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BRIDGING THE MULTISCALE HYBRID-MIXED AND MULTISCALE HYBRID
HIGH-ORDER METHODS

Théophile Chaumont-Frelet1, Alexandre Ern2,3, Simon Lemaire4,*

and Frédéric Valentin5,1

Abstract. We establish the equivalence between the Multiscale Hybrid-Mixed (MHM) and the Multi-
scale Hybrid High-Order (MsHHO) methods for a variable diffusion problem with piecewise polynomial
source term. Under the idealized assumption that the local problems defining the multiscale basis func-
tions are exactly solved, we prove that the equivalence holds for general polytopal (coarse) meshes and
arbitrary approximation orders. We also leverage the interchange of properties to perform a unified
convergence analysis, as well as to improve on both methods.
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1. Introduction

The tremendous development of massively parallel architectures in the last decade has led to a revision
of what is expected from computational simulators, which must embed asynchronous and communication-
avoiding algorithms. In such a scenario where precision and robustness remain fundamental properties, but
algorithms must take full advantage of the new architectures, numerical methods built upon the “divide-and-
conquer” philosophy fulfill these requirements better than standard methods operating in a monolithic fashion
on the different scales of the problem at hand. Among the vast literature on the subject, driven by domain
decomposition methodologies (see, e.g., [46] for a survey), multiscale numerical methods emerge as an attractive
option to efficiently handle problems with highly heterogeneous coefficients, as well as multi-query scenarios in
which the problem solution must be computed for a large number of source terms. These scenarios may arise
when considering highly oscillatory, nonlinear, time-dependent models, or within optimization algorithms when
solving problems featuring PDE-based constraints, or in models including stochastic processes, to cite a few.

The development of multiscale methods started with the seminal work [6]. Important advances were then
provided in [37, 38] (cf. also [9, 10], and the unifying viewpoint of [11]) and in [34, 35], laying the ground,
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respectively, for the Variational Multiscale method, and for the Multiscale Finite Element (MsFE) method.
Overall, the common idea behind these multiscale methods is to consider basis functions especially designed
so as to upscale to an overlying coarse mesh the sub-mesh variations of the model. Particularly appealing is
the fact that the multiscale basis functions are defined by entirely independent problems. From this viewpoint,
multiscale numerical methods may also be seen as a (non-iterative) domain decomposition technique [29]. Since
the pioneering works on multiscale methods, a large number of improvements and new approaches have been
proposed. In the MsFE context (see [24] for a survey), one can cite the oversampling technique of [25], as well
as the Petrov–Galerkin variant of [36] (see also [2]), or the high-order method of [1] (see also [33]). More recent
research directions focus on reducing and possibly eliminating the cell resonance error. In this vein, one can cite
the Generalized MsFE method [26], or the Local Orthogonal Decomposition approach [32, 42]. Hybridization
has also been investigated in the pioneering work [5] on multiscale mortar mixed finite element methods (see
also the multiscale mortar multipoint flux mixed finite element method of [50]). These ideas have been adapted
later on in the context of (multiscale) Discontinuous Galerkin methods, leading to the Multiscale Hybridizable
Discontinuous Galerkin (MsHDG) method of [27] (cf. also the multiscale Weak Galerkin method of [43], devised
along the same principles in the spirit of the Generalized MsFE method). Interestingly, this latter approach
enables to relax the constraints between the mortar space and the polynomial spaces used in the mesh cells.

Recently, two families of hybrid multiscale numerical methods that are applicable on general meshes have
been proposed, namely the Multiscale Hybrid-Mixed (MHM) and the Multiscale Hybrid High-Order (MsHHO)
methods. The MHM method has been first introduced in [31], and further analyzed in [3, 7, 44] (see also [30]
for an abstract setting), whereas the MsHHO method has been proposed in [14, 15], as an extension of the
HHO method first introduced in [20,22] (cf. also [21]). The MHM method relates to the mixed multiscale finite
element method proposed in [13], as well as to the subgrid upscaling method of [4] (see [30], Sect. 5.1.2 for further
details). The MsHHO method generalizes to arbitrary polynomial orders the low-order nonconforming multiscale
methods of [39, 40]. The polynomial unknowns attached to the mesh interfaces in the MsHHO method play a
different role with respect to the (coarse) interface unknowns of the MsHDG method of [27]. The fundamental
difference between these two approaches is that the MsHDG method is based on local Dirichlet problems (the
interface unknowns are then the traces of the solution), whereas the MsHHO method is based on local Neumann
problems (the interface unknowns are then the coarse moments of the traces of the solution). Notice that the
MHM method is also based on local Neumann problems. Similar ideas have been developed in the conforming
framework in the context of BEM-based FEM [17,49].

The MHM and MsHHO methods substantially differ in their construction. Picking the Poisson equation as an
example, the MHM method hinges on the primal hybrid formulation analyzed in [45]. As a consequence, while
the local problems are defined as coercive Neumann problems, the global upscaled linear system is of saddle-
point type, involving face unknowns that are the normal fluxes through the mesh faces (also the Neumann
data for the local problems, up to the sign), plus one degree of freedom per mesh cell that enforces a local
balance between the normal fluxes and the source term. Notice that the (global) saddle-point structure of the
MHM method can be equivalently replaced by a sequence of positive-definite linear systems as shown recently
in [41]. On the other hand, the MsHHO method is directly built upon the primal formulation of the problem.
As a consequence, the local (Neumann) problems are defined as constrained minimization problems, and as
such exhibit a saddle-point structure. On the contrary, the global upscaled linear system is coercive, and only
involves face unknowns that are the coarse moments of the traces of the solution at interfaces. Notice that, as
opposed to the MHM method, the MsHHO method also uses cell unknowns (that are locally eliminable from the
global upscaled linear system), which are associated with basis functions solving local problems with nonzero
source terms. As such, the MsHHO method is naturally suited to deal with multi-query scenarios.

In this work, we revisit the MHM and MsHHO methods and we prove an equivalence result between their
solutions. Notice that such a relationship is not straightforward since, at first glance, the two methods exhibit
structures that are genuinely different. Nonetheless, we demonstrate that such an equivalence holds under the
assumption that the source term of the continuous problem is piecewise polynomial (cf. Thm. 5.1). For this
equivalence to hold, we make the idealized assumption that the local problems defining the multiscale basis
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functions are exactly solved. The corresponding methods are then referred to as one-level (cf. Rem. 7.7 for some
insight on the equivalence between two-level methods). Leveraging this equivalence result, the present work
also contributes to derive, in a unified fashion, an energy-norm error estimate that is valid for both methods
(cf. Thm. 6.3). More specifically,

– in the MHM framework, this result is a refined version (especially in the tracking of the dependency with
respect to the diffusion coefficient) of the results in [3];

– in the MsHHO framework, this result is new and is complementary to the homogenization-based error
estimate derived in [14].

We also explore these stimulating results to transfer properties proved for one method to the other, and to
reveal how the interplay between the methods can drive advances for both. Notably, we show that

– the MHM method can be adapted to deal with multi-query scenarios (cf. Sect. 7.2.1);
– the MsHHO method can be recast as a purely face-based method, in the sense that it can be alternatively

defined without using cell unknowns (cf. Sect. 7.2.3).

The outline of the article is as follows. Section 2 introduces the model problem, the partition, the notation and
a number of useful tools. We present the MHM method in Section 3, and the MsHHO method in Section 4. The
equivalence result is stated in Section 5, along with some further properties and remarks. The energy-norm error
estimate is proved in Section 6. The solution strategies for both methods are discussed in Section 7, leveraging
the equivalence result at hand to propose enhancements for both methods. Finally, some conclusions are drawn
in Section 8.

2. Setting

In this section, we present the setting, introduce the partition, and define useful broken spaces on this
partition.

2.1. Model problem

We consider an open polytopal domain Ω ⊂ R𝑑, 𝑑 = 2 or 3, with boundary 𝜕Ω. Given 𝑓 : Ω → R, we seek a
function 𝑢 : Ω → R such that {︂−∇ · (A∇𝑢) = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω.
(2.1)

We assume that the diffusion coefficient A ∈ 𝐿∞(Ω; R𝑑×𝑑) is symmetric and uniformly elliptic, and that the
source term 𝑓 is in 𝐿2(Ω). Problem (2.1) admits the following weak form: find 𝑢 ∈ 𝐻1

0 (Ω) such that

(A∇𝑢,∇𝑣)Ω = (𝑓, 𝑣)Ω for all 𝑣 ∈ 𝐻1
0 (Ω), (2.2)

where (·, ·)𝐷 denotes the 𝐿2(𝐷; Rℓ), ℓ ∈ {1, 𝑑}, inner product for any measurable set 𝐷 ⊂ Ω. It is well-established
that Problem (2.2) admits a unique solution.

2.2. Partition

The domain Ω is partitioned into a (coarse) mesh 𝒯𝐻 , that consists of polytopal (open) cells 𝐾 with diameter
𝐻𝐾 , and we set 𝐻 := max𝐾∈𝒯𝐻

𝐻𝐾 . In practice, both the MHM and MsHHO methods consider a fine submesh
(characterized by a mesh-size ℎ ≪ 𝐻) to compute the local basis functions, but this finer mesh is not needed
in the present discussion since we will assume that the local problems defining the basis functions are exactly
solved. The mesh faces 𝐹 of 𝒯𝐻 are collected in the set ℱ𝐻 , and this set is partitioned into the subset of internal
faces (or interfaces) ℱ int

𝐻 and the subset of boundary faces ℱbnd
𝐻 . The mesh faces are defined to be planar, i.e.,
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every mesh face 𝐹 ∈ ℱ𝐻 is supported by an affine hyperplane ℋ𝐹 (recall that the mesh cells have planar faces
since they are polytopes). For an interface 𝐹 ∈ ℱ int

𝐻 , we have

𝐹 = 𝜕𝐾+ ∩ 𝜕𝐾− ∩ℋ𝐹 , (2.3)

for two cells 𝐾± ∈ 𝒯𝐻 ; for a boundary face 𝐹 ∈ ℱbnd
𝐻 , we have

𝐹 = 𝜕𝐾 ∩ 𝜕Ω ∩ℋ𝐹 , (2.4)

for one cell 𝐾 ∈ 𝒯𝐻 . We denote by 𝜕𝒯𝐻 the skeleton of the mesh 𝒯𝐻 , defined by 𝜕𝒯𝐻 :=
⋃︀

𝐾∈𝒯𝐻
{𝜕𝐾}. Given

𝐾 ∈ 𝒯𝐻 , we denote by ℱ𝐾 the set of its faces, and by 𝑛𝐾 the unit outward-pointing vector normal to its
boundary (whose restriction to the face 𝐹 ∈ ℱ𝐾 is the constant vector denoted by 𝑛𝐾,𝐹 ). We associate with
each face 𝐹 ∈ ℱ𝐻 a unit normal vector 𝑛𝐹 whose orientation is fixed, with the convention that 𝑛𝐹 := 𝑛Ω|𝐹 if
𝐹 ∈ ℱbnd

𝐻 , where 𝑛Ω is the unit outward-pointing vector normal to 𝜕Ω.

Remark 2.1 (On the notion of face). Some minor variations are encountered in the literature regarding the
notion of face in a polytopal mesh, depending on whether the faces are required or not to be planar, and whether
they are genuinely or only loosely defined. In the (polytopal) Discontinuous Galerkin literature [12, 19], faces
are (genuinely) defined by 𝐹 = 𝜕𝐾+ ∩ 𝜕𝐾− (or 𝐹 = 𝜕𝐾 ∩ 𝜕Ω), thus allowing for nonplanarity. In the HHO
literature, faces are always required to be planar, so that one can define a constant normal vector 𝑛𝐹 to every
face 𝐹 ∈ ℱ𝐻 . Variations however exist on how to define them. In the original work [22] on HHO methods, faces
are defined loosely by 𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾− ∩ℋ𝐹 (or 𝐹 ⊆ 𝜕𝐾 ∩ 𝜕Ω ∩ℋ𝐹 ); on the contrary, in Section 1.2.1 of [16]
and in the present work, faces are genuinely defined by 𝐹 = 𝜕𝐾+ ∩ 𝜕𝐾− ∩ℋ𝐹 (or 𝐹 = 𝜕𝐾 ∩ 𝜕Ω∩ℋ𝐹 ). Notice
that the latter (genuine) definition, as opposed to the loose one, does not allow for the case of several coplanar
faces that would be shared by two cells (or a cell and the boundary). It is however more precise, which is the
reason why we have chosen to adopt it in this work. Remark also that, as opposed to the one in [22] (or in [18],
Def. 1.4), the present definition does not require explicitly that faces are connected sets. Of course, the methods
we study here are also applicable under the setting of [22].

2.3. Infinite-dimensional broken spaces

We first define the broken space of piecewise smooth functions on 𝒯𝐻 :

𝐻1(𝒯𝐻) :=
{︀
𝑣 ∈ 𝐿2(Ω) : 𝑣𝐾 ∈ 𝐻1(𝐾) ∀𝐾 ∈ 𝒯𝐻

}︀
, (2.5)

where we let 𝑣𝐷 := 𝑣|𝐷. For any 𝑣 ∈ 𝐻1(𝒯𝐻), we define the jump J𝑣K𝐹 of 𝑣 across 𝐹 ∈ ℱ𝐻 by

J𝑣K𝐹 := 𝑣𝐾+|𝐹 (𝑛𝐾+,𝐹 · 𝑛𝐹 ) + 𝑣𝐾−|𝐹 (𝑛𝐾−,𝐹 · 𝑛𝐹 ) (2.6)

if 𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾− is an interface, and simply by

J𝑣K𝐹 := 𝑣𝐾|𝐹 (2.7)

if 𝐹 ⊆ 𝜕𝐾 ∩ 𝜕Ω is a boundary face. We also define the broken gradient operator ∇𝐻 : 𝐻1(𝒯𝐻) → 𝐿2(Ω; R𝑑)
such that, for any 𝑣 ∈ 𝐻1(𝒯𝐻),

(∇𝐻𝑣)|𝐾 := ∇𝑣𝐾 for all 𝐾 ∈ 𝒯𝐻 . (2.8)

We next introduce the space of piecewise smooth functions on 𝒯𝐻 whose broken (weighted) flux belongs to
𝐻(div,Ω):

𝒱(𝒯𝐻 ; div,Ω) :=
{︀
𝑣 ∈ 𝐻1(𝒯𝐻) : A∇𝐻𝑣 ∈ 𝐻(div,Ω)

}︀
. (2.9)

We will see below that the MHM and MsHHO methods produce a discrete solution that sits in the space
𝒱(𝒯𝐻 ; div,Ω); notice that 𝒱(𝒯𝐻 ; div,Ω) ⊂ 𝐻1(𝒯𝐻) ̸⊂ 𝐻1(Ω). We now define the two “skeletal” spaces

Σ0(𝜕𝒯𝐻) :=

{︃
𝑧 := (𝑧𝜕𝐾)𝐾∈𝒯𝐻

∈
∏︁

𝐾∈𝒯𝐻

𝐻1/2(𝜕𝐾)
⃒⃒⃒⃒
∃𝑤(𝑧) ∈ 𝐻1

0 (Ω) s.t.
𝑧𝜕𝐾 = 𝑤𝐾(𝑧)|𝜕𝐾 ∀𝐾 ∈ 𝒯𝐻

}︃
, (2.10)
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and

Λ(𝜕𝒯𝐻) :=

{︃
𝜇 := (𝜇𝜕𝐾)𝐾∈𝒯𝐻

∈
∏︁

𝐾∈𝒯𝐻

𝐻−1/2(𝜕𝐾)
⃒⃒⃒⃒
∃𝜎(𝜇) ∈ 𝐻(div,Ω) s.t.
𝜇𝜕𝐾 = 𝜎𝐾(𝜇)|𝜕𝐾 · 𝑛𝐾 ∀𝐾 ∈ 𝒯𝐻

}︃
. (2.11)

(Recall that the subscript 𝐾 refers to the restriction to 𝐾.) Letting ⟨·, ·⟩𝜕𝐾 stand for the duality pairing
between 𝐻−1/2(𝜕𝐾) and 𝐻1/2(𝜕𝐾), we define the following pairing, for all 𝜇 ∈

