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HYBRID HIGH-ORDER METHOD FOR SINGULARLY PERTURBED
FOURTH-ORDER PROBLEMS ON CURVED DOMAINS

Zhaonan Dong1,2,* and Alexandre Ern2,1

Abstract. We propose a novel hybrid high-order method (HHO) to approximate singularly perturbed
fourth-order PDEs on domains with a possibly curved boundary. The two key ideas in devising the
method are the use of a Nitsche-type boundary penalty technique to weakly enforce the boundary
conditions and a scaling of the weighting parameter in the stabilization operator that compares the
singular perturbation parameter to the square of the local mesh size. With these ideas in hand, we
derive stability and optimal error estimates over the whole range of values for the singular perturbation
parameter, including the zero value for which a second-order elliptic problem is recovered. Numerical
experiments illustrate the theoretical analysis.
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1. Introduction

Fourth-order singular perturbed PDEs are used in the modeling of various physical phenomena, such as
thin plate elasticity, micro-electromechanical systems, and phase separation to mention a few examples. In the
present work, we consider the following model problem: Find 𝑢 : Ω → R such that⎧⎪⎨⎪⎩

𝜀∆2𝑢−∆𝑢 = 𝑓 in Ω,

𝑢 = 𝑔D on 𝜕Ω,

𝜀nΩ·∇𝑢 = 𝜀𝑔N on 𝜕Ω,

(1.1)

where Ω is a open bounded Lipschitz domain in R𝑑, 𝑑 = 2, 3, with boundary 𝜕Ω and unit outward normal nΩ.
The problem data are the forcing term 𝑓 : Ω → R and the Dirichlet and Neumann data 𝑔D, 𝑔N : 𝜕Ω → R.
The assumptions on the data are specified below. The use of other boundary conditions in (1.1) is currently
under study. Moreover, the perturbation parameter 𝜀 is a nonnegative real number, i.e., we only assume that
𝜀 ≥ 0, and we are especially interested in the singularly perturbed regime where 𝜀 ≪ ℓ2Ω, where ℓΩ is some
suitable length scale associated with Ω, e.g., its diameter (ℓΩ = 1 if the problem is written in nondimensional
form). Notice that the Neumann boundary condition is scaled by 𝜀 so that the model problem (1.1) becomes
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the Poisson problem with Dirichlet boundary condition when 𝜀 = 0. Another feature of interest here is that the
domain Ω can have a curved boundary.

The purpose of this work is to design and analyze a hybrid high-order (HHO) method to approximate the
model problem (1.1). The key feature of the proposed method is its ability to handle in a robust way the whole
scale for the singular perturbation parameter 𝜀 ∈ [0, ℓ2Ω] (notice that the value 𝜀 = 0 is allowed). HHO methods
were introduced in [14] for linear diffusion and in [13] for locking-free linear elasticity. In such methods, discrete
unknowns are attached to the mesh cells and to the mesh faces. The two key ingredients to devise HHO methods
are a local reconstruction operator and a local stabilization operator in each mesh cell. HHO methods offer
various attractive features, such as the support of polytopal meshes, optimal error estimates, local conservation
properties, and computational efficiency due to compact stencils and local elimination of the cell unknowns by
static condensation. As a result, these methods have been developed extensively over the past few years and now
cover a broad range of applications; we refer the reader to the two recent monographs [8,11] for an overview. As
shown in [9], HHO methods can be embedded into the broad framework of hybridizable discontinuous Galerkin
(HDG) methods, and they can be bridged to nonconforming virtual element methods (ncVEM). Moreover, HHO
methods are closely related to weak Galerkin (WG) methods. Indeed, the reconstruction operator in the HHO
method corresponds to the weak gradient (or any other differential operator) in WG methods, so that the only
relevant difference between HHO and WG methods lies in the choice of the discrete unknowns and the design
of the stabilization operator.

