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BRIDGING THE MULTISCALE HYBRID-MIXED AND MULTISCALE HYBRID
HIGH-ORDER METHODS

THEOPHILE CHAUMONT-FRELET!, ALEXANDRE ERN??, SIMON LEMAIRE**
AND FREDERIC VALENTIN®!

Abstract. We establish the equivalence between the Multiscale Hybrid-Mixed (MHM) and the Multi-
scale Hybrid High-Order (MsHHO) methods for a variable diffusion problem with piecewise polynomial
source term. Under the idealized assumption that the local problems defining the multiscale basis func-
tions are exactly solved, we prove that the equivalence holds for general polytopal (coarse) meshes and
arbitrary approximation orders. We also leverage the interchange of properties to perform a unified
convergence analysis, as well as to improve on both methods.
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1. INTRODUCTION

The tremendous development of massively parallel architectures in the last decade has led to a revision
of what is expected from computational simulators, which must embed asynchronous and communication-
avoiding algorithms. In such a scenario where precision and robustness remain fundamental properties, but
algorithms must take full advantage of the new architectures, numerical methods built upon the “divide-and-
conquer” philosophy fulfill these requirements better than standard methods operating in a monolithic fashion
on the different scales of the problem at hand. Among the vast literature on the subject, driven by domain
decomposition methodologies (see, e.g., [46] for a survey), multiscale numerical methods emerge as an attractive
option to efficiently handle problems with highly heterogeneous coefficients, as well as multi-query scenarios in
which the problem solution must be computed for a large number of source terms. These scenarios may arise
when considering highly oscillatory, nonlinear, time-dependent models, or within optimization algorithms when
solving problems featuring PDE-based constraints, or in models including stochastic processes, to cite a few.

The development of multiscale methods started with the seminal work [6]. Important advances were then
provided in [37,38] (¢f. also [9,10], and the unifying viewpoint of [11]) and in [34, 35], laying the ground,
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respectively, for the Variational Multiscale method, and for the Multiscale Finite Element (MsFE) method.
Overall, the common idea behind these multiscale methods is to consider basis functions especially designed
so as to upscale to an overlying coarse mesh the sub-mesh variations of the model. Particularly appealing is
the fact that the multiscale basis functions are defined by entirely independent problems. From this viewpoint,
multiscale numerical methods may also be seen as a (non-iterative) domain decomposition technique [29]. Since
the pioneering works on multiscale methods, a large number of improvements and new approaches have been
proposed. In the MSFE context (see [24] for a survey), one can cite the oversampling technique of [25], as well
as the Petrov—Galerkin variant of [36] (see also [2]), or the high-order method of [1] (see also [33]). More recent
research directions focus on reducing and possibly eliminating the cell resonance error. In this vein, one can cite
the Generalized MsFE method [26], or the Local Orthogonal Decomposition approach [32,42]. Hybridization
has also been investigated in the pioneering work [5] on multiscale mortar mixed finite element methods (see
also the multiscale mortar multipoint flux mixed finite element method of [50]). These ideas have been adapted
later on in the context of (multiscale) Discontinuous Galerkin methods, leading to the Multiscale Hybridizable
Discontinuous Galerkin (MsHDG) method of [27] (¢f. also the multiscale Weak Galerkin method of [43], devised
along the same principles in the spirit of the Generalized MsFE method). Interestingly, this latter approach
enables to relax the constraints between the mortar space and the polynomial spaces used in the mesh cells.

Recently, two families of hybrid multiscale numerical methods that are applicable on general meshes have
been proposed, namely the Multiscale Hybrid-Mixed (MHM) and the Multiscale Hybrid High-Order (MsHHO)
methods. The MHM method has been first introduced in [31], and further analyzed in [3,7,44] (see also [30]
for an abstract setting), whereas the MSHHO method has been proposed in [14,15], as an extension of the
HHO method first introduced in [20,22] (¢f. also [21]). The MHM method relates to the mixed multiscale finite
element method proposed in [13], as well as to the subgrid upscaling method of [4] (see [30], Sect. 5.1.2 for further
details). The MsHHO method generalizes to arbitrary polynomial orders the low-order nonconforming multiscale
methods of [39,40]. The polynomial unknowns attached to the mesh interfaces in the MsHHO method play a
different role with respect to the (coarse) interface unknowns of the MsHDG method of [27]. The fundamental
difference between these two approaches is that the MsHDG method is based on local Dirichlet problems (the
interface unknowns are then the traces of the solution), whereas the MsHHO method is based on local Neumann
problems (the interface unknowns are then the coarse moments of the traces of the solution). Notice that the
MHM method is also based on local Neumann problems. Similar ideas have been developed in the conforming
framework in the context of BEM-based FEM [17,49].

The MHM and MsHHO methods substantially differ in their construction. Picking the Poisson equation as an
example, the MHM method hinges on the primal hybrid formulation analyzed in [45]. As a consequence, while
the local problems are defined as coercive Neumann problems, the global upscaled linear system is of saddle-
point type, involving face unknowns that are the normal fluxes through the mesh faces (also the Neumann
data for the local problems, up to the sign), plus one degree of freedom per mesh cell that enforces a local
balance between the normal fluxes and the source term. Notice that the (global) saddle-point structure of the
MHM method can be equivalently replaced by a sequence of positive-definite linear systems as shown recently
in [41]. On the other hand, the MsHHO method is directly built upon the primal formulation of the problem.
As a consequence, the local (Neumann) problems are defined as constrained minimization problems, and as
such exhibit a saddle-point structure. On the contrary, the global upscaled linear system is coercive, and only
involves face unknowns that are the coarse moments of the traces of the solution at interfaces. Notice that, as
opposed to the MHM method, the MsHHO method also uses cell unknowns (that are locally eliminable from the
global upscaled linear system), which are associated with basis functions solving local problems with nonzero
source terms. As such, the MsHHO method is naturally suited to deal with multi-query scenarios.

In this work, we revisit the MHM and MsHHO methods and we prove an equivalence result between their
solutions. Notice that such a relationship is not straightforward since, at first glance, the two methods exhibit
structures that are genuinely different. Nonetheless, we demonstrate that such an equivalence holds under the
assumption that the source term of the continuous problem is piecewise polynomial (¢f. Thm. 5.1). For this
equivalence to hold, we make the idealized assumption that the local problems defining the multiscale basis
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functions are exactly solved. The corresponding methods are then referred to as one-level (¢f. Rem. 7.7 for some
insight on the equivalence between two-level methods). Leveraging this equivalence result, the present work
also contributes to derive, in a unified fashion, an energy-norm error estimate that is valid for both methods
(¢f. Thm. 6.3). More specifically,

— in the MHM framework, this result is a refined version (especially in the tracking of the dependency with
respect to the diffusion coefficient) of the results in [3];

— in the MsHHO framework, this result is new and is complementary to the homogenization-based error
estimate derived in [14].

We also explore these stimulating results to transfer properties proved for one method to the other, and to
reveal how the interplay between the methods can drive advances for both. Notably, we show that

— the MHM method can be adapted to deal with multi-query scenarios (cf. Sect. 7.2.1);
— the MsHHO method can be recast as a purely face-based method, in the sense that it can be alternatively
defined without using cell unknowns (¢f. Sect. 7.2.3).

The outline of the article is as follows. Section 2 introduces the model problem, the partition, the notation and
a number of useful tools. We present the MHM method in Section 3, and the MsHHO method in Section 4. The
equivalence result is stated in Section 5, along with some further properties and remarks. The energy-norm error
estimate is proved in Section 6. The solution strategies for both methods are discussed in Section 7, leveraging
the equivalence result at hand to propose enhancements for both methods. Finally, some conclusions are drawn
in Section 8.

2. SETTING

In this section, we present the setting, introduce the partition, and define useful broken spaces on this
partition.

2.1. Model problem

We consider an open polytopal domain Q C R%, d = 2 or 3, with boundary 9. Given f : Q — R, we seek a
function u : £ — R such that

{ (AVu) f inQ

2.1
=0 ondN. (2.1)

We assume that the diffusion coefficient A € L>°(Q; R¥*4) is symmetric and uniformly elliptic, and that the
source term f is in L2(£2). Problem (2.1) admits the following weak form: find u € HE(Q) such that

(AVu,Vo)g = (f,v)a for all v € H} (), (2.2)

where (-, -)p denotes the L2(D;R?), ¢ € {1,d}, inner product for any measurable set D C Q. It is well-established
that Problem (2.2) admits a unique solution.

