We analyze a two-stage implicit-explicit Runge-Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main results are stability and quasi-optimal error estimates for smooth solutions under a standard hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-dominated regimes. The theory is illustrated by numerical examples.
Keywords: stabilized finite elements, stability, error bounds, implicit-explicit Runge-Kutta schemes, unsteady convection-diffusion
@article{M2AN_2012__46_4_681_0,
author = {Burman, Erik and Ern, Alexandre},
title = {Implicit-explicit {Runge-Kutta} schemes and finite elements with symmetric stabilization for advection-diffusion equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {681--707},
year = {2012},
publisher = {EDP Sciences},
volume = {46},
number = {4},
doi = {10.1051/m2an/2011047},
mrnumber = {2891466},
zbl = {1281.65123},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2011047/}
}
TY - JOUR AU - Burman, Erik AU - Ern, Alexandre TI - Implicit-explicit Runge-Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 681 EP - 707 VL - 46 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2011047/ DO - 10.1051/m2an/2011047 LA - en ID - M2AN_2012__46_4_681_0 ER -
%0 Journal Article %A Burman, Erik %A Ern, Alexandre %T Implicit-explicit Runge-Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 681-707 %V 46 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2011047/ %R 10.1051/m2an/2011047 %G en %F M2AN_2012__46_4_681_0
Burman, Erik; Ern, Alexandre. Implicit-explicit Runge-Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 681-707. doi: 10.1051/m2an/2011047
[1] , and , Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Special issue on time integration (Amsterdam, 1996). Appl. Numer. Math. 25 (1997) 151-167. | Zbl | MR
[2] , and , Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32 (1995) 797-823. | Zbl | MR
[3] , , and , Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853-866. | Zbl | MR
[4] and , Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. FENOMECH'81, Part I, Stuttgart (1981). Comput. Methods Appl. Mech. Engrg. 32 (1982) 199-259. | Zbl | MR
[5] , A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012-2033 (electronic). | Zbl | MR
[6] , Consistent SUPG-method for transient transport problems : Stability and convergence. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1114-1123. | Zbl | MR
[7] and , A continuous finite element method with face penalty to approximate Friedrichs' systems. ESAIM : M2AN41 (2007) 55-76. | Zbl | Numdam
[8] , and , Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J. Numer. Anal. 48 (2010) 2019-2042. | Zbl | MR
[9] and , Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg. 198 (2009) 2508-2519. | Zbl | MR
[10] and , Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1437-1453. | Zbl | MR
[11] and , Analysis of the space semi-discretized SUPG method for transient convection-diffusion equations. Technical report, University of Sussex (2010). | Zbl | MR
[12] , and , Weighted error estimates of the continuous interior penalty method for singularly perturbed problems. IMA J. Numer. Anal. 29 (2009) 284-314. | Zbl | MR
[13] and , TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52 (1989) 411-435. | Zbl | MR
[14] , Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4295-4321. | Zbl | MR
[15] , Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques. Numer. Math. 35 (1980) 257-276. | Zbl | MR
[16] , and , Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection, SIAM J. Numer. Anal. 46 (2008) 805-831. | Zbl | MR
[17] and , Theory and Practice of Finite Elements, Appl. Math. Sci. 159 (2004). | Zbl | MR
[18] and , Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753-778. | Zbl | MR
[19] , Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM : M2AN 33 (1999) 1293-1316. | Zbl | MR | Numdam
[20] , Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA J. Numer. Anal. 21 (2001) 165-197. | Zbl | MR
[21] , Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems. J. Numer. Math. 14 (2006) 41-56. | Zbl | MR
[22] , , and , FreeFEM++, Version 3.14-0. http://www.freefem.org/ff++/.
[23] , and , Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. | Zbl
[24] and , An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1-26. | Zbl
[25] and , On a finite element method for solving the neutron transport equation, in Mathematical aspects of Finite Elements in Partial Differential Equations, edited by C. de Boors. Academic Press (1974) 89-123. | Zbl | MR
[26] and , From semidiscrete to fully discrete : stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40 (1998) 40-73 (electronic). | Zbl | MR
[27] and , Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129-155. | Zbl | MR
[28] , and , Robust numerical methods for singularly perturbed differential equations, Convection-diffusion-reaction and flow problems. Springer Series in Computational Mathematics, 2nd edition. Springer-Verlag, Berlin 24 (2008). | Zbl | MR
Cité par Sources :






