gelfand mentioned in [22,24] (a translated version is [23]).
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4.1. Procedure

In this Section the aim is to derive a two-dimensional finite volume scheme, which updates the numerical
solution 𝑞𝑛

𝑖𝑗 in a Cartesian cell 𝒞𝑖𝑗 =
[︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

]︁
×
[︁
𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2

]︁
at a time 𝑡𝑛 to a new solution 𝑞𝑛+1

𝑖𝑗 at time

𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡 using 𝑞𝑛
𝑖𝑗 and information from the neighbours of 𝒞𝑖𝑗 . The grid is taken equidistant.

The knowledge of the exact solution makes it possible to derive a Godunov scheme via the procedure of
reconstruction–evolution–averaging [33, 52]. In the following it is shown that for linear systems this can be
achieved using just one evaluation of the solution formula at a single point in space by suitably modifying the
initial data.

Consider the general linear 𝑛× 𝑛 hyperbolic system (3.1) in 𝑑 spatial dimensions

𝜕𝑡𝑞 + (J · ∇)𝑞 = 0

with initial data

𝑞(0,x) = 𝑞0(x).

Recall the Definition 3.1 of the time evolution operator 𝑇𝑡: (𝑇𝑡 𝑞0)(𝑡,x) satisfies (3.1) with (at 𝑡 = 0) initial
data 𝑞0(x).

Definition 4.1 (Sliding average). Define the sliding average operator 𝐴 in two spatial dimensions by its action
onto a function 𝑞 : R𝑑 → R𝑛 as

(𝐴𝑞)(x) :=
1

∆𝑥∆𝑦

∫︁
[−Δ𝑥

2 , Δ𝑥
2 ]×[−Δ𝑦

2 , Δ𝑦
2 ]

ds 𝑞(x + s). (4.1)

The objective is to construct a Godunov scheme by introducing a reconstruction 𝑞𝑛
recon(x) obtained from

the discrete values {𝑞𝑛
𝑖𝑗} in the cells and computing its exact time evolution. The reconstruction needs to be

conservative, i.e. (𝐴𝑞𝑛
recon)(x𝑖𝑗) = 𝑞𝑛

𝑖𝑗 . The easiest choice is a piecewise constant reconstruction

𝑞𝑛
recon(x) := 𝑞𝑛

𝑖𝑗 if x ∈ 𝒞𝑖𝑗 .

It is shown in Figure 4 (left) and obviously is locally integrable.
The Godunov procedure reconstruction–evolution–averaging can be written as

𝑞𝑛+1
𝑖𝑗 = (𝐴𝑇Δ𝑡 𝑞

𝑛
recon)(x𝑖𝑗).

Lemma 4.2. Provided all expressions exist, the two operators commute:

𝐴𝑇Δ𝑡 𝑞
𝑛
recon

⃒⃒⃒
x𝑖𝑗

= 𝑇Δ𝑡𝐴𝑞
𝑛
recon

⃒⃒⃒
x𝑖𝑗

.

Proof. By linearity of 𝑇Δ𝑡

(𝐴𝑇Δ𝑡 𝑞
𝑛
recon)(x) =

1
∆𝑥∆𝑦

∫︁
[−Δ𝑥

2 , Δ𝑥
2 ]×[−Δ𝑦

2 , Δ𝑦
2 ]

ds (𝑇Δ𝑡 𝑞
𝑛
recon)(x + s)

=
1

∆𝑥∆𝑦
𝑇Δ𝑡

∫︁
[−Δ𝑥

2 , Δ𝑥
2 ]×[−Δ𝑦

2 , Δ𝑦
2 ]

ds 𝑞𝑛
recon(x + s)

= 𝑇Δ𝑡 (𝐴𝑞𝑛
recon)(x).

�



EXACT SOLUTION AND MULTI-D GODUNOV SCHEME FOR ACOUSTICS 329

Figure 4. Left: piecewise constant reconstruction. Right: application of the sliding average to
the same data amounts to a bilinear interpolation of the values 𝑞𝑖𝑗 interpreted as point values
at x𝑖𝑗 . The two reconstructions are equivalent for linear problems, i.e. they lead to the same
Godunov scheme.

In short, for linear systems the last two steps of reconstruction–evolution–averaging can be turned around to
be reconstruction–averaging–evolution which tremendously simplifies the derivation. It should be noted that in
practice, evaluating the solution formulae can be technically demanding. Therefore the straightforward deriva-
tion that first obtains a solution in the entire cell requires a lot of effort. Employing the structure of the
conservation law allows to rewrite the volume integral into a time integral over the boundary. Now the exact
solution is only needed along the boundary of the cell, and one of the components of x is zero. However, one still
needs to evaluate the solution formulae at a continuous set of x values. The strategy presented above allows to
choose a coordinate system in which the solution formulae need to be computed only once at x = 0 by taking
the sliding-averaged initial data 𝐴𝑞𝑛

recon.
The sliding average of a piecewise constant reconstruction on a 2-d grid is a bilinear interpolation of the

values 𝑞𝑖𝑗 , which are interpreted pointwise at locations x𝑖𝑗 (see Fig. 4, right). This staggered reconstruction
is continuous. It should not, however, be confused with bilinear reconstructions aimed at deriving schemes of
second order: the staggered bilinear reconstruction shown in Figure 4 contains exactly the same amount of
information as the piecewise constant reconstruction. The reason is that between the two reconstructions the
interpretation of the discrete degree of freedom changes as well. For the piecewise constant reconstruction the
discrete degree of freedom is a point value. Although derived from a different viewpoint, the scheme remains
conservative, of course.

4.2. Notation

In order to cope with the lengthy expressions for the numerical scheme, the following notation is used:

[𝑞]𝑖+ 1
2

:= 𝑞𝑖+1 − 𝑞𝑖 {𝑞}𝑖+ 1
2

:= 𝑞𝑖+1 + 𝑞𝑖

[𝑞]𝑖±1 := 𝑞𝑖+1 − 𝑞𝑖−1

[[𝑞]]𝑖± 1
2

:= [𝑞]𝑖+ 1
2
− [𝑞]𝑖− 1

2
{{𝑞}}𝑖± 1

2
:= {𝑞}𝑖+ 1

2
+ {𝑞}𝑖− 1

2

= 𝑞𝑖+1 − 2𝑞𝑖 + 𝑞𝑖−1 = 𝑞𝑖+1 + 2𝑞𝑖 + 𝑞𝑖−1.

The only nontrivial identity is

{[𝑞]}𝑖± 1
2

= [𝑞]𝑖+ 1
2

+ [𝑞]𝑖− 1
2

= [𝑞]𝑖±1.
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For multiple dimensions the notation is combined, e.g.

[[𝑞𝑖]]𝑗± 1
2

= 𝑞𝑖,𝑗+1 − 2𝑞𝑖𝑗 + 𝑞𝑖,𝑗−1 [[𝑞]]𝑖± 1
2 ,𝑗 = 𝑞𝑖+1,𝑗 − 2𝑞𝑖𝑗 + 𝑞𝑖−1,𝑗{︁

[𝑞]𝑖+ 1
2

}︁
𝑗+ 1

2

= 𝑞𝑖+1,𝑗+1 − 𝑞𝑖,𝑗+1 + 𝑞𝑖+1,𝑗 − 𝑞𝑖𝑗 [[𝑞]𝑖±1]𝑗±1 = 𝑞𝑖+1,𝑗+1 − 𝑞𝑖−1,𝑗+1 − 𝑞𝑖+1,𝑗−1 + 𝑞𝑖−1,𝑗−1.

4.3. Finite volume scheme

Performing the evaluation of the exact solution formulae as outlined in Section 4.1 is straightforward: In
every one of the four quadrants all the derivatives of the initial data exist. At the locations where the quadrants
meet, the initial data are continuous with, in general, discontinuous first derivatives. However, the derivatives
are continuous in 𝑟, as the kinks are all oriented towards the location x𝑖𝑗 (see Fig. 4, right). Thus the radial
derivatives never lead to the appearance of actual distributions and the solution is a function. The reason for
the different behaviour as compared to the Riemann Problem in Section 3.3 is that here the evolution operator
is applied onto sliding-averaged discontinuities which are continuous. This goes back to the averaging-step of
the Godunov procedure.