2.2. Partition

The domain 2 is partitioned into a (coarse) mesh 7z, that consists of polytopal (open) cells K with diameter
Hpg, and we set H := maxger, Hi. In practice, both the MHM and MsHHO methods consider a fine submesh
(characterized by a mesh-size h < H) to compute the local basis functions, but this finer mesh is not needed
in the present discussion since we will assume that the local problems defining the basis functions are exactly
solved. The mesh faces F' of Ty are collected in the set Fg, and this set is partitioned into the subset of internal
faces (or interfaces) Fi* and the subset of boundary faces P4, The mesh faces are defined to be planar, i.e.,
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every mesh face F' € Fy is supported by an affine hyperplane H g (recall that the mesh cells have planar faces
since they are polytopes). For an interface F' € Fint| we have

F=0K,NOoK_nNHpg, (2.3)
for two cells K4 € Ty; for a boundary face F € F5P4, we have
F=0KNoQNHF, (2.4)

for one cell K € Ty. We denote by 07y the skeleton of the mesh 7, defined by 07y := UKeTH {0K}. Given
K € Ty, we denote by Fi the set of its faces, and by ny the unit outward-pointing vector normal to its
boundary (whose restriction to the face F' € Fg is the constant vector denoted by ng ). We associate with
each face F' € Fg a unit normal vector np whose orientation is fixed, with the convention that ng := nq g if
F € Fird) where ng is the unit outward-pointing vector normal to 9S).

Remark 2.1 (On the notion of face). Some minor variations are encountered in the literature regarding the
notion of face in a polytopal mesh, depending on whether the faces are required or not to be planar, and whether
they are genuinely or only loosely defined. In the (polytopal) Discontinuous Galerkin literature [12,19], faces
are (genuinely) defined by FF = 0K, NOK_ (or F = 0K N 09), thus allowing for nonplanarity. In the HHO
literature, faces are always required to be planar, so that one can define a constant normal vector np to every
face F' € Fy. Variations however exist on how to define them. In the original work [22] on HHO methods, faces
are defined loosely by FF C 0K, NOK_NHp (or F COK NINNHp); on the contrary, in Section 1.2.1 of [16]
and in the present work, faces are genuinely defined by F = 0K, NOK_NHp (or F = 0K NIQNHp). Notice
that the latter (genuine) definition, as opposed to the loose one, does not allow for the case of several coplanar
faces that would be shared by two cells (or a cell and the boundary). It is however more precise, which is the
reason why we have chosen to adopt it in this work. Remark also that, as opposed to the one in [22] (or in [18],
Def. 1.4), the present definition does not require explicitly that faces are connected sets. Of course, the methods
we study here are also applicable under the setting of [22].

2.3. Infinite-dimensional broken spaces

We first define the broken space of piecewise smooth functions on 7p:
HY(Ty) :={ve L*Q) : vk € H'(K) VK €Ty}, (2.5)
where we let vp := v|p. For any v € H'(Ty), we define the jump [v]r of v across F' € Fy by
[v]F = vk, \r (Mk,  F-nFr) +vg_|p (MK_F-nF) (2.6)
if F C 0Ky NOK_ is an interface, and simply by
[v]F == vi|P (2.7)

if F C 90K N 0N is a boundary face. We also define the broken gradient operator Vg : HY(7y) — L*(;R?)
such that, for any v € H'(Ty),
(Vi) g == Vug forall K € Ty. (2.8)

We next introduce the space of piecewise smooth functions on 7y whose broken (weighted) flux belongs to
H (div,Q):

V(Tw;div, Q) :== {v € H'(Ty) : AVgv € H(div,Q)}. (2.9)
We will see below that the MHM and MsHHO methods produce a discrete solution that sits in the space
V(Ty; div, Q); notice that V(Tg;div, Q) C HY(Ty) ¢ H(2). We now define the two “skeletal” spaces

Jw(z) € Hy(Q) s.t. } (2.10)

Y0(0Tn) == {Z = (20K )KeTy € H H'?(9K) zox = wi(2) 9k VK € Tn

KeTy
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and

_ Jo(p) € H(div, Q) s.t.
A = = 1/2 ’ . A1
(07x) {M (wor)wety € Klel H™(0K) pox = ok ()jox - nix VK € Ty (2.11)

(Recall that the subscript K refers to the restriction to K.) Letting (-,-)sx stand for the duality pairing
between H~'/2(9K) and H'/?(0K), we define the following pairing, for all u € [ker, H~'Y2(0K) and all

z € [ker, H'/?(9K),

(1 2)omy ==Y (HoK: 20K ok (2.12)
KeTy
so that for all 4 € A(07y) and all z € $¢(07y), recalling that o(u) € H(div,Q) and w(z) € H}(Q), we have
2)omy = Y (Vo) w(z)x + (o), V() ) = 0. (2.13)
KeTy

2.4. Finite-dimensional broken spaces

Let ¢ € N denote a given polynomial degree. The space of piecewise (d-variate) polynomial functions on 7g
of total degree up to ¢ is denoted by

PY(Ty) = {ve L*(Q) : vg e PUK) VK €Ty}, (2.14)

whereas the space of piecewise ((d — 1)-variate) polynomial functions on Fp of total degree up to ¢ is denoted

by
PY(Fy) == {1} € L2< U F) :vp €PI(F) VF e ]-"H}, (2.15)

FeFy

and its subset incorporating homogeneous boundary conditions by
P(Fpy) = {v € PY(Fy) : vp =0 VF € Fp}. (2.16)

For all K € Ty, we also define the local space of piecewise ((d — 1)-variate) polynomial functions on Fg of total
degree up to ¢ as follows:

PY(Fk) = {v € L*(0K) : vp € PYF) VF € Fx}. (2.17)
We consider the following finite-dimensional proper subspace of A(07y):
AN(0Ty) :={pn € A(0Tx) : pox € PI(Fk) VK € Ty }. (2.18)

Notice that for every interface F' € Filt with FF C K, NOK_, as a consequence of (2.13), we have Mok, |F T
pox_|r = 0 for all 4 € A?(07Tg). We also define, for any integer m > 0, the spaces

{um’q(K) = {ve HY(K) : V- (AVv) € P"(K), AVusx-ng € PUFk)}, VK € Ty, 219)

U™ (Ty) ={ve H (Ty) : vk eU™UK) VK € Ty}.

To alleviate the notation, we shall drop the superscript m when considering m = ¢ — 1 for ¢ > 1, and write
UY(K) and U9(Ty) in place of UI~19(K) and UI~149(Ty), respectively.
We finally introduce the space of “weakly Hg(£2)” functions on Ty:

f[é’q(TH) ={ve HY(Ty) : ([v]r,p)r =0 VpePIF), VF ¢ Fu}. (2.20)
Equivalently, we have

Hy"(Tu) = {v € H\(Tu) : (v)omy =0 Yp € AOTi)}. (2.21)
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3. THE MHM METHOD
Let us first set

{ HYK): ={ve H(K) : (v,1)k =0}, VK € Ty, 51)

(TH —{’UEH(T) : (’L}K,l)K:OVKETH}.
For integers m,q € N, we also define the subspaces U™ 4(K)* := {v € U™9(K) : (v,1)g = 0} for all K € Ty

and Um’q(TH)L = {’U S L{m’q(TH) : (’UK, ]-)K =0VK € TH}
Let K € Ty, and consider the two local operators

T HHOK) - HYEK)S, Ty LK) — H'(K) (32)
For all uorx € H™2(0K) and all gx € L2(K), TN (uox) and T3 (gx ) are the unique elements in H*(K)* such
that
{ (AVTIN((/I‘(?K)? VU) <:LL(9K, U>3Ka
(AVTk(9x), Vo) = (9, v)K

The superscripts in the operators indicate that Ty lifts a (Neumann) normal flux and T3 lifts a source term.
Elementary arguments show that

Yo e HY(K)* . (3.3)

1 .
—V - (AVTE(pok)) = —mwalg Vox in K,  AVTR(psxr) nk = pox on 9K, (3.4a)
1 .
-V - (AVT%(9K)) = gk — |K| (95, 1)k in K, AVT}(9k) ng =0on 0K. (3.4b)

It is convenient to define the following global versions of the above lifting operators:

ANOTy) — HY(Ty)*t,  T°:L*(Q) — HY(Ty)™ . (3.5)
For all 4 € A(0Ty) and all g € L?(Q), we set

TN = Ti(por),  T°(9)x =T (gx)- (3.6)
Equivalently, and recalling the definition (2.8) of the broken gradient operator, we have

