Gibbs phenomena for L q -best approximation in finite element spaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 177-211

Recent developments in the context of minimum residual finite element methods are paving the way for designing quasi-optimal discretization methods in non-standard function spaces, such as q-type Sobolev spaces. For q → 1, these methods have demonstrated huge potential in avoiding the notorious Gibbs phenomena, i.e., the occurrence of spurious non-physical oscillations near thin layers and jump discontinuities. In this work we provide theoretical results that explain some of these numerical observations. In particular, we investigate the Gibbs phenomena for q-best approximations of discontinuities in finite element spaces with 1 ≤ q < ∞. We prove sufficient conditions on meshes in one and two dimensions such that over- and undershoots vanish in the limit q → 1. Moreover, we include examples of meshes such that Gibbs phenomena remain present even for q = 1 and demonstrate that our results can be used to design meshes so as to eliminate the Gibbs phenomenon.

DOI : 10.1051/m2an/2021086
Classification : 65N30, 41A10
Keywords: Best approximation, Gibbs phenomenon, $$q, finite elements
@article{M2AN_2022__56_1_177_0,
     author = {Houston, Paul and Roggendorf, Sarah and van der Zee, Kristoffer G.},
     title = {Gibbs phenomena for $L^q$-best approximation in finite element spaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {177--211},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2021086},
     mrnumber = {4376273},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021086/}
}
TY  - JOUR
AU  - Houston, Paul
AU  - Roggendorf, Sarah
AU  - van der Zee, Kristoffer G.
TI  - Gibbs phenomena for $L^q$-best approximation in finite element spaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 177
EP  - 211
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021086/
DO  - 10.1051/m2an/2021086
LA  - en
ID  - M2AN_2022__56_1_177_0
ER  - 
%0 Journal Article
%A Houston, Paul
%A Roggendorf, Sarah
%A van der Zee, Kristoffer G.
%T Gibbs phenomena for $L^q$-best approximation in finite element spaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 177-211
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021086/
%R 10.1051/m2an/2021086
%G en
%F M2AN_2022__56_1_177_0
Houston, Paul; Roggendorf, Sarah; van der Zee, Kristoffer G. Gibbs phenomena for $L^q$-best approximation in finite element spaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 177-211. doi: 10.1051/m2an/2021086

[1] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes and G. N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 100.

[2] R. E. Bank and H. Yserentant, On the H 1 -stability of the L 2 finite element spaces. Numer. Math. 126 (2014) 361–381. | MR | Zbl | DOI

[3] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems. In: Mathematics and its Applications. Vol. 62, Kluwer Academic Publishers Group, Dordrecht (1990). | MR | Zbl

[4] M. Crouzeix and V. Thomée, The stability in L p and W p 1 of the L 2 -projection onto finite element function spaces. Math. Comp. 48 (1987) 521–532. | MR | Zbl

[5] L. F. Demkowicz and J. Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method. In: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Vol. 157 of IMA Vol. Math. Appl. Springer, Cham (2014) 149–180. | MR | Zbl | DOI

[6] D. L. Donoho, For most large underdetermined systems of equations, the minimal 1 -norm near-solution approximates the sparsest near-solution. Comm. Pure Appl. Math. 59 (2006) 907–934. | MR | DOI

[7] D. L. Donoho, For most large underdetermined systems of linear equations the minimal 1 -norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 (2006) 797–829. | MR | Zbl | DOI

[8] J. Douglas Jr, T. Dupont and L. Wahlbin, Optimal L error estimates for Galerkin approximations to solutions of two-point boundary value problems. Math. Comp. 29 (1975) 475–483. | MR | Zbl

[9] J. W. Gibbs, Fourier’s series. Nature 59 (1899) 606. | JFM | DOI

[10] J.-L. Guermond, A finite element technique for solving first-order PDEs in L p . SIAM J. Numer. Anal. 42 (2004) 714–737. | MR | Zbl | DOI

[11] J.-L. Guermond and B. Popov, Linear advection with ill-posed boundary conditions via L 1 -minimization. Int. J. Numer. Anal. Model. 4 (2007) 39–47. | MR | Zbl

[12] J.-L. Guermond and B. Popov, L 1 -approximation of stationary Hamilton-Jacobi equations. SIAM J. Numer. Anal. 47 (2008/2009) 339–362. | MR | Zbl | DOI

[13] J.-L. Guermond and B. Popov, An optimal L 1 -minimization algorithm for stationary Hamilton-Jacobi equations. Commun. Math. Sci. 7 (2009) 211–238. | MR | Zbl | DOI