∏︀
𝐾∈𝒯𝐻

𝐻−1/2(𝜕𝐾) and all
𝑧 ∈

∏︀
𝐾∈𝒯𝐻

𝐻1/2(𝜕𝐾),

⟨𝜇, 𝑧⟩𝜕𝒯𝐻
:=

∑︁
𝐾∈𝒯𝐻

⟨𝜇𝜕𝐾 , 𝑧𝜕𝐾⟩𝜕𝐾 , (2.12)

so that for all 𝜇 ∈ Λ(𝜕𝒯𝐻) and all 𝑧 ∈ Σ0(𝜕𝒯𝐻), recalling that 𝜎(𝜇) ∈ 𝐻(div,Ω) and 𝑤(𝑧) ∈ 𝐻1
0 (Ω), we have

⟨𝜇, 𝑧⟩𝜕𝒯𝐻
=
∑︁

𝐾∈𝒯𝐻

(︁
(∇ · 𝜎(𝜇), 𝑤(𝑧))𝐾 + (𝜎(𝜇),∇𝑤(𝑧))𝐾

)︁
= 0. (2.13)

2.4. Finite-dimensional broken spaces

Let 𝑞 ∈ N denote a given polynomial degree. The space of piecewise (𝑑-variate) polynomial functions on 𝒯𝐻

of total degree up to 𝑞 is denoted by

P𝑞(𝒯𝐻) :=
{︀
𝑣 ∈ 𝐿2(Ω) : 𝑣𝐾 ∈ P𝑞(𝐾) ∀𝐾 ∈ 𝒯𝐻

}︀
, (2.14)

whereas the space of piecewise ((𝑑− 1)-variate) polynomial functions on ℱ𝐻 of total degree up to 𝑞 is denoted
by

P𝑞(ℱ𝐻) :=

{︃
𝑣 ∈ 𝐿2

(︃ ⋃︁
𝐹∈ℱ𝐻

𝐹

)︃
: 𝑣𝐹 ∈ P𝑞(𝐹 ) ∀𝐹 ∈ ℱ𝐻

}︃
, (2.15)

and its subset incorporating homogeneous boundary conditions by

P𝑞
0(ℱ𝐻) :=

{︀
𝑣 ∈ P𝑞(ℱ𝐻) : 𝑣𝐹 = 0 ∀𝐹 ∈ ℱbnd

𝐻

}︀
. (2.16)

For all 𝐾 ∈ 𝒯𝐻 , we also define the local space of piecewise ((𝑑−1)-variate) polynomial functions on ℱ𝐾 of total
degree up to 𝑞 as follows:

P𝑞(ℱ𝐾) :=
{︀
𝑣 ∈ 𝐿2(𝜕𝐾) : 𝑣𝐹 ∈ P𝑞(𝐹 ) ∀𝐹 ∈ ℱ𝐾

}︀
. (2.17)

We consider the following finite-dimensional proper subspace of Λ(𝜕𝒯𝐻):

Λ𝑞(𝜕𝒯𝐻) := {𝜇 ∈ Λ(𝜕𝒯𝐻) : 𝜇𝜕𝐾 ∈ P𝑞(ℱ𝐾) ∀𝐾 ∈ 𝒯𝐻}. (2.18)

Notice that for every interface 𝐹 ∈ ℱ int
𝐻 with 𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾−, as a consequence of (2.13), we have 𝜇𝜕𝐾+|𝐹 +

𝜇𝜕𝐾−|𝐹 = 0 for all 𝜇 ∈ Λ𝑞(𝜕𝒯𝐻). We also define, for any integer 𝑚 ≥ 0, the spaces{︃
𝒰𝑚,𝑞(𝐾) :=

{︀
𝑣 ∈ 𝐻1(𝐾) : ∇ · (A∇𝑣) ∈ P𝑚(𝐾), A∇𝑣|𝜕𝐾 · 𝑛𝐾 ∈ P𝑞(ℱ𝐾)

}︀
, ∀𝐾 ∈ 𝒯𝐻 ,

𝒰𝑚,𝑞(𝒯𝐻) :=
{︀
𝑣 ∈ 𝐻1(𝒯𝐻) : 𝑣𝐾 ∈ 𝒰𝑚,𝑞(𝐾) ∀𝐾 ∈ 𝒯𝐻

}︀
.

(2.19)

To alleviate the notation, we shall drop the superscript 𝑚 when considering 𝑚 = 𝑞 − 1 for 𝑞 ≥ 1, and write
𝒰𝑞(𝐾) and 𝒰𝑞(𝒯𝐻) in place of 𝒰𝑞−1,𝑞(𝐾) and 𝒰𝑞−1,𝑞(𝒯𝐻), respectively.

We finally introduce the space of “weakly 𝐻1
0 (Ω)” functions on 𝒯𝐻 :̃︀𝐻1,𝑞

0 (𝒯𝐻) :=
{︀
𝑣 ∈ 𝐻1(𝒯𝐻) : (J𝑣K𝐹 , 𝑝)𝐹 = 0 ∀ 𝑝 ∈ P𝑞(𝐹 ), ∀𝐹 ∈ ℱ𝐻

}︀
. (2.20)

Equivalently, we have ̃︀𝐻1,𝑞
0 (𝒯𝐻) =

{︀
𝑣 ∈ 𝐻1(𝒯𝐻) : ⟨𝜇, 𝑣⟩𝜕𝒯𝐻

= 0 ∀𝜇 ∈ Λ𝑞(𝜕𝒯𝐻)
}︀
. (2.21)
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3. The MHM method

Let us first set {︃
𝐻1(𝐾)⊥ :=

{︀
𝑣 ∈ 𝐻1(𝐾) : (𝑣, 1)𝐾 = 0

}︀
, ∀𝐾 ∈ 𝒯𝐻 ,

𝐻1(𝒯𝐻)⊥ :=
{︀
𝑣 ∈ 𝐻1(𝒯𝐻) : (𝑣𝐾 , 1)𝐾 = 0 ∀𝐾 ∈ 𝒯𝐻

}︀
.

(3.1)

For integers 𝑚, 𝑞 ∈ N, we also define the subspaces 𝒰𝑚,𝑞(𝐾)⊥ := {𝑣 ∈ 𝒰𝑚,𝑞(𝐾) : (𝑣, 1)𝐾 = 0} for all 𝐾 ∈ 𝒯𝐻

and 𝒰𝑚,𝑞(𝒯𝐻)⊥ := {𝑣 ∈ 𝒰𝑚,𝑞(𝒯𝐻) : (𝑣𝐾 , 1)𝐾 = 0 ∀𝐾 ∈ 𝒯𝐻}.
Let 𝐾 ∈ 𝒯𝐻 , and consider the two local operators

𝑇 n
𝐾 : 𝐻− 1

2 (𝜕𝐾) → 𝐻1(𝐾)⊥, 𝑇 s
𝐾 : 𝐿2(𝐾) → 𝐻1(𝐾)⊥. (3.2)

For all 𝜇𝜕𝐾 ∈ 𝐻− 1
2 (𝜕𝐾) and all 𝑔𝐾 ∈ 𝐿2(𝐾), 𝑇 n

𝐾(𝜇𝜕𝐾) and 𝑇 s
𝐾(𝑔𝐾) are the unique elements in 𝐻1(𝐾)⊥ such

that {︂
(A∇𝑇 n

𝐾(𝜇𝜕𝐾),∇𝑣)𝐾 = ⟨𝜇𝜕𝐾 , 𝑣⟩𝜕𝐾 ,

(A∇𝑇 s
𝐾(𝑔𝐾),∇𝑣)𝐾 = (𝑔𝐾 , 𝑣)𝐾 ,

∀𝑣 ∈ 𝐻1(𝐾)⊥. (3.3)

The superscripts in the operators indicate that 𝑇 n
𝐾 lifts a (Neumann) normal flux and 𝑇 s

𝐾 lifts a source term.
Elementary arguments show that

−∇ · (A∇𝑇 n
𝐾(𝜇𝜕𝐾)) = − 1

|𝐾|
⟨𝜇𝜕𝐾 , 1⟩𝜕𝐾 in 𝐾, A∇𝑇 n

𝐾(𝜇𝜕𝐾) · 𝑛𝐾 = 𝜇𝜕𝐾 on 𝜕𝐾, (3.4a)

−∇ · (A∇𝑇 s
𝐾(𝑔𝐾)) = 𝑔𝐾 − 1

|𝐾|
(𝑔𝐾 , 1)𝐾 in 𝐾, A∇𝑇 s

𝐾(𝑔𝐾) · 𝑛𝐾 = 0 on 𝜕𝐾. (3.4b)

It is convenient to define the following global versions of the above lifting operators:

𝑇 n : Λ(𝜕𝒯𝐻) → 𝐻1(𝒯𝐻)⊥, 𝑇 s : 𝐿2(Ω) → 𝐻1(𝒯𝐻)⊥. (3.5)

For all 𝜇 ∈ Λ(𝜕𝒯𝐻) and all 𝑔 ∈ 𝐿2(Ω), we set

𝑇 n(𝜇)|𝐾 := 𝑇 n
𝐾(𝜇𝜕𝐾), 𝑇 s(𝑔)|𝐾 := 𝑇 s

𝐾(𝑔𝐾). (3.6)

Equivalently, and recalling the definition (2.8) of the broken gradient operator, we have{︂
(A∇𝐻𝑇

n(𝜇),∇𝐻𝑣)Ω = ⟨𝜇, 𝑣⟩𝜕𝒯𝐻
,

(A∇𝐻𝑇
s(𝑔),∇𝐻𝑣)Ω = (𝑔, 𝑣)Ω,

∀𝑣 ∈ 𝐻1(𝒯𝐻)⊥, (3.7)

which results from summing (3.3) cell-wise. We remark that the solution 𝑢 ∈ 𝐻1
0 (Ω) to Problem (2.2) satisfies

𝑢 = 𝑢0 + 𝑇 n(𝜆) + 𝑇 s(𝑓), (3.8)

where the pair (𝑢0, 𝜆) ∈ P0(𝒯𝐻)× Λ(𝜕𝒯𝐻) solves⟨︀
𝜆, 𝑣0

⟩︀
𝜕𝒯𝐻

= −
(︀
𝑓, 𝑣0

)︀
Ω

∀𝑣0 ∈ P0(𝒯𝐻), (3.9a)⟨︀
𝜇, 𝑢0

⟩︀
𝜕𝒯𝐻

+ ⟨𝜇, 𝑇 n(𝜆)⟩𝜕𝒯𝐻
= −⟨𝜇, 𝑇 s(𝑓)⟩𝜕𝒯𝐻

∀𝜇 ∈ Λ(𝜕𝒯𝐻). (3.9b)

Let 𝑘 ∈ N Notice that, owing to (3.7) and to the fact that A is symmetric, we have ⟨𝜇, 𝑇 s(𝑓)⟩𝜕𝒯𝐻
=

(𝑓, 𝑇 n(𝜇))Ω. Let 𝑘 ∈ N be a given polynomial degree. The MHM method [3] reads as follows: Find (𝑢0
𝐻 , 𝜆𝐻) ∈

P0(𝒯𝐻)× Λ𝑘(𝜕𝒯𝐻) such that

⟨𝜆𝐻 , 𝑣
0
𝐻⟩𝜕𝒯𝐻

= −(𝑓, 𝑣0
𝐻)Ω ∀𝑣0

𝐻 ∈ P0(𝒯𝐻), (3.10a)

⟨𝜇𝐻 , 𝑢
0
𝐻⟩𝜕𝒯𝐻

+ ⟨𝜇𝐻 , 𝑇
n(𝜆𝐻)⟩𝜕𝒯𝐻

= −⟨𝜇𝐻 , 𝑇
s(𝑓)⟩𝜕𝒯𝐻

∀𝜇𝐻 ∈ Λ𝑘(𝜕𝒯𝐻), (3.10b)
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and the MHM solution is then defined by

𝑢mhm
𝐻 := 𝑢0

𝐻 + 𝑇 n(𝜆𝐻) + 𝑇 s(𝑓). (3.11)

The well-posedness of Problem (3.10) is established in Theorem 3.2 of [3]. Notice that we also have, on the
discrete level, ⟨𝜇𝐻 , 𝑇

s(𝑓)⟩𝜕𝒯𝐻
= (𝑓, 𝑇 n(𝜇𝐻))Ω.

Lemma 3.1 (Characterization of the MHM solution (3.11)). Let 𝑢mhm
𝐻 be defined by (3.11). Then, (i)

(A∇𝐻𝑢
mhm
𝐻 |𝜕𝐾) · 𝑛𝐾 ∈ P𝑘(ℱ𝐾) for all 𝐾 ∈ 𝒯𝐻 and 𝑢mhm

𝐻 ∈ ̃︀𝐻1,𝑘
0 (𝒯𝐻); (ii) 𝑢mhm

𝐻 ∈ 𝒱(𝒯𝐻 ; div,Ω) and
−∇ · (A∇𝐻𝑢

mhm
𝐻 ) = 𝑓 in Ω.

Proof. By (3.11) and (3.4), we infer that for all 𝐾 ∈ 𝒯𝐻 ,

A∇𝐻𝑢
mhm
𝐻 |𝜕𝐾 · 𝑛𝐾 = A∇𝑇 n

𝐾(𝜆𝐻|𝜕𝐾) · 𝑛𝐾 + A∇𝑇 s
𝐾(𝑓𝐾) · 𝑛𝐾 = 𝜆𝐻|𝜕𝐾 ∈ P𝑘(ℱ𝐾). (3.12)

That 𝑢mhm
𝐻 ∈ ̃︀𝐻1,𝑘

0 (𝒯𝐻) follows from the characterization (2.21) of ̃︀𝐻1,𝑘
0 (𝒯𝐻) and (3.10b). Now, to prove that

𝑢mhm
𝐻 ∈ 𝒱(𝒯𝐻 ; div,Ω), we need to show that A∇𝐻𝑢

mhm
𝐻 ∈ 𝐻(div,Ω). Owing to (3.4), we infer that for all

𝐾 ∈ 𝒯𝐻 ,

∇ · (A∇𝐻𝑢
mhm
𝐻 )|𝐾 = ∇ ·

(︀
A∇𝑇 n

𝐾

(︀
𝜆𝐻|𝜕𝐾

)︀)︀
+ ∇ · (A∇𝑇 s

𝐾(𝑓𝐾))

=
1
|𝐾|

⟨𝜆𝜕𝐾 , 1⟩𝜕𝐾 − 𝑓𝐾 +
1
|𝐾|

(𝑓𝐾 , 1)𝐾 = −𝑓𝐾 ∈ 𝐿2(𝐾), (3.13)

where the last equality follows from (3.10a). This shows that A∇𝐻𝑢
mhm
𝐻 |𝐾 ∈ 𝐻(div,𝐾) for all 𝐾 ∈ 𝒯𝐻 .