{ (AVHTN(:U')a VHU)Q = <N7U>BTH7
(AVHTS(9)7VHU)Q = (971))97

Yo e HY (Ty)*, (3.7)
which results from summing (3.3) cell-wise. We remark that the solution u € Hg () to Problem (2.2) satisfies
u=u’+TY(\) + T5(f), (3.8)

where the pair (u%, \) € P*(7g) x A(0Tg) solves
<)"U0>6TH =—(f, vO)Q vl € PY(Ty), (3.9a)
(10 g, + 0 T Vo = — (0 TN Vit € AOTi). (3.9b)

Let k& € N Notice that, owing to (3.7) and to the fact that A is symmetric, we have (u, T5(f))or, =
(f,T(n))q- Let k € N be a given polynomial degree. The MHM method [3] reads as follows: Find (u%, A\y) €
PO(Tz) x A*(0Ty) such that

M3 ory = —(f,v%)a Yl € PY(Ty), (3.10a)
(e wlp)omy + (e, TN Aa))ory = —(pa, T5(f))orn  Vpm € A" (0Tn), (3.10b)
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and the MHM solution is then defined by
u™ = uly + T(Am) + T°(f). (3.11)

The well-posedness of Problem (3.10) is established in Theorem 3.2 of [3]. Notice that we also have, on the
discrete level, (um, T*(f))ory = (f; T (pa))a-

Lemma 3.1 (Characterization of the MHM solution (3.11)). Let u}f™ be defined by (3.11). Then, (i)
(AV gudi™ |px) - nx € PE(Fg) for all K € Ty and u)lf™ € Hé’k(TH); (ii) uff™ € V(7Tg;div,Q) and
V- (AVuli™) = £ in Q.

Proof. By (3.11) and (3.4), we infer that for all K € 7Tj,
AV gufi™ ok - nx = AVTR Agor) -k + AVTE(fx) - nix = Agjar € P (Fk). (3.12)

That uyf™ € ﬁé’k(TH) follows from the characterization (2.21) of fI&’k(TH) and (3.10b). Now, to prove that
uff™ € V(Tg;div, ), we need to show that AV gulf™ € H(div,Q?). Owing to (3.4), we infer that for all
K e TH7

V  (AVgu™) = V- (AVTx (Anjok)) + V- (AVTR(fx))
1 1
= — ok, Vg — fx + == (K, Dk = —fx € L*(K), (3.13)
1N oK K]
where the last equality follows from (3.10a). This shows that AV guif™|x € H(div, K) for all K € Ty.
Moreover, (3.12) shows that AV gulf™ |ak - nk can be localized to each face of K and, since for every interface
F COK,NOK_, Aok, |r +Aok_|r = 0, we infer that [AV gulf™]r-npr =0 on F. It results that AV guj™ €
H (div, ). Finally, =V - (AV gu}i™) = f in Q follows from (3.13) since K € Ty is arbitrary. O

Let us take a closer look at the MHM method (3.10) and (3.11). First, we observe that since TN(Ay) €
UF(T)*, this function is computable from a finite-dimensional calculation. The same holds for the right-hand
side of (3.10b) since {pm, T°(f)) o1y = (f, T™(urr))q. However, the situation is different in (3.11) for T5(f). One
needs indeed to define, so as to fully explicit the (one-level) method, an approximation of this function that
is also computable from a finite-dimensional calculation. For this reason, the original MHM method defined
by (3.10) and (3.11) can be viewed as semi-explicit, whereas a fully explicit version of it is obtained after
approximating T°(f). Among various possibilities (¢f. Rem. 5.3 for an example of an alternative definition),
perhaps the simplest one is to choose an integer m > 0, project f € L%(£2) onto the finite-dimensional subspace
P™(7y), and compute T5(II%(f)), where II7 is the L?-orthogonal projector onto P™ (7). This leads to the
fully explicit MHM solution

W =l + T () + T (f), (3.14)

where the pair (ul, \r) € PO(Tg) x A*(9Tg) now solves

</\H7v9{>3TH = 7(.}03 U?'—I)Q vv?—l € ]P)O(TH)7 (315&)
(s uyp) o7 + (i TN ) ot = =5 (), T (um e Ypur € A" (0Tx). (3.15Db)
We notice in particular that in (3.14) we have T(Ay) € UK (Ty)t C U™ (Ty)* and TS(IIR(f)) €

U™ (T)t C U™ (Tg)*. Thus, all the quantities involved in (3.14) and (3.15) are members of the space
U™ (Ty). Adapting the arguments of the proof of Lemma 3.1 leads to the following result.

Lemma 3.2 (Characterization of the MHM solution (3.14)). Let u}f™ be defined by (3.14). Then, (i) uli™ €
U™F(Ty) N HY  (Tir); (i) ™ € V(Tgr; div, Q) and =V - (AV gul™) = TI7%(f) in €.
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4. THE MsHHO METHOD

Let again k£ € N be a given polynomial degree, and let m > 0 be an integer. The MsHHO method hinges on
the following set of discrete unknowns:

Umk .= P™(Ty) x P*(Fy), (4.1)
which is composed of cell and face degrees of freedom (one can also consider the case m = —1, so that the

method is based on face unknowns only; ¢f. Rem. 5.4). The standard MsHHO method, referred to as mixed-
order MsHHO method in [14], corresponds to the case m = k — 1 for k > 1. For all K € Ty, we let Uk =
(v, VE,) € ﬁ?k = P™(K) x P¥(Fg) denote the local counterpart of vy := (vr,,vr,) € ng For all
F € Fy, vp € P*(F) is defined by vp := vFy|F- Notice that vp = UFy |F = VFy |F if FCOK,NOJK_ is an
interface, and vp = vr, | p if F' C 0K N0S)is a boundary face.

__ The MsHHO method is based on the following local reconstruction operator: For all K € Ty and all Uk €
U* | there exists a unique function rx (Ox) € U™ (K) (recall that U™*(K) is defined in (2.19)) such that

(AVrg (g ), Vw) g = —(vk, V - (AVW)) o + (vr , AVW - 1) 5 Yw € U™k (K), (4.2a)
(rk (k) Dox = (vFy, ok (4.2b)

Notice that the usual choice of closure relation for rx (Vk) is (rx (Vk), 1)k = (vk, 1) k. The operator rk is the
(local) reconstruction operator associated with the finite element

(K, U™ (K), EK), (4.3)

with the set of degrees of freedom S : U™F(K) — ﬁ}?k such that Sk (v) = (I (v), %, (v)) for all
v € U™F(K), where TI? and H?K are the L2-orthogonal projectors onto, respectively, P™(K) and P*(F). For
further use, we also define II% to be the L2-orthogonal projector onto P*(F) for all F' € Fy. The fact that the
triple (K, U™*(K), $x) defines a finite element is a consequence of the fact that the dimensions of U™*(K)
and ﬁ?k coincide, and of the following important property (which states the existence of a right inverse for

S k).

Lemma 4.1 (Reconstruction). The reconstruction operator 1 satisfies Sy (1 (k) = Ok for all T € U}?’k,

(re(k),r)x = (v, 7). Vr € P"(K), (4.4a)
(rx (k). Q)ox = (vre, Qox Vg € PF(Fk). (4.4b)

Proof. We need to prove that
© := (rg(Uk) — vk, 1)k + (rk (Vk) — vrg, @)ox =0,

for all (r,q) € ﬁ?k Let @, , € U™F(K) solve the following well-posed Neumann problem: —V - (AV®,. ) =r
in K, and AV®, ;5x - nig = ¢ on 0K with ¢’ :=q — ﬁ((r7 1)k + (¢, 1)ax ). We observe that

O = (rk(Ux) —vi, ")k + (rk(Ux) —vrg. ¢ ok
= —(rx(Vk) —vK,V - (AV®, )k + (rk (Vk) — vF, AV, g1ok - N )oKk
= (AVrg(Uk), V&, ¢)k + (v, V- (AV®, )k — (V5 , AV, ok - MK )ox = 0,

where we used (4.2b) in the first line, the definition of ®, , in the second line, and integration by parts (along
with the symmetry of A) together with (4.2a) with w := ®,., in the third line. O
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In the MsHHO method, the essential boundary conditions can be enforced strongly by considering the sub-
space
UH0 =P (Ty) x PE(Fu). (4.5)

The MsHHO method for Problem (2.2) reads as follows: Find uy € U}Z’(f such that

> (AVrk(iK), Vi (x))k = (fx.vx)x Vou € Uy (4.6)

KeTy KeTy

The approximate MsHHO solution u#'© € U™ ¥ (Tz) is then defined by

HHO

uH‘K = TK(UK) VK € Ty. (47)

It is easy to see that the function ui'° defined in (4.7) actually sits in Hy™" (7). Indeed, owing to (4.4b), for
any interface F' € Fi¥ such that ' C 9K, N 0K _, one has for all ¢ € P*(F),

([vglr @)r = (rx, (Uk,) (M, 7 -nr),)r + (rk_(Uk_) (Mk_F-1F),Q)F
= (uri, (MK, Fnp),QF + (ure (NKk_F nF),q)r

= (ur (nk,.F -nr),qQ)r + (ur (Ng_F-nr),q)r =0.