Consider the center of the cell (𝑖, 𝑗) to be the origin of the coordinate system. The bilinear reconstruction
𝐴𝑞𝑛

recon on [0,∆𝑥]× [0,∆𝑦] interpolates the values 𝑞𝑖𝑗 , 𝑞𝑖+1,𝑗 , 𝑞𝑖,𝑗+1 and 𝑞𝑖+1,𝑗+1 at the four corners:

(𝐴𝑞𝑛
recon)(x) = 𝑞𝑛

𝑖𝑗 +
[𝑞𝑛]𝑖+ 1

2 ,𝑗

∆𝑥
𝑥+

[𝑞𝑛
𝑖 ]𝑗+ 1

2

∆𝑦
𝑦 +

[[𝑞𝑛]𝑖+ 1
2
]𝑗+ 1

2

∆𝑥∆𝑦
𝑥𝑦 x ∈ [0,∆𝑥]× [0,∆𝑦].

Analogous formulae are easily obtained for the other three quadrants. This allows to compute spherical averages
at x = 0 by summing over averages in the four quadrants:

1
4𝜋

∫︁
𝑆1

dy(𝐴𝑞𝑛
recon)(𝑟y) = 𝑞𝑛

𝑖𝑗 +

(︃
[[𝑞𝑛

𝑖 ]]𝑗± 1
2

4∆𝑦
+

[[𝑞𝑛]]𝑖± 1
2 ,𝑗

4∆𝑥

)︃
𝑟 +

[[[[𝑞𝑛]]𝑖± 1
2
]]𝑗± 1

2

6𝜋∆𝑥∆𝑦
𝑟2.

For linear acoustics, 𝑞 = (v, 𝑝). Analogously the other spherical averages are obtained, for instance

1
4𝜋

∫︁
𝑆1

dy y · (𝐴v𝑛
recon)(𝑟y) =

(︃
[𝑢𝑛]𝑖±1,𝑗

6∆𝑥
+

[𝑣𝑛
𝑖 ]𝑗±1

6∆𝑦

)︃
𝑟 +

[[[𝑣𝑛]]𝑖± 1
2
]𝑗±1 +

[︀[︀
[𝑢𝑛]𝑖±1

]︀]︀
𝑗± 1

2

32∆𝑥∆𝑦
𝑟2.

Using equation (3.6) gives

𝑝(𝑡, 0) = 𝑝𝑛
𝑖𝑗 +

(︃
[[𝑝𝑛

𝑖 ]]𝑗± 1
2

2∆𝑦
+

[[𝑝𝑛]]𝑖± 1
2 ,𝑗

2∆𝑥

)︃
𝑐𝑡+

[[[[𝑝𝑛]]𝑖± 1
2
]]𝑗± 1

2

2𝜋∆𝑥∆𝑦
(𝑐𝑡)2

−

(︃
[𝑢𝑛]𝑖±1,𝑗

2∆𝑥
+

[𝑣𝑛
𝑖 ]𝑗±1

2∆𝑦

)︃
𝑐𝑡−

[[[𝑣𝑛]]𝑖± 1
2
]𝑗±1 +

[︀[︀
[𝑢𝑛]𝑖±1

]︀]︀
𝑗± 1

2

8∆𝑥∆𝑦
(𝑐𝑡)2.

In order to obtain the time evolution of the velocity further spherical means are computed in complete
analogy. After carefully collecting all the different terms, and taking care of the correct 𝜖-scalings one obtains
the following numerical scheme

𝑢𝑛+1 = 𝑢𝑛
𝑖𝑗 −

𝑐∆𝑡
2𝜖∆𝑥

(︁
[𝑝𝑛]𝑖±1,𝑗 − [[𝑢𝑛]]𝑖± 1

2 ,𝑗

)︁
− 1

2
(𝑐∆𝑡)2

𝜖2∆𝑥∆𝑦

(︂
− 1

2𝜋
[[[[𝑢𝑛]]𝑖± 1

2
]]𝑗± 1

2
− 1

4
[︀
[𝑣𝑛]𝑖±1

]︀
𝑗±1

+
1
4
[︀[︀

[𝑝𝑛]𝑖±1

]︀]︀
𝑗± 1

2

)︂
(4.2)
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𝑣𝑛+1 = 𝑣𝑛
𝑖𝑗 −

𝑐∆𝑡
2𝜖∆𝑦

(︁
[𝑝𝑛]𝑖,𝑗±1 − [[𝑣𝑛]]𝑖,𝑗± 1

2

)︁
− 1

2
(𝑐∆𝑡)2

𝜖2∆𝑥∆𝑦

(︂
− 1

2𝜋
[[[[𝑣𝑛]]𝑖± 1

2
]]𝑗± 1

2
− 1

4
[[𝑢𝑛]𝑖±1]𝑗±1 +

1
4

[[[𝑝𝑛]]𝑖± 1
2
𝑡]𝑗±1

)︂
(4.3)

𝑝𝑛+1 = 𝑝𝑛
𝑖𝑗 −

𝑐∆𝑡
2𝜖∆𝑥

(︁
[𝑢𝑛]𝑖±1,𝑗 − [[𝑝𝑛]]𝑖± 1

2 ,𝑗

)︁
− 𝑐∆𝑡

2𝜖∆𝑦

(︁
[𝑣𝑛]𝑖,𝑗±1 − [[𝑝𝑛]]𝑖,𝑗± 1

2

)︁
− 1

2
(𝑐∆𝑡)2

𝜖2∆𝑥∆𝑦

(︂
1
4
[︀[︀

[𝑢𝑛]𝑖±1

]︀]︀
𝑗± 1

2
+

1
4

[︁
[[𝑣𝑛]]𝑖± 1

2

]︁
𝑗±1

− 2 · 1
2𝜋

[[[[𝑝𝑛]]𝑖± 1
2
]]𝑗± 1

2

)︂
. (4.4)

This scheme is conservative because it is a Godunov scheme, and can be written as

𝑞𝑛+1 = 𝑞𝑛 − ∆𝑡
∆𝑥

(︁
𝑓

(𝑥)

𝑖+ 1
2 ,𝑗
− 𝑓

(𝑥)

𝑖− 1
2 ,𝑗

)︁
− ∆𝑡

∆𝑦

(︁
𝑓

(𝑦)

𝑖,𝑗+ 1
2
− 𝑓

(𝑦)

𝑖,𝑗− 1
2

)︁
.

One can identify the 𝑥-flux through the boundary located at 𝑥𝑖+ 1
2
:

𝑓
(𝑥)

𝑖+ 1
2 ,𝑗

=
1
2
𝑐

𝜖

⎛⎝{𝑝}𝑖+ 1
2 ,𝑗 − [𝑢]𝑖+ 1

2 ,𝑗

0
{𝑢}𝑖+ 1

2 ,𝑗 − [𝑝]𝑖+ 1
2 ,𝑗

⎞⎠
+

1
2
𝑐∆𝑡
𝜖∆𝑦

· 𝑐
𝜖

⎛⎝− 1
2𝜋 [[[𝑢]𝑖+ 1

2
]]𝑗± 1

2
− 1

4 [{𝑣}𝑖+ 1
2
]𝑗±1 + 1

4 [[{𝑝}𝑖+ 1
2
]]𝑗± 1

2

0
1
4 [[𝑣]𝑖+ 1

2
]𝑗±1 − 1

2𝜋 [[[𝑝]𝑖+ 1
2
]]𝑗± 1

2

⎞⎠. (4.5)

The corresponding perpendicular flux is its symmetric analogue. The first bracket is the flux obtained in a
dimensionally split situation, i.e. when one-dimensional information is collected from different directions. As
the scheme is a Godunov scheme for piecewise constant reconstruction, it is first order in space and time.

The appearance of prefactors which contain 𝜋 in schemes derived using the exact multi-dimensional evolution
operators has already been noticed in [37], but none of the schemes mentioned therein matches the one presented
here.

For better comparison to other schemes, the scheme (4.2)–(4.4) can be rewritten in the variables prior to
symmetrization, i.e. such that it is a numerical approximation to (2.11) and (2.12). This is achieved by applying
the transformation (2.15) or, which is equivalent, by replacing 𝑝 ↦→ 𝑝

𝑐𝜖 everywhere.
Dimensionally split schemes in two spatial dimensions have a stability condition ([24], Eq. (8.15), p. 63)

𝑐∆𝑡 <
1

1
Δ𝑥 + 1

Δ𝑦

which for square grids gives a maximum cfl number of 0.5. As the present scheme is an exact multidimensional
Godunov scheme it is stable up to the physical cfl number.