Various HHO methods for the biharmonic operator were devised and analyzed recently in [15], including a
comparison with existing WG methods for the biharmonic operator. We also refer the reader to [1] for the first
HHO method for the biharmonic operator in primal form. In [15], two HHO methods were proposed (called
HHO-A and HHO-B). Both methods use cell unknowns to approximate the solution in each mesh cell, face
unknowns to approximate its trace on the mesh faces, and face unknowns to approximate its normal derivatives
on the mesh faces. In both methods, the cell unknowns are polynomials of degree (𝑘 +2) and the face unknowns
for the normal derivative are polynomials of degree 𝑘, with 𝑘 ≥ 0. HHO-A is restricted to two space dimensions
and uses polynomials of degree (𝑘 + 1) for the face unknowns related to the trace, whereas HHO-B supports
any space dimension but uses polynomials of degree (𝑘 + 2) for these face unknowns. Moreover, the HHO-A
method was combined in [15] with a Nitsche-type boundary penalty technique, originally introduced in [7] to
weakly enforce Dirichlet conditions in HHO methods for second-order PDEs and further developed in [3, 4] to
handle unfitted meshes in problems with a curved interface or boundary. In particular, one of the advances in
[4] is that the weighting parameter in the boundary penalty term does not need to be large enough, but only
positive.

In the present work, our starting point is the HHO-B method from [15]. Consistently with the paradigm
considered for singularly perturbed second-order elliptic PDEs, the boundary conditions in (1.1) are weakly
enforced by means of a Nitsche-type boundary penalty technique. This is the first key idea to capture possible
boundary layers and to achieve robustness for the singularly perturbed fourth-order elliptic problem. The second
key idea to achieve robustness is to revisit the weighting of the stabilization operator in the HHO-B method by
including a scaling factor that compares the singular perturbation parameter 𝜀 with the square of the (local)
mesh size. With these two ideas in hand, we can devise a novel HHO method that remains uniformly stable
over the full range 𝜀 ∈ [0, ℓ2Ω] and that delivers optimally decaying error estimates, both in the case 𝜀 ≈ ℓ2Ω
(representative of a fourth-order PDE) and in the case 𝜀 ≪ ℓ2Ω and even 𝜀 = 0 (representative of a second-order
PDE). In a nutshell (see Thm. 4.5 for a more precise statement and the remarks below for a discussion), the error
estimate takes the general form 𝜀

1
2 ‖∇2𝑒‖Ω +‖∇𝑒‖Ω ≤ 𝐶(𝜀

1
2 ℎ𝑘+1 +ℎ𝑘+2), where 𝑒 represents the approximation

error, ℎ the mesh size, and the constant 𝐶 depends on the regularity of the exact solution, the shape-regularity
of the underlying meshes, and the polynomial degree 𝑘 ≥ 0. An additional benefit of using the Nitsche-type
boundary penalty technique is the seamless support of domains with a curved boundary, in the wake of the
ideas developed in [3, 4] for second-order PDEs.

Let us briefly put our contribution in perspective with the literature on singularly perturbed fourth-order
PDEs. Consistently with the present approach, we focus on discretization methods that hinge on the primal
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form of the PDE and thus lead, at the algebraic level, to a symmetric positive definite linear system. To
the best of our knowledge, the present method appears to be the first in the literature that, at the same time,
supports polytopal meshes and offers a robust behavior over the full range of values for the singular perturbation
parameter 𝜀. On the one hand, robust approximation methods developed on specific meshes (composed, e.g., of
simplices or cuboids) include 𝐶0-interior penalty discontinuous Galerkin (IPDG) methods [2] and methods based
on the modified Morley element [19,21,24–26], for which a weak enforcement of the boundary conditions using
Nitsche-type techniques was considered more recently in [20, 27]. On the other hand, discretization methods
for singularly perturbed fourth-order operators on polytopal meshes include the WG method from [10] and the
𝐶0-ncVEM from [29]. Both methods, however, do not support the limit with 𝜀 = 0 and in this case lead, at
the algebraic level, to a singular linear system. More precisely, in this limit, the sub-blocks coupling the face
unknowns discretizing the gradient (or the normal gradient) on the faces either to the other unknowns or to
themselves all vanish. Thus, to recover a nonsingular linear system when 𝜀 = 0, one needs to manually remove
these gradient face unknowns, but unfortunately this fix cannot be applied when 𝜀 ≪ 1, leading to serious
conditioning issues in this case. This situation is instead avoided by the present method: by including a mesh-
dependent cutoff in the stabilization coefficient coupling the gradient face unknowns to the other unknowns,
the linear system at the limit 𝜀 = 0 remains nonsingular without any need to remove manually some unknowns.