Moreover, (3.12) shows that A∇𝐻𝑢
mhm
𝐻 |𝜕𝐾 ·𝑛𝐾 can be localized to each face of 𝐾 and, since for every interface

𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾−, 𝜆𝜕𝐾+|𝐹 +𝜆𝜕𝐾−|𝐹 = 0, we infer that JA∇𝐻𝑢
mhm
𝐻 K𝐹 ·𝑛𝐹 = 0 on 𝐹 . It results that A∇𝐻𝑢

mhm
𝐻 ∈

𝐻(div,Ω). Finally, −∇ · (A∇𝐻𝑢
mhm
𝐻 ) = 𝑓 in Ω follows from (3.13) since 𝐾 ∈ 𝒯𝐻 is arbitrary. �

Let us take a closer look at the MHM method (3.10) and (3.11). First, we observe that since 𝑇 n(𝜆𝐻) ∈
𝒰0,𝑘(𝒯𝐻)⊥, this function is computable from a finite-dimensional calculation. The same holds for the right-hand
side of (3.10b) since ⟨𝜇𝐻 , 𝑇

s(𝑓)⟩𝜕𝒯𝐻
= (𝑓, 𝑇 n(𝜇𝐻))Ω. However, the situation is different in (3.11) for 𝑇 s(𝑓). One

needs indeed to define, so as to fully explicit the (one-level) method, an approximation of this function that
is also computable from a finite-dimensional calculation. For this reason, the original MHM method defined
by (3.10) and (3.11) can be viewed as semi-explicit, whereas a fully explicit version of it is obtained after
approximating 𝑇 s(𝑓). Among various possibilities (cf. Rem. 5.3 for an example of an alternative definition),
perhaps the simplest one is to choose an integer 𝑚 ≥ 0, project 𝑓 ∈ 𝐿2(Ω) onto the finite-dimensional subspace
P𝑚(𝒯𝐻), and compute 𝑇 s(Π𝑚

𝐻(𝑓)), where Π𝑚
𝐻 is the 𝐿2-orthogonal projector onto P𝑚(𝒯𝐻). This leads to the

fully explicit MHM solution
𝑢mhm

𝐻 := 𝑢0
𝐻 + 𝑇 n(𝜆𝐻) + 𝑇 s(Π𝑚

𝐻(𝑓)), (3.14)

where the pair (𝑢0
𝐻 , 𝜆𝐻) ∈ P0(𝒯𝐻)× Λ𝑘(𝜕𝒯𝐻) now solves

⟨𝜆𝐻 , 𝑣
0
𝐻⟩𝜕𝒯𝐻

= −(𝑓, 𝑣0
𝐻)Ω ∀𝑣0

𝐻 ∈ P0(𝒯𝐻), (3.15a)

⟨𝜇𝐻 , 𝑢
0
𝐻⟩𝜕𝒯𝐻

+ ⟨𝜇𝐻 , 𝑇
n(𝜆𝐻)⟩𝜕𝒯𝐻

= −(Π𝑚
𝐻(𝑓), 𝑇 n(𝜇𝐻))Ω ∀𝜇𝐻 ∈ Λ𝑘(𝜕𝒯𝐻). (3.15b)

We notice in particular that in (3.14) we have 𝑇 n(𝜆𝐻) ∈ 𝒰0,𝑘(𝒯𝐻)⊥ ⊆ 𝒰𝑚,𝑘(𝒯𝐻)⊥ and 𝑇 s(Π𝑚
𝐻(𝑓)) ∈

𝒰𝑚,0(𝒯𝐻)⊥ ⊆ 𝒰𝑚,𝑘(𝒯𝐻)⊥. Thus, all the quantities involved in (3.14) and (3.15) are members of the space
𝒰𝑚,𝑘(𝒯𝐻). Adapting the arguments of the proof of Lemma 3.1 leads to the following result.

Lemma 3.2 (Characterization of the MHM solution (3.14)). Let 𝑢mhm
𝐻 be defined by (3.14). Then, (i) 𝑢mhm

𝐻 ∈
𝒰𝑚,𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘

0 (𝒯𝐻); (ii) 𝑢mhm
𝐻 ∈ 𝒱(𝒯𝐻 ; div,Ω) and −∇ · (A∇𝐻𝑢

mhm
𝐻 ) = Π𝑚

𝐻(𝑓) in Ω.
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4. The MsHHO method

Let again 𝑘 ∈ N be a given polynomial degree, and let 𝑚 ≥ 0 be an integer. The MsHHO method hinges on
the following set of discrete unknowns:

̂︀𝑈𝑚,𝑘
𝐻 := P𝑚(𝒯𝐻)× P𝑘(ℱ𝐻), (4.1)

which is composed of cell and face degrees of freedom (one can also consider the case 𝑚 = −1, so that the
method is based on face unknowns only; cf. Rem. 5.4). The standard MsHHO method, referred to as mixed-
order MsHHO method in [14], corresponds to the case 𝑚 = 𝑘 − 1 for 𝑘 ≥ 1. For all 𝐾 ∈ 𝒯𝐻 , we let ̂︀𝑣𝐾 :=
(𝑣𝐾 , 𝑣ℱ𝐾

) ∈ ̂︀𝑈𝑚,𝑘
𝐾 := P𝑚(𝐾) × P𝑘(ℱ𝐾) denote the local counterpart of ̂︀𝑣𝐻 := (𝑣𝒯𝐻

, 𝑣ℱ𝐻
) ∈ ̂︀𝑈𝑚,𝑘

𝐻 . For all
𝐹 ∈ ℱ𝐻 , 𝑣𝐹 ∈ P𝑘(𝐹 ) is defined by 𝑣𝐹 := 𝑣ℱ𝐻 |𝐹 . Notice that 𝑣𝐹 = 𝑣ℱ𝐾+ |𝐹 = 𝑣ℱ𝐾− |𝐹 if 𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾− is an
interface, and 𝑣𝐹 = 𝑣ℱ𝐾 |𝐹 if 𝐹 ⊆ 𝜕𝐾 ∩ 𝜕Ω is a boundary face.

The MsHHO method is based on the following local reconstruction operator: For all 𝐾 ∈ 𝒯𝐻 and all ̂︀𝑣𝐾 ∈̂︀𝑈𝑚,𝑘
𝐾 , there exists a unique function 𝑟𝐾(̂︀𝑣𝐾) ∈ 𝒰𝑚,𝑘(𝐾) (recall that 𝒰𝑚,𝑘(𝐾) is defined in (2.19)) such that

(A∇𝑟𝐾(̂︀𝑣𝐾),∇𝑤)𝐾 = −(𝑣𝐾 ,∇ · (A∇𝑤))𝐾 + (𝑣ℱ𝐾
,A∇𝑤 · 𝑛𝐾)𝜕𝐾 ∀𝑤 ∈ 𝒰𝑚,𝑘(𝐾), (4.2a)

(𝑟𝐾(̂︀𝑣𝐾), 1)𝜕𝐾 = (𝑣ℱ𝐾
, 1)𝜕𝐾 . (4.2b)

Notice that the usual choice of closure relation for 𝑟𝐾(̂︀𝑣𝐾) is (𝑟𝐾(̂︀𝑣𝐾), 1)𝐾 = (𝑣𝐾 , 1)𝐾 . The operator 𝑟𝐾 is the
(local) reconstruction operator associated with the finite element(︁

𝐾, 𝒰𝑚,𝑘(𝐾), ̂︀Σ𝐾

)︁
, (4.3)

with the set of degrees of freedom ̂︀Σ𝐾 : 𝒰𝑚,𝑘(𝐾) → ̂︀𝑈𝑚,𝑘
𝐾 such that ̂︀Σ𝐾(𝑣) :=

(︀
Π𝑚

𝐾(𝑣),Π𝑘
ℱ𝐾

(𝑣)
)︀

for all
𝑣 ∈ 𝒰𝑚,𝑘(𝐾), where Π𝑚

𝐾 and Π𝑘
ℱ𝐾

are the 𝐿2-orthogonal projectors onto, respectively, P𝑚(𝐾) and P𝑘(ℱ𝐾). For
further use, we also define Π𝑘

𝐹 to be the 𝐿2-orthogonal projector onto P𝑘(𝐹 ) for all 𝐹 ∈ ℱ𝐻 . The fact that the
triple (𝐾, 𝒰𝑚,𝑘(𝐾), ̂︀Σ𝐾) defines a finite element is a consequence of the fact that the dimensions of 𝒰𝑚,𝑘(𝐾)
and ̂︀𝑈𝑚,𝑘

𝐾 coincide, and of the following important property (which states the existence of a right inverse for̂︀Σ𝐾).

Lemma 4.1 (Reconstruction). The reconstruction operator 𝑟𝐾 satisfies ̂︀Σ𝐾(𝑟𝐾(̂︀𝑣𝐾)) = ̂︀𝑣𝐾 for all ̂︀𝑣𝐾 ∈ ̂︀𝑈𝑚,𝑘
𝐾 ,

i.e.,

(𝑟𝐾(̂︀𝑣𝐾), 𝑟)𝐾 = (𝑣𝐾 , 𝑟)𝐾 ∀𝑟 ∈ P𝑚(𝐾), (4.4a)

(𝑟𝐾(̂︀𝑣𝐾), 𝑞)𝜕𝐾 = (𝑣ℱ𝐾
, 𝑞)𝜕𝐾 ∀𝑞 ∈ P𝑘(ℱ𝐾). (4.4b)

Proof. We need to prove that

Θ := (𝑟𝐾(̂︀𝑣𝐾)− 𝑣𝐾 , 𝑟)𝐾 + (𝑟𝐾(̂︀𝑣𝐾)− 𝑣ℱ𝐾
, 𝑞)𝜕𝐾 = 0,

for all (𝑟, 𝑞) ∈ ̂︀𝑈𝑚,𝑘
𝐾 . Let Φ𝑟,𝑞 ∈ 𝒰𝑚,𝑘(𝐾) solve the following well-posed Neumann problem: −∇ · (A∇Φ𝑟,𝑞) = 𝑟

in 𝐾, and A∇Φ𝑟,𝑞|𝜕𝐾 · 𝑛𝐾 = 𝑞′ on 𝜕𝐾 with 𝑞′ := 𝑞 − 1
|𝜕𝐾| ((𝑟, 1)𝐾 + (𝑞, 1)𝜕𝐾). We observe that

Θ = (𝑟𝐾(̂︀𝑣𝐾)− 𝑣𝐾 , 𝑟)𝐾 + (𝑟𝐾(̂︀𝑣𝐾)− 𝑣ℱ𝐾
, 𝑞′)𝜕𝐾

= −(𝑟𝐾(̂︀𝑣𝐾)− 𝑣𝐾 ,∇ · (A∇Φ𝑟,𝑞))𝐾 + (𝑟𝐾(̂︀𝑣𝐾)− 𝑣ℱ𝐾
,A∇Φ𝑟,𝑞|𝜕𝐾 · 𝑛𝐾)𝜕𝐾

= (A∇𝑟𝐾(̂︀𝑣𝐾),∇Φ𝑟,𝑞)𝐾 + (𝑣𝐾 ,∇ · (A∇Φ𝑟,𝑞))𝐾 − (𝑣ℱ𝐾
,A∇Φ𝑟,𝑞|𝜕𝐾 · 𝑛𝐾)𝜕𝐾 = 0,

where we used (4.2b) in the first line, the definition of Φ𝑟,𝑞 in the second line, and integration by parts (along
with the symmetry of A) together with (4.2a) with 𝑤 := Φ𝑟,𝑞 in the third line. �
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In the MsHHO method, the essential boundary conditions can be enforced strongly by considering the sub-
space ̂︀𝑈𝑚,𝑘

𝐻,0 := P𝑚(𝒯𝐻)× P𝑘
0(ℱ𝐻). (4.5)

The MsHHO method for Problem (2.2) reads as follows: Find ̂︀𝑢𝐻 ∈ ̂︀𝑈𝑚,𝑘
𝐻,0 such that∑︁

𝐾∈𝒯𝐻

(A∇𝑟𝐾(̂︀𝑢𝐾),∇𝑟𝐾(̂︀𝑣𝐾))𝐾 =
∑︁

𝐾∈𝒯𝐻

(𝑓𝐾 , 𝑣𝐾)𝐾 ∀ ̂︀𝑣𝐻 ∈ ̂︀𝑈𝑚,𝑘
𝐻,0 . (4.6)

The approximate MsHHO solution 𝑢hho
𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻) is then defined by

𝑢hho
𝐻|𝐾 := 𝑟𝐾(̂︀𝑢𝐾) ∀𝐾 ∈ 𝒯𝐻 . (4.7)

It is easy to see that the function 𝑢hho
𝐻 defined in (4.7) actually sits in ̃︀𝐻1,𝑘

0 (𝒯𝐻). Indeed, owing to (4.4b), for
any interface 𝐹 ∈ ℱ int

𝐻 such that 𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾−, one has for all 𝑞 ∈ P𝑘(𝐹 ),

(J𝑢hho
𝐻 K𝐹 , 𝑞)𝐹 = (𝑟𝐾+(̂︀𝑢𝐾+) (𝑛𝐾+,𝐹 · 𝑛𝐹 ), 𝑞)𝐹 + (𝑟𝐾−(̂︀𝑢𝐾−) (𝑛𝐾−,𝐹 · 𝑛𝐹 ), 𝑞)𝐹

= (𝑢ℱ𝐾+
(𝑛𝐾+,𝐹 · 𝑛𝐹 ), 𝑞)𝐹 + (𝑢ℱ𝐾−

(𝑛𝐾−,𝐹 · 𝑛𝐹 ), 𝑞)𝐹

= (𝑢𝐹 (𝑛𝐾+,𝐹 · 𝑛𝐹 ), 𝑞)𝐹 + (𝑢𝐹 (𝑛𝐾−,𝐹 · 𝑛𝐹 ), 𝑞)𝐹 = 0.

For boundary faces, one uses again (4.4b) along with the fact that ̂︀𝑢𝐻 ∈ ̂︀𝑈𝑚,𝑘
𝐻,0 . A crucial observation made in

Remark 5.4 of [14], which is a direct consequence of the finite element property, is that the MsHHO method
can be equivalently reformulated as follows: Find 𝑢hho

𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘
0 (𝒯𝐻) such that

(A∇𝐻𝑢
hho
𝐻 ,∇𝐻𝑣𝐻)Ω = (Π𝑚

𝐻(𝑓), 𝑣𝐻)Ω ∀ 𝑣𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘
0 (𝒯𝐻), (4.8)

where, for any 𝐾 ∈ 𝒯𝐻 , Π𝑚
𝐻(𝑓)|𝐾 := Π𝑚

𝐾(𝑓𝐾). The existence and uniqueness of 𝑢hho
𝐻 solution to the square

system (4.8) is straightforward. Indeed, if ∇(𝑢hho
𝐻|𝐾) = 0 in all 𝐾 ∈ 𝒯𝐻 , then 𝑢hho

𝐻 ∈ P0(𝒯𝐻), and since the
moments of 𝑢hho

𝐻 are single-valued at the mesh interfaces and vanish at the mesh boundary faces, then 𝑢hho
𝐻

vanishes identically in Ω.

Lemma 4.2 (Characterization of the MsHHO solution). Let 𝑢hho
𝐻 solve (4.8). Then, (i) 𝑢hho

𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻) ∩̃︀𝐻1,𝑘
0 (𝒯𝐻); (ii) 𝑢hho

𝐻 ∈ 𝒱(𝒯𝐻 ; div,Ω) and −∇ · (A∇𝐻𝑢
hho
𝐻 ) = Π𝑚

𝐻(𝑓) in Ω.

Proof. We have already shown above that 𝑢hho
𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘

0 (𝒯𝐻). Let us now show that A∇𝐻𝑢
hho
𝐻 ∈

𝐻(div,Ω). Since 𝑢hho
𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻), we already know that ∇ · (A∇𝐻𝑢

hho
𝐻 )|𝐾 ∈ P𝑚(𝐾) ⊂ 𝐿2(𝐾) and

A∇𝐻𝑢
hho
𝐻 |𝜕𝐾 · 𝑛𝐾 ∈ P𝑘(ℱ𝐾) for all 𝐾 ∈ 𝒯𝐻 . Moreover, owing to (4.6), (4.7), and the definition (4.2), we

infer that

−
∑︁

𝐾∈𝒯𝐻

(∇ · (A∇𝐻𝑢
hho
𝐻 ), 𝑣𝐾)𝐾 +

∑︁
𝐹∈ℱ int

𝐻

(JA∇𝐻𝑢
hho
𝐻 K𝐹 · 𝑛𝐹 , 𝑣𝐹 )𝐹 =

∑︁
𝐾∈𝒯𝐻

(Π𝑚
𝐾(𝑓𝐾), 𝑣𝐾)𝐾 , (4.9)

for all 𝑣𝐾 ∈ P𝑚(𝐾) and all 𝐾 ∈ 𝒯𝐻 , and for all 𝑣𝐹 ∈ P𝑘(𝐹 ) and all 𝐹 ∈ ℱ int
𝐻 (notice that we have used that

𝑣𝐹 = 0 for all 𝐹 ∈ ℱbnd
𝐻 for ̂︀𝑣𝐻 ∈ ̂︀𝑈𝑚,𝑘

𝐻,0 ). This readily implies that

−∇ · (A∇𝐻𝑢
hho
𝐻 )|𝐾 = Π𝑚

𝐾(𝑓𝐾) for all 𝐾 ∈ 𝒯𝐻 ,

and that
JA∇𝐻𝑢

hho
𝐻 K𝐹 · 𝑛𝐹 = 0 for all 𝐹 ∈ ℱ int

𝐻 .