For boundary faces, one uses again (4.4b) along with the fact that uy € ﬁgbk. A crucial observation made in
Remark 5.4 of [14], which is a direct consequence of the finite element property, is that the MsHHO method
can be equivalently reformulated as follows: Find w!® € U™*(Ty) N Hé *(Ty) such that

(AV 5ulff®, Vgvm)g = M5 (f) vn)g Yo € U™ (Tu) 0 Hy™* (Tw), (4.8)

where, for any K € Ty, Hﬁ(f)u( = II%(fK). The existence and uniqueness of u}/'© solution to the square

system (4.8) is straightforward. Indeed, if V(u}%) = 0 in all K € Tp, then ujy € PY(Ty), and since the

moments of v} are single-valued at the mesh interfaces and vanish at the mesh boundary faces, then u}™©

vanishes 1dent1cally in Q.

Lemma 4.2 (Characterization of the MsHHO solution). Let u!° solve (4.8). Then, (i) u!H° € U™k (Ty) N
Hy™(Ty); (if) wl© € V(Ty;div, Q) and =V - (AV gu!li©) = I (f) in €.

Proof. We have already shown above that uf® € Y™k (Ty) N f[&’k(TH) Let us now show that AV gu'fi'© €

H(div,Q). Since uff® € U™*(Ty), we already know that V - (AVzulf®)x € P™(K) C L*K) and
AV gulll© o - ng € P¥(Fk) for all K € Ty. Moreover, owing to (4.6), (4.7), and the definition (4.2), we
infer that

=Y (V-(AVau) o)k + Y ([AVaUElr - np,vp)r = Y (TR(fx), vk )k, (4.9)

KeTy FeFint KeTy

for all vx € P™(K) and all K € Ty, and for all vp € PF*(F) and all F € F3t (notice that we have used that
vp =0 for all F € FPrd for vy € UZL(f) This readily implies that

=V (AVyup®)x =Ug(fx) forall K € Ty,

and that
[AV guii°]p -np =0 for all F € Fiit,

It follows that AV gu''© € H(div, ) and that —V - (AV gu'f'?) = II'%(f) in Q. O
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5. MAIN EQUIVALENCE RESULT AND FURTHER COMMENTS

The following result, which is a consequence of Lemmas 3.1, 3.2, and 4.2, summarizes our main result on the
equivalence between the MHM and MsHHO methods.

Theorem 5.1 (Equivalence between MHM and MsHHO). Let m,k € N. The following holds true:

(i) Let uly™ be the (original, semi-explicit) MHM solution defined by (3.11) using k > 0. Let u'ly'® be the
MsHHO solution solving (4.8) using m,k > 0. Then, ulf™ = u'j'° if f € P (Ty).

(i) Let uly™ be the (fully explicit) MHM solution defined by (3.14) using m,k > 0. Let ul'® be the MsHHO
solution solving (4.8) using m,k > 0. Then, uff™ = ulJ° for all f € L*(2).

We now collect several remarks providing further insight into the above equivalence result.

Remark 5.2 (Comparison of heuristic viewpoints). It is possible to sketch the two complementary visions
behind the fully explicit MHM and MsHHO methods. In the (fully explicit) MHM method, the general idea is
to search for an approximate solution uy among the members of the affine functional space

{vr € V(Ty; div, Q) NU™F(Ty) + =V - (AV goy) = IIF(f) in QF,
and to enforce that uy € PNIé k(’TH) by requiring that
(e, um)ory =0 for all py € A*(0Ty).

In the MsHHO method, the general idea is to search for an approximate solution among the members of the
affine functional space

{UH € HYF (Ty) nU™ (Ty) « =V - (AV (vgrx)) = T (fi) in K VK € TH},
and to enforce that uy € V(Ty;div, Q) by requiring that
(AV gug - n,qu)or, =0 for all gy € P§(Fu).

Remark 5.3 (Modification of the right-hand side). It is observed in Remark 5.8 of [14] that a variant of the
MsHHO method is obtained by searching uf® € U™ *(Ty) N HY* (Ty) such that

(AV gul° WV yup)a = (f,om)a Vo € U™ (Ty) N Hy ™ (Ty). (5.1)

One advantage of (5.1) is that the source term f is now seen through its L2-orthogonal projection onto U™*(7x)
instead of its projection onto the smaller space P™(7y) as in (4.8). However, if u'fj'¢ solves (5.1), AV guljj*©
slightly departs from H(div,2), i.e., we no longer have u!j'® € V(7x;div,Q) as for the solution to (4.8). This
modified MsHHO solution can be bridged to the fully explicit MHM solution obtained by approximating the
lifting 7° by the operator T% : L2(Q) — U™*(Ty)~+ such that, for all g € L%(Q), T%(g) € U™*(Ty)* solves

(AV T3 (9), Vav)a = (g,v), Vo € U™ (Tt
Indeed, the modified MsHHO solution solving (5.1) coincides with the fully explicit MHM solution
wg™ =gy + T \n) + Ty (),
where the pair (u%, \ir) € PO(T) x A*(9T) now solves

A vY)ory = —(fvY)a vy € PO(Tg),
(e, ul)ory + (e TNAw))ory = —(um Ty (f))or  Vum € A¥(0Tw).



BRIDGING THE MHM AND MSHHO METHODS 271

Remark 5.4 (Variant with no cell unknowns (case m = —1)). It is possible to consider the case m = —1 in
the above MHM and MsHHO settings, leading to an MsHHO formulation without cell unknowns. The spaces
U™(K) and U™9(Tg) can still be defined by (2.19) when m = —1, with the convention that P~(K) := {0}.
The fully explicit MHM method is still defined as in Section 3. The only modification in the analysis is that the
last statement in Lemma 3.2 now becomes —V - (AV guyf™) = 1% (f) in Q. Notice also that (3.14) becomes
udIM = 0 + TN(A\gr). Actually, since T%(cy) = 0 for any cy € P°(7y) owing to (3.4b), we infer that the (fully
explicit) MHM method for m = —1 coincides with the (fully explicit) MHM method for m = 0. Concerning the
MsHHO method, the variant (5.1) has to be adopted in the case m = —1. Finally, we observe that in the case
m = —1, the MHM and MsHHO solutions do not coincide.

6. UNIFIED CONVERGENCE ANALYSIS

We derive, in a unified fashion, an energy-norm error estimate that is valid for both the (fully explicit) MHM
and MsHHO methods.

6.1. Setting

Let Ty be a given (coarse) polytopal mesh of the domain €2 in the sense of Section 2.2. Since we are interested
in deriving a quantitative estimate on the discretization error for the MHM/MsHHO methods, we need to define
a measure of regularity for the mesh at hand. To do so, following ([16], Sect. 2.1.1), we assume that the mesh
Ty admits a matching simplicial submesh Sg, and that there exists some real parameter 0 < py < 1 such
that, for all K € Ty, and all T € Sy such that T C K, (i) pgHr < Ry where Ry denotes the inradius of the
simplex T, and (ii) pg Hx < Hr. The parameter py measures the regularity of the mesh 7. When studying
a convergence process in which the meshes of some given sequence (7)pgep are successively refined, we shall
assume that the mesh sequence (7 )pgen is uniformly regular, in the sense that there exists 0 < p < 1 such
that, for all H € H, p < pgy. Standard local Poincaré-Steklov and (continuous) trace and inverse inequalities,
as well as (optimal) approximation properties for local L?-orthogonal polynomial projectors, then hold on each
cell K € Ty for any H € H, with multiplicative constants only depending on p. We refer the reader, e.g.,
to [8] for the idea of submeshing into simplices, to Section 1.4.3 of [19] for the (continuous) trace and inverse
inequalities, to [47] and Lemma 5.7 of [28] for Poincaré—Steklov inequalities on sets composed of simplices, and
to Lemma 5.6 of [28] for the resulting higher-order polynomial approximation properties; see also the recent
monographs [16, 18] on HHO methods. In what follows, we use the symbol < to denote an inequality that is
valid up to a multiplicative constant only depending on the discretization through the parameter p.

