We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection–diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank–Nicolson method. Both the convection term and the associated stabilisation are treated explicitly using an extrapolated approximate solution. We prove stability of the method and the τ2 + h$$ error estimates for the L2-norm under either the standard hyperbolic CFL condition, when piecewise affine (p = 1) approximation is used, or in the case of finite element approximation of order p ≥ 1, a stronger, so-called 4/3-CFL, i.e. τ ≤ Ch4/3. The theory is illustrated with some numerical examples.
Keywords: IMEX – multistep, continuous interior penalty
@article{M2AN_2022__56_1_349_0,
author = {Burman, Erik and Guzm\'an, Johnny},
title = {Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {349--383},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {1},
doi = {10.1051/m2an/2021084},
mrnumber = {4379609},
zbl = {1537.65125},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021084/}
}
TY - JOUR AU - Burman, Erik AU - Guzmán, Johnny TI - Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 349 EP - 383 VL - 56 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021084/ DO - 10.1051/m2an/2021084 LA - en ID - M2AN_2022__56_1_349_0 ER -
%0 Journal Article %A Burman, Erik %A Guzmán, Johnny %T Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 349-383 %V 56 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021084/ %R 10.1051/m2an/2021084 %G en %F M2AN_2022__56_1_349_0
Burman, Erik; Guzmán, Johnny. Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 349-383. doi: 10.1051/m2an/2021084
[1] , Implicit-explicit multistep methods for nonlinear parabolic equations. Math. Comp. 82 (2013) 45–68. | MR | Zbl | DOI
[2] , Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations. IMA J. Numer. Anal. 38 (2018) 1768–1796. | MR | Zbl | DOI
[3] , and , Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457–477. | MR | Zbl | DOI
[4] , and , Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (1995) 797–823. | MR | Zbl | DOI
[5] , and , Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25 (1997) 151–167. Special issue on time integration (Amsterdam, 1996). | MR | Zbl | DOI
[6] , and , On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39 (1982) 339–375. | MR | Zbl | DOI
[7] and , Continuous interior penalty -finite element methods for advection and advection-diffusion equations. Math. Comp. 76 (2007) 1119–1140. | MR | Zbl | DOI
[8] and , Implicit-explicit Runge-Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations. ESAIM: M2AN 46 (2012) 681–707. | MR | Zbl | Numdam | DOI
[9] and , Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation, Comput. Methods Appl. Mech. Eng. 198 (2009) 2508.2519. | MR | Zbl | DOI
[10] , and , Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48 (2010) 2019–2042. | MR | Zbl | DOI
[11] , and , Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: M2AN 51 (2017) 487–507. | MR | Zbl | Numdam | DOI
[12] and , TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52 (1989) 411–435. | MR | Zbl
[13] , Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numer. Math. 35 (1980) 257–276. | MR | Zbl | DOI
[14] , Godunov-mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315–1332. | MR | Zbl | DOI
[15] and , Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7 (1970) 575–626. | MR | Zbl | DOI
[16] , and , Stability ordinates of Adams predictor-corrector methods. BIT 55 (2015) 733–750. | MR | Zbl | DOI
[17] , Trapezoidal and midpoint splittings for initial-boundary value problems. Math. Comp. 67 (1998) 1047–1062. | MR | Zbl | DOI
[18] , Partially implicit BDF2 blends for convection dominated flows. SIAM J. Numer. Anal. 38 (2001) 1763–1783. | MR | Zbl | DOI
[19] and , From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40 (1998) 40–73. | MR | Zbl | DOI
[20] , , and , Godunov mixed methods on triangular grids for advection-dispersion equations. Comput. Geosci. 6 (2002) 123–139. | MR | Zbl | DOI
[21] , , , and , Gradient jump penalty stabilisation of spectral/ element discretisation for under-resolved turbulence simulations. Comput. Methods Appl. Mech. Eng. 388 (2022) 114200. | MR | Zbl | DOI
[22] , and , A first-order explicit-implicit splitting method for a convection-diffusion problem. Comput. Methods Appl. Math. 20 (2020) 769–782. | MR | Zbl | DOI
[23] , Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin (2006). | MR | Zbl
[24] , Stability restrictions on second order, three level finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 17 (1980) 300–309. | MR | Zbl | DOI
[25] , , and , Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. Math. Comp. 88 (2019) 91–121. | MR | Zbl | DOI
[26] , and , Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems. J. Sci. Comput. 81 (2019) 2080–2114. | MR | Zbl | DOI
[27] and , Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. | MR | Zbl | DOI
[28] and , Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48 (2010) 1038–1063. | MR | Zbl | DOI
Cité par Sources :