It follows that A∇𝐻𝑢
hho
𝐻 ∈ 𝐻(div,Ω) and that −∇ · (A∇𝐻𝑢

hho
𝐻 ) = Π𝑚

𝐻(𝑓) in Ω. �
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5. Main equivalence result and further comments

The following result, which is a consequence of Lemmas 3.1, 3.2, and 4.2, summarizes our main result on the
equivalence between the MHM and MsHHO methods.

Theorem 5.1 (Equivalence between MHM and MsHHO). Let 𝑚, 𝑘 ∈ N. The following holds true:

(i) Let 𝑢mhm
𝐻 be the (original, semi-explicit) MHM solution defined by (3.11) using 𝑘 ≥ 0. Let 𝑢hho

𝐻 be the
MsHHO solution solving (4.8) using 𝑚, 𝑘 ≥ 0. Then, 𝑢mhm

𝐻 = 𝑢hho
𝐻 if 𝑓 ∈ P𝑚(𝒯𝐻).

(ii) Let 𝑢mhm
𝐻 be the (fully explicit) MHM solution defined by (3.14) using 𝑚, 𝑘 ≥ 0. Let 𝑢hho

𝐻 be the MsHHO
solution solving (4.8) using 𝑚, 𝑘 ≥ 0. Then, 𝑢mhm

𝐻 = 𝑢hho
𝐻 for all 𝑓 ∈ 𝐿2(Ω).

We now collect several remarks providing further insight into the above equivalence result.

Remark 5.2 (Comparison of heuristic viewpoints). It is possible to sketch the two complementary visions
behind the fully explicit MHM and MsHHO methods. In the (fully explicit) MHM method, the general idea is
to search for an approximate solution 𝑢𝐻 among the members of the affine functional space{︀

𝑣𝐻 ∈ 𝒱(𝒯𝐻 ; div,Ω) ∩ 𝒰𝑚,𝑘(𝒯𝐻) : −∇ · (A∇𝐻𝑣𝐻) = Π𝑚
𝐻(𝑓) in Ω

}︀
,

and to enforce that 𝑢𝐻 ∈ ̃︀𝐻1,𝑘
0 (𝒯𝐻) by requiring that

⟨𝜇𝐻 , 𝑢𝐻⟩𝜕𝒯𝐻
= 0 for all 𝜇𝐻 ∈ Λ𝑘(𝜕𝒯𝐻).

In the MsHHO method, the general idea is to search for an approximate solution among the members of the
affine functional space{︁

𝑣𝐻 ∈ ̃︀𝐻1,𝑘
0 (𝒯𝐻) ∩ 𝒰𝑚,𝑘(𝒯𝐻) : −∇ · (A∇(𝑣𝐻|𝐾)) = Π𝑚

𝐾(𝑓𝐾) in 𝐾 ∀𝐾 ∈ 𝒯𝐻

}︁
,

and to enforce that 𝑢𝐻 ∈ 𝒱(𝒯𝐻 ; div,Ω) by requiring that

⟨A∇𝐻𝑢𝐻 · 𝑛, 𝑞𝐻⟩𝜕𝒯𝐻
= 0 for all 𝑞𝐻 ∈ P𝑘

0(ℱ𝐻).

Remark 5.3 (Modification of the right-hand side). It is observed in Remark 5.8 of [14] that a variant of the
MsHHO method is obtained by searching 𝑢hho

𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘
0 (𝒯𝐻) such that

(A∇𝐻𝑢
hho
𝐻 ,∇𝐻𝑣𝐻)Ω = (𝑓, 𝑣𝐻)Ω ∀ 𝑣𝐻 ∈ 𝒰𝑚,𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘

0 (𝒯𝐻). (5.1)

One advantage of (5.1) is that the source term 𝑓 is now seen through its 𝐿2-orthogonal projection onto 𝒰𝑚,𝑘(𝒯𝐻)
instead of its projection onto the smaller space P𝑚(𝒯𝐻) as in (4.8). However, if 𝑢hho

𝐻 solves (5.1), A∇𝐻𝑢
hho
𝐻

slightly departs from 𝐻(div,Ω), i.e., we no longer have 𝑢hho
𝐻 ∈ 𝒱(𝒯𝐻 ; div,Ω) as for the solution to (4.8). This

modified MsHHO solution can be bridged to the fully explicit MHM solution obtained by approximating the
lifting 𝑇 s by the operator 𝑇 s

𝐻 : 𝐿2(Ω) → 𝒰𝑚,𝑘(𝒯𝐻)⊥ such that, for all 𝑔 ∈ 𝐿2(Ω), 𝑇 s
𝐻(𝑔) ∈ 𝒰𝑚,𝑘(𝒯𝐻)⊥ solves

(A∇𝐻𝑇
s
𝐻(𝑔),∇𝐻𝑣)Ω = (𝑔, 𝑣), ∀𝑣 ∈ 𝒰𝑚,𝑘(𝒯𝐻)⊥.

Indeed, the modified MsHHO solution solving (5.1) coincides with the fully explicit MHM solution

𝑢mhm
𝐻 := 𝑢0

𝐻 + 𝑇 n(𝜆𝐻) + 𝑇 s
𝐻(𝑓),

where the pair (𝑢0
𝐻 , 𝜆𝐻) ∈ P0(𝒯𝐻)× Λ𝑘(𝜕𝒯𝐻) now solves

⟨𝜆𝐻 , 𝑣
0
𝐻⟩𝜕𝒯𝐻

= −(𝑓, 𝑣0
𝐻)Ω ∀𝑣0

𝐻 ∈ P0(𝒯𝐻),

⟨𝜇𝐻 , 𝑢
0
𝐻⟩𝜕𝒯𝐻

+ ⟨𝜇𝐻 , 𝑇
n(𝜆𝐻)⟩𝜕𝒯𝐻

= −⟨𝜇𝐻 , 𝑇
s
𝐻(𝑓)⟩𝜕𝒯𝐻

∀𝜇𝐻 ∈ Λ𝑘(𝜕𝒯𝐻).



BRIDGING THE MHM AND MSHHO METHODS 271

Remark 5.4 (Variant with no cell unknowns (case 𝑚 = −1)). It is possible to consider the case 𝑚 = −1 in
the above MHM and MsHHO settings, leading to an MsHHO formulation without cell unknowns. The spaces
𝒰𝑚,𝑞(𝐾) and 𝒰𝑚,𝑞(𝒯𝐻) can still be defined by (2.19) when 𝑚 = −1, with the convention that P−1(𝐾) := {0}.
The fully explicit MHM method is still defined as in Section 3. The only modification in the analysis is that the
last statement in Lemma 3.2 now becomes −∇ · (A∇𝐻𝑢

mhm
𝐻 ) = Π0

𝐻(𝑓) in Ω. Notice also that (3.14) becomes
𝑢mhm

𝐻 = 𝑢0
𝐻 + 𝑇 n(𝜆𝐻). Actually, since 𝑇 s(𝑐𝐻) = 0 for any 𝑐𝐻 ∈ P0(𝒯𝐻) owing to (3.4b), we infer that the (fully

explicit) MHM method for 𝑚 = −1 coincides with the (fully explicit) MHM method for 𝑚 = 0. Concerning the
MsHHO method, the variant (5.1) has to be adopted in the case 𝑚 = −1. Finally, we observe that in the case
𝑚 = −1, the MHM and MsHHO solutions do not coincide.

6. Unified convergence analysis

We derive, in a unified fashion, an energy-norm error estimate that is valid for both the (fully explicit) MHM
and MsHHO methods.

6.1. Setting

Let 𝒯𝐻 be a given (coarse) polytopal mesh of the domain Ω in the sense of Section 2.2. Since we are interested
in deriving a quantitative estimate on the discretization error for the MHM/MsHHO methods, we need to define
a measure of regularity for the mesh at hand. To do so, following ([16], Sect. 2.1.1), we assume that the mesh
𝒯𝐻 admits a matching simplicial submesh 𝒮𝐻 , and that there exists some real parameter 0 < 𝜌𝐻 < 1 such
that, for all 𝐾 ∈ 𝒯𝐻 , and all 𝑇 ∈ 𝒮𝐻 such that 𝑇 ⊆ 𝐾, (i) 𝜌𝐻𝐻𝑇 ≤ 𝑅𝑇 where 𝑅𝑇 denotes the inradius of the
simplex 𝑇 , and (ii) 𝜌𝐻𝐻𝐾 ≤ 𝐻𝑇 . The parameter 𝜌𝐻 measures the regularity of the mesh 𝒯𝐻 . When studying
a convergence process in which the meshes of some given sequence (𝒯𝐻)𝐻∈ℋ are successively refined, we shall
assume that the mesh sequence (𝒯𝐻)𝐻∈ℋ is uniformly regular, in the sense that there exists 0 < 𝜌 < 1 such
that, for all 𝐻 ∈ ℋ, 𝜌 ≤ 𝜌𝐻 . Standard local Poincaré–Steklov and (continuous) trace and inverse inequalities,
as well as (optimal) approximation properties for local 𝐿2-orthogonal polynomial projectors, then hold on each
cell 𝐾 ∈ 𝒯𝐻 for any 𝐻 ∈ ℋ, with multiplicative constants only depending on 𝜌. We refer the reader, e.g.,
to [8] for the idea of submeshing into simplices, to Section 1.4.3 of [19] for the (continuous) trace and inverse
inequalities, to [47] and Lemma 5.7 of [28] for Poincaré–Steklov inequalities on sets composed of simplices, and
to Lemma 5.6 of [28] for the resulting higher-order polynomial approximation properties; see also the recent
monographs [16, 18] on HHO methods. In what follows, we use the symbol . to denote an inequality that is
valid up to a multiplicative constant only depending on the discretization through the parameter 𝜌.

In order to track the dependency of the error estimates with respect to the diffusion coefficient, for any
𝐾 ∈ 𝒯𝐻 , we denote by 𝑎♭,𝐾 > 0 the local smallest eigenvalue of the coefficient A in the cell 𝐾, in such a way
that A(𝑥)𝜉 · 𝜉 ≥ 𝑎♭,𝐾 |𝜉|2 for all 𝜉 ∈ R𝑑 and almost every 𝑥 ∈ 𝐾.

Finally, given any measurable set 𝐷 ⊂ Ω, and any integer 𝑠 ≥ 0, we respectively denote by | · |𝑠,𝐷 and
‖ · ‖𝑠,𝐷 the standard seminorm and norm in 𝐻𝑠(𝐷; Rℓ), for ℓ ∈ {1, 𝑑}. We also define 𝐻𝑠(𝒯𝐻 ; Rℓ) as the space
of piecewise Rℓ-valued 𝐻𝑠 functions on the partition 𝒯𝐻 , with the convention that 𝐻𝑠(𝒯𝐻 ; R) is simply noted
𝐻𝑠(𝒯𝐻).

6.2. Local approximation

Let 𝑚, 𝑘 ∈ N be given. Let 𝐾 ∈ 𝒯𝐻 , and recall the definition (2.19) of the space 𝒰𝑚,𝑘(𝐾).

Lemma 6.1 (Approximation in 𝒰𝑚,𝑘(𝐾)). Let 𝑣 ∈ 𝐻1(𝐾) and set 𝑔 := −∇ · (A∇𝑣) in 𝐾. Assume that
𝑔 ∈ 𝐻𝑚+1(𝐾) and that A∇𝑣 ∈ 𝐻𝑘+1(𝐾; R𝑑). Then, there exists 𝜋𝑚,𝑘

𝐾 (𝑣) ∈ 𝒰𝑚,𝑘(𝐾) such that⃦⃦⃦
A1/2∇

(︁
𝑣 − 𝜋𝑚,𝑘

𝐾 (𝑣)
)︁⃦⃦⃦

0,𝐾
. 𝑎−

1/2

♭,𝐾

(︀
𝐻𝑚+2

𝐾 |𝑔|𝑚+1,𝐾 +𝐻𝑘+1
𝐾 |A∇𝑣|𝑘+1,𝐾

)︀
. (6.1)
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Proof. Define 𝜋𝑚,𝑘
𝐾 (𝑣) ∈ 𝒰𝑚,𝑘(𝐾) such that

−∇ ·
(︁
A∇𝜋𝑚,𝑘

𝐾 (𝑣)
)︁

= Π𝑚
𝐾(𝑔) in 𝐾, A∇𝜋𝑚,𝑘

𝐾 (𝑣) · 𝑛𝐾 = Π𝑘
ℱ𝐾

(A∇𝑣 · 𝑛𝐾) on 𝜕𝐾. (6.2)

Since 𝑔 = −∇ · (A∇𝑣), we easily check that (Π𝑚
𝐾(𝑔), 1)𝐾 + (Π𝑘

ℱ𝐾
(A∇𝑣 · 𝑛𝐾), 1)𝜕𝐾 = 0; hence, the data of the

Neumann problem (6.2) are compatible, and 𝜋𝑚,𝑘
𝐾 (𝑣) is well-defined (up to an additive constant). Multiplying

the first relation in (6.2) by 𝑤 ∈ 𝐻1(𝐾), integrating by parts, and using the compatibility of the data, yields(︁
A∇𝜋𝑚,𝑘

𝐾 (𝑣),∇𝑤
)︁

𝐾
= (Π𝑚

𝐾(𝑔), 𝑤)𝐾 +
(︀
Π𝑘
ℱ𝐾

(A∇𝑣 · 𝑛𝐾), 𝑤
)︀
𝜕𝐾

=
(︀
Π𝑚

𝐾(𝑔), 𝑤 −Π0
𝐾(𝑤)

)︀
𝐾

+
(︀
Π𝑘
ℱ𝐾

(A∇𝑣 · 𝑛𝐾), 𝑤 −Π0
𝐾(𝑤)

)︀
𝜕𝐾
.

(6.3)

By definition of 𝑔, we also have

(A∇𝑣,∇𝑤)𝐾 = (𝑔, 𝑤)𝐾 + (A∇𝑣 · 𝑛𝐾 , 𝑤)𝜕𝐾

=
(︀
𝑔, 𝑤 −Π0

𝐾(𝑤)
)︀
𝐾

+
(︀
A∇𝑣 · 𝑛𝐾 , 𝑤 −Π0

𝐾(𝑤)
)︀
𝜕𝐾
.

(6.4)

Subtracting (6.4) from (6.3), we obtain, for any 𝑤 ∈ 𝐻1(𝐾),(︁
A∇

(︁
𝑣 − 𝜋𝑚,𝑘

𝐾 (𝑣)
)︁
,∇𝑤

)︁
𝐾

=
(︀
𝑔 −Π𝑚

𝐾(𝑔), 𝑤 −Π0
𝐾(𝑤)

)︀
𝐾

+
(︀
A∇𝑣 · 𝑛𝐾 −Π𝑘

ℱ𝐾
(A∇𝑣 · 𝑛𝐾), 𝑤 −Π0

𝐾(𝑤)
)︀
𝜕𝐾
.