In order to track the dependency of the error estimates with respect to the diffusion coefficient, for any
K € Ty, we denote by a, ¢ > 0 the local smallest eigenvalue of the coefficient A in the cell K, in such a way
that A(z)€ - € > a, i|€|? for all £ € R? and almost every = € K.

Finally, given any measurable set D C , and any integer s > 0, we respectively denote by | - |s,p and
| - |ls.0 the standard seminorm and norm in H*(D;R"), for £ € {1,d}. We also define H*(7z;R’) as the space
of piecewise R-valued H*® functions on the partition 7z, with the convention that H*(7z;R) is simply noted
H:(Ty).

6.2. Local approximation

Let m, k € N be given. Let K € Tg, and recall the definition (2.19) of the space U™*(K).

Lemma 6.1 (Approximation in U™*(K)). Let v € HY(K) and set g := —V - (AVv) in K. Assume that
g € H"Y(K) and that AVv € H* 1 (K;R%). Then, there exists 7" (v) € U™*(K) such that

HA1/2V<U B 7Tz’k(v)) Ho K S a;}? (H}?H|g|m+1,K + H§+1|AV11|HLK). (6.1)
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Proof. Define wj* (v) € U™*(K) such that
V. (Avng’“(u)) —TR(g) inK, AVAP ) -ng =Tk (AVv-ng) on dK. (6.2)

Since g = —V - (AVv), we easily check that (Il (g), 1)k + (I, (AVv-nk),1)ax = 0; hence, the data of the
Neumann problem (6.2) are compatible, and ﬂz’k(v) is well-defined (up to an additive constant). Multiplying

the first relation in (6.2) by w € H!(K), integrating by parts, and using the compatibility of the data, yields

(M (9), w) e + (W, (AV - k), w) o

(Aleng’k(v), Vw) B

— (T (g), w — Wy (w)) . + (T, (AVY - ), w — T (w)) . o
By definition of g, we also have
(AVo,Vw) e = (g, w)k + (AVv-ng,w)g
= (g,w—H?{(w))K—i- (AV%nK,w—H?{(w))aK. (6-4)
Subtracting (6.4) from (6.3), we obtain, for any w € H*(K),
(AV (v - W?’WU)),VU})K = (g — % (g),w — % (w)) . + (AVv-ng — % (AVv-ng),w— H%(w))aK.
(6.5)

Applying the Cauchy—Schwarz inequality together with a local Poincaré-Steklov inequality for the first term in
the right-hand side of (6.5), and the Cauchy—Schwarz inequality combined with a (continuous) trace inequality
and a local Poincaré-Steklov inequality for the second, we infer

(AV (o —7* ), Vo) < lg = TE@)lo.x il + [AV0 = T, (AV0) oo H uli ke, (66)

where we also used the fact that II% (AVv-ng) = HI}K (AVv) - nk since the mesh faces are planar, combined
with the fact that ng is unitary, to handle the boundary term. By definition of L2-orthogonal projectors, we
have

k _ : o - k
HAVu . (AV@)HO’BK = min AV = plo oy < HAW HK(AVU)HOT(?K. (6.7)

By standard approximation properties of L2-orthogonal projectors, we finally obtain from (6.6) and (6.7),

(AV (v — W}?’k(v)) ) Vw)

Sup K < HE P glmirx + HTAV O] .
weH' (K)\{0} wli, i
The conclusion follows choosing w = v — ﬂnKl’k(v), and since |w|] ; < ab—}(HAl/ZVwH?) - 0

Remark 6.2 (Case m = —1). Recall that P~}(K) := {0}. The result of Lemma 6.1 remains valid as it is in
the case m = —1 (for g € L?(K)). The proof needs just be slightly adapted with respect to the general case
m > 0. The interpolant 7~ (v) € U~1F(K) is defined as follows:

-V. (AVW;(LIC(’U)) =0 in K, AVﬂ';(l’k(”U) Ny = H?K (AVv - ng) (9,1)k on OK.

L
0K
The identity (6.5) becomes

(AV(U B 7T1;1,1@(1;)),Vw>1{ = (g,w — H%(w))K - ﬁ(g7 1) g (w — % (w), 1)8K

k 0
+ (AVv-ng — 1%, (AVv-ng),w— HK(w))aK'
The conclusion then follows from the same arguments, using in addition that % < Hpy under our mesh
regularity assumptions to handle the second term in the first line of the right-hand side.
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6.3. Energy-norm error estimate

Let m,k € N be given. We introduce, for any K € 7y, the (local, canomcal) interpolation operator Zg :
HY(K) — U™*(K) associated with the finite element (4.3) such that Zr = rx o S k. Using the definition (4.2)

of the reconstruction operator, as well as the definition of the reduction operator X, we infer that, for any
ve HY(K),

(AVZIk(v), V), = (AVv, V), Yw € U™ (K), (6.8a)
(Zx (v), ox = (v, ok (6.8b)

Hence, T (v) € U™F(K) is the (A-weighted) elliptic projection of v € H*(K) onto U™ (K). As such, it satisfies

|aw@-zc@)| = weﬂ%mHAWV(v ~w) - (6.9)

Theorem 6.3 (Energy-norm error estimate). Recall that u € HY(Q) is the unique solution to (2.2). Let uy €
U™F(Ty) ﬂH&’k(TH) denote either the (fully explicit) MHM solution (3.14) to Problem (3.15), or the MsHHO
solution (4.7) to Problem (4.6). Assume that f € H™1(Tg) and that AVu € H* T (Tg;RY). Then, we have

/3
|7V —un)| < ( > ok (HE 2 R+ HE V1AVl K)) . (6.10)
’ KeTy

Proof. First, by Theorem 5.1, we know that the fully explicit MHM and MsHHO solutions coincide for all
f € L*(Q). We consider here the characterization (4.8) of ug. Let Zpy : HY(Ty) — U™ (T) denote the global
interpolation operator such that, for all v € H'(Ty), Zr(v)|k := Ik (vk) for all K € Ty. Remark that, since

u € HH(Q), Iy (u) € U™F(Ty) ﬂﬁé’k(TH). By the triangle inequality, we split the discretization error as follows:

et <[tz ot ], o
The first term in the right-hand side of (6.11) is an approximation error, and is estimated using the optimality
property (6.9) combined with the local approximation properties in U™*(7g) of Lemma 6.1. Letting, for all
v e HY(Ty), 7" (v) € U™*(Ty) be the global interpolate such that ﬂg’k(v)“{ = 1k (vg) for all K € Ty, we
infer

HAI/sz(u—IH(u))HOQ = Zrlnirllc(T )HAI/QVH(u—wH)HOQ
) wyeU™ H )
< ||AY? . H
= H Vi (v =t @) (6.12)

1/

2(m—+2 2(k+1

§<Z a"K(H( Nk + HR YAV |k+1K>> .
KeTy

The second term in the right-hand side of (6.11) is the consistency error of the method, which satisfies, since

(T (w) —upr) € UYF (Tw) := U™ (Tor) 0 Hy M (Twr),

HA1/2VH(IH(u) _ “H)Hog =, mex (AVy (Zr(u) —un), Vo). (6.13)
’ VH 0 H)s

oo™
0,0

Let vy € Z/lg)” k(TH) be such that ||A1/2VH'UHHO o = L. Since ug solves (4.8), we infer

HA1/2VH”UH
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(AVH(IH(u) — uH),VHvH)Q = (AVuZu(u), Vave)g — (IGE(f),va)q
= (AVgZg(u), Vaor)g + (V- (AVu),vg)g + (f —HE(f) ve)g
= (AV y (Ty(u) — u),VHvH)Q + Z Z (AVug - ng p,vg)p
KeTy FeFk
+ (f =15 (f),vm)q
= Y (AVu-np, valr)p+ (f —TFH(), vn)g = T1 + Ta, (6.14)
FEFy

where we added and subtracted (f,vy)q and used the fact that f = =V - (AVu) in Q to pass from the first
to the second line, we performed cell-by-cell integration by parts to pass from the second to the third line, and
finally used the local orthogonality property (6.8a) as well as the fact that [AVu]r - ng = 0 for all F € Fit
as a consequence of the fact that AVwu € H(div,Q) N H(7z;R?) to pass from the third to the fourth line. To
estimate ¥1, we remark that, since vy € ﬁé’k(TH), H’;,([[UH]}F) =0 for all F € Fg. We thus have

= Y (AVu-np —T5(AVu-np), [og — T3 (0n)]F)
FeFpu

Z Z ((AVUKfl_[]E(AV’U,K)) 'nK,Fva*H(})?‘(UK)>F

KeTy FEFK

By two successive applications of the Cauchy—Schwarz inequality, we infer

1/2 1/2
2
T < ( " apicHic|[AVux — Tk, (AVu) | 8K> ( S oy Hy fJox — T, (vK)HjBK> .