The rest of this work is organized as follows. We present the weak formulation of the model problem together
with the discrete setting in Section 2. In Section 3, we introduce the present HHO method. In Section 4, we
present our main results on the stability and error analysis of the HHO method. Numerical results are discussed
in Section 5. Finally, the proofs of our main results are collected in Section 6.

2. Weak formulation and discrete setting

In this section, we present the weak formulation of the model problem (1.1) together with the discrete setting.

2.1. Weak formulation

We use standard notation for the Lebesgue and Sobolev spaces. In particular, when considering fractional-
order Sobolev spaces, we use the Sobolev–Slobodeckij seminorm based on the double integral. For an open,
bounded, Lipschitz set 𝑆 in R𝑑, 𝑑 ∈ {1, 2, 3}, with a piecewise smooth boundary, we denote by (𝑣, 𝑤)𝑆 the
𝐿2(𝑆)-inner product, and we employ the same notation when 𝑣 and 𝑤 are vector- or matrix-valued fields. We
denote by ∇𝑤 the (weak) gradient of 𝑤 and by ∇2𝑤 its (weak) Hessian. It is convenient to consider the following
inner product and corresponding seminorm on 𝜀𝐻2(𝑆) + 𝐻1(𝑆) (this is just a shortcut notation for 𝐻2(𝑆) if
𝜀 > 0 and 𝐻1(𝑆) if 𝜀 = 0):

(∇𝑣,∇𝑤)𝑆,𝜀 := 𝜀(∇2𝑣,∇2𝑤)𝑆 + (∇𝑣,∇𝑤)𝑆 , ‖∇𝑣‖2𝑆,𝜀 := (∇𝑣,∇𝑣)𝑆,𝜀. (2.1)

Let n𝑆 be the unit outward normal vector on the boundary 𝜕𝑆 of 𝑆. Assuming that the functions 𝑣 and 𝑤
are smooth enough, we have the following integration by parts formula:

𝜀(∆2𝑣, 𝑤)𝑆 − (∆𝑣, 𝑤)𝑆 = (∇𝑣,∇𝑤)𝑆,𝜀 + 𝜀
(︀
(∇∆𝑣,n𝑆𝑤)𝜕𝑆 − (∇2𝑣n𝑆 ,∇𝑤)𝜕𝑆

)︀
− (∇𝑣,n𝑆𝑤)𝜕𝑆 . (2.2)

To alleviate the notation, it is implicitly understood that within integrals over 𝜕𝑆, 𝜕𝑛 denotes the normal
derivative on 𝜕𝑆 along n𝑆 . Moreover, 𝜕𝑡 denotes the (R𝑑−1-valued) tangential derivative on 𝜕𝑆. We also denote
by 𝜕𝑛𝑛𝑣 the (scalar-valued) normal-normal second-order derivative and by 𝜕𝑛𝑡𝑣 the (R𝑑−1-valued) normal-
tangential second-order derivative. The integration by parts formula (2.2) can then be rewritten as

𝜀(∆2𝑣, 𝑤)𝑆 − (∆𝑣, 𝑤)𝑆 = (∇𝑣,∇𝑤)𝑆,𝜀 + 𝜀((𝜕𝑛∆𝑣, 𝑤)𝜕𝑆 − (𝜕𝑛𝑛𝑣, 𝜕𝑛𝑤)𝜕𝑆 − (𝜕𝑛𝑡𝑣, 𝜕𝑡𝑤)𝜕𝑆)− (𝜕𝑛𝑣, 𝑤)𝜕𝑆 . (2.3)

Let us consider the Hilbert spaces 𝑉 := 𝜀𝐻2(Ω)+𝐻1(Ω) and 𝑉0 := 𝜀𝐻2
0 (Ω)+𝐻1

0 (Ω) equipped with the inner
product (∇𝑣,∇𝑤)Ω,𝜀. Assume that the source term in (1.1) satisfies 𝑓 ∈ 𝐿2(Ω) and that the boundary data are
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Figure 1. Example of a boundary mesh cell with a curved boundary face and which is star-
shaped with respect an interior ball; ∙ denotes a mesh vertex at the boundary.

such that there is 𝑢𝑔 ∈ 𝑉 such that 𝑢𝑔 = 𝑔D and 𝜀n·∇𝑢𝑔 = 𝜀𝑔N on 𝜕Ω. Using the above integration by parts
formula, the following weak formulation for (1.1) is derived: Find 𝑢 ∈ 𝑢𝑔 + 𝑉0 such that

(∇𝑢,∇𝑤)Ω,𝜀 = (𝑓, 𝑤)Ω, ∀𝑤 ∈ 𝑉0. (2.4)

The Lax–Milgram lemma readily shows that this problem is well-posed.