(6.5)

Applying the Cauchy–Schwarz inequality together with a local Poincaré–Steklov inequality for the first term in
the right-hand side of (6.5), and the Cauchy–Schwarz inequality combined with a (continuous) trace inequality
and a local Poincaré–Steklov inequality for the second, we infer(︁

A∇
(︀
𝑣 − 𝜋𝑚,𝑘

𝐾 (𝑣)
)︀
,∇𝑤

)︁
𝐾
. ‖𝑔 −Π𝑚

𝐾(𝑔)‖0,𝐾𝐻𝐾 |𝑤|1,𝐾 + ‖A∇𝑣 −Π𝑘
ℱ𝐾

(A∇𝑣)‖0,𝜕𝐾𝐻
1/2

𝐾 |𝑤|1,𝐾 , (6.6)

where we also used the fact that Π𝑘
ℱ𝐾

(A∇𝑣 ·𝑛𝐾) = Π𝑘
ℱ𝐾

(A∇𝑣) ·𝑛𝐾 since the mesh faces are planar, combined
with the fact that 𝑛𝐾 is unitary, to handle the boundary term. By definition of 𝐿2-orthogonal projectors, we
have ⃦⃦⃦

A∇𝑣 −Π𝑘
ℱ𝐾

(A∇𝑣)
⃦⃦⃦

0,𝜕𝐾
= min

𝑝∈P𝑘(ℱ𝐾 ;R𝑑)
‖A∇𝑣 − 𝑝‖0,𝜕𝐾 ≤

⃦⃦⃦
A∇𝑣 −Π𝑘

𝐾(A∇𝑣)
⃦⃦⃦

0,𝜕𝐾
. (6.7)

By standard approximation properties of 𝐿2-orthogonal projectors, we finally obtain from (6.6) and (6.7),

sup
𝑤∈𝐻1(𝐾)∖{0}

(︁
A∇

(︁
𝑣 − 𝜋𝑚,𝑘

𝐾 (𝑣)
)︁
,∇𝑤

)︁
𝐾

|𝑤|1,𝐾
. 𝐻𝑚+2

𝐾 |𝑔|𝑚+1,𝐾 +𝐻𝑘+1
𝐾 |A∇𝑣|𝑘+1,𝐾 .

The conclusion follows choosing 𝑤 = 𝑣 − 𝜋𝑚,𝑘
𝐾 (𝑣), and since |𝑤|21,𝐾 ≤ 𝑎−1

♭,𝐾

⃦⃦
A1/2∇𝑤

⃦⃦2

0,𝐾
. �

Remark 6.2 (Case 𝑚 = −1). Recall that P−1(𝐾) := {0}. The result of Lemma 6.1 remains valid as it is in
the case 𝑚 = −1 (for 𝑔 ∈ 𝐿2(𝐾)). The proof needs just be slightly adapted with respect to the general case
𝑚 ≥ 0. The interpolant 𝜋−1,𝑘(𝑣) ∈ 𝒰−1,𝑘(𝐾) is defined as follows:

−∇ ·
(︁
A∇𝜋−1,𝑘

𝐾 (𝑣)
)︁

= 0 in 𝐾, A∇𝜋−1,𝑘
𝐾 (𝑣) · 𝑛𝐾 = Π𝑘

ℱ𝐾
(A∇𝑣 · 𝑛𝐾) +

1
|𝜕𝐾|

(𝑔, 1)𝐾 on 𝜕𝐾.

The identity (6.5) becomes(︁
A∇

(︁
𝑣 − 𝜋−1,𝑘

𝐾 (𝑣)
)︁
,∇𝑤

)︁
𝐾

=
(︀
𝑔, 𝑤 −Π0

𝐾(𝑤)
)︀
𝐾
− 1
|𝜕𝐾|

(𝑔, 1)𝐾

(︀
𝑤 −Π0

𝐾(𝑤), 1
)︀
𝜕𝐾

+
(︀
A∇𝑣 · 𝑛𝐾 −Π𝑘

ℱ𝐾
(A∇𝑣 · 𝑛𝐾), 𝑤 −Π0

𝐾(𝑤)
)︀
𝜕𝐾
.

The conclusion then follows from the same arguments, using in addition that |𝐾|
|𝜕𝐾| . 𝐻𝐾 under our mesh

regularity assumptions to handle the second term in the first line of the right-hand side.
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6.3. Energy-norm error estimate

Let 𝑚, 𝑘 ∈ N be given. We introduce, for any 𝐾 ∈ 𝒯𝐻 , the (local, canonical) interpolation operator ℐ𝐾 :
𝐻1(𝐾) → 𝒰𝑚,𝑘(𝐾) associated with the finite element (4.3) such that ℐ𝐾 := 𝑟𝐾 ∘ ̂︀Σ𝐾 . Using the definition (4.2)
of the reconstruction operator, as well as the definition of the reduction operator ̂︀Σ𝐾 , we infer that, for any
𝑣 ∈ 𝐻1(𝐾),

(A∇ℐ𝐾(𝑣),∇𝑤)𝐾 = (A∇𝑣,∇𝑤)𝐾 ∀𝑤 ∈ 𝒰𝑚,𝑘(𝐾), (6.8a)
(ℐ𝐾(𝑣), 1)𝜕𝐾 = (𝑣, 1)𝜕𝐾 . (6.8b)

Hence, ℐ𝐾(𝑣) ∈ 𝒰𝑚,𝑘(𝐾) is the (A-weighted) elliptic projection of 𝑣 ∈ 𝐻1(𝐾) onto 𝒰𝑚,𝑘(𝐾). As such, it satisfies⃦⃦⃦
A1/2∇(𝑣 − ℐ𝐾(𝑣))

⃦⃦⃦
0,𝐾

= min
𝑤∈𝒰𝑚,𝑘(𝐾)

⃦⃦⃦
A1/2∇(𝑣 − 𝑤)

⃦⃦⃦
0,𝐾

. (6.9)

Theorem 6.3 (Energy-norm error estimate). Recall that 𝑢 ∈ 𝐻1
0 (Ω) is the unique solution to (2.2). Let 𝑢𝐻 ∈

𝒰𝑚,𝑘(𝒯𝐻)∩ ̃︀𝐻1,𝑘
0 (𝒯𝐻) denote either the (fully explicit) MHM solution (3.14) to Problem (3.15), or the MsHHO

solution (4.7) to Problem (4.6). Assume that 𝑓 ∈ 𝐻𝑚+1(𝒯𝐻) and that A∇𝑢 ∈ 𝐻𝑘+1(𝒯𝐻 ; R𝑑). Then, we have

⃦⃦⃦
A1/2∇𝐻

(︀
𝑢− 𝑢𝐻

)︀⃦⃦⃦
0,Ω
.

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾

(︁
𝐻

2(𝑚+2)
𝐾 |𝑓 |2𝑚+1,𝐾 +𝐻

2(𝑘+1)
𝐾 |A∇𝑢|2𝑘+1,𝐾

)︁)︃1/2

. (6.10)

Proof. First, by Theorem 5.1, we know that the fully explicit MHM and MsHHO solutions coincide for all
𝑓 ∈ 𝐿2(Ω). We consider here the characterization (4.8) of 𝑢𝐻 . Let ℐ𝐻 : 𝐻1(𝒯𝐻) → 𝒰𝑚,𝑘(𝒯𝐻) denote the global
interpolation operator such that, for all 𝑣 ∈ 𝐻1(𝒯𝐻), ℐ𝐻(𝑣)|𝐾 := ℐ𝐾(𝑣𝐾) for all 𝐾 ∈ 𝒯𝐻 . Remark that, since
𝑢 ∈ 𝐻1

0 (Ω), ℐ𝐻(𝑢) ∈ 𝒰𝑚,𝑘(𝒯𝐻)∩ ̃︀𝐻1,𝑘
0 (𝒯𝐻). By the triangle inequality, we split the discretization error as follows:⃦⃦⃦

A1/2∇𝐻

(︀
𝑢− 𝑢𝐻

)︀⃦⃦⃦
0,Ω

≤
⃦⃦⃦
A1/2∇𝐻

(︀
𝑢− ℐ𝐻(𝑢)

)︀⃦⃦⃦
0,Ω

+
⃦⃦⃦
A1/2∇𝐻

(︀
ℐ𝐻(𝑢)− 𝑢𝐻

)︀⃦⃦⃦
0,Ω
. (6.11)

The first term in the right-hand side of (6.11) is an approximation error, and is estimated using the optimality
property (6.9) combined with the local approximation properties in 𝒰𝑚,𝑘(𝒯𝐻) of Lemma 6.1. Letting, for all
𝑣 ∈ 𝐻1(𝒯𝐻), 𝜋𝑚,𝑘

𝐻 (𝑣) ∈ 𝒰𝑚,𝑘(𝒯𝐻) be the global interpolate such that 𝜋𝑚,𝑘
𝐻 (𝑣)|𝐾 = 𝜋𝑚,𝑘

𝐾 (𝑣𝐾) for all 𝐾 ∈ 𝒯𝐻 , we
infer ⃦⃦⃦

A1/2∇𝐻

(︀
𝑢− ℐ𝐻(𝑢)

)︀⃦⃦⃦
0,Ω

= min
𝑤𝐻∈𝒰𝑚,𝑘(𝒯𝐻)

⃦⃦⃦
A1/2∇𝐻

(︀
𝑢− 𝑤𝐻

)︀⃦⃦⃦
0,Ω

≤
⃦⃦⃦
A1/2∇𝐻

(︀
𝑢− 𝜋𝑚,𝑘

𝐻 (𝑢)
)︀⃦⃦⃦

0,Ω

.

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾

(︁
𝐻

2(𝑚+2)
𝐾 |𝑓 |2𝑚+1,𝐾 +𝐻

2(𝑘+1)
𝐾 |A∇𝑢|2𝑘+1,𝐾

)︁)︃1/2

.

(6.12)

The second term in the right-hand side of (6.11) is the consistency error of the method, which satisfies, since(︀
ℐ𝐻(𝑢)− 𝑢𝐻

)︀
∈ ̃︀𝒰𝑚,𝑘

0 (𝒯𝐻) := 𝒰𝑚,𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘
0 (𝒯𝐻),⃦⃦⃦

A1/2∇𝐻

(︀
ℐ𝐻(𝑢)− 𝑢𝐻

)︀⃦⃦⃦
0,Ω

= max
𝑣𝐻∈̃︀𝒰𝑚,𝑘

0 (𝒯𝐻),⃦⃦
⃦A1/2∇𝐻𝑣𝐻

⃦⃦
⃦
0,Ω

=1

(︀
A∇𝐻

(︀
ℐ𝐻(𝑢)− 𝑢𝐻

)︀
,∇𝐻𝑣𝐻

)︀
Ω
. (6.13)

Let 𝑣𝐻 ∈ ̃︀𝒰𝑚,𝑘
0 (𝒯𝐻) be such that

⃦⃦
A1/2∇𝐻𝑣𝐻

⃦⃦
0,Ω

= 1. Since 𝑢𝐻 solves (4.8), we infer
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(︀
A∇𝐻

(︀
ℐ𝐻(𝑢)− 𝑢𝐻

)︀
,∇𝐻𝑣𝐻

)︀
Ω

= (A∇𝐻ℐ𝐻(𝑢),∇𝐻𝑣𝐻)Ω − (Π𝑚
𝐻(𝑓), 𝑣𝐻)Ω

= (A∇𝐻ℐ𝐻(𝑢),∇𝐻𝑣𝐻)Ω + (∇ · (A∇𝑢), 𝑣𝐻)Ω + (𝑓 −Π𝑚
𝐻(𝑓), 𝑣𝐻)Ω

=
(︀
A∇𝐻

(︀
ℐ𝐻(𝑢)− 𝑢

)︀
,∇𝐻𝑣𝐻

)︀
Ω

+
∑︁

𝐾∈𝒯𝐻

∑︁
𝐹∈ℱ𝐾

(A∇𝑢𝐾 · 𝑛𝐾,𝐹 , 𝑣𝐾)𝐹

+ (𝑓 −Π𝑚
𝐻(𝑓), 𝑣𝐻)Ω

=
∑︁

𝐹∈ℱ𝐻

(A∇𝑢 · 𝑛𝐹 , J𝑣𝐻K𝐹 )𝐹 + (𝑓 −Π𝑚
𝐻(𝑓), 𝑣𝐻)Ω =: T1 + T2, (6.14)

where we added and subtracted (𝑓, 𝑣𝐻)Ω and used the fact that 𝑓 = −∇ · (A∇𝑢) in Ω to pass from the first
to the second line, we performed cell-by-cell integration by parts to pass from the second to the third line, and
finally used the local orthogonality property (6.8a) as well as the fact that JA∇𝑢K𝐹 · 𝑛𝐹 = 0 for all 𝐹 ∈ ℱ int

𝐻

as a consequence of the fact that A∇𝑢 ∈ 𝐻(div,Ω) ∩𝐻1(𝒯𝐻 ; R𝑑) to pass from the third to the fourth line. To
estimate T1, we remark that, since 𝑣𝐻 ∈ ̃︀𝐻1,𝑘

0 (𝒯𝐻), Π𝑘
𝐹 (J𝑣𝐻K𝐹 ) = 0 for all 𝐹 ∈ ℱ𝐻 . We thus have

T1 =
∑︁

𝐹∈ℱ𝐻

(︀
A∇𝑢 · 𝑛𝐹 −Π𝑘

𝐹 (A∇𝑢 · 𝑛𝐹 ), J𝑣𝐻 −Π0
𝐹 (𝑣𝐻)K𝐹

)︀
𝐹

=
∑︁

𝐾∈𝒯𝐻

∑︁
𝐹∈ℱ𝐾

(︁(︀
A∇𝑢𝐾 −Π𝑘

𝐹 (A∇𝑢𝐾)
)︀
· 𝑛𝐾,𝐹 , 𝑣𝐾 −Π0

𝐹 (𝑣𝐾)
)︁

𝐹
.

By two successive applications of the Cauchy–Schwarz inequality, we infer

T1 ≤

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾𝐻𝐾

⃦⃦⃦
A∇𝑢𝐾 −Π𝑘

ℱ𝐾
(A∇𝑢𝐾)

⃦⃦⃦2

0,𝜕𝐾

)︃1/2(︃ ∑︁
𝐾∈𝒯𝐻

𝑎♭,𝐾𝐻
−1
𝐾

⃦⃦
𝑣𝐾 −Π0

ℱ𝐾
(𝑣𝐾)

⃦⃦2

0,𝜕𝐾

)︃1/2

.

The first factor in the right-hand side is estimated using (6.7) and standard approximation properties of 𝐿2-
orthogonal projectors. The second factor is estimated by adding/subtracting Π0

𝐾(𝑣𝐾), using a triangle inequality
combined with the 𝐿2(𝜕𝐾)-stability of Π0

ℱ𝐾
, and concluding by the use of a (continuous) trace inequality

combined with a local Poincaré–Steklov inequality. We obtain

T1 .

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾𝐻

2(𝑘+1)
𝐾 |A∇𝑢|2𝑘+1,𝐾

)︃1/2(︃ ∑︁
𝐾∈𝒯𝐻

𝑎♭,𝐾 |𝑣𝐾 |21,𝐾

)︃1/2

.

Recalling that
⃦⃦
A1/2∇𝐻𝑣𝐻

⃦⃦
0,Ω

= 1, and since 𝑎♭,𝐾 |𝑣𝐾 |21,𝐾 ≤
⃦⃦
A1/2∇𝑣𝐾

⃦⃦2

0,𝐾
, we finally infer that

T1 .

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾𝐻

2(𝑘+1)
𝐾 |A∇𝑢|2𝑘+1,𝐾

)︃1/2

. (6.15)

The term T2 is, in turn, easily estimated using the definition of the 𝐿2-orthogonal projection to write

T2 =
(︀
𝑓 −Π𝑚

𝐻(𝑓), 𝑣𝐻 −Π0
𝐻(𝑣𝐻)

)︀
Ω
,

and invoking the Cauchy–Schwarz inequality, a local Poincaré–Steklov inequality, and standard approximation
properties of 𝐿2-orthogonal projectors to conclude. We obtain

T2 .

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾𝐻

2(𝑚+2)
𝐾 |𝑓 |2𝑚+1,𝐾

)︃1/2(︃ ∑︁
𝐾∈𝒯𝐻

𝑎♭,𝐾 |𝑣𝐾 |21,𝐾

)︃1/2

.