KeThy KeTn

The first factor in the right-hand side is estimated using (6.7) and standard approximation properties of L2-
orthogonal projectors. The second factor is estimated by adding/subtracting I1% (vk ), using a triangle inequality
combined with the L?*(0K)-stability of IT%,_, and concluding by the use of a (continuous) trace inequality
combined with a local Poincaré—Steklov inequality. We obtain

1/2 1/2
%1 < ( Z a;;(H%kHNAVUﬁH,K) ( Z a'b,K|'UK%,K> :

KeTy KeTy

Recalling that HAl/sz”UHHOﬂ =1, and since ab7K|'UK|iK < HAl/zVUK||§,K7 we finally infer that

1/2
as(Z a,  Hy AV |k+1K> : (6.15)

KeTy
The term Ty is, in turn, easily estimated using the definition of the L2-orthogonal projection to write
Ty = (f —TH(f),ve — Wy (vr)) o

and invoking the Cauchy—Schwarz inequality, a local Poincaré—Steklov inequality, and standard approximation
properties of L2-orthogonal projectors to conclude. We obtain

/2 /2
T2 S ( Z a, m+2)|f|m+1 K> ( Z ab,K|UK|?,K>

KeTy KeTy

1/2
— 2(m—+2
S ( Z %,;(HK( )|f|72n+1,K> )

KeTy

(6.16)
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where we used again that HAI/ZVHvH ||0 o = 1 to pass from the first to the second line. Finally, plugging (6.15)—
(6.16)—(6.14)—(6.13) and (6.12) into (6.11) proves (6.10). O

Remark 6.4 (Case m = —1). We know from Remark 5.4 that the (fully explicit) MHM method for m = —1
coincides with the (fully explicit) MHM method for m = 0. As far as the MsHHO method is concerned, in the
case m = —1, one adopts the variant (5.1) of the method, and the a priori estimate of Theorem 6.3 remains
valid as is (for f € L?(Q)). The proof actually simplifies with respect to the general case m > 0, since the term
To can be discarded. The conclusion follows from Lemma 6.1 and Remark 6.2.

Remark 6.5 (Case m = k — 1). In the case m = k — 1, the result (6.10) (see Rem. 6.4 for the case k = 0
and m = —1) simplifies since |f|r,x < \/E|AVu|k+17K for all K € 7y. Under the sole assumption that
AVu € H*(Ty;RY), we then have

1/2

— 2(k+1

|87V (=) |2 ( 3 oy LHY >Avui+m> .
’ KeTy

In the MHM setting, when k& = 0 (then one can discard the contribution given by the operator T%), we obtain
an optimal error estimate under the sole assumption on the source term that f € L?(Q), which improves
on Corollary 4.2 of [3] where more regularity is needed.

Remark 6.6 (Link with previous results). In the MHM framework, the error estimate of Theorem 6.3 is
a refined version of Theorem 4.1 from [3] (for the original, semi-explicit MHM method), both in terms of
regularity assumptions and in terms of tracking of the dependency of the multiplicative constants with respect
to the diffusion coefficient. In the MsHHO framework, such an error estimate is new, and is complementary
to the homogenization-based error estimate of Theorem 5.6 from [14] (such a homogenization-based analysis is
also available in the MHM setting; cf. [44]). The a priori estimate of Theorem 5.6 from [14] is robust in highly
oscillatory diffusion regimes but is suboptimal for mildly varying diffusion. The present result fills this gap.

7. BASIS FUNCTIONS AND SOLUTION STRATEGIES

We address the decomposition of the MHM and MsHHO solutions in terms of multiscale basis functions
and highlight the impact of such a decomposition on the possible organization of the computations using an
offline-online strategy. Let £ > 1 be a given integer. In what follows, to keep the presentation simple, we consider
for a polynomial degree k on the faces the polynomial degree m := k — 1 > 0 in the cell, and, following our
convention, we simply write U*(K) in place of U*~1k¥(K) for all K € Ty. The key observation is that there
are two possible constructions of basis functions for the local space U*(K). Both sets of basis functions are
composed of cell-based and face-based functions. The construction of the two sets is however different. The
first construction, referred to as primal set, will prove to be relevant for the MHM method, whereas the second
construction, referred to as dual set, will prove to be relevant for the MsHHO method.

7.1. Basis functions

7.1.1. Polynomial basis functions

Let ¢ € N. We denote by nj the dimension of the vector space of l-variate polynomial functions of total
degree up to q. For any cell K € Ty, let {¢3’K}1gign3 be a basis of PY(K), and for any face F € Fg, let
{wg’F}léang,l be a basis of P4(F). With the choice of degree ¢ := k — 1 in the cell and degree ¢ := k on
the faces, we henceforth drop the corresponding superscripts in the polynomial basis functions to alleviate the
notation. For convenience, we assume that 1/){( = 1; this assumption will be useful in the MHM setting.



276 T. CHAUMONT-FRELET ET AL.

7.1.2. Primal basis functions

For K € Ty, we locally construct the set of primal basis functions for ¢*(K). Regarding the cell-based basis
functions, we set qSIl”K =1,and for all 2 < < ns_l, we define (,ZS?’K as the unique function in H'(K)* solving
the following well-posed Neumann problem:

~V - (AVPT) = pF — T (F) in K,

(7.1)
AVQZ)?’K ‘ng =0 on OK.

Concerning the face-based basis functions, for all F' € Fx and all 1 < j < n’;fl, we define gb%"f as the unique
function in H'(K)* solving the following well-posed Neumann problem:

1 .
—m(zbf,l)F in K,

AV ny p =1 on F'and AVeRY -ng,=0onoe Fg\{F}.

v (Aver) = (7.2)

Then, for all v € U*(K), setting
k—1
(i) =V - (AV) 1= g = gr1 + Donty gr.ibl € PF7Y(K) (recall that ¢ff = 1),

nk 1
(ii) AV ok - n = pr, € PH(Fr) with pg, p = Y,5" pp ol for all F € Fr,
(iii) O% (v) :=v% € PY(K),
with (9, 1)k + (trg,1)ox = 0, we have

k k—1
ng_q n

d
=kt > Y ueidRs + > gkl (7.3)

FeFx j=1 i=2

A set of global basis functions for the space U*(Tg) N V(Tg;div, Q) is given by

P K oo, I
(bi k—1 U ¢] 9
KeTy,1<i<ng™ FeFu,1<j<nk_,

where for each cell K € Ty,
O =0l and P |\ =0, (74)
for each interface ¥ C 0K, NOK_,

P k. = (nic, ponp)gRs

and for each boundary face F' C 0K N 02,

Tp,F K T, F
¢§-) |k = };‘,j and ¢? |Q\F:0~ (7.6)

and > loerox =0, (7.5)

Remark 7.1 (Link to lifting operators). Recall the local lifting operators T, Tj and their global counterparts
TN, T introduced in Section 3. For all K € 7y, one readily verifies that

= T(vl), O = TR(EF (). 0

where the first identity holds for all 2 < ¢ < n’;*l and the second identity holds for all F € Fx and all
1 <j <nk |, where E?X denotes the zero-extension operator from F' to dK. For the global basis functions,

we have ~ ~
I =T ERE), =T (B ). (7

where E denotes the zero-extension operator from K to 2, and E27# (W) lox = EZX(WF (nk r - np)) if
F € Fx and E}ZTH (ij) lor := 0 otherwise, for all K € 7.
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Remark 7.2 (Energy minimization). Consider the local energy functional Jr : H'(K) — R, such that
— %(AV@, V). Then, one can characterize qbf’K forall2 <i< n’;_l as follows:

o = arg Soeglli(r}{)i(JK(sﬁ) = (0 =T (), 9) ) (7.9)

and one can characterize qbp’ for all F € Fr and all 1 < j <nk | as follows:
pK _ : (. F o
P, =arg Jomin (JK(W) (Vi #) p+ |K| (¥i'1) L (e 1)K>, (7.10)
where we recall that H'(K)* := {ve HY(K) : (v,1)x = 0}.
7.1.3. Dual basis functions