2.2. Polytopal and curved meshes

In this work, we assume that 𝜕Ω can be covered by a finite number of closed 𝐶2 manifolds with nonoverlapping
interior, and we write 𝜕Ω =

⋃︀
𝑚∈{1,...,𝑁𝜕} 𝑆𝑚. Let {𝒯ℎ}ℎ>0 be a mesh family such that each mesh 𝒯ℎ covers Ω

exactly. A generic mesh cell is denoted by 𝐾 ∈ 𝒯ℎ, its diameter by ℎ𝐾 , and its unit outward normal by n𝐾 . We
define the following mesh-dependent parameter for measuring locally the dominant operator in the PDE: For
all 𝐾 ∈ 𝒯ℎ,

𝜎𝐾 := max
{︀

1, 𝜀ℎ−2
𝐾

}︀
. (2.5)

We partition the boundary 𝜕𝐾 of any mesh cell 𝐾 ∈ 𝒯ℎ by means of the two subsets 𝜕𝐾 i := 𝜕𝐾 ∩ Ω and
𝜕𝐾b := 𝜕𝐾 ∩ 𝜕Ω. Similarly, we partition the mesh as 𝒯ℎ = 𝒯 i

ℎ ∪ 𝒯 b
ℎ , where 𝒯 b

ℎ is the collection of all the
mesh cells 𝐾 such that 𝜕𝐾b has positive measure. The mesh faces are collected in the set ℱℎ, which is split
as ℱℎ = ℱ i

ℎ ∪ ℱb
ℎ , where ℱ i

ℎ is the collection of the interior faces (shared by two distinct mesh cells) and ℱb
ℎ

the collection of the boundary faces. For all 𝐹 ∈ ℱℎ, we orient 𝐹 by means of the fixed unit normal vector n𝐹

whose direction is arbitrary for all 𝐹 ∈ ℱ i
ℎ and n𝐹 := nΩ for all 𝐹 ∈ ℱb

ℎ . For any mesh cell 𝐾 ∈ 𝒯ℎ, the mesh
faces composing its boundary 𝜕𝐾 are collected in the set ℱ𝜕𝐾 , which is partitioned as ℱ𝜕𝐾 = ℱ𝜕𝐾i ∪ ℱ𝜕𝐾b

with obvious notation. To avoid distracting technicalities, we assume that each mesh 𝒯ℎ is compatible with the
decomposition 𝜕Ω =

⋃︀
𝑚∈{1,...,𝑁𝜕} 𝑆𝑚, so that for all 𝐾 ∈ 𝒯 b

ℎ , each face 𝐹 ∈ ℱ𝜕𝐾b is a closed 𝐶2 manifold.
In this work, we consider mesh sequences satisfying the following mesh shape-regularity assumption.

Assumption 2.1 (Mesh shape-regularity). (i) Any interior mesh cell 𝐾 ∈ 𝒯 i
ℎ is a polytope with planar faces,

and the sequence of interior meshes {𝒯 i
ℎ}ℎ>0 is shape-regular in the sense of Definition 1 of [13]. (ii) For any

boundary mesh cell 𝐾 ∈ 𝒯 b
ℎ , all the faces in ℱ𝜕𝐾i are planar with diameter uniformly equivalent to ℎ𝐾 , and

