Hybrid high-order method for singularly perturbed fourth-order problems on curved domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 3091-3114

We propose a novel hybrid high-order method (HHO) to approximate singularly perturbed fourth-order PDEs on domains with a possibly curved boundary. The two key ideas in devising the method are the use of a Nitsche-type boundary penalty technique to weakly enforce the boundary conditions and a scaling of the weighting parameter in the stabilization operator that compares the singular perturbation parameter to the square of the local mesh size. With these ideas in hand, we derive stability and optimal error estimates over the whole range of values for the singular perturbation parameter, including the zero value for which a second-order elliptic problem is recovered. Numerical experiments illustrate the theoretical analysis.

DOI : 10.1051/m2an/2021081
Classification : 65N15, 65N30, 74K20
Keywords: Singularly perturbed fourth-order PDEs, hybrid high-order method, robustness, stability, error analysis, polytopal meshes, curved domains
@article{M2AN_2021__55_6_3091_0,
     author = {Dong, Zhaonan and Ern, Alexandre},
     title = {Hybrid high-order method for singularly perturbed fourth-order problems on curved domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {3091--3114},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021081},
     zbl = {1490.65269},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021081/}
}
TY  - JOUR
AU  - Dong, Zhaonan
AU  - Ern, Alexandre
TI  - Hybrid high-order method for singularly perturbed fourth-order problems on curved domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 3091
EP  - 3114
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021081/
DO  - 10.1051/m2an/2021081
LA  - en
ID  - M2AN_2021__55_6_3091_0
ER  - 
%0 Journal Article
%A Dong, Zhaonan
%A Ern, Alexandre
%T Hybrid high-order method for singularly perturbed fourth-order problems on curved domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 3091-3114
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021081/
%R 10.1051/m2an/2021081
%G en
%F M2AN_2021__55_6_3091_0
Dong, Zhaonan; Ern, Alexandre. Hybrid high-order method for singularly perturbed fourth-order problems on curved domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 3091-3114. doi: 10.1051/m2an/2021081

[1] F. Bonaldi, D. A. Di Pietro, G. Geymonat and F. Krasucki, A hybrid high-order method for Kirchhoff-Love plate bending problems. ESAIM: M2AN 52 (2018) 393–421. | Zbl | MR | Numdam | DOI

[2] S. C. Brenner and M. Neilan, A 𝒞 0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49 (2011) 869–892. | Zbl | DOI

[3] E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56 (2018) 1525–1546. | Zbl | DOI

[4] E. Burman, M. Cicuttin, G. Delay and A. Ern, An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput. 43 (2021) A859–A882. | Zbl | DOI

[5] A. Cangiani, Z. Dong, E. H. Georgoulis and P. Houston, h p -Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics (2017). | Zbl | DOI

[6] A. Cangiani, Z. Dong and E. H. Georgoulis, h p -version discontinuous Galerkin methods on essentially arbitrarily-shaped elements. Math. Comp. 91 (2022) 1–35. | Zbl | DOI

[7] K. L. Cascavita, F. Chouly and A. Ern, Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions. IMA J. Numer. Anal. 40 (2020) 2189–2226. | Zbl | DOI

[8] M. Cicuttin, A. Ern and N. Pignet, Hybrid High-Order Methods. A Primer with Application to Solid Mechanics. SpringerBriefs in Mathematics (2021). | Zbl | DOI

[9] B. Cockburn, D.A. Di Pietro and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | Zbl | Numdam | DOI

[10] M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation. J. Sci. Comput. 82 (2020) 1–15. | Zbl

[11] D. A. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. Vol. 19. Springer Nature (2020). | DOI

[12] D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | Zbl | DOI

[13] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Eng. 283 (2015) 1–21. | Zbl | DOI

[14] D. A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math. 14 (2014) 461–472. | Zbl | DOI

[15] Z. Dong and A. Ern, Hybrid high-order and weak Galerkin methods for the biharmonic problem. Preprint (2021). | arXiv | Zbl

[16] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | Zbl | Numdam | DOI

[17] A. Ern and J.-L. Guermond, Finite Elements II: Galerkin Approximation, Elliptic and Mixed PDEs. Vol. 73 of Texts in Applied Mathematics. Springer Nature, Cham, Switzerland (2021). | Zbl

[18] A. Ern and J.-L. Guermond, Quasi-optimal nonconforming approximation of elliptic PDEs with contrasted coefficients and H 1 + r , r > 0 , regularity. Found. Comput. Math. (Published online) (2021) hal-01964299. | Zbl

[19] J. Guzmán, D. Leykekhman and M. Neilan, A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo 49 (2012) 95–125. | Zbl | DOI

[20] X. Huang, Y. Shi and W. Wang, A Morley–Wang–Xu element method for a fourth order elliptic singular perturbation problem. J. Sci. Comput. 87 (2021) 1–24. | Zbl | DOI

[21] T. Nilssen, X.C. Tai and R. Winther, A robust nonconforming H 2 -element. Math. Comp. 70 (2001) 489–505. | Zbl | DOI

[22] C. Talischi, G. H. Paulino, A. Pereira and I. F. M. Menezes, Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45 (2012) 309–328. | Zbl | DOI

[23] A. Veeser and R. Verfürth, Poincaré constants for finite element stars. IMA J. Numer. Anal. 32 (2012) 30–47. | Zbl | DOI

[24] M. Wang and X. Meng, A robust finite element method for a 3-D elliptic singular perturbation problem. J. Comput. Math. 25 (2007) 631–644. | Zbl

[25] M. Wang, J. Xu and Y. Hu, Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24 (2006) 113–120. | Zbl

[26] L. Wang, Y. Wu and X. Xie, Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems. Num. Meth. Part. Diff. Equ. 29 (2013) 721–737. | Zbl | DOI

[27] W. Wang, X. Huang, K. Tang and R. Zhou, Morley–Wang–Xu element methods with penalty for a fourth order elliptic singular perturbation problem. Adv. Comp. Math. 44 (2018) 1041–1061. | Zbl | DOI

[28] H. Wu and Y. Xiao, An unfitted h p -interface penalty finite element method for elliptic interface problems. J. Comput. Math. 37 (2019) 316–339. | Zbl | DOI

[29] B. Zhang, J. Zhao and S. Chen, The nonconforming virtual element method for fourth-order singular perturbation problem. Adv. Comp. Math. 46 (2020) 1–23. | Zbl | DOI

[30] W. Zheng and H. Qi, On Friedrichs-Poincaré-type inequalities. J. Math. Anal. Appl. 304 (2005) 542–551. | Zbl | DOI

Cité par Sources :