4.4. Numerical examples

The scheme (4.2)–(4.4) is applied to several test cases. First, multi-dimensional Riemann Problems are con-
sidered, among them the one considered analytically in Section 3.3. The last test is devoted to the low Mach
number abilities of the scheme.

4.4.1. Riemann Problems

Two Riemann Problems are considered. The first setup is that of Section 3.3 (Fig. 1); it is solved on a square
grid of 101× 101 cells on a domain that is large enough such that the disturbance produced by the corner has
not reached the boundaries for 𝑡 = 0.25. Here, 𝑐 = 𝜖 = 1. The results are shown in Figure 5. In Figure 6 the
𝑦-component of the velocity obtained with the numerical scheme is compared to the analytic solution (3.11)
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Figure 5. Results of a numerical computation of the Riemann problem of Section 3.3 at time
𝑐𝑡 = 0.25 using scheme (4.2)–(4.4). Left: pressure. Center: 𝑥-velocity. Right: 𝑦-velocity. Compare
the images to Figure 2. The cfl number has been chosen very close to 1; for small values the
discontinuities are smoothed out more.

Figure 6. The 𝑦-component of the velocity obtained by the numerical scheme (4.2)–(4.4)
for cfl numbers 0.9 and 0.45 is shown together with the result obtained by a dimensionally
split scheme (cfl = 0.45) and the analytic solution (3.11). The values are plotted against
the radius

√︀
𝑥2 + 𝑦2. One observes that the multi-dimensional scheme slightly outperforms the

dimensionally split one, because it can be run with high cfl numbers.

found in Section 3.3. The analytic solution is radially symmetric, this is why the numerical solution is plotted
against the radius. The numerical error leads to a slight scatter of the points depending on the angle. For low cfl
numbers, the multi-dimensional scheme here does not seem to show any advantage. The stability domain of the
dimensionally split scheme, i.e. of the scheme which combines solutions of one-dimensional problems in different
directions, however, only extends up to cfl = 0.5. For high cfl numbers, the multi-dimensional scheme is
able to capture the features of the solution slightly better. Here the advantage of the multi-dimensional scheme
becomes obvious – the increased stability region allows to run computations with a cfl condition close to the
physical limit.
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Figure 7. Results of a numerical computation of the Riemann problem from [2]. The numerical
solution shown at time 𝑐𝑡 = 0.5. Top row: multi-dimensional scheme (4.2)–(4.4) with cfl =
0.98, Bottom row: dimensionally split scheme with cfl = 0.45. Left: pressure. Center: 𝑥-
velocity. Right: 𝑦-velocity.

A set of multi-dimensional Riemann Problems has been presented in [2]. The Riemann Problem no. 3, p. 101
is given by

𝑝0(x) = 0 𝑢0(x) = 𝑣0(x) = sign (𝑥𝑦).

This Riemann Problem is chosen as another test case. Figure 6.6 in [2] shows the analytic solution. Here, this
setup is computed with the multi-dimensional Godunov scheme and the dimensionally split upwind scheme on a
51× 51 grid. For the former, again, a high cfl number can be chosen. Figure 7 shows the results. One observes
that the multi-dimensional scheme is able to resolve the features of the multi-dimensional interaction region
much more sharply than the dimensionally split upwind scheme.

Additionally, the dimensionally split scheme produces incorrect jumps in the central region, shown in Figure 8.
The multi-dimensional scheme yields a solution of much better quality with no detectable incorrect jumps. In
this case the multi-dimensional Godunov scheme is clearly superior because it takes into account truly multi-
dimensional interactions directly, and not via one-dimensional steps.

4.4.2. Low Mach number vortex

The second test shows the properties of the scheme in the limit 𝜖 → 0. The setup is that of a stationary,
divergencefree velocity field and constant pressure:

𝑝0(x) = 1

v0(x) = e𝜙

⎧⎪⎨⎪⎩
𝑟
𝑟0

𝑟 < 𝑟0
2− 𝑟

𝑟0
𝑟0 ≤ 𝑟 < 2𝑟0

0 else.

The velocity thus has a compact support, which is entirely contained in the computational domain, discretized
by 51× 51 square cells. Here 𝑐 = 1 and 𝑟0 = 0.2. Zero-gradient boundaries are enforced. Results of a simulation
are shown in Figure 9.
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Figure 8. Left: pressure at 𝑐𝑡 = 0.5 for the Riemann problem from [2] shown along the
diagonal 𝑥 = 𝑦 of the grid. The result obtained with the multi-dimensional scheme (4.2)–(4.4)
with cfl = 0.98 is compared to that of the dimensionally split scheme with cfl = 0.45. For
the latter one observes an unphysical jump and excessive smoothing. Center: jumps are visible
in the two dimensional plot as well. Color coded is the absolute value |𝑝| for better visibility of
the artefact. Right: same region computed with the multi-dimensional Godunov scheme.

Figure 9. Solution of the vortex initial data at time 𝑐𝑡 = 1 for 𝜖 = 10−2. The quantity shown
in colour is the magnitude |v| of the velocity. Left: exact solution = initial data. Center: multi-
dimensional Godunov scheme (4.2)–(4.4) with cfl = 0.8. Right: dimensionally split scheme
with cfl = 0.45.

The dimensionally split solver is known to display artefacts in the limit 𝜖 → 0 (see e.g. [5, 26]). For com-
parison, results obtained with the dimensionally split scheme are shown in the same Figure 9. However, as the
dimensionally split scheme is only stable up to cfl = 0.5, it is not possible to run the setup with the same cfl
number.

Knowing that the dimensionally split scheme fails to resolve the low Mach number limit, a visual comparison
of the two results indicates that the multi-dimensional Godunov scheme is equally unable to resolve it. This
can be theoretically confirmed. In [5], a strategy has been presented how low Mach compliance can be checked
theoretically for linear schemes for acoustics. Therein the concept of stationarity preservation has been intro-
duced. A scheme is called stationarity preserving if it discretizes the entire set of the analytic stationary states.
It is found that most schemes add so much diffusion, that only trivial (e.g. spatially constant) stationary states
are not diffused away. It is moreover found that the low Mach number limit for linear acoustics is equivalent
to the limit of long times. In order to study the limit 𝜖 → 0 one therefore needs to analyze the long time
behaviour of the numerical solutions. Here, the most prominent role is played by the stationary states. Only if
they are discretized correctly will the scheme be low Mach compliant. In [5] a condition has been found, which
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involves the so-called evolution matrix : The scheme is stationarity preserving if the determinant of its evolution
matrix vanishes. Given a numerical scheme, its evolution matrix can be easily constructed. For more details
the reader is referred to [5] or [4]. For the multi-dimensional Godunov scheme under consideration it can be
verified by explicit calculation that the evolution matrix fails to meet the condition of stationarity preservation.
The computation is lengthy, and is thus not reproduced here. The inability of the multi-dimensional Godunov
scheme to resolve the limit of low Mach number, however, thus can also be understood theoretically.

The multi-dimensional Godunov scheme is not low Mach compliant. However, no approximations were made
in the evolution step of the scheme. It thus becomes obvious that the low Mach number problem is not cured
by just taking into account all the multi-dimensional interactions. As the evolution step was exact, the reason
for the failure is to be sought elsewhere. The only approximation used in this scheme is the choice of a piecewise
constant reconstruction. A number of “fixes” have been suggested for the low Mach number regime of the
dimensionally split Roe scheme [6,8,11,34,42,51]. They might in principle be used here as well, but this would
imply going back to an approximate evolution operator, and they shall not be considered here.

The result of this section implies that for deriving low Mach number numerical schemes either an approach
different from the Godunov procedure needs to be found, or that no first-principles derivation is available, but
only “fixes”.

5. Conclusions and outlook

This paper presents an exact solution of the acoustic equations in three spatial dimensions. It is a paramount
example of a solution operator that is very different to that of multi-dimensional linear advection: characteristic
cones and spherical means replace simple transport along a one-dimensional characteristic. On the other hand it
also shows differences to the well-understood scalar wave equation, thus emphasizing the additional difficulties
when dealing with systems of equations. The solution obtained is a distributional one, which allows to use
discontinuous initial data.

