Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 261-285

We establish the equivalence between the Multiscale Hybrid-Mixed (MHM) and the Multiscale Hybrid High-Order (MsHHO) methods for a variable diffusion problem with piecewise polynomial source term. Under the idealized assumption that the local problems defining the multiscale basis functions are exactly solved, we prove that the equivalence holds for general polytopal (coarse) meshes and arbitrary approximation orders. We also leverage the interchange of properties to perform a unified convergence analysis, as well as to improve on both methods.

DOI : 10.1051/m2an/2021082
Classification : 65N30, 65N08, 65N12, 76R50
Keywords: Highly heterogeneous diffusion, multiscale methods, general polytopal meshes, high-order methods
@article{M2AN_2022__56_1_261_0,
     author = {Chaumont-Frelet, Th\'eophile and Ern, Alexandre and Lemaire, Simon and Valentin, Fr\'ed\'eric},
     title = {Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {261--285},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2021082},
     mrnumber = {4378547},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021082/}
}
TY  - JOUR
AU  - Chaumont-Frelet, Théophile
AU  - Ern, Alexandre
AU  - Lemaire, Simon
AU  - Valentin, Frédéric
TI  - Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 261
EP  - 285
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021082/
DO  - 10.1051/m2an/2021082
LA  - en
ID  - M2AN_2022__56_1_261_0
ER  - 
%0 Journal Article
%A Chaumont-Frelet, Théophile
%A Ern, Alexandre
%A Lemaire, Simon
%A Valentin, Frédéric
%T Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 261-285
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021082/
%R 10.1051/m2an/2021082
%G en
%F M2AN_2022__56_1_261_0
Chaumont-Frelet, Théophile; Ern, Alexandre; Lemaire, Simon; Valentin, Frédéric. Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 261-285. doi: 10.1051/m2an/2021082

[1] G. Allaire and R. Brizzi. A multiscale finite element method for numerical homogenization, SIAM Multiscale Model. Simul. 4 (2005) 790–812. | MR | Zbl

[2] R. Araya, G. R. Barrenechea, L. P. Franca and F. Valentin, Stabilization arising from PGEM: a review and further developments. Appl. Numer. Math. 59 (2009) 2065–2081. | MR | Zbl

[3] R. Araya, C. Harder, D. Paredes and F. Valentin, Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51 (2013) 3505–3531. | MR | Zbl

[4] T. Arbogast and K. J. Boyd, Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal. 44 (2006) 1150–1171. | MR | Zbl

[5] T. Arbogast, G. Pencheva, M. F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6 (2007) 319–346. | MR | Zbl

[6] I. Babuška and E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. | MR | Zbl

[7] G. R. Barrenechea, F. Jaillet, D. Paredes and F. Valentin, The multiscale hybrid mixed method in general polygonal meshes. Numer. Math. 145 (2020) 197–237. | MR

[8] S. C. Brenner, Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | MR | Zbl

[9] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4 (1994) 571–587. | MR | Zbl

[10] F. Brezzi, M. O. Bristeau, L. P. Franca, M. Mallet and G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96 (1992) 117–129. | MR | Zbl | DOI

[11] F. Brezzi, L. P. Franca, T. J. R. Hughes and A. Russo, b = g . Comput. Methods Appl. Mech. Eng. 145 (1997) 329–339. | MR | Zbl

[12] A. Cangiani, Z. Dong, E. H. Georgoulis and P. Houston, h p version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. Springer, Cham (2017). | MR | Zbl | DOI

[13] Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72 (2002) 541–576. | MR | Zbl | DOI

[14] M. Cicuttin, A. Ern and S. Lemaire, A hybrid high-order method for highly oscillatory elliptic problems. Comput. Methods Appl. Math. 19 (2019) 723–748. | MR | DOI

[15] M. Cicuttin, A. Ern and S. Lemaire, On the implementation of a multiscale hybrid high-order method. In: Numerical Mathematics and Advanced Applications – ENUMATH 2017. Vol. 126 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2019) 509–517. | MR | DOI

[16] M. Cicuttin, A. Ern and N. Pignet, Hybrid High-Order Methods. A Primer with Applications to Solid Mechanics. SpringerBriefs in Mathematics. Springer, Cham (2021). | MR | DOI