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾𝐻

2(𝑚+2)
𝐾 |𝑓 |2𝑚+1,𝐾

)︃1/2

,

(6.16)
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where we used again that
⃦⃦
A1/2∇𝐻𝑣𝐻

⃦⃦
0,Ω

= 1 to pass from the first to the second line. Finally, plugging (6.15)–
(6.16)–(6.14)–(6.13) and (6.12) into (6.11) proves (6.10). �

Remark 6.4 (Case 𝑚 = −1). We know from Remark 5.4 that the (fully explicit) MHM method for 𝑚 = −1
coincides with the (fully explicit) MHM method for 𝑚 = 0. As far as the MsHHO method is concerned, in the
case 𝑚 = −1, one adopts the variant (5.1) of the method, and the a priori estimate of Theorem 6.3 remains
valid as is (for 𝑓 ∈ 𝐿2(Ω)). The proof actually simplifies with respect to the general case 𝑚 ≥ 0, since the term
T2 can be discarded. The conclusion follows from Lemma 6.1 and Remark 6.2.

Remark 6.5 (Case 𝑚 = 𝑘 − 1). In the case 𝑚 = 𝑘 − 1, the result (6.10) (see Rem. 6.4 for the case 𝑘 = 0
and 𝑚 = −1) simplifies since |𝑓 |𝑘,𝐾 ≤

√
𝑑 |A∇𝑢|𝑘+1,𝐾 for all 𝐾 ∈ 𝒯𝐻 . Under the sole assumption that

A∇𝑢 ∈ 𝐻𝑘+1(𝒯𝐻 ; R𝑑), we then have

⃦⃦⃦
A1/2∇𝐻

(︀
𝑢− 𝑢𝐻

)︀⃦⃦⃦
0,Ω
.

(︃ ∑︁
𝐾∈𝒯𝐻

𝑎−1
♭,𝐾𝐻

2(𝑘+1)
𝐾 |A∇𝑢|2𝑘+1,𝐾

)︃1/2

.

In the MHM setting, when 𝑘 = 0 (then one can discard the contribution given by the operator 𝑇 s), we obtain
an optimal error estimate under the sole assumption on the source term that 𝑓 ∈ 𝐿2(Ω), which improves
on Corollary 4.2 of [3] where more regularity is needed.

Remark 6.6 (Link with previous results). In the MHM framework, the error estimate of Theorem 6.3 is
a refined version of Theorem 4.1 from [3] (for the original, semi-explicit MHM method), both in terms of
regularity assumptions and in terms of tracking of the dependency of the multiplicative constants with respect
to the diffusion coefficient. In the MsHHO framework, such an error estimate is new, and is complementary
to the homogenization-based error estimate of Theorem 5.6 from [14] (such a homogenization-based analysis is
also available in the MHM setting; cf. [44]). The a priori estimate of Theorem 5.6 from [14] is robust in highly
oscillatory diffusion regimes but is suboptimal for mildly varying diffusion. The present result fills this gap.

7. Basis functions and solution strategies

We address the decomposition of the MHM and MsHHO solutions in terms of multiscale basis functions
and highlight the impact of such a decomposition on the possible organization of the computations using an
offline-online strategy. Let 𝑘 ≥ 1 be a given integer. In what follows, to keep the presentation simple, we consider
for a polynomial degree 𝑘 on the faces the polynomial degree 𝑚 := 𝑘 − 1 ≥ 0 in the cell, and, following our
convention, we simply write 𝒰𝑘(𝐾) in place of 𝒰𝑘−1,𝑘(𝐾) for all 𝐾 ∈ 𝒯𝐻 . The key observation is that there
are two possible constructions of basis functions for the local space 𝒰𝑘(𝐾). Both sets of basis functions are
composed of cell-based and face-based functions. The construction of the two sets is however different. The
first construction, referred to as primal set, will prove to be relevant for the MHM method, whereas the second
construction, referred to as dual set, will prove to be relevant for the MsHHO method.

7.1. Basis functions

7.1.1. Polynomial basis functions

Let 𝑞 ∈ N. We denote by 𝑛𝑞
𝑙 the dimension of the vector space of 𝑙-variate polynomial functions of total

degree up to 𝑞. For any cell 𝐾 ∈ 𝒯𝐻 , let {𝜓𝑞,𝐾
𝑖 }1≤𝑖≤𝑛𝑞

𝑑
be a basis of P𝑞(𝐾), and for any face 𝐹 ∈ ℱ𝐻 , let

{𝜓𝑞,𝐹
𝑗 }1≤𝑗≤𝑛𝑞

𝑑−1
be a basis of P𝑞(𝐹 ). With the choice of degree 𝑞 := 𝑘 − 1 in the cell and degree 𝑞 := 𝑘 on

the faces, we henceforth drop the corresponding superscripts in the polynomial basis functions to alleviate the
notation. For convenience, we assume that 𝜓𝐾

1 ≡ 1; this assumption will be useful in the MHM setting.
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7.1.2. Primal basis functions

For 𝐾 ∈ 𝒯𝐻 , we locally construct the set of primal basis functions for 𝒰𝑘(𝐾). Regarding the cell-based basis
functions, we set 𝜑p,𝐾

1 ≡ 1, and for all 2 ≤ 𝑖 ≤ 𝑛𝑘−1
𝑑 , we define 𝜑p,𝐾

𝑖 as the unique function in 𝐻1(𝐾)⊥ solving
the following well-posed Neumann problem:⎧⎨⎩−∇ ·

(︁
A∇𝜑p,𝐾

𝑖

)︁
= 𝜓𝐾

𝑖 −Π0
𝐾

(︀
𝜓𝐾

𝑖

)︀
in 𝐾,

A∇𝜑p,𝐾
𝑖 · 𝑛𝐾 = 0 on 𝜕𝐾.

(7.1)

Concerning the face-based basis functions, for all 𝐹 ∈ ℱ𝐾 and all 1 ≤ 𝑗 ≤ 𝑛𝑘
𝑑−1, we define 𝜑p,𝐾

𝐹,𝑗 as the unique
function in 𝐻1(𝐾)⊥ solving the following well-posed Neumann problem:⎧⎪⎨⎪⎩

−∇ ·
(︁
A∇𝜑p,𝐾

𝐹,𝑗

)︁
= − 1

|𝐾|
(︀
𝜓𝐹

𝑗 , 1
)︀
𝐹

in 𝐾,

A∇𝜑p,𝐾
𝐹,𝑗 · 𝑛𝐾,𝐹 = 𝜓𝐹

𝑗 on 𝐹 and A∇𝜑p,𝐾
𝐹,𝑗 · 𝑛𝐾,𝜎 = 0 on 𝜎 ∈ ℱ𝐾 ∖ {𝐹}.

(7.2)

Then, for all 𝑣 ∈ 𝒰𝑘(𝐾), setting

(i) −∇ · (A∇𝑣) := 𝑔𝐾 = 𝑔𝐾,1 +
∑︀𝑛𝑘−1

𝑑
𝑖=2 𝑔𝐾,𝑖𝜓

𝐾
𝑖 ∈ P𝑘−1(𝐾) (recall that 𝜓𝐾

1 ≡ 1),

(ii) A∇𝑣 |𝜕𝐾 · 𝑛𝐾 := 𝜇ℱ𝐾
∈ P𝑘(ℱ𝐾) with 𝜇ℱ𝐾 |𝐹 =

∑︀𝑛𝑘
𝑑−1

𝑗=1 𝜇𝐹,𝑗𝜓
𝐹
𝑗 for all 𝐹 ∈ ℱ𝐾 ,

(iii) Π0
𝐾(𝑣) := 𝑣0

𝐾 ∈ P0(𝐾),
with (𝑔𝐾 , 1)𝐾 + (𝜇ℱ𝐾

, 1)𝜕𝐾 = 0, we have

𝑣 = 𝑣0
𝐾 +

∑︁
𝐹∈ℱ𝐾

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝜇𝐹,𝑗𝜑
p,𝐾
𝐹,𝑗 +

𝑛𝑘−1
𝑑∑︁

𝑖=2

𝑔𝐾,𝑖𝜑
p,𝐾
𝑖 . (7.3)

A set of global basis functions for the space 𝒰𝑘(𝒯𝐻) ∩ 𝒱(𝒯𝐻 ; div,Ω) is given by{︁̃︀𝜑p,𝐾
𝑖

}︁
𝐾∈𝒯𝐻 ,1≤𝑖≤𝑛𝑘−1

𝑑

∪
{︁̃︀𝜑p,𝐹

𝑗

}︁
𝐹∈ℱ𝐻 ,1≤𝑗≤𝑛𝑘

𝑑−1

,

where for each cell 𝐾 ∈ 𝒯𝐻 , ̃︀𝜑p,𝐾
𝑖 |𝐾 = 𝜑p,𝐾

𝑖 and ̃︀𝜑p,𝐾
𝑖 |Ω∖𝐾 = 0, (7.4)

for each interface 𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾−,̃︀𝜑p,𝐹
𝑗 |𝐾± =

(︀
𝑛𝐾±,𝐹 · 𝑛𝐹

)︀
𝜑

p,𝐾±
𝐹,𝑗 and ̃︀𝜑p,𝐹

𝑗 |Ω∖𝐾+∪𝐾−
= 0, (7.5)

and for each boundary face 𝐹 ⊆ 𝜕𝐾 ∩ 𝜕Ω,̃︀𝜑p,𝐹
𝑗 |𝐾 = 𝜑p,𝐾

𝐹,𝑗 and ̃︀𝜑p,𝐹
𝑗 |Ω∖𝐾 = 0. (7.6)

Remark 7.1 (Link to lifting operators). Recall the local lifting operators 𝑇 n
𝐾 , 𝑇

s
𝐾 and their global counterparts

𝑇 n, 𝑇 s introduced in Section 3. For all 𝐾 ∈ 𝒯𝐻 , one readily verifies that

𝜑p,𝐾
𝑖 = 𝑇 s

𝐾

(︀
𝜓𝐾

𝑖

)︀
, 𝜑p,𝐾

𝐹,𝑗 = 𝑇 n
𝐾

(︀
𝐸𝜕𝐾

𝐹

(︀
𝜓𝐹

𝑗

)︀)︀
, (7.7)

where the first identity holds for all 2 ≤ 𝑖 ≤ 𝑛𝑘−1
𝑑 and the second identity holds for all 𝐹 ∈ ℱ𝐾 and all

1 ≤ 𝑗 ≤ 𝑛𝑘
𝑑−1, where 𝐸𝜕𝐾

𝐹 denotes the zero-extension operator from 𝐹 to 𝜕𝐾. For the global basis functions,
we have ̃︀𝜑p,𝐾

𝑖 = 𝑇 s
(︀
𝐸Ω

𝐾

(︀
𝜓𝐾

𝑖

)︀)︀
, ̃︀𝜑p,𝐹

𝑗 = 𝑇 n
(︁
𝐸𝜕𝒯𝐻

𝐹

(︀
𝜓𝐹

𝑗

)︀)︁
, (7.8)

where 𝐸Ω
𝐾 denotes the zero-extension operator from 𝐾 to Ω, and 𝐸𝜕𝒯𝐻

𝐹

(︀
𝜓𝐹

𝑗

)︀
|𝜕𝐾 := 𝐸𝜕𝐾

𝐹 (𝜓𝐹
𝑗 (𝑛𝐾,𝐹 · 𝑛𝐹 )) if

𝐹 ∈ ℱ𝐾 and 𝐸𝜕𝒯𝐻

𝐹

(︀
𝜓𝐹

𝑗

)︀
|𝜕𝐾 := 0 otherwise, for all 𝐾 ∈ 𝒯𝐻 .
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Remark 7.2 (Energy minimization). Consider the local energy functional 𝐽𝐾 : 𝐻1(𝐾) → R+ such that
𝜙 ↦→ 1

2 (A∇𝜙,∇𝜙)𝐾 . Then, one can characterize 𝜑p,𝐾
𝑖 for all 2 ≤ 𝑖 ≤ 𝑛𝑘−1

𝑑 as follows:

𝜑p,𝐾
𝑖 = arg min

𝜙∈𝐻1(𝐾)⊥

(︀
𝐽𝐾(𝜙)−

(︀
𝜓𝐾

𝑖 −Π0
𝐾

(︀
𝜓𝐾

𝑖

)︀
, 𝜙
)︀
𝐾

)︀
, (7.9)

and one can characterize 𝜑p,𝐾
𝐹,𝑗 for all 𝐹 ∈ ℱ𝐾 and all 1 ≤ 𝑗 ≤ 𝑛𝑘

𝑑−1 as follows:

𝜑p,𝐾
𝐹,𝑗 = arg min

𝜙∈𝐻1(𝐾)⊥

(︂
𝐽𝐾(𝜙)−

(︀
𝜓𝐹

𝑗 , 𝜙
)︀
𝐹

+
1
|𝐾|

(︀
𝜓𝐹

𝑗 , 1
)︀
𝐹

(𝜙, 1)𝐾

)︂
, (7.10)

where we recall that 𝐻1(𝐾)⊥ :=
{︀
𝑣 ∈ 𝐻1(𝐾) : (𝑣, 1)𝐾 = 0

}︀
.

7.1.3. Dual basis functions

For 𝐾 ∈ 𝒯𝐻 , we locally construct the set of dual basis functions for 𝒰𝑘(𝐾). For this purpose, we rely on the
fact that the triple

(︁
𝐾,𝒰𝑘(𝐾), ̂︀Σ𝐾

)︁
is a finite element (see (4.3)). For all 1 ≤ 𝑖 ≤ 𝑛𝑘−1

𝑑 , the cell-based basis

functions 𝜑d,𝐾
𝑖 ∈ 𝒰𝑘(𝐾) are obtained by requiring that

Π𝑘−1
𝐾

(︁
𝜑d,𝐾

𝑖

)︁
= 𝜓𝐾

𝑖 , Π𝑘
ℱ𝐾

(︁
𝜑d,𝐾

𝑖

)︁
= 0, (7.11)

that is, we have 𝜑d,𝐾
𝑖 := 𝑟𝐾((𝜓𝐾

𝑖 , 0)). Moreover, for all 𝐹 ∈ ℱ𝐾 and all 1 ≤ 𝑗 ≤ 𝑛𝑘
𝑑−1, the face-based basis

functions 𝜑d,𝐾
𝐹,𝑗 ∈ 𝒰𝑘(𝐾) are obtained by requiring that

Π𝑘−1
𝐾

(︁
𝜑d,𝐾

𝐹,𝑗

)︁
= 0, Π𝑘

𝐹

(︁
𝜑d,𝐾

𝐹,𝑗

)︁
= 𝜓𝐹

𝑗 , Π𝑘
𝜎

(︁
𝜑d,𝐾

𝐹,𝑗

)︁
= 0 for all 𝜎 ∈ ℱ𝐾 ∖ {𝐹}, (7.12)

that is, we have 𝜑d,𝐾
𝐹,𝑗 := 𝑟𝐾

(︀(︀
0, 𝐸𝜕𝐾

𝐹

(︀
𝜓𝐹

𝑗

)︀)︀)︀
. Then, for all 𝑣 ∈ 𝒰𝑘(𝐾), setting

(i) Π𝑘−1
𝐾 (𝑣) := 𝑣𝐾 =

∑︀𝑛𝑘−1
𝑑

𝑖=1 𝑣𝐾,𝑖𝜓
𝐾
𝑖 ∈ P𝑘−1(𝐾),

(ii) Π𝑘
ℱ𝐾

(𝑣) := 𝑣ℱ𝐾
∈ P𝑘(ℱ𝐾) with 𝑣ℱ𝐾 |𝐹 =

∑︀𝑛𝑘
𝑑−1

𝑗=1 𝑣𝐹,𝑗𝜓
𝐹
𝑗 for all 𝐹 ∈ ℱ𝐾 ,

we have

𝑣 =
𝑛𝑘−1

𝑑∑︁
𝑖=1

𝑣𝐾,𝑖𝜑
d,𝐾
𝑖 +

∑︁
𝐹∈ℱ𝐾

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝑣𝐹,𝑗𝜑
d,𝐾
𝐹,𝑗 . (7.13)

Notice that we also have 𝑣 = 𝑟𝐾(̂︀𝑣𝐾) where ̂︀𝑣𝐾 := (𝑣𝐾 , 𝑣ℱ𝐾
) ∈ ̂︀𝑈𝑘

𝐾 .
A set of global basis functions for the space 𝒰𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘

0 (𝒯𝐻) is given by{︁̃︀𝜑d,𝐾
𝑖

}︁
𝐾∈𝒯𝐻 ,1≤𝑖≤𝑛𝑘−1

𝑑

∪
{︁̃︀𝜑d,𝐹

𝑗

}︁
𝐹∈ℱ int

𝐻 ,1≤𝑗≤𝑛𝑘
𝑑−1

, (7.14)

where for each cell 𝐾 ∈ 𝒯𝐻 ,

̃︀𝜑d,𝐾
𝑖 |𝐾 = 𝜑d,𝐾

𝑖 and ̃︀𝜑d,𝐾
𝑖 |Ω∖𝐾 = 0, (7.15)

and for each interface 𝐹 ⊆ 𝜕𝐾+ ∩ 𝜕𝐾−,

̃︀𝜑d,𝐹
𝑗 |𝐾± = 𝜑

d,𝐾±
𝐹,𝑗 and ̃︀𝜑d,𝐹

𝑗 |Ω∖𝐾+∪𝐾−
= 0. (7.16)
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Remark 7.3 (Energy minimization). Recall the local energy functional 𝐽𝐾 defined in Remark 7.2. Then, one
can characterize 𝜑d,𝐾

𝑖 for all 1 ≤ 𝑖 ≤ 𝑛𝑘−1
𝑑 as follows:

𝜑d,𝐾
𝑖 := arg min

𝜙∈𝐻𝐾
𝑖

𝐽𝐾(𝜙), (7.17)

where 𝐻𝐾
𝑖 :=

{︀
𝑣 ∈ 𝐻𝐾 : Π𝑘−1

𝐾 (𝑣) = 𝜓𝐾
𝑖

}︀
is a nonempty, convex, closed subset of the Hilbert space 𝐻𝐾 :={︀

𝑣 ∈ 𝐻1(𝐾) : Π𝑘
ℱ𝐾

(𝑣) = 0
}︀

. This means that 𝜑d,𝐾
𝑖 ∈ 𝐻1(𝐾) is obtained by solving the following saddle-point

problem with dual unknowns 𝛾𝐾
𝑖 ∈ P𝑘−1(𝐾) and 𝜇𝜕𝐾

𝑖 ∈ P𝑘(ℱ𝐾) such that (𝛾𝐾
𝑖 , 1)𝐾 + (𝜇𝜕𝐾

𝑖 , 1)𝜕𝐾 = 0:⎧⎪⎨⎪⎩
−∇ ·

(︁
A∇𝜑d,𝐾

𝑖

)︁
= 𝛾𝐾

𝑖 in 𝐾, A∇𝜑d,𝐾
𝑖 · 𝑛𝐾 = 𝜇𝜕𝐾

𝑖 on 𝜕𝐾,

Π𝑘−1
𝐾

(︁
𝜑d,𝐾

𝑖

)︁
= 𝜓𝐾

𝑖 , Π𝑘
ℱ𝐾

(︁
𝜑d,𝐾

𝑖

)︁
= 0.

(7.18)

Similarly, one can characterize 𝜑d,𝐾
𝐹,𝑗 for all 𝐹 ∈ ℱ𝐾 and all 1 ≤ 𝑗 ≤ 𝑛𝑘

𝑑−1 as follows:

𝜑d,𝐾
𝐹,𝑗 := arg min

𝜙∈𝐻𝐾
𝐹,𝑗

𝐽𝐾(𝜙), (7.19)

where 𝐻𝐾
𝐹,𝑗 :=

{︀
𝑣 ∈ 𝐻𝐾

𝐹 : Π𝑘
𝐹 (𝑣) = 𝜓𝐹

𝑗

}︀
is a nonempty, convex, closed subset of the Hilbert space 𝐻𝐾

𝐹 :={︀
𝑣 ∈ 𝐻1(𝐾) : Π𝑘−1

𝐾 (𝑣) = 0 and Π𝑘
𝜎(𝑣) = 0 ∀𝜎 ∈ ℱ𝐾 ∖ {𝐹}

}︀
. This means that 𝜑d,𝐾

𝐹,𝑗 ∈ 𝐻1(𝐾) is obtained by
solving the following saddle-point problem with dual unknowns 𝛾𝐾

𝐹,𝑗 ∈ P𝑘−1(𝐾) and 𝜇𝜕𝐾
𝐹,𝑗 ∈ P𝑘(ℱ𝐾) such that(︀

𝛾𝐾
𝐹,𝑗 , 1

)︀
𝐾

+
(︀
𝜇𝜕𝐾

𝐹,𝑗 , 1
)︀
𝜕𝐾

= 0:⎧⎪⎨⎪⎩
−∇ ·

(︁
A∇𝜑d,𝐾

𝐹,𝑗

)︁
= 𝛾𝐾

𝐹,𝑗 in 𝐾, A∇𝜑d,𝐾
𝐹,𝑗 · 𝑛𝐾 = 𝜇𝜕𝐾

𝐹,𝑗 on 𝜕𝐾,

Π𝑘−1
𝐾

(︁
𝜑d,𝐾

𝐹,𝑗

)︁
= 0, Π𝑘

𝐹

(︁
𝜑d,𝐾

𝐹,𝑗

)︁
= 𝜓𝐹

𝑗 , Π𝑘
𝜎

(︁
𝜑d,𝐾

𝐹,𝑗

)︁
= 0 for all 𝜎 ∈ ℱ𝐾 ∖ {𝐹}.

(7.20)

7.2. Offline-online strategy

In view of Section 7.1, primal basis functions, as they globally span 𝒰𝑘(𝒯𝐻) ∩ 𝒱(𝒯𝐻 ; div,Ω), appear to
be naturally suited to the MHM framework. On the other hand, dual basis functions, as they globally span
𝒰𝑘(𝒯𝐻)∩ ̃︀𝐻1,𝑘

0 (𝒯𝐻), appear to be naturally suited to the MsHHO framework (cf. Rem. 5.2). In this section, we
detail how the MHM and MsHHO computations can be optimally organized using an offline-online strategy. This
type of organization of the computations is particularly relevant in a multi-query context, in which the solution
has to be computed for a large amount of data, so that it is crucial to pre-process as many data-independent
quantities as possible in an offline stage, while keeping the size of the online system to its minimum. We focus
in the sequel on the situation where many instances of the source term 𝑓 are considered (we could also consider
the case of multiple boundary data).

7.2.1. The MHM case

By Remark 7.1, the (fully explicit) MHM solution 𝑢mhm
𝐻 ∈ 𝒰𝑘(𝒯𝐻) ∩ 𝒱(𝒯𝐻 ; div,Ω) defined by (3.14) with

𝑚 := 𝑘 − 1, where the pair (𝑢0
𝐻 , 𝜆𝐻) ∈ P0(𝒯𝐻)× Λ𝑘(𝜕𝒯𝐻) solves (3.15), writes

𝑢mhm
𝐻 =

∑︁
𝐾∈𝒯𝐻

𝑢0
𝐾
̃︀𝜑p,𝐾
1 +

∑︁
𝐹∈ℱ𝐻

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝜆𝐹,𝑗
̃︀𝜑p,𝐹

𝑗 +
∑︁

𝐾∈𝒯𝐻

𝑛𝑘−1
𝑑∑︁

𝑖=2

𝑓𝐾,𝑖
̃︀𝜑p,𝐾

𝑖 , (7.21)

where 𝑢0
𝐾 := 𝑢0

𝐻|𝐾 = Π0
𝐾(𝑢mhm

𝐻 ) for all 𝐾 ∈ 𝒯𝐻 , 𝜆𝐹,𝑗 is defined, for all 𝐹 ∈ ℱ𝐻 , as the 𝑗th coefficient of 𝜆𝐻|𝐹 on
the basis {𝜓𝐹

𝑗 }1≤𝑗≤𝑛𝑘
𝑑−1

, and 𝑓𝐾,𝑖 stands for the 𝑖th coefficient of Π𝑘−1
𝐾 (𝑓𝐾) on the basis {𝜓𝐾

𝑖 }1≤𝑖≤𝑛𝑘−1
𝑑

. This
motivates the following offline-online decomposition of the computations:
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Offline stage: For each 𝐾 ∈ 𝒯𝐻 :

(1) Compute the basis functions 𝜑p,𝐾
𝑖 from (7.1), for all 𝑖 = 2, . . . , 𝑛𝑘−1

𝑑 ;
(2) Compute the basis functions 𝜑p,𝐾

𝐹,𝑗 from (7.2), for all 𝐹 ∈ ℱ𝐾 and all 𝑗 = 1, . . . , 𝑛𝑘
𝑑−1.

Online stage:

(3) Compute the vector (𝑓𝐾,𝑖)
𝑖=1,...,𝑛𝑘−1

𝑑

𝐾∈𝒯𝐻
by solving the local symmetric positive-definite (SPD) systems

𝑛𝑘−1
𝑑∑︁

𝑖=1

𝑓𝐾,𝑖

(︀
𝜓𝐾

𝑖 , 𝜓
𝐾
𝑗

)︀
𝐾

=
(︀
𝑓𝐾 , 𝜓

𝐾
𝑗

)︀
𝐾
,

for all 𝑗 = 1, . . . , 𝑛𝑘−1
𝑑 , and all 𝐾 ∈ 𝒯𝐻 ;

(4) Compute the vectors
(︀
𝑢0

𝐾

)︀
𝐾∈𝒯𝐻

and (𝜆𝐹,𝑗)
𝑗=1,...,𝑛𝑘

𝑑−1
𝐹∈ℱ𝐻

by solving the global saddle-point problem

∑︁
𝐹∈ℱ𝐾

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝜆𝐹,𝑗

(︀
𝜓𝐹

𝑗 , 1
)︀
𝐹

= −(𝑓𝐾 , 1)𝐾 ,

for all 𝐾 ∈ 𝒯𝐻 , and (recall that 𝜑p,𝐾
1 ≡ 1 and that

(︁
𝜑p,𝐾

𝐹 ′,𝑗′ , 1
)︁

𝐾
= 0)

∑︁
𝐾∈𝒯𝐹 ′

𝑢0
𝐾

(︁
𝜓𝐹 ′

𝑗′ , 1
)︁

𝐹 ′
+
∑︁

𝐾∈𝒯𝐹 ′

∑︁
𝐹∈ℱ𝐾

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝜆𝐹,𝑗

(︁
𝜓𝐹 ′

𝑗′ ,
̃︀𝜑p,𝐹

𝑗|𝐾

)︁
𝐹 ′

= −
∑︁

𝐾∈𝒯𝐹 ′

𝑛𝑘−1
𝑑∑︁

𝑖=2

𝑓𝐾,𝑖

(︁
𝜓𝐾

𝑖 , 𝜑
p,𝐾
𝐹 ′,𝑗′

)︁
𝐾
,

for all 𝑗′ = 1, . . . , 𝑛𝑘
𝑑−1, and all 𝐹 ′ ∈ ℱ𝐻 with 𝒯𝐹 ′ := {𝐾+,𝐾−} if 𝐹 ′ ∈ ℱ int

𝐻 and 𝒯𝐹 ′ := {𝐾} if 𝐹 ′ ∈ ℱbnd
𝐻 ;

(5) Form 𝑢mhm
𝐻 using (7.21).

Remark 7.4 (Mono-query case). In a mono-query scenario, in which the solution to the discrete problem is
only needed for one (or a few) source term(s), one can advantageously consider an amended version of (7.21),
where the last term in the decomposition is simply replaced by 𝑇 s

(︀
Π𝑘−1

𝐻 (𝑓)
)︀
. From a practical point of view,

the step (1) above can be bypassed, and replaced by solving, in between steps (3) and (4), Problem (7.1) for all
𝐾 ∈ 𝒯𝐻 with right-hand side Π𝑘−1

𝐾 (𝑓𝐾) (in place of 𝜓𝐾
𝑖 ), whose solution is precisely 𝑇 s

𝐾

(︀
Π𝑘−1

𝐾 (𝑓𝐾)
)︀
.

7.2.2. The MsHHO case

The solution 𝑢hho
𝐻 ∈ 𝒰𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘

0 (𝒯𝐻) to Problem (4.8) writes

𝑢hho
𝐻 =

∑︁
𝐾∈𝒯𝐻

𝑛𝑘−1
𝑑∑︁

𝑖=1

𝑢𝐾,𝑖
̃︀𝜑d,𝐾

𝑖 +
∑︁

𝐹∈ℱ int
𝐻

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝑢𝐹,𝑗
̃︀𝜑d,𝐹

𝑗 , (7.22)

where 𝑢𝐾,𝑖 is defined as the 𝑖th coefficient of 𝑢𝐾 := Π𝑘−1
𝐾 (𝑢hho

𝐻 ) on the basis {𝜓𝐾
𝑖 }1≤𝑖≤𝑛𝑘−1

𝑑
for all 𝐾 ∈ 𝒯𝐻 ,

and 𝑢𝐹,𝑗 as the 𝑗th coefficient of 𝑢𝐹 := Π𝑘
𝐹 (𝑢hho

𝐻 ) on the basis {𝜓𝐹
𝑗 }1≤𝑗≤𝑛𝑘

𝑑−1
for all 𝐹 ∈ ℱ int

𝐻 (recall that
Π𝑘

𝐹 (𝑢hho
𝐻 ) = 0 for all 𝐹 ∈ ℱbnd

𝐻 ). This, combined with the equivalent formulation (4.9) of the MsHHO method,
and Remark 7.3 (recall, in particular, the notation introduced therein), motivates the following offline-online
decomposition of the computations:

Offline stage: For each 𝐾 ∈ 𝒯𝐻 :

(1) Compute the basis functions 𝜑d,𝐾
𝑖 from (7.18), for all 𝑖 = 1, . . . , 𝑛𝑘−1

𝑑 ;
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(2) Compute the basis functions 𝜑d,𝐾
𝐹,𝑗 from (7.20), for all 𝐹 ∈ ℱ𝐾 and all 𝑗 = 1, . . . , 𝑛𝑘

𝑑−1.

Define

– the 𝑛𝑘−1
𝑑 × 𝑛𝑘−1

𝑑 matrix G𝐾𝐾 , whose column 1 ≤ 𝑖 ≤ 𝑛𝑘−1
𝑑 is formed by the 𝑛𝑘−1

𝑑 coefficients of the
decomposition of 𝛾𝐾

𝑖 ∈ P𝑘−1(𝐾) on the basis {𝜓𝐾
𝑖′ }1≤𝑖′≤𝑛𝑘−1

𝑑
;

– for each 𝐹 ∈ ℱ𝐾 , the 𝑛𝑘−1
𝑑 × 𝑛𝑘

𝑑−1 matrix G𝐾𝐹 , whose column 1 ≤ 𝑗 ≤ 𝑛𝑘
𝑑−1 is formed by the 𝑛𝑘−1

𝑑

coefficients of the decomposition of 𝛾𝐾
𝐹,𝑗 ∈ P𝑘−1(𝐾) on the basis {𝜓𝐾

𝑖 }1≤𝑖≤𝑛𝑘−1
𝑑

;

– for each 𝐹 ∈ ℱ𝐾 , the 𝑛𝑘
𝑑−1 × 𝑛𝑘−1

𝑑 matrix M𝐹𝐾 , whose column 1 ≤ 𝑖 ≤ 𝑛𝑘−1
𝑑 is formed by the 𝑛𝑘

𝑑−1

coefficients of the decomposition of 𝜇𝜕𝐾
𝑖|𝐹 ∈ P𝑘(𝐹 ) on the basis {𝜓𝐹

𝑗 }1≤𝑗≤𝑛𝑘
𝑑−1

;

– for each 𝐹, 𝐹 ′ ∈ ℱ𝐾 , the 𝑛𝑘
𝑑−1 × 𝑛𝑘

𝑑−1 matrix M𝐹 ′𝐹 , whose column 1 ≤ 𝑗 ≤ 𝑛𝑘
𝑑−1 is formed by the 𝑛𝑘

𝑑−1

coefficients of the decomposition of 𝜇𝜕𝐾
𝐹,𝑗|𝐹 ′ ∈ P𝑘(𝐹 ′) on the basis {𝜓𝐹 ′

𝑗′ }1≤𝑗′≤𝑛𝑘
𝑑−1

;

(3) Invert the matrix G𝐾𝐾 .