The multi-dimensional Riemann Problem for the acoustic equations is an example for the appearance of a
singularity in the solution, which is an intrinsically multi-dimensional feature. This paper presents the exact
shape of the solution and shows that the singularity is logarithmic.

Furthermore, using the exact solution formulae, a multi-dimensional Godunov scheme is obtained. It has been
found in experiments that, as expected, its stability region extends right up to the maximum allowed physical
cfl number, which is twice what is possible with a dimensionally split scheme. The method has been shown
to perform well when applied to multi-dimensional Riemann Problems, not suffering from the artefacts found
for dimensionally split schemes. It, however, does not allow calculations in the limit of low Mach numbers in
general. It fails to resolve the limit even though the evolution step of the Godunov scheme is exact.

All the necessary results for the derivation of the numerical scheme could be obtained analytically. This shows
that the exact solution operator can be efficiently used in such circumstances. The exact evolution operator may
be an important ingredient in order to endow the numerical scheme with certain, desirable properties. Future
work will try to generalize aspects of these findings to the full Euler equations. We hope that the study of linear
acoustics in multiple spatial dimensions is a first step in this direction.

Appendix A. Distributions

In order to use discontinuous initial data for the equations of linear acoustics in multiple spatial dimensions
one needs distributional solutions. This is not necessary in one spatial dimension. In multiple spatial dimensions,
however, the solution formula involves derivatives of the initial data. If the data are discontinuous, the solution
formula thus needs to be generalized in the sense of distributions.

In this Section a brief review of definitions and results from the theory of distributions is given. This is done
in order to present the notation that will be used. Therefore many standard results are stated without proofs.
The reader interested in a thorough introduction is, for example, referred to [18,27,48,49].

In Appendix B distributional solutions of linear acoustics in three spatial dimensions are derived.
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Definition A.1 (Distribution). A distribution is a continuous linear functional on the set 𝐷
(︀
R𝑑
)︀

of compactly
supported smooth test functions 𝜓. The evaluation of the distribution 𝑓 on a test function 𝜓 is denoted by
⟨𝑓 |𝜓⟩ ∈ R (or C). The set of all distributions is denoted by 𝐷′

(︀
R𝑑
)︀
.

It is possible to show (see e.g. [48]) that a function ℎ ∈ 𝐿1
loc

(︀
R𝑑
)︀

gives rise to a distribution ℎ ∈ 𝐷′
(︀
R𝑑
)︀

in
the following way: the action

⟨︀
ℎ |𝜓

⟩︀
of ℎ onto any test function 𝜓 ∈ 𝐷

(︀
R𝑑
)︀

is defined as:

⟨︀
ℎ |𝜓

⟩︀
:=
∫︁
R𝑑

dxℎ(x)𝜓(x). (A.1)

Definition A.2 (Regular distribution). Given ℎ ∈ 𝐿1
loc

(︀
R𝑑
)︀
, the distribution ℎ , defined by its action onto a

test function 𝜓 ∈ 𝐷
(︀
R𝑑
)︀

as in (A.1), is called regular distribution.

In order to make explicit the independent variable, the notation
⟨︀
ℎ |𝜓(x)

⟩︀
will be used. Two regular distri-

butions ℎ1 and ℎ2 are equal, if ℎ1 = ℎ2 almost everywhere.

Definition A.3 (Tempered distribution). The Schwartz space 𝑆
(︀
R𝑑
)︀

of rapidly decreasing functions 𝑓 on R𝑑

is defined as

𝑆
(︀
R𝑑
)︀

:=
{︁
𝑓 ∈ 𝐶∞

(︀
R𝑑
)︀

: sup
x∈R𝑑

⃒⃒
𝑥𝑎1

1 . . . 𝑥𝑎2
𝑑 𝜕𝑏1

𝑥1
· · · 𝜕𝑏𝑑

𝑥𝑑
𝑓
⃒⃒
<∞

∀(𝑎1, . . . , 𝑎𝑑, 𝑏1, . . . , 𝑏𝑑) ∈ (N0)2𝑑
}︁
.

The set 𝑆′
(︀
R𝑑
)︀

of tempered distributions is the continuous dual of 𝑆
(︀
R𝑑
)︀
.

It is possible to show that the derivative ∇x𝑇 of a distribution 𝑇 ∈ 𝐷′
(︀
R𝑑
)︀
, defined in the following, is again

a distribution (see e.g. [48]).

Definition A.4. (i) The derivative ∇x𝑇 of a distribution 𝑇 ∈ 𝐷′
(︀
R𝑑
)︀

is defined as

⟨∇x𝑇 |𝜓(x)⟩ := −⟨𝑇 |∇x𝜓(x)⟩ ∀𝜓 ∈ 𝐷
(︀
R𝑑
)︀
.

(ii) The Fourier transform Fx applied to an integrable function 𝑓 : R𝑑 → R is defined by

𝑓(k) := Fx[𝑓 ](k) :=
1

(2𝜋)𝑑/2

∫︁
dx exp(ik · x)𝑓(x).

Generically, k denotes the dual variable to x. Note the symmetric prefactor convention chosen here. Also,
generically, the hat denotes a Fourier transform in the following.

(iii) The Fourier transform Fx[𝑇 ](k) of a distribution 𝑇 ∈ 𝑆′
(︀
R𝑑
)︀

is defined by

⟨F[𝑇 ]|𝜓⟩ := ⟨𝑇 |F[𝜓]⟩ ∀𝜓 ∈ 𝑆
(︀
R𝑑
)︀

or, making explicit the independent variables,

⟨Fx[𝑇 ](k)|𝜓(k)⟩ := ⟨𝑇 (x)|Fk[𝜓](x)⟩ ∀𝜓 ∈ 𝑆
(︀
R𝑑
)︀
.

The class 𝑆
(︀
R𝑑
)︀

allows to put the Fourier transform to maximal use:

Theorem A.5. The Fourier transform is an automorphism on 𝑆′
(︀
R𝑑
)︀
.

For a proof see e.g. [48]. The usual rules of differentiation apply:

Theorem A.6. Consider a distribution 𝑞 ∈ 𝑆′
(︀
R𝑑
)︀

and its Fourier transform 𝑞. Then
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(i)

∇xF
−1
k [𝑞(k)] = 𝐹−1

k [ik𝑞(k)]. (A.2)

(ii)

F−1
k [∇k𝑞] = −ixF−1

k [𝑞] (A.3)
Fx[∇x𝑞] = ikFx[𝑞]. (A.4)

Proof. (i) For every test function 𝜓 ∈ 𝑆
(︀
R𝑑
)︀

⟨︀
∇xF

−1
k [𝑞(k)]|𝜓(x)

⟩︀
= −

⟨︀
𝑞(k)|F−1

x [∇x𝜓(x)]
⟩︀

=
⟨︀
F−1

k [ik𝑞(k)]|𝜓
⟩︀
.

(ii) Analogously, ⟨︀
F−1

k [∇k𝑞(k)]|𝜓(x)
⟩︀

=
⟨︀
∇k𝑞(k)|F−1

x [𝜓]
⟩︀

= −
⟨︀
𝑞(k)|∇kF

−1
x [𝜓]

⟩︀
= −

⟨︀
𝑞(k)|F−1

x [ix𝜓]
⟩︀

=
⟨︀
−ixF−1

k [𝑞(k)]|𝜓(x)
⟩︀
.

The other equation is shown by repeating the argumentation for Fx[𝑞]. �

The Fourier transform of 1 is (up to factors) the Dirac distribution 𝛿0:

Definition A.7 (Dirac distribution). The Dirac distribution 𝛿x′ , or 𝛿x=x′ , is defined as ⟨𝛿x′ |𝜓⟩ := 𝜓(x′) ∀𝜓 ∈
𝐷
(︀
R𝑑
)︀
.

For distributional (generalized) solutions to partial differential equations see e.g. [28, 45,50,54].

Definition A.8 (Distributional solution). Consider a first order linear differential operator ℒ with constant
coefficients containing derivatives with respect to 𝑡 ∈ R+

0 and x ∈ R𝑑. Then 𝑞 ∈ 𝐶1(R+
0 , 𝐷

′(︀R𝑑
)︀
) is called a

distributional solution of the initial value problem ℒ𝑞 = 0 with initial data 𝑞0 ∈ 𝐷′
(︀
R𝑑
)︀

if ℒ𝑞 = 0 holds for
every 𝑡 as an identity in 𝐷′

(︀
R𝑑
)︀
; i.e. if ⟨(ℒ𝑞)(𝑡)|𝜓⟩ = 0 ∀𝜓 ∈ 𝐷

(︀
R𝑑
)︀
∀𝑡 and 𝑞(0) = 𝑞0.