For K € Ty, we locally construct the set of dual basis functions for /*(K). For this purpose, we rely on the
fact that the triple (K7 LI’“(K),fJK) is a finite element (see (4.3)). For all 1 < i < n%™' the cell-based basis

functions ¢?’K € U*(K) are obtained by requiring that
H’;gl(czﬁf’K) =yf, T, (¢>d K) =0, (7.11)

that is, we have o3 = i (K, 0)). Moreover, for all F € Fi and all 1 < j < nk_|, the face-based basis

K2

functions ¢& Fj K e U*(K) are obtained by requiring that
Ikt (qs%f) —o0, 1% (qui;f) —r, T (ﬁf) =0 for all o € Fx \ {F}, (7.12)

that is, we have ¢d’K =1 ((0, EZX (p1"))). Then, for all v € U*(K), setting
F.j F J

k—1
() Wi (v) 1= v = 378y wrcahf € PRH(E),
k
(i) O%. (v) := vr, € P*(Fg) with vr, | p = Z?i}l vpF for all F € Fg,

we have
”d 1
v = ZszqbdK—i— Z ZUFJ¢ . (7.13)
FeFk j=1
Notice that we also have v = ri (Ux ) where U = (vg, va) Ik<

A set of global basis functions for the space U*(Ty) N Hy™ (Ty) is given by

(i) {37} ra
KeTy 1<i<nk™! FeFiut 1<j<nk_,

where for each cell K € Ty,
O Ik = o™ and G |\ =0, (7.15)
and for each interface F C 0Ky NOK_,

;b’;l,F ‘ ¢)d K and QZ?’F |Q\m =0. (716)
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Remark 7.3 (Energy minimization). Recall the local energy functional Jx defined in Remark 7.2. Then, one
. d,K . k—1
can characterize ¢;"" for all 1 <i <n; " as follows:

qb?’K = arg min Jk(p), (7.17)
peHK
where HX := {v cHX . H?{l(v) = ’(/JZK} is a nonempty, convex, closed subset of the Hilbert space H¥ :=

{ve HY(K) : 1% _(v) =0}. This means that ¢?’K € H!(K) is obtained by solving the following saddle-point
problem with dual unknowns 7 € P*~1(K) and pf% € P¥(Fy) such that (vX,1)x + (1%, 1)ox = 0:

v. (AV(/)?’K) = 7K K, AV ng = ud% on 9K,

(2

- « i WK (7.18)
Iy <¢i’ ): i fo(d’i’ ):0'
Similarly, one can characterize (b%’? forall F € Fgandalll1 <j < n’j_l as follows:
d,K .
72 i=arg min J , 7.19
PF, gweng k() (7.19)
where ng = {v € HE : TTh(v) = wf} is a nonempty, convex, closed subset of the Hilbert space HE :=

{ve HY(K) : i (v) = 0 and TT¥ (v) = 0 Vo € F \ {F}}. This means that ¢§ € H'(K) is obtained by
solving the following saddle-point problem with dual unknowns 7{{ ;j € P*~1(K) and ,u?:{g € P*(Fk) such that
(7{«“{,3" 1)}( + (N%v 1)3}( =0

v - (aveE)

i (o)

71{57]» in K, AV¢%’§ ‘MK = u‘%{; on 0K,
0,

I, (¢§4§) — yF, - (¢§:§) =0 for all o € F \ {F}.
(7.20)
7.2. Offline-online strategy

In view of Section 7.1, primal basis functions, as they globally span U*(7y) N V(Ty;div, ), appear to
be naturally suited to the MHM framework. On the other hand, dual basis functions, as they globally span
UF(Ty) N ﬁé’k(TH), appear to be naturally suited to the MsHHO framework (c¢f. Rem. 5.2). In this section, we
detail how the MHM and MsHHO computations can be optimally organized using an offline-online strategy. This
type of organization of the computations is particularly relevant in a multi-query context, in which the solution
has to be computed for a large amount of data, so that it is crucial to pre-process as many data-independent
quantities as possible in an offline stage, while keeping the size of the online system to its minimum. We focus
in the sequel on the situation where many instances of the source term f are considered (we could also consider
the case of multiple boundary data).

7.2.1. The MHM case

By Remark 7.1, the (fully explicit) MHM solution u}f™ € U*(T) N V(Tx;div, Q) defined by (3.14) with
m :=k — 1, where the pair (u%, ) € P°(Tp) x A¥(97y) solves (3.15), writes

k k-1
Ng_1 ng
MHM __ 0 7p,.K op.F Tp,K
Ug = E ug ¢y + § E >\F,j¢j + § E K07, (7.21)
KeTy FeFy j=1 KeTy i=2

where 4% := U%IK = I (u}f™) for all K € Ty, Ap,; is defined, for all F € Fp, as the jth coefficient of Ay p on
the basis {’IZ)]F}1<j<n§ > and fx; stands for the ith coefficient of %1 (fx) on the basis {F} ;e o1 This

SJsng SISy
motivates the following offline-online decomposition of the computations:
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Offline stage: For each K € Ty:

(1) Compute the basis functions ¢P** from (7.1), for all i = 2, . k=L

(2) Compute the basis functions ¢} DI from (7.2), for all F e }"K and all j=1,...,nk .
Online stage:

k—1
(3) Compute the vector (fx 7’)}(617—1-1 ¢ by solving the local symmetric positive-definite (SPD) systems

1=1

forall j=1,... nkfl and all K € Ty;

(4) Compute the vectors (uf) xer, 2nd (A ]);;elfH i by solving the global saddle-point problem

Z Z )\F,j('(/}f71)F = _(fK71)K,

FeFk j=1

for all K € Ty, and (recall that ¢¥™ =1 and that ( F,K,, 1)K =0)

nk_, k 1
Z U(I)((wfj/a ) Z Z Z)\Fj(w g|K) — Z Zsz( %, ,) ,
KeTg KeTp FEFK j=1 KeTp i=2

forall j=1,...,n% | and all F’ € Fy with T := {K,,K_} if F/ € Fi# and Tpr == {K} if F' € Fppd;
(5) Form u}y™ using (7.21).

Remark 7.4 (Mono-query case). In a mono-query scenario, in which the solution to the discrete problem is
only needed for one (or a few) source term(s), one can advantageously consider an amended version of (7.21),
where the last term in the decomposition is simply replaced by T (H’;{l( f )) From a practical point of view,
the step (1) above can be bypassed, and replaced by solving, in between steps (3) and (4), Problem (7.1) for all
K € Ty with right-hand side 1% (fx) (in place of 1), whose solution is precisely T}, (H’;{l(fK)).

7.2.2. The MsHHO case
The solution uf° € U*(Ty) N HY*(Ty) to Problem (4.8) writes

”d 1
= Z“K1¢dK+ S upelt, (7.22)
KeTy =1 Fe]—‘mt j=1

where ug ; is defined as the ith coefficient of ug = II% («°) on the basis {WEY o1 forall K € Ty,
StENy K
and up; as the jth coefficient of up := II%(uH°) on the basis {wJF}lSan’;,l for all F € Fp (recall that

% (ulfi0) = 0 for all F' € FPd). This, combined with the equivalent formulation (4.9) of the MsHHO method,
and Remark 7.3 (recall, in particular, the notation introduced therein), motivates the following offline-online
decomposition of the computations:

Offline stage: For each K € Ty:

(1) Compute the basis functions (b?’K from (7.18), for all i = 1,. .. ,n};*l'

)
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(2) Compute the basis functions qﬁ‘},’f from (7.20), for all F € Fx and all j =1,...,nk .