[17] D. Copeland, U. Langer and D. Pusch, From the boundary element domain decomposition methods to local trefftz finite element methods on polyhedral meshes. In: Domain Decomposition Methods in Science and Engineering XVIII. Vol. 70 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2009) 315–322. | MR | Zbl | DOI

[18] D. A. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes. Vol. 19 of Modeling, Simulation and Applications. Springer, Cham (2020). | MR | DOI

[19] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications [Mathematics & Applications]. Vol. 69. Springer-Verlag, Berlin (2012). | MR | Zbl | DOI

[20] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | MR

[21] D. A. Di Pietro, A. Ern and S. Lemaire, A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations Vol. 114 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2016) 205–236. | MR

[22] D. A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | MR | Zbl

[23] O. Durán, P. R. B. Devloo, S. M. Gomes and F. Valentin, A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers. Comput. Methods Appl. Mech. Eng. 354 (2019) 213–244. | MR

[24] Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods – Theory and Applications. Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York (2009). | MR | Zbl

[25] Y. Efendiev, T. Y. Hou and X.-H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37 (2000) 888–910. | MR | Zbl

[26] Y. Efendiev, J. Galvis and T. Y. Hou, Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251 (2013) 116–135. | MR

[27] Y. Efendiev, R. Lazarov and K. Shi, A multiscale HDG method for second order elliptic equations. Part I: polynomial and homogenization-based multiscale spaces. SIAM J. Numer. Anal. 53 (2015) 342–369. | MR

[28] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | MR | Zbl | Numdam

[29] R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Philadelphia). SIAM (1988) 144–172. | MR | Zbl

[30] C. Harder and F. Valentin, Foundations of the MHM method. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Vol. 114 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2016) 401–433. | MR

[31] C. Harder, D. Paredes and F. Valentin, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients. J. Comput. Phys. 245 (2013) 107–130. | MR

[32] P. Henning and D. Peterseim, Oversampling for the multiscale finite element method. SIAM Multiscale Model. Simul. 11 (2013) 1149–1175. | MR | Zbl

[33] J. S. Hesthaven, S. Zhang and X. Zhu, High-order multiscale finite element method for elliptic problems. SIAM Multiscale Model. Simul. 12 (2014) 650–666. | MR

[34] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comp. Phys. 134 (1997) 169–189. | MR | Zbl

[35] T. Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913–943. | MR | Zbl

[36] T. Y. Hou, X.-H. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci. 2 (2004) 185–205. | MR | Zbl

[37] T. J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401. | MR | Zbl

[38] T. J. R. Hughes, G. R. Feijó, L. M. Mazzei and J.-B. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3–24. | MR | Zbl

[39] C. Le Bris, F. Legoll and A. Lozinski, MsFEM à la Crouzeix–Raviart for highly oscillatory elliptic problems. Ch. Ann. Math. Ser. B 34 (2013) 113–138. | MR | Zbl

[40] C. Le Bris, F. Legoll and A. Lozinski, An MsFEM-type approach for perforated domains. SIAM Multiscale Model. Simul. 12 (2014) 1046–1077. | MR

[41] A. L. Madureira and M. Sarkis, Hybrid localized spectral decomposition for multiscale problems. SIAM J. Numer. Anal. 59 (2021) 829–863. | MR

[42] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comp. 83 (2014) 2583–2603. | MR | Zbl

[43] L. Mu, J. Wang and X. Ye, A Weak Galerkin generalized multiscale finite element method. J. Comp. Appl. Math. 305 (2016) 68–81. | MR

[44] D. Paredes, F. Valentin and H. M. Versieux, On the robustness of multiscale hybrid-mixed methods. Math. Comp. 86 (2017) 525–548. | MR

[45] P.-A. Raviart and J.-M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31 (1977) 391–413. | MR | Zbl

[46] A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). | MR | Zbl

[47] A. Veeser and R. Verfürth, Poincaré constants for finite element stars. IMA J. Numer. Anal. 32 (2012) 30–47. | MR | Zbl

[48] M. Vohralík and B. I. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | MR | Zbl

[49] S. Weißer, BEM-based Finite Element Approaches on Polytopal Meshes. Vol. 130 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2019). | MR

[50] M. F. Wheeler, G. Xue and I. Yotov, A multiscale mortar multipoint flux mixed finite element method. Math. Models Methods Appl. Sci. 46 (2012) 759–796. | MR | Zbl | Numdam

Cité par Sources :