This definition extends analogously to systems of PDEs.
In general in the following the solution will not be a function, but the initial data 𝑞0 will. If the initial data

are locally integrable functions, then in the context of a distributional initial value problem they are to be
interpreted as regular distributions 𝑞0 .

The convolution 𝐹 *𝐺 of two distributions 𝐹 and 𝐺 can be defined in certain cases. Here only the following
definition is needed, and the reader is referred to e.g. [48] for further details.

Definition A.9 (Convolution). The convolution 𝐹 * 𝐺 of 𝐹,𝐺 ∈ 𝐷′
(︀
R𝑑
)︀
, with at least one of them having

compact support, is defined ∀𝜓 ∈ 𝐷
(︀
R𝑑
)︀

as

⟨(𝐹 *𝐺)(x)|𝜓(x)⟩ = ⟨𝐹 (x)|⟨𝐺(y)|𝜓(x + y)⟩⟩.

If 𝐹 and 𝐺 are regular distributions, i.e. 𝐹 = 𝑓 , 𝐺 = 𝑔 , with 𝑓, 𝑔 having compact support, then⟨
𝑓 * 𝑔 |𝜓

⟩
=
∫︁

d𝑥𝑓(𝑥)
∫︁

d𝑦𝑔(𝑦)𝜓(𝑥+ 𝑦) =
∫︁

d𝜉
(︂∫︁

d𝑦𝑓(𝜉 − 𝑦)𝑔(𝑦)
)︂
𝜓(𝜉).

It can be shown that 𝛿0 acts as the identity upon convolution, and 𝛿x′ as translation by x′. For 𝐹,𝐺 ∈ 𝑆′
(︀
R𝑑
)︀

and at least one of them compactly supported, the product of Fourier transforms is the Fourier transform of
the convolution:

Fx[𝐹 ](k) · Fx[𝐺](k) =
1

(2𝜋)𝑑/2
Fx[𝐹 *𝐺](k).

As will be seen below, the spherical symmetry of the exact solution for the acoustic equations manifests itself
in the appearance of |k| in the Fourier transforms. This gives rise to some very special distributions which are
discussed next.
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Definition A.10 (Radial Dirac distribution and step function). Choose 𝑟 ∈ R+ and 𝑑 ∈ N+.

(i) The radial Dirac distribution 𝛿|x|=𝑟 is defined as

⟨︀
𝛿|x|=𝑟|𝜓(x)

⟩︀
:=
∫︁

𝑆𝑑−1
𝑟

dx𝜓(x) ∀𝜓 ∈ 𝐷
(︀
R𝑑
)︀
.

(ii) Define the characteristic function Θ|x|≤𝑟 of the ball 𝐵𝑑
𝑟

Θ|x|≤𝑟 :=

{︃
1 x ∈ 𝐵𝑑

𝑟

0 else.

Definition A.11 (Spherical average). In three spatial dimensions, the spherical average at a radius 𝑟 of a
distribution 𝑇 is given by

1
4𝜋

𝛿|x|=𝑟

𝑟2
* 𝑇.

If 𝑇 is a regular distribution 𝑇 = 𝑓 , then by Definition A.9 ∀𝜓 ∈ 𝑆(R3)

1
4𝜋

⟨
𝛿|x|=𝑟

𝑟2
* 𝑇
⃒⃒⃒
𝜓

⟩
=

1
4𝜋

1
𝑟2

∫︁
𝑆2

𝑟

dx
∫︁

dy𝑓(y)𝜓(x + y)

=

⟨
1

4𝜋

∫︁
𝑆2

1

dy𝑓(x + 𝑟y)
⃒⃒⃒
𝜓(x)

⟩
.

Here,
∫︀

𝑆2
1

dy denotes an integration over the surface of a 2-sphere of radius 1, i.e. in spherical polar coordinates
this amounts to ∫︁ 𝜋

0

d𝜗 sin𝜗
∫︁ 2𝜋

0

d𝜙.

For more details on properties of spherical averages, see [29].

Theorem A.12 (Radial Dirac distribution). The derivative of the radial step function Θ|x|≤𝑟 is closely related
to the radial Dirac distribution:

−𝛿|x|=𝑟
x
|x|

= ∇ Θ|x|≤𝑟

which can, by defining 𝜕𝑟 := x
|x| · ∇ be rewritten as

−𝛿|x|=𝑟 = 𝜕𝑟 Θ|x|≤𝑟 .

Proof. Recall the definition of a ball 𝐵𝑑+1
𝑟 = {x ∈ R𝑑+1 : |x| ≤ 𝑟} and abbreviate n := x

|x| . Use Definition A.10
and Gauss’ theorem, for any 𝜓 ∈ 𝐷

(︀
R𝑑
)︀
:

−
⟨︀
𝛿|x|=𝑟n|𝜓

⟩︀
= −

∫︁
𝑆𝑑

𝑟

dy
y
|y|

· 𝜓 = −
∫︁

𝐵𝑑+1
𝑟

dx∇ · 𝜓 = −
⟨

Θ|x|≤𝑟 |∇𝜓
⟩

=
⟨
∇ Θ|x|≤𝑟 |𝜓

⟩
.

Multiplying through with n proves the assertion. �
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Theorem A.13 (Fourier transforms).

(i) In three spatial dimensions, given 𝑟 ∈ R+, k ∈ R3,∫︁
𝑆2

𝑟

dx exp(ik · x) = 4𝜋𝑟2
sin(|k|𝑟)
|k|𝑟

·

(ii) In three spatial dimensions, the Fourier transform of the radial Dirac distribution 𝛿|x|=𝑟 is given by

Fx[𝛿|x|=𝑟](k) =
2

(2𝜋)1/2
𝑟2

sin(|k|𝑟)
|k|𝑟

·

(iii) In three spatial dimensions, the Fourier transform of Θ|x|≤𝑟
1
|x| is given by

Fx

[︂
Θ|x|≤𝑟

|x|

]︂
(k) = − 2

(2𝜋)1/2

cos(|k|𝑟)− 1
|k|2

·

Proof. (i) Integrating in spherical polar coordinates:∫︁
𝑆2

𝑟

dx exp(ik · x) = 𝑟2
∫︁ 𝜋

0

d𝜗 sin𝜗
∫︁ 2𝜋

0

d𝜙 exp(i|k|𝑟 cos𝜗) = 4𝜋𝑟2
sin(|k|𝑟)
|k|𝑟

·

(ii) Using A.13) and Definitions A.10 and A.4, for any 𝜓 ∈ 𝑆(R3)⟨︀
Fx[𝛿|x|=𝑟]|𝜓

⟩︀
=
⟨︀
𝛿|x|=𝑟|Fk[𝜓]

⟩︀
=
∫︁

𝑆2
𝑟

dx
1

(2𝜋)3/2
dk exp(−ik · x)𝜓(k)

=

⟨
1

(2𝜋)3/2

∫︁
𝑆2

𝑟

dx exp(−ik · x)
⃒⃒⃒
𝜓

⟩

=
⟨

2
(2𝜋)1/2

𝑟2
sin(|k|𝑟)
|k|𝑟

⃒⃒⃒
𝜓

⟩
.