Define

— the ng_l X ng L matrix GXXE | whose column 1 < i < ns_l is formed by the n’;_l coefficients of the

decomposition of 4/ € P*~1(K) on the basis {¢/}, .o, r-1;
SUSng

— for each F € Fg, the nﬁfl X n’;_l matrix GX¥, whose column 1 < j < n’;_l is formed by the n’;*l
coefficients of the decomposition of 77 ; € P¥~!(K) on the basis {¢Z—I(}1<i<nl[§—l;

— for each F' € Fg, the nd 1 X ns_l matrix MFE | whose column 1 < i < n’;_l is formed by the ng_l
coefficients of the decomposition of 19 |F € P*(F) on the basis {wJF}lSan’;,l;

— for each F,F' € Fi, the nk | x nk_ 1 matrix MF'F | whose column 1 < j< n’; | is formed by the n%_,
coefficients of the decomposition of qulF, € P*(F’) on the basis {1/) }1<]

/<nd 1!
(3) Invert the matrix GXX.
Online stage:

(4) Compute the vectors (f ) ez, = (fk, l)lKElTH na by solving the local SPD systems

k—1
g

S Frea (B 05) o = (Fre k)
=1

for all j = 1,...,715_17 and all K € Ty;

(5) Compute the vectors (UF)FG}-};M (UFJ)] 1,...,nk

FeFipt

Z Z (MF'F _MFK [GKK] _1GKF)UF _ Z MEF' K [GKK]_lfIO

KeTp FeFgnFint KeTp

by solving the global SPD problem

for all F/ € Fint;
i=1

k—1
(6) Reconstruct locally the vectors (ux)gcr, = (uK,i)Ke’j—;nd : for all K € Ty,

ug = [GKK]_l Fr— Z GKFup |,

FeFrnFipt

(7) Form u4'° using (7.22).
7.2.8. Purely face-based MsHHO method

Using the (primal-dual) local set of basis functions for U*(K), K € Tg, introduced in Section 4.1 of [14] (but
not fully exploited therein), the MsHHO method can be alternatively defined as a purely face-based method,
i.e., without using cell unknowns. To see this, let K € Ty, and recall the local energy functional Jx defined in
Remark 7.2. Define ¢ZK forall1 <i< n’;*l as follows:

¢ = arg min, (Jx (@) — (VE.0) ). (7.23)

where the space H¥ is defined in Remark 7.3. Equivalently, ¢ € H!

(K) is obtained by solving the following
saddle-point problem with dual unknown u¢* € P¥(Fg) such that (wK 1

)i+ (1770 1) oy = 0

{ -V (AVeE) =9 in K, AV ng =p?% on 0K,

K2

7.24
1% (6F) =o0. (724
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Similarly, define gbﬁf,j forall F € Fgandalll <j < n’;_l as follows:

Op; = arg min Jx(p), (7.25)

K
weHE ;

where ng = {ve Hff : Tj(v) =¢f} as in Remark 7.3, but now we set Hf = {v € H'(K) : Ili(v) =
0 VoeFx\{F }} Equivalently, ¢ . ; €H 1(K) is obtained by solving the following saddle-point problem with

dual unknown u e P*(Fr) such that (/LF] , 1) =0:
{ -V (AV¢E,) =0 in K, AV¢p, ngx=up on oK, (7.26)
Iy (o5 ) = ¥F, E(¢f ) =0 for all o € F \ {F}. '
For all v € U*(K), setting
nk*l
(i) =V - (AVv) :=gr = 3200 graf € PFH(E),
k
(i) 1% (v) := vr, € P*(Fk) with vz, p = Z?;l vpf for all F € Fg,
we then have
"d 1
v = Z gt + D D vpsol . (7.27)
FeFk j=1

As we did for the dual set of basis functions in (7.14)—(7.15)—(7.16), we can easily construct a set of global basis
functions {¢ZK}K€TH71§ZS”ZA u {¢5}Fe]:}_?t7lgjgn§71 for the space U*(Ty) N Hy™ (Ty). The solution ufi© e

Uk (Tg) N ﬁék(TH) to Problem (4.8) then writes

”d 1
= fomﬁ + ) ZUF,J%, (7.28)
KeTy i=1 FeFint j=1

where fx; is defined as the ith coefficient of H’;{l(fK) on the basis {¢{(}1<i<nl{z—l for any K € Ty, and up,; as

the jth coefficient of up := IT% (uH°) on the basis {wJF}lSanf};l for any F' € FI*. The new decomposition (7.28)
leads to a simplification of the offline-online solution strategy. In the offline stage, the static condensation step
(3) can be bypassed. Also, the steps (1) and (2), which consist in solving saddle-point problems of the form (7.24)
and (7.26), are a bit less expensive than before, as the number of Lagrange multipliers is decreased. In the online
stage, the reconstruction step (6) can be bypassed, and the global problem to solve in the step (5) simplifies to

finding (UF)Fe}'gt = (Up’j)‘;elj__ml 4=1 such that

Yo > MTup=- 3 MUEfL, (7.29)

KeTg Fe]—'Kﬁ}'}}“ KeTg
for all F/ € Fint,

Remark 7.5 (Mono-query case). The purely face-based version of the MsHHO method is particularly suited
to the mono-query context. In that case, the step (1) can be bypassed, and replaced by solving, in between steps
(4) and (5), Problem (7.24) for all K € Ty with right-hand side TI% ' (fx) (in place of 1), whose solution
is denoted qufK. Letting u?fj be the corresponding dual unknown, one must then replace in (7.29) the vector

MF/KfK by the vector /J’?;I:,F’ € R™i-1 formed by the coefficients of the decomposition of M?II:IF’ € PE(F’) on
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TABLE 1. Comparison of MHM and MsHHO on the main computational aspects.

MHM Offline  Local SPD systems nfl_l —1+nk_,ns problems per cell
Online  Global saddle-point problem  #7x + nk_,#Fx unknowns

MsHHO Offline Local saddle-point systems nffl +nk_ns problems per cell
Online  Global SPD problem nk_ #F2* unknowns

the basis {¢f/}1§j§n’;_1~ The MsHHO solution is now given by

k

ng_1
W= ) dfet DL D umdy (7.30)
KeTy FeFpt j=1

in place of (7.28).

7.2.4. Summary

Table 1 summarizes the main computational aspects, in a multi-query context, for both the (fully explicit)
MHM and MsHHO methods based on U*(75), k > 1, in both the offline and online stages, so as to provide to
the reader a one-glance comparison of the two methods. For simplicity, we assume that all the mesh cells have
the same number of faces, denoted by ng.

The offline stage is of course performed once and for all, independently of the data (here, the source term).
In practice, for both methods, the approximation of the local problems can be computationally costly, but the
fact that all the problems are local makes of the offline stage an embarassingly parallel task. The offline stage
can hence naturally benefit from parallel architectures. In the online stage, the linear systems to solve (for the
different data) only attach unknowns to the coarse mesh at hand, hence the computational burden remains
limited.

Remark 7.6 (Other boundary conditions). The MHM and MsHHO methods easily adapt to the case of (non-
homogeneous) mixed Dirichlet-Neumann boundary conditions. If 75 U Fy forms a (disjoint) partition of Fgrd

into, respectively, Dirichlet and Neumann boundary faces, then the size of the online linear systems in the MHM
method becomes #7 + nk_ | #(FHt U FL), whereas that for the MsHHO method becomes nk_ | #(Finty FN).

Remark 7.7 (Second-level discretization and equivalence between two-level methods). Let Sp, denote a match-
ing simplicial submesh of Ty of size h < H (S}, can for example be obtained by further refining Sy from
Sect. 6.1). Consider, locally to any K € Ty, a discretization of the second-level (Neumann) problems in the
space U™k (K}) ﬂﬁl’k(Kh), where Ky, := {T'}res, rck- Then, using similar arguments as in the one-level case,
one can prove the equivalence between the two-level MHM and MsHHO methods. Simple cases exist in which
closed formulas for the second-level basis functions are available. For instance, if T' € K}, is a simplex and A is
a constant matrix, we may cite the case m = —1 and k = 0 for the MsHHO method where Y ~+%(T) = P}(T), or
the case m = 0 and k = 0 for the MHM/MsHHO methods where U%°(T') corresponds to a proper subspace of
P2(T) if A7 is isotropic (see [31]). Unfortunately, in general, even if T' € K, is assumed to be a simplex and A|r
to be constant, closed-form expressions for basis functions in &/ ’”’k(T) are not known. To recover equivalence for
ready-to-use methods, one possibility is to write an HHO discretization of the second-level problems (as in [15])
and make the corresponding two-level MHM and MsHHO solutions coincide. In that case, the zero-jump con-
dition on the normal flux at interfaces is imposed on a stabilized version of the normal flux (see [27] for an
example in the HDG setting). Notice that the subcells need not necessarily be simplices. It is also possible, at
the price of equivalence, to preserve two-level H (div,2)-conformity on the exact flux. This is the case in the
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MHM context as soon as a mixed method is used to approximate the second-level problems; see [23] (¢f. also
[48] for a similar idea in the context of mixed finite elements).

8. CONCLUSION

Although they originate from entirely different constructions, we have proved that the one-level (original)
semi-explicit MHM method and the one-level MsHHO method provide the same numerical solution when the
source term is piecewise polynomial on the (coarse) mesh, and this is also the case for the fully explicit MHM
method and the MsHHO method for any source term in L?(92). As a byproduct, we have proposed a unified
convergence analysis, as well as improved versions of the two methods. More precisely, we have introduced a
version of the MHM method that is prompt to be used in a multi-query context, and a version of the MsHHO
method that only uses face unknowns.
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