Online stage:

(4) Compute the vectors (𝑓𝐾)𝐾∈𝒯𝐻
:= (𝑓𝐾,𝑖)

𝑖=1,...,𝑛𝑘−1
𝑑

𝐾∈𝒯𝐻
by solving the local SPD systems

𝑛𝑘−1
𝑑∑︁

𝑖=1

𝑓𝐾,𝑖

(︀
𝜓𝐾

𝑖 , 𝜓
𝐾
𝑗

)︀
𝐾

=
(︀
𝑓𝐾 , 𝜓

𝐾
𝑗

)︀
𝐾
,

for all 𝑗 = 1, . . . , 𝑛𝑘−1
𝑑 , and all 𝐾 ∈ 𝒯𝐻 ;

(5) Compute the vectors (𝑢𝐹 )𝐹∈ℱ int
𝐻

:= (𝑢𝐹,𝑗)
𝑗=1,...,𝑛𝑘

𝑑−1

𝐹∈ℱ int
𝐻

by solving the global SPD problem∑︁
𝐾∈𝒯𝐹 ′

∑︁
𝐹∈ℱ𝐾∩ℱ int

𝐻

(︁
M𝐹 ′𝐹 −M𝐹 ′𝐾

[︀
G𝐾𝐾

]︀−1G𝐾𝐹
)︁
𝑢𝐹 = −

∑︁
𝐾∈𝒯𝐹 ′

M𝐹 ′𝐾
[︀
G𝐾𝐾

]︀−1
𝑓𝐾 ,

for all 𝐹 ′ ∈ ℱ int
𝐻 ;

(6) Reconstruct locally the vectors (𝑢𝐾)𝐾∈𝒯𝐻
:= (𝑢𝐾,𝑖)

𝑖=1,...,𝑛𝑘−1
𝑑

𝐾∈𝒯𝐻
: for all 𝐾 ∈ 𝒯𝐻 ,

𝑢𝐾 =
[︀
G𝐾𝐾

]︀−1

⎛⎝𝑓𝐾 −
∑︁

𝐹∈ℱ𝐾∩ℱ int
𝐻

G𝐾𝐹 𝑢𝐹

⎞⎠;

(7) Form 𝑢hho
𝐻 using (7.22).

7.2.3. Purely face-based MsHHO method

Using the (primal-dual) local set of basis functions for 𝒰𝑘(𝐾), 𝐾 ∈ 𝒯𝐻 , introduced in Section 4.1 of [14] (but
not fully exploited therein), the MsHHO method can be alternatively defined as a purely face-based method,
i.e., without using cell unknowns. To see this, let 𝐾 ∈ 𝒯𝐻 , and recall the local energy functional 𝐽𝐾 defined in
Remark 7.2. Define 𝜑𝐾

𝑖 for all 1 ≤ 𝑖 ≤ 𝑛𝑘−1
𝑑 as follows:

𝜑𝐾
𝑖 := arg min

𝜙∈𝐻𝐾

(︀
𝐽𝐾(𝜙)−

(︀
𝜓𝐾

𝑖 , 𝜙
)︀
𝐾

)︀
, (7.23)

where the space 𝐻𝐾 is defined in Remark 7.3. Equivalently, 𝜑𝐾
𝑖 ∈ 𝐻1(𝐾) is obtained by solving the following

saddle-point problem with dual unknown 𝜇𝜕𝐾
𝑖 ∈ P𝑘(ℱ𝐾) such that

(︀
𝜓𝐾

𝑖 , 1
)︀
𝐾

+
(︀
𝜇𝜕𝐾

𝑖 , 1
)︀
𝜕𝐾

= 0:{︃
−∇ ·

(︀
A∇𝜑𝐾

𝑖

)︀
= 𝜓𝐾

𝑖 in 𝐾, A∇𝜑𝐾
𝑖 · 𝑛𝐾 = 𝜇𝜕𝐾

𝑖 on 𝜕𝐾,

Π𝑘
ℱ𝐾

(𝜑𝐾
𝑖 ) = 0.

(7.24)
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Similarly, define 𝜑𝐾
𝐹,𝑗 for all 𝐹 ∈ ℱ𝐾 and all 1 ≤ 𝑗 ≤ 𝑛𝑘

𝑑−1 as follows:

𝜑𝐾
𝐹,𝑗 := arg min

𝜙∈𝐻𝐾
𝐹,𝑗

𝐽𝐾(𝜙), (7.25)

where 𝐻𝐾
𝐹,𝑗 :=

{︀
𝑣 ∈ 𝐻𝐾

𝐹 : Π𝑘
𝐹 (𝑣) = 𝜓𝐹

𝑗

}︀
as in Remark 7.3, but now we set 𝐻𝐾

𝐹 :=
{︀
𝑣 ∈ 𝐻1(𝐾) : Π𝑘

𝜎(𝑣) =
0 ∀𝜎 ∈ ℱ𝐾 ∖{𝐹}

}︀
. Equivalently, 𝜑𝐾

𝐹,𝑗 ∈ 𝐻1(𝐾) is obtained by solving the following saddle-point problem with
dual unknown 𝜇𝜕𝐾

𝐹,𝑗 ∈ P𝑘(ℱ𝐾) such that
(︀
𝜇𝜕𝐾

𝐹,𝑗 , 1
)︀
𝜕𝐾

= 0:{︃
−∇ ·

(︀
A∇𝜑𝐾

𝐹,𝑗

)︀
= 0 in 𝐾, A∇𝜑𝐾

𝐹,𝑗 · 𝑛𝐾 = 𝜇𝜕𝐾
𝐹,𝑗 on 𝜕𝐾,

Π𝑘
𝐹

(︀
𝜑𝐾

𝐹,𝑗

)︀
= 𝜓𝐹

𝑗 , Π𝑘
𝜎(𝜑𝐾

𝐹,𝑗) = 0 for all 𝜎 ∈ ℱ𝐾 ∖ {𝐹}.
(7.26)

For all 𝑣 ∈ 𝒰𝑘(𝐾), setting

(i) −∇ · (A∇𝑣) := 𝑔𝐾 =
∑︀𝑛𝑘−1

𝑑
𝑖=1 𝑔𝐾,𝑖𝜓

𝐾
𝑖 ∈ P𝑘−1(𝐾),

(ii) Π𝑘
ℱ𝐾

(𝑣) := 𝑣ℱ𝐾
∈ P𝑘(ℱ𝐾) with 𝑣ℱ𝐾 |𝐹 =

∑︀𝑛𝑘
𝑑−1

𝑗=1 𝑣𝐹,𝑗𝜓
𝐹
𝑗 for all 𝐹 ∈ ℱ𝐾 ,

we then have

𝑣 =
𝑛𝑘−1

𝑑∑︁
𝑖=1

𝑔𝐾,𝑖𝜑
𝐾
𝑖 +

∑︁
𝐹∈ℱ𝐾

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝑣𝐹,𝑗𝜑
𝐾
𝐹,𝑗 . (7.27)

As we did for the dual set of basis functions in (7.14)–(7.15)–(7.16), we can easily construct a set of global basis
functions {̃︀𝜑𝐾

𝑖 }𝐾∈𝒯𝐻 ,1≤𝑖≤𝑛𝑘−1
𝑑

∪ {̃︀𝜑𝐹
𝑗 }𝐹∈ℱ int

𝐻 ,1≤𝑗≤𝑛𝑘
𝑑−1

for the space 𝒰𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘
0 (𝒯𝐻). The solution 𝑢hho

𝐻 ∈
𝒰𝑘(𝒯𝐻) ∩ ̃︀𝐻1,𝑘

0 (𝒯𝐻) to Problem (4.8) then writes

𝑢hho
𝐻 =

∑︁
𝐾∈𝒯𝐻

𝑛𝑘−1
𝑑∑︁

𝑖=1

𝑓𝐾,𝑖
̃︀𝜑𝐾

𝑖 +
∑︁

𝐹∈ℱ int
𝐻

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝑢𝐹,𝑗
̃︀𝜑𝐹

𝑗 , (7.28)

where 𝑓𝐾,𝑖 is defined as the 𝑖th coefficient of Π𝑘−1
𝐾 (𝑓𝐾) on the basis {𝜓𝐾

𝑖 }1≤𝑖≤𝑛𝑘−1
𝑑

for any 𝐾 ∈ 𝒯𝐻 , and 𝑢𝐹,𝑗 as
the 𝑗th coefficient of 𝑢𝐹 := Π𝑘

𝐹 (𝑢hho
𝐻 ) on the basis {𝜓𝐹

𝑗 }1≤𝑗≤𝑛𝑘
𝑑−1

for any 𝐹 ∈ ℱ int
𝐻 . The new decomposition (7.28)

leads to a simplification of the offline-online solution strategy. In the offline stage, the static condensation step
(3) can be bypassed. Also, the steps (1) and (2), which consist in solving saddle-point problems of the form (7.24)
and (7.26), are a bit less expensive than before, as the number of Lagrange multipliers is decreased. In the online
stage, the reconstruction step (6) can be bypassed, and the global problem to solve in the step (5) simplifies to

finding (𝑢𝐹 )𝐹∈ℱ int
𝐻

:= (𝑢𝐹,𝑗)
𝑗=1,...,𝑛𝑘

𝑑−1

𝐹∈ℱ int
𝐻

such that

∑︁
𝐾∈𝒯𝐹 ′

∑︁
𝐹∈ℱ𝐾∩ℱ int

𝐻

M𝐹 ′𝐹 𝑢𝐹 = −
∑︁

𝐾∈𝒯𝐹 ′

M𝐹 ′𝐾𝑓𝐾 , (7.29)

for all 𝐹 ′ ∈ ℱ int
𝐻 .

Remark 7.5 (Mono-query case). The purely face-based version of the MsHHO method is particularly suited
to the mono-query context. In that case, the step (1) can be bypassed, and replaced by solving, in between steps
(4) and (5), Problem (7.24) for all 𝐾 ∈ 𝒯𝐻 with right-hand side Π𝑘−1

𝐾 (𝑓𝐾) (in place of 𝜓𝐾
𝑖 ), whose solution

is denoted 𝜑𝐾
𝑓𝐾

. Letting 𝜇𝜕𝐾
𝑓𝐾

be the corresponding dual unknown, one must then replace in (7.29) the vector

M𝐹 ′𝐾𝑓𝐾 by the vector 𝜇𝜕𝐾
𝑓𝐾 ,𝐹 ′ ∈ R𝑛𝑘

𝑑−1 formed by the coefficients of the decomposition of 𝜇𝜕𝐾
𝑓𝐾 |𝐹 ′ ∈ P𝑘(𝐹 ′) on



282 T. CHAUMONT-FRELET ET AL.

Table 1. Comparison of MHM and MsHHO on the main computational aspects.

MHM Offline Local SPD systems 𝑛𝑘−1
𝑑 − 1 + 𝑛𝑘

𝑑−1𝑛𝜕 problems per cell

Online Global saddle-point problem #𝒯𝐻 + 𝑛𝑘
𝑑−1#ℱ𝐻 unknowns

MsHHO Offline Local saddle-point systems 𝑛𝑘−1
𝑑 + 𝑛𝑘

𝑑−1𝑛𝜕 problems per cell

Online Global SPD problem 𝑛𝑘
𝑑−1#ℱ int

𝐻 unknowns

the basis {𝜓𝐹 ′

𝑗 }1≤𝑗≤𝑛𝑘
𝑑−1

. The MsHHO solution is now given by

𝑢hho
𝐻 =

∑︁
𝐾∈𝒯𝐻

̃︀𝜑𝐾
𝑓𝐾

+
∑︁

𝐹∈ℱ int
𝐻

𝑛𝑘
𝑑−1∑︁

𝑗=1

𝑢𝐹,𝑗
̃︀𝜑𝐹

𝑗 , (7.30)

in place of (7.28).

7.2.4. Summary

Table 1 summarizes the main computational aspects, in a multi-query context, for both the (fully explicit)
MHM and MsHHO methods based on 𝒰𝑘(𝒯𝐻), 𝑘 ≥ 1, in both the offline and online stages, so as to provide to
the reader a one-glance comparison of the two methods. For simplicity, we assume that all the mesh cells have
the same number of faces, denoted by 𝑛𝜕 .

The offline stage is of course performed once and for all, independently of the data (here, the source term).
In practice, for both methods, the approximation of the local problems can be computationally costly, but the
fact that all the problems are local makes of the offline stage an embarassingly parallel task. The offline stage
can hence naturally benefit from parallel architectures. In the online stage, the linear systems to solve (for the
different data) only attach unknowns to the coarse mesh at hand, hence the computational burden remains
limited.

Remark 7.6 (Other boundary conditions). The MHM and MsHHO methods easily adapt to the case of (non-
homogeneous) mixed Dirichlet–Neumann boundary conditions. If ℱD

𝐻 ∪ℱN
𝐻 forms a (disjoint) partition of ℱbnd

𝐻

into, respectively, Dirichlet and Neumann boundary faces, then the size of the online linear systems in the MHM
method becomes #𝒯𝐻 +𝑛𝑘

𝑑−1#(ℱ int
𝐻 ∪ℱD

𝐻), whereas that for the MsHHO method becomes 𝑛𝑘
𝑑−1#(ℱ int

𝐻 ∪ℱN
𝐻).

Remark 7.7 (Second-level discretization and equivalence between two-level methods). Let 𝒮ℎ denote a match-
ing simplicial submesh of 𝒯𝐻 of size ℎ ≪ 𝐻 (𝒮ℎ can for example be obtained by further refining 𝒮𝐻 from
Sect. 6.1). Consider, locally to any 𝐾 ∈ 𝒯𝐻 , a discretization of the second-level (Neumann) problems in the
space 𝒰𝑚,𝑘(𝐾ℎ)∩ ̃︀𝐻1,𝑘(𝐾ℎ), where 𝐾ℎ := {𝑇}𝑇∈𝒮ℎ,𝑇⊂𝐾 . Then, using similar arguments as in the one-level case,
one can prove the equivalence between the two-level MHM and MsHHO methods. Simple cases exist in which
closed formulas for the second-level basis functions are available. For instance, if 𝑇 ∈ 𝐾ℎ is a simplex and A|𝑇 is
a constant matrix, we may cite the case 𝑚 = −1 and 𝑘 = 0 for the MsHHO method where 𝒰−1,0(𝑇 ) = P1(𝑇 ), or
the case 𝑚 = 0 and 𝑘 = 0 for the MHM/MsHHO methods where 𝒰0,0(𝑇 ) corresponds to a proper subspace of
P2(𝑇 ) if A|𝑇 is isotropic (see [31]). Unfortunately, in general, even if 𝑇 ∈ 𝐾ℎ is assumed to be a simplex and A|𝑇
to be constant, closed-form expressions for basis functions in 𝒰𝑚,𝑘(𝑇 ) are not known. To recover equivalence for
ready-to-use methods, one possibility is to write an HHO discretization of the second-level problems (as in [15])
and make the corresponding two-level MHM and MsHHO solutions coincide. In that case, the zero-jump con-
dition on the normal flux at interfaces is imposed on a stabilized version of the normal flux (see [27] for an
example in the HDG setting). Notice that the subcells need not necessarily be simplices. It is also possible, at
the price of equivalence, to preserve two-level 𝐻(div,Ω)-conformity on the exact flux. This is the case in the
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MHM context as soon as a mixed method is used to approximate the second-level problems; see [23] (cf. also
[48] for a similar idea in the context of mixed finite elements).

8. Conclusion

Although they originate from entirely different constructions, we have proved that the one-level (original)
semi-explicit MHM method and the one-level MsHHO method provide the same numerical solution when the
source term is piecewise polynomial on the (coarse) mesh, and this is also the case for the fully explicit MHM
method and the MsHHO method for any source term in 𝐿2(Ω). As a byproduct, we have proposed a unified
convergence analysis, as well as improved versions of the two methods. More precisely, we have introduced a
version of the MHM method that is prompt to be used in a multi-query context, and a version of the MsHHO
method that only uses face unknowns.
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