[14] J.-L. Guermond, F. Marpeau and B. Popov, A fast algorithm for solving first-order PDEs by L 1 -minimization. Commun. Math. Sci. 6 (2008) 199–216. | MR | Zbl | DOI

[15] P. Houston, S. Roggendorf and K. G. Van Der Zee, Eliminating Gibbs phenomena: a non-linear Petrov-Galerkin method for the convection-diffusion-reaction equation. Comput. Math. App. 80 (2020) 851–873. | MR

[16] B.-N. Jiang, Non-oscillatory and non-diffusive solution of convection problems by the iteratively reweighted least-squares finite element method. J. Comput. Phys. 105 (1993) 108–121. | MR | Zbl | DOI

[17] B.-N. Jiang, The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer Science & Business Media (1998). | MR | Zbl | DOI

[18] V. John and P. Knobloch, On the performance of SOLD methods for convection-diffusion problems with interior layers. Int. J. Comput. Sci. Math. 1 (2007) 245–258. | MR | Zbl | DOI

[19] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: part I – a review. Comput. Methods Appl. Mech. Eng. 196 (2007) 2197–2215. | MR | Zbl | DOI

[20] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: part II – analysis for P 1 and Q 1 finite elements. Comput. Methods Appl. Mech. Eng. 197 (2008) 1997–2014. | MR | Zbl | DOI

[21] D. Landers and L. Rogge, Natural choice of L 1 -approximants. J. Approx. Theory 33 (1981) 268–280. | MR | Zbl | DOI

[22] J. E. Lavery, Nonoscillatory solution of the steady-state inviscid Burgers’ equation by mathematical programming. J. Comput. Phys. 79 (1988) 436–448. | MR | Zbl | DOI

[23] J. E. Lavery, Solution of steady-state one-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 26 (1989) 1081–1089. | MR | Zbl | DOI

[24] J. E. Lavery, Solution of steady-state, two-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 28 (1991) 141–155. | MR | Zbl | DOI

[25] J. Li and L. Demkowicz, An L p -DPG method for the convection–diffusion problem. Comput. Math. Appl. 95 (2021) 172–185. | MR | DOI

[26] J. Li and L. Demkowicz, An L p -DPG Method with Application to 2D Convection-Diffusion Problems. Oden Institute REPORT 202106 (2021). | MR

[27] J. J. H. Miller, Fitted Numerical Methods for Singular Perturbation Problems Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions/J. J. H. Miller, E. O’Riordan and G. I. Shishkin, revised edition. World Scientific, Singapore, River Edge, NJ (2012). | MR | Zbl

[28] E. Moskona, P. Petrushev and E. B. Saff, The gibbs phenomenon for best L 1 -trigonometric polynomial approximation. Constr. Approx. 11 (1995) 391–416. | MR | Zbl | DOI

[29] I. Muga and K. G. Van Der Zee, Discretization of linear problems in banach spaces: residual minimization, nonlinear Petrov-Galerkin, and monotone mixed methods. SIAM J. Numer. Anal. 58 (2020) 3406–3426. | MR | DOI

[30] I. Muga, M. J. W. Tyler and K. G. Van Der Zee, The discrete-dual minimal-residual method (DDMRes) for weak advection-reaction problems in Banach spaces. Comput. Methods Appl. Math. 19 (2019) 557–579. | MR | DOI

[31] G. Nürnberger, Approximation by Spline Functions. Springer-Verlag, Berlin Heidelberg (1989). | MR | Zbl | DOI

[32] F. B. Richards, A Gibbs phenomenon for spline functions. J. Approx. Theory 66 (1991) 334–351. | MR | Zbl | DOI

[33] S. Roggendorf, Eliminating the Gibbs phenomenon: the non-linear Petrov–Galerkin method for the convection-diffusion-reaction equation. The University of Nottingham (2019).

[34] H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd edition. Vol. 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2008). Convection-diffusion-reaction and flow problems. | MR | Zbl

[35] E. B. Saff and S. Tashev, Gibbs phenomenon for best L p approximation by polygonal lines. East J. Approx. 5 (1999) 235–251. | MR | Zbl

[36] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces. Translated by R. Georgescu. Vol. 171 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin Heidelberg (1970). | MR | Zbl

[37] H. Wilbraham, On a certain periodic function. Cambridge Dublin Math. J. 3 (1848) 1848.

Cité par Sources :

The research by KvdZ was supported by the Engineering and Physical Sciences Research Council (EPSRC), UK under Grant EP/T005157/1.