(iii) Note that Θ|x|≤𝑟
1
|x| is an 𝐿1

loc compactly supported function in three spatial dimensions. Thus,

Fx

[︂
Θ|x|≤𝜌

|x|

]︂
(k) =

1
(2𝜋)3/2

∫︁ 𝜌

0

d𝑟
1
𝑟

∫︁
|x|=𝑟

dx exp(−ik · x)

=
2

(2𝜋)1/2|k|

∫︁ 𝜌

0

d𝑟 sin(|k|𝑟) = − 2
(2𝜋)1/2

cos(|k|𝜌)− 1
|k|2

·

�

Appendix B. Derivation of the solution formulae

The very standard procedure of finding a solution to any linear equation such as (3.1) for sufficiently regular
initial data 𝑞0(x) is to decompose them into Fourier modes

𝑞0(x) =
1

(2𝜋)𝑑/2

∫︁
dk 𝑞0(k) exp(ik · x)

where 𝑑 ∈ N is the dimensionality of the space. The coefficients 𝑞0(k) = (v̂0(k), 𝑝0(k)) of this decomposition are
the Fourier transform of 𝑞0 and k here characterizes the mode. The time evolution of any single Fourier mode
can be found via the ansatz

𝑇𝑡

(︁
exp(ik · x)

)︁
= exp

(︁
− i𝜔(k)𝑡+ ik · x

)︁
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where the function 𝜔(k) is to be determined from the equations by inserting the ansatz. For (2.6) and (2.7)
one finds 𝜔(k) ∈ {0,±𝑐|k|}. The time evolution 𝑞(𝑡,x) of the initial data 𝑞0(x) is given by summing all the
time evolutions of the individual modes. For the IVP of the acoustic system (2.6) and (2.7) with initial data
(v0(x), 𝑝0(x)) the solution is

𝑝(𝑡,x) =
1

(2𝜋)𝑑/2

∫︁
dk

⎛⎝𝑝0(k) + k·v̂0(k)
|k|

2
exp(ik · x− i𝑐|k|𝑡) +

𝑝0(k)− k·v̂0(k)
|k|

2
exp(ik · x + i𝑐|k|𝑡)

⎞⎠ (B.1)

v(𝑡,x) =
1

(2𝜋)𝑑/2

∫︁
dk

⎛⎝𝑝0(k) + k·v̂0(k)
|k|

2
k
|k|

exp(ik · x− i𝑐|k|𝑡) +
k·v̂0(k)
|k| − 𝑝0(k)

2
k
|k|

exp(ik · x + i𝑐|k|𝑡)

+
{︂
v̂0(k)− k

|k|
k · v̂0(k)
|k|

}︂
exp(ik · x)

)︂
(B.2)

where 𝑝0(k) = Fx[𝑝0](k) and v̂0(k) = Fx[v0](k).
An analogous formula is valid in the sense of distributions:

Theorem B.1. The distributional solution to the initial value problem given by (2.6) and (2.7) and initial data
(v0, 𝑝0) ∈ (𝑆′

(︀
R𝑑
)︀
)𝑚 with corresponding Fourier transforms (v̂0, 𝑝0) ∈ (𝑆′

(︀
R𝑑
)︀
)𝑚, 𝑚 = 𝑑+ 1, is

𝑝(𝑡,x) = F−1
k

⎡⎣𝑝0(k) + k·v̂0(k)
|k|

2
exp(−i𝑐|k|𝑡) +

𝑝0(k)− k·v̂0(k)
|k|

2
exp(i𝑐|k|𝑡)

⎤⎦(x) (B.3)

v(𝑡,x) = F−1
k

⎡⎣𝑝0(k) + k·v̂0(k)
|k|

2
k
|k|

exp(−i𝑐|k|𝑡) +
k·v̂0(k)
|k| − 𝑝0(k)

2
k
|k|

exp(i𝑐|k|𝑡) +
{︂
v̂0(k)− k

|k|
k · v̂0(k)
|k|

}︂⎤⎦(x).

(B.4)

Note: In the smooth case the distributional solution (B.3) and (B.4) reduces to (B.1) and (B.2).

Proof. The use of 𝑆′ makes sure that the Fourier transforms exist according to Theorem A.5. Denoting the
solution 𝑞 = (v, 𝑝) (with 𝑚 = 𝑑+ 1 components and independent variables 𝑡, x) and its Fourier transform ̂︂𝑞(𝑡)
with respect to x (with independent variable k), one has 𝑞(𝑡) = F−1

k [̂︂𝑞(𝑡)]. 𝑞 being the distributional solution to
the system 𝜕𝑡𝑞 + J · ∇𝑞 = 0 of PDEs means⟨

(𝜕𝑡 + J · ∇)F−1
k

[︁̂︂𝑞(𝑡)]︁⃒⃒⃒𝜓⟩ = 0 ∀𝜓 ∈
(︀
𝑆
(︀
R𝑑
)︀)︀𝑚

which by (A.2) is ⟨
F−1

k

[︂(︂
1

d
d𝑡

+ iJ · k
)︂̂︂𝑞(𝑡)]︂⃒⃒⃒𝜓⟩ = 0. (B.5)

The matrix J · k appears in the study of the Cauchy problem and bicharacteristics (see e.g. [9], VI, Sect. 3).
Hyperbolicity guarantees its real diagonalizability with eigenvalues 𝜔𝑛 ∈ R (𝑛 = 1, . . .𝑚). For the acoustic
system (2.6) and (2.7) J · k is symmetric and 𝜔𝑛 ∈ {0,±𝑐|k|}. Choosing orthonormal eigenvectors 𝑒𝑛 (𝑛 =
1, . . . ,𝑚) which fulfill

(J · k)𝑒𝑛 = 𝜔𝑛𝑒𝑛

the vector ̂︂𝑞(0) can be, for every k, decomposed according to the eigenbasis of J · k:

̂︂𝑞(0)(k) =
𝑚∑︁

𝑛=1

𝑒𝑛

(︁
𝑒𝑛 · ̂︂𝑞(0)(k)

)︁
.
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Equation (B.5) then is obviously solved by

̂︂𝑞(𝑡)(k) =
𝑚∑︁

𝑛=1

𝑒𝑛

(︁
𝑒𝑛 · ̂︂𝑞(0)(k)

)︁
exp(−i𝜔𝑛(k)𝑡)

and transforming back

𝑞(𝑡,x) =
𝑚∑︁

𝑛=1

F−1
k [𝑞0𝑛(k) exp(−i𝜔𝑛(k)𝑡)]

in the sense of distributions with

𝑞0𝑛(k) = 𝑒𝑛(𝑒𝑛 · Fx[𝑞0](k)).

Using this, and computing the eigenspace projectors explicitly for (2.6) and (2.7) yields (B.3) and (B.4).
Consider the 𝑚 = 𝑑 + 1 equations (B.3) and (B.4) as a mapping R+

0 →
(︀
𝑆′
(︀
R𝑑
)︀)︀𝑚, i.e. 𝑡 ↦→ 𝑞(𝑡). Then,

for 𝜓 ∈
(︀
𝑆
(︀
R𝑑
)︀)︀𝑚, 𝑡 ↦→ ⟨𝑞(𝑡)|𝜓⟩ =

⟨̂︂𝑞(𝑡)|F−1
k [𝜓]

⟩
is smooth, in particular 𝑞 ∈ 𝐶1

(︀
R+

0 ,
(︀
𝑆′
(︀
R𝑑
)︀)︀𝑚)︀. For 𝑡 = 0,

equations (B.3) and (B.4) obviously yield the initial data. �

Given the Fourier transform of any initial data therefore the solution can easily be constructed. The solution
formulae are most conveniently expressed using spherical averages as given in Definition A.11. With Theo-
rem A.13 it is possible to derive explicit solution formulae for (2.6) and (2.7).

Theorem B.2 (Solution formulae). Consider the distributions (𝑑 = 3, 𝑚 = 𝑑+ 1)

𝑞(𝑡,x) = (v(𝑡,x), 𝑝(𝑡,x)) ∈ 𝐶1
(︁
R+

0 ,
(︀
𝑆′
(︀
R𝑑
)︀)︀𝑚)︁

with

𝑝(𝑡,x) = 𝑝0(x) − 1
4𝜋

1
𝑐𝑡

(︁
div v0 *𝛿|x|=𝑐𝑡

)︁
− 1

4𝜋

(︃
div grad 𝑝0 *

Θ|x|≤𝑐𝑡

|x|

)︃
(B.6)

v(𝑡,x) = v0(x) +
1

4𝜋

(︃
grad div v0 *

Θ|x|≤𝑐𝑡

|x|

)︃
− 1

4𝜋
1
𝑐𝑡

(︁
grad 𝑝0 *𝛿|x|=𝑐𝑡

)︁
. (B.7)

They are distributional solutions to

𝜕𝑡𝑞 + J · ∇𝑞 = 0

with J given by (3.3) and 𝐿1
loc ∩ 𝐿∞ initial data v0(x), 𝑝0(x) such that

(v(0,x), 𝑝(0,x)) =
(︁
v0(x) , 𝑝0(x)

)︁
∈
(︀
𝑆′
(︀
R𝑑
)︀)︀𝑚

.

