Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 349-383

We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection–diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank–Nicolson method. Both the convection term and the associated stabilisation are treated explicitly using an extrapolated approximate solution. We prove stability of the method and the τ2 + h$$ error estimates for the L2-norm under either the standard hyperbolic CFL condition, when piecewise affine (p = 1) approximation is used, or in the case of finite element approximation of order p ≥ 1, a stronger, so-called 4/3-CFL, i.e. τ ≤ Ch4/3. The theory is illustrated with some numerical examples.

DOI : 10.1051/m2an/2021084
Classification : 65M60
Keywords: IMEX – multistep, continuous interior penalty
@article{M2AN_2022__56_1_349_0,
     author = {Burman, Erik and Guzm\'an, Johnny},
     title = {Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {349--383},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2021084},
     mrnumber = {4379609},
     zbl = {1537.65125},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021084/}
}
TY  - JOUR
AU  - Burman, Erik
AU  - Guzmán, Johnny
TI  - Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 349
EP  - 383
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021084/
DO  - 10.1051/m2an/2021084
LA  - en
ID  - M2AN_2022__56_1_349_0
ER  - 
%0 Journal Article
%A Burman, Erik
%A Guzmán, Johnny
%T Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 349-383
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021084/
%R 10.1051/m2an/2021084
%G en
%F M2AN_2022__56_1_349_0
Burman, Erik; Guzmán, Johnny. Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 349-383. doi: 10.1051/m2an/2021084

[1] G. Akrivis, Implicit-explicit multistep methods for nonlinear parabolic equations. Math. Comp. 82 (2013) 45–68. | MR | Zbl | DOI

[2] G. Akrivis, Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations. IMA J. Numer. Anal. 38 (2018) 1768–1796. | MR | Zbl | DOI

[3] G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457–477. | MR | Zbl | DOI

[4] U. M. Ascher, S.J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (1995) 797–823. | MR | Zbl | DOI

[5] U. M. Ascher, S. J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25 (1997) 151–167. Special issue on time integration (Amsterdam, 1996). | MR | Zbl | DOI

[6] G. A. Baker, V. A. Dougalis and O. A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39 (1982) 339–375. | MR | Zbl | DOI

[7] E. Burman and A. Ern, Continuous interior penalty h p -finite element methods for advection and advection-diffusion equations. Math. Comp. 76 (2007) 1119–1140. | MR | Zbl | DOI

[8] E. Burman and A. Ern, Implicit-explicit Runge-Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations. ESAIM: M2AN 46 (2012) 681–707. | MR | Zbl | Numdam | DOI

[9] E. Burman and M. A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation, Comput. Methods Appl. Mech. Eng. 198 (2009) 2508.2519. | MR | Zbl | DOI

[10] E. Burman, A. Ern and M. A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48 (2010) 2019–2042. | MR | Zbl | DOI

[11] E. Burman, A. Ern and M. A. Fernández, Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: M2AN 51 (2017) 487–507. | MR | Zbl | Numdam | DOI

[12] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52 (1989) 411–435. | MR | Zbl

[13] M. Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980) 257–276. | MR | Zbl | DOI

[14] C. Dawson, Godunov-mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315–1332. | MR | Zbl | DOI

[15] J. Douglas Jr and T. Dupont, Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7 (1970) 575–626. | MR | Zbl | DOI

[16] M. L. Ghrist, B. Fornberg and J. A. Reeger, Stability ordinates of Adams predictor-corrector methods. BIT 55 (2015) 733–750. | MR | Zbl | DOI

[17] W. Hundsdorfer, Trapezoidal and midpoint splittings for initial-boundary value problems. Math. Comp. 67 (1998) 1047–1062. | MR | Zbl | DOI

[18] W. Hundsdorfer, Partially implicit BDF2 blends for convection dominated flows. SIAM J. Numer. Anal. 38 (2001) 1763–1783. | MR | Zbl | DOI

[19] D. Levy and E. Tadmor, From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40 (1998) 40–73. | MR | Zbl | DOI

[20] A. Mazzia, L. Bergamaschi, C. N. Dawson and M. Putti, Godunov mixed methods on triangular grids for advection-dispersion equations. Comput. Geosci. 6 (2002) 123–139. | MR | Zbl | DOI

[21] R. C. Moura, A. Cassinelli, A. F. C. Da Silva, E. Burman and S. J. Sherwin, Gradient jump penalty stabilisation of spectral/ h p element discretisation for under-resolved turbulence simulations. Comput. Methods Appl. Mech. Eng. 388 (2022) 114200. | MR | Zbl | DOI

[22] A. K. Pani, V. Thomée and A. S. Vasudeva Murthy, A first-order explicit-implicit splitting method for a convection-diffusion problem. Comput. Methods Appl. Math. 20 (2020) 769–782. | MR | Zbl | DOI

[23] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin (2006). | MR | Zbl

[24] J. M. Varah, Stability restrictions on second order, three level finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 17 (1980) 300–309. | MR | Zbl | DOI

[25] H. Wang, Y. Liu, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. Math. Comp. 88 (2019) 91–121. | MR | Zbl | DOI

[26] H. Wang, Q. Zhang and C.-W. Shu, Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems. J. Sci. Comput. 81 (2019) 2080–2114. | MR | Zbl | DOI

[27] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. | MR | Zbl | DOI

[28] Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48 (2010) 1038–1063. | MR | Zbl | DOI

Cité par Sources :