Proof. Recall the differentiation rule in presence of the Fourier transform as formulated in (A.4). Denote by 𝜕𝑖

differentiation with respect to the 𝑖-the direction and 𝑘𝑖 the corresponding component of k.
Inserting the definition of 𝑝0(k) and v̂0(k) into (B.3) and (B.4) yields

Fx[𝑝(𝑡,x)](k) = Fx
[︁
𝑝0

]︁
(k) · cos(𝑐|k|𝑡)− Fx

[︁
div v0

]︁
(k) · sin(𝑐|k|𝑡)

|k|

Fx[v(𝑡,x)](k) = Fx
[︁
v0

]︁
(k)− Fx

[︁
grad div v0

]︁
(k)

cos(𝑐|k|𝑡)− 1
|k|2

− Fx
[︁
grad 𝑝0

]︁
(k)

sin(𝑐|k|𝑡)
|k|

·
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Now using Theorem A.13 one rewrites

Fx[𝑝(𝑡,x)](k) = Fx
[︁
𝑝0

]︁
(k)− Fx

[︁
div v0

]︁
(k) · Fx

[︀
𝛿|x|=𝑐𝑡

]︀
(k)

√
2𝜋

2𝑐𝑡

− Fx
[︁
div grad 𝑝0

]︁
(k) · Fx

[︃
Θ|x|≤𝑐𝑡

|x|

]︃
(k)

√
2𝜋
2

Fx[v(𝑡,x)](k) = Fx
[︁
v0

]︁
(k) + Fx

[︁
grad div v0

]︁
(k) · Fx

[︃
Θ|x|≤𝑐𝑡

|x|

]︃
(k)

√
2𝜋
2

− Fx
[︁
grad 𝑝0

]︁
(k) · Fx

[︀
𝛿|x|=𝑐𝑡

]︀
(k)

√
2𝜋

2𝑐𝑡
·

When rewriting cos(𝑐|k|𝑡)− 1 as a Fourier transform, 1 = k·k
|k|2 has been inserted. As both

Θ|x|≤𝑐𝑡

|x|
and 𝛿|x|=𝑐𝑡

have compact support, the convolutions that involve one of them are well defined (see Def. A.9). Thus the
products above can be converted into Fourier transforms of convolutions, which proves the assertion. �

Corollary B.3. For 𝐶2 ∩ 𝐿∞ initial data 𝑝0, v0, equations (B.6) and (B.7) become

𝑝(𝑡,x) = 𝑝0(x) +
∫︁ 𝑐𝑡

0

d𝑟 𝑟
1

4𝜋

∫︁
𝑆2

1

dy (div grad 𝑝0)(x + 𝑟y)− 𝑐𝑡
1

4𝜋

∫︁
𝑆2

1

dy div v0(x + 𝑐𝑡y) (B.8)

v(𝑡,x) = v0(x) +
∫︁ 𝑐𝑡

0

d𝑟 𝑟
1

4𝜋

∫︁
𝑆2

1

dy (grad div v0)(x + 𝑟y)− 𝑐𝑡
1

4𝜋

∫︁
𝑆2

1

dy (grad 𝑝0)(x + 𝑐𝑡y). (B.9)

Proof. The formulae (B.6) and (B.7) are transformed into (B.8) and (B.9) by noting that if 𝑓 is integrable, then
for all 𝜓 ∈ 𝐷

(︀
R𝑑
)︀
1

4𝜋

(︂
𝑓 *

Θ|x|≤𝑐𝑡

|x|

)︂
=

1
4𝜋

∫︁
|y|≤𝑐𝑡

dy
1
|y|
𝑓(x− y) =

∫︁ 𝑐𝑡

0

d𝑟 𝑟
1

4𝜋

∫︁
𝑆2

1

dy𝑓(x + 𝑟y)

1
4𝜋

⟨
𝑓 *𝛿|x|=𝑐𝑡|𝜓

⟩
=

⟨
1

4𝜋

∫︁
𝑆2

𝑐𝑡

dy𝑓(x− y)
⃒⃒⃒
𝜓

⟩
=

⟨
(𝑐𝑡)2

1
4𝜋

∫︁
𝑆2

1

dy𝑓(x + 𝑐𝑡y)
⃒⃒⃒
𝜓

⟩
.

�

The components of any vector y ∈ R𝑑 are denoted by 𝑦𝑖, 𝑖 = 1, . . . , 𝑑. For example the components of the
unit normal vector n := x

|x| are denoted by 𝑛𝑖, 𝑖 = 1, . . . , 𝑑. The Kronecker symbol is

𝛿𝑖𝑗 :=

{︃
1 𝑖 = 𝑗

0 else.

In order to simplify notation the following distributions will be used:

Theorem B.4. (i) Given a test function 𝜓 ∈ 𝐷(R3) the following integral exists∫︁ 𝑐𝑡

0

d𝑟
1
𝑟3

∫︁
𝑆2

𝑟

dy
(︂

3
𝑦𝑖𝑦𝑗

|y|2
− 𝛿𝑖𝑗

)︂
𝜓(y). (B.10)

This defines a distribution Σ𝑖𝑗(𝑐𝑡) whose action ⟨Σ𝑖𝑗(𝑐𝑡)|𝜓⟩ onto a test function 𝜓 is given by (B.10).
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(ii) Given a test function 𝜓 ∈ 𝐷(R3) the following integral exists∫︁ 𝑐𝑡

0

d𝑟
1
𝑟
𝜕𝑟

[︃
1
𝑟
𝜕𝑟

(︃
𝑟

∫︁
𝑆2

𝑟

dy
𝑦𝑖𝑦𝑗

|y|2
𝜓(y)

)︃
− 1
𝑟

∫︁
𝑆2

𝑟

dy𝛿𝑖𝑗𝜓(y)

]︃
. (B.11)

This defines a distribution 𝜎𝑖𝑗(𝑐𝑡) whose action ⟨𝜎𝑖𝑗(𝑐𝑡)|𝜓⟩ onto a test function 𝜓 is given by (B.11).

Proof. One needs to prove the existence of the integrals, because including the origin into the integration domain
might potentially be problematic. Therefore, for 𝑎 ∈ R+, divide the integration over [0, 𝑐𝑡] into two integrals
over [0, 𝑎] and [𝑎, 𝑐𝑡] and consider 𝑎→ 0.

The reason why the integrals exist is subtle. First of all, without the test function one finds upon explicit
computation ∫︁

𝑆2
1

dy 𝑦𝑖𝑦𝑗 =
1
3

∫︁
𝑆2

1

dy𝛿𝑖𝑗 =
4𝜋
3
𝛿𝑖𝑗 . (B.12)

Precisely this combination 3𝑦𝑖𝑦𝑗 − 𝛿𝑖𝑗 appears in (B.10).

(i) Recall that 𝜓 ∈ 𝐶∞, and therefore by the mean value theorem there exists 𝜉(𝑟,y) such that

𝜓(𝑟y) = 𝜓(0) + 𝑟y · ∇𝜓(𝜉y).

Then for 𝑎 > 0∫︁ 𝑎

0

d𝑟
1
𝑟3

∫︁
𝑆2

𝑟

dy
(︂

3
𝑦𝑖𝑦𝑗

|y|2
− 𝛿𝑖𝑗

)︂
𝜓(y)

𝑆2
𝑟↔𝑆2

1=
∫︁ 𝑎

0

d𝑟
1
𝑟

∫︁
𝑆2

1

dy (3𝑦𝑖𝑦𝑗 − 𝛿𝑖𝑗)𝜓(𝑟y)

=
∫︁ 𝑎

0

d𝑟
1
𝑟

∫︁
𝑆2

1

dy (3𝑦𝑖𝑦𝑗 − 𝛿𝑖𝑗)(𝜓(0) + 𝑟y · ∇𝜓(𝜉y))⃒⃒⃒⃒
⃒
∫︁ 𝑎

0

d𝑟
1
𝑟3

∫︁
𝑆2

𝑟

dy
(︂

3
𝑦𝑖𝑦𝑗

|y|2
− 𝛿𝑖𝑗

)︂
𝜓(y)

⃒⃒⃒⃒
⃒ (B.12)

=

⃒⃒⃒⃒
⃒
∫︁ 𝑎

0

d𝑟
∫︁

𝑆2
1

dy (3𝑦𝑖𝑦𝑗 − 𝛿𝑖𝑗)y · ∇𝜓(𝜉y)

⃒⃒⃒⃒
⃒

≤ 𝐶𝑎‖∇𝜓‖∞

(ii) By expanding

⟨𝜎𝑖𝑗(𝑐𝑡)|𝜓⟩ :=
∫︁ 𝑐𝑡

0

d𝑟
1
𝑟
𝜕𝑟

[︃
1
𝑟
𝜕𝑟

(︃
𝑟3
∫︁

𝑆2
1

dy𝑦𝑖𝑦𝑗𝜓(𝑟y)

)︃
− 𝑟

∫︁
𝑆2

1

dy𝛿𝑖𝑗𝜓(𝑟y)

]︃

=
∫︁ 𝑐𝑡

0

d𝑟

[︃
1
𝑟

∫︁
𝑆2

1

dy (3𝑦𝑖𝑦𝑗 − 𝛿𝑖𝑗)𝜓(𝑟y) + 5𝜕𝑟

∫︁
𝑆2

1

dy (5𝑦𝑖𝑦𝑗 − 𝛿𝑖𝑗)𝜓(𝑟y) + 𝑟𝜕2
𝑟

∫︁
𝑆2

1

dy 𝑦𝑖𝑦𝑗𝜓(𝑟y)

]︃
.

This reduces to the case discussed in (i). �

In the following the convention of summing over repeated indices is adopted. Recall the definition of the
radial derivative 𝜕𝑟 := n · ∇ with n = x

|x| .

Lemma B.5. The following laws of differentiation allow to transfer derivatives when working with spherical
means:

(i)

𝜕𝑟

(︂
𝑓 * 𝛿|x|=𝑟

1
𝑟2

)︂
= 𝜕𝑖 𝑓 (𝑥) * 𝛿|x|=𝑟

1
𝑟2
𝑛𝑖. (B.13)
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(ii)

𝜕𝑖

(︁
𝑓 * 𝛿|x|=𝑟𝑛𝑖

)︁
= −∇x · ∇x 𝑓 (𝑥) * Θ|x|≤𝑟 . (B.14)

Proof. (i) Consider a test function 𝜓 ∈ 𝐷(R3):⟨
𝜕𝑟 𝑓 * 𝛿|x|=𝑟

1
𝑟2

⃒⃒⃒
𝜓

⟩
=
⟨
𝑓 (x)

⃒⃒⃒
𝜕𝑟

⟨
𝛿𝑟(y)

1
|y|2

⃒⃒⃒
𝜓(x + y)

⟩⟩
= −

⟨
𝑓 (x)

⃒⃒⃒ ∫︁
𝑆2

1

dy𝜕𝑟𝜓(x + 𝑟y)

⟩

= −

⟨
𝑓 (x)

⃒⃒⃒ ∫︁
𝑆2

1

dy y · ∇x𝜓(x + 𝑟y)

⟩

=

⟨
∇x 𝑓 (x)

⃒⃒⃒ ∫︁
𝑆2

𝑟

dy
1
|y|2

y
|y|

· 𝜓(x + y)

⟩

=
⟨

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) * 𝛿|x|=𝑟

1
𝑟2
𝑛𝑖

⃒⃒⃒
𝜓

⟩
.

(ii) Recall Theorem A.12 which states that −𝛿|x|=𝑟n = ∇ Θ|x|≤𝑟 . Thus⟨
𝜕𝑖

(︁
𝑓 *𝛿|x|=𝑟𝑛𝑖

)︁⃒⃒⃒
𝜓
⟩

= −
⟨
𝑓
⃒⃒⃒⟨︀
𝛿|x|=𝑟𝑛𝑖|𝜕𝑖𝜓

⟩︀⟩
=
⟨
𝑓
⃒⃒⃒⟨
𝜕𝑖 Θ|x|≤𝑟 |𝜕𝑖𝜓

⟩⟩
= −

⟨
𝑓
⃒⃒⃒⟨
𝜕𝑖𝜕𝑖 Θ|x|≤𝑟 |𝜓

⟩⟩
= −

⟨
∇x · ∇x 𝑓 (𝑥) * Θ|x|≤𝑟

⃒⃒⃒
𝜓
⟩
.

�

Note: Equation (B.13) is the distributional analogue to

𝜕𝑟

∫︁
𝑆2

1

dy 𝑓(x + 𝑟y) =
∫︁

𝑆2
1

dy 𝑦𝑖𝜕𝑖𝑓(x + 𝑟y)

and equation (B.14) is the distributional analogue to

𝑟2
∫︁

𝑆2
1

dy y · ∇𝑝0(x + 𝑟y) =
∫︁ 𝑟

0

d𝑟′ 𝑟′2
∫︁

𝑆2
1

dy∇ · ∇𝑝0(x + 𝑟′y).

Theorem B.6 (Solution formulae with radial derivatives only). Consider the setup of Theorem B.2 and write
the components of the initial data v0 as 𝑣0𝑖, 𝑖 = 1, 2, 3. The solution (B.6) and (B.7) can be rewritten as

𝑝(𝑡,x) = 𝜕𝑟

(︂
1

4𝜋
𝛿|x|=𝑟

𝑟
* 𝑝0

)︂
− 1
𝑟
𝜕𝑟

(︂
1

4𝜋
𝛿|x|=𝑟𝑛𝑖 * 𝑣0𝑖

)︂
(B.15)

𝑣𝑗(𝑡,x) =
2
3
𝑣0𝑗 (x)− 1

𝑟
𝜕𝑟

(︂
1

4𝜋
𝛿|x|=𝑟𝑛𝑗 * 𝑝0

)︂
+ 𝜕𝑟

(︂
1

4𝜋
𝛿|x|=𝑟

𝑟
𝑛𝑖𝑛𝑗 * 𝑣0𝑗

)︂
−
(︂

1
4𝜋

𝛿|x|=𝑟

𝑟2
(𝛿𝑖𝑗 − 3𝑛𝑖𝑛𝑗) * 𝑣0𝑖

)︂
+

1
4𝜋

Σ𝑖𝑗(𝑐𝑡) * 𝑣0𝑖 (B.16)

where all derivatives are to be evaluated at 𝑟 = 𝑐𝑡.
Equation (B.16) is equivalent to

𝑣𝑗(𝑡,x) = 𝑣0𝑗 (x)− 1
𝑟
𝜕𝑟

(︂
1

4𝜋
𝛿|x|=𝑟𝑛𝑗 * 𝑝0

)︂
+

1
4𝜋
𝜎𝑖𝑗(𝑐𝑡) * 𝑣0𝑖 . (B.17)
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Note: The convolutions above let Green’s kernel for (2.6) and (2.7) appear clearly.

Proof. In order to transfer the 𝑟-derivatives in (B.15)–(B.17) into the derivative operators in (B.6) and (B.7)
one uses the Gauss theorem for the sphere of radius 𝑟. For example, differentiating

𝜕𝑟

(︂
𝑝0 *

𝛿|x|=𝑟

𝑟

)︂
with respect to 𝑟 yields

𝜕2
𝑟

(︂
𝑝0 *

𝛿|x|=𝑟

𝑟

)︂
=

1
𝑟
𝜕𝑟

(︂
𝑟2𝜕𝑟

(︂
𝑝0 *

𝛿|x|=𝑟

𝑟2

)︂)︂
by elementary manipulations. According to Lemma B.5i, differentiation with respect to 𝑟 can be replaced by
n · ∇ inside the spherical mean:

=
1
𝑟
𝜕𝑟

(︂
𝑟2
(︂

𝜕

𝜕𝑥𝑖
𝑝0 *

𝛿|x|=𝑟𝑛𝑖

𝑟2

)︂)︂
and by Gauss theorem (Lem. B.5ii) as well as Theorem A.12

= −1
𝑟
𝜕𝑟

(︁
∇x · ∇x 𝑝0 * Θ|x|≤𝑟

)︁
=

1
𝑟

(︁
∇x · ∇x 𝑝0 *𝛿|x|=𝑟

)︁
.

Integrating over 𝑟, and evaluating at 𝑟 = 𝑐𝑡 yields the sought identity

𝜕𝑟

(︂
𝑝0 *

𝛿|x|=𝑟

𝑟

)︂⃒⃒⃒⃒
𝑟=𝑐𝑡

= 𝑝0 +∇ · ∇ 𝑝0 *
Θ|x|≤𝑐𝑡

|x|
·

In a similar way the equivalence of the other terms can be shown and is omitted here. �
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