all the faces in ℱ𝜕𝐾b are subsets of 𝜕Ω which are closed 𝐶2 manifolds. Moreover, for each 𝐹 ∈ ℱ𝜕𝐾b , 𝐾 can
be decomposed into a finite union of nonoverlapping subsets, {𝐾𝐹,𝑚}𝑚∈{1,...,𝑛𝐾,𝐹 }, so that each 𝐾𝐹,𝑚 is star-
shaped with respect to an interior ball of radius uniformly equivalent to ℎ𝐾 ; see Figure 1 for an illustration with
𝑛𝐾,𝐹 = 1. (Notice that the star-shapedness assumption implies that 𝑛𝐾,𝐹 is uniformly bounded.)
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Remark 2.2 (Mesh assumptions). The above assumptions on the mesh sequence are fairly general. Let us
briefly discuss some of the most significant ones. (i) The assumption that each mesh 𝒯ℎ covers Ω exactly is
reasonable in the present context where boundary conditions are enforced by means of a Nitsche-like penalty
method. In particular, all the integrals in the mesh cells and their faces are performed in the physical space
without invoking a geometric mapping that can introduce some error due to the approximation of the geometry.
To avoid distracting technicalities, we do not consider quadrature errors in our error analysis. (ii) The assumption
that the interior faces of the mesh are planar is important in the present setting of HHO methods which use
polynomial functions as discrete unknowns attached to these interior faces. Notice though that the use of a
Nitsche-like penalty method allows us to avoid introducing discrete unknowns on the boundary faces; thus, such
faces do not need to be planar. (iii) The star-shapedness assumption on the mesh boundary cells is introduced
to invoke a Poincaré-type inequality in such cells (and, more generally, polynomial approximation properties;
see Lem. 2.5 below). An alternative is to invoke an extension operator when asserting polynomial approximation
properties, as, for instance, in [3]. In this case, only the multiplicative trace inequality (see Lem. 2.4 below)
requires a star-shapedness assumption for the mesh boundary cells, but for this latter result to hold, star-
shapedness with respect to an interior point for each 𝐾𝐹,𝑚 is a sufficient assumption ([5], Lem. 32) (and in this
setting, the number 𝑛𝐾,𝐹 does no longer need to be uniformly bounded).

2.3. Analysis tools

Let us briefly review the main analysis tools used in this work. We simply state the results and refer the
reader to Remark 2.6 for some comments on the proofs. In what follows, we always consider a shape-regular
mesh sequence satisfying Assumption 2.1. Moreover, in various bounds, we use the symbol 𝐶 to denote any
positive generic constant (its value can change at each occurrence) that is independent of ℎ > 0, the considered
mesh cell 𝐾 ∈ 𝒯ℎ, and the considered function in the inequality. The value of 𝐶 can depend on the parameters
quantifying the shape-regularity of the mesh sequence and the polynomial degree (whenever relevant).

Lemma 2.3 (Discrete inverse inequalities). Let 𝑙 ≥ 0 be the polynomial degree. There is 𝐶 (depending on 𝑙)
such that for all ℎ > 0, all 𝐾 ∈ 𝒯ℎ, and all 𝑣ℎ ∈ P𝑙(𝐾),

‖𝑣ℎ‖𝜕𝐾 ≤ 𝐶ℎ
− 1

2
𝐾 ‖𝑣ℎ‖𝐾 , (2.6)

‖∇𝑣ℎ‖𝐾 ≤ 𝐶ℎ−1
𝐾 ‖𝑣ℎ‖𝐾 , (2.7)

‖𝜕𝑡𝑣ℎ‖𝐹 ≤ 𝐶ℎ−1
𝐾 ‖𝑣ℎ‖𝐹 , ∀𝐹 ∈ ℱ𝜕𝐾i . (2.8)

Lemma 2.4 (Multiplicative trace inequality). There is 𝐶 such that for all ℎ > 0, all 𝐾 ∈ 𝒯ℎ, and all 𝑣 ∈
𝐻1(𝐾),

‖𝑣‖𝜕𝐾 ≤ 𝐶
(︁
ℎ
− 1

2
𝐾 ‖𝑣‖𝐾 + ℎ

1
2
𝐾 |𝑣|𝐻1(𝐾)

)︁
. (2.9)

Lemma 2.5 (Polynomial approximation). Let 𝑙 ≥ 0 be the polynomial degree. There is 𝐶 (depending on 𝑙) such
that for all 𝑟 ∈ [0, 𝑙 + 1], all 𝑚 ∈ {0, . . . , ⌊𝑟⌋}, all ℎ > 0, all 𝐾 ∈ 𝒯ℎ, and all 𝑣 ∈ 𝐻𝑟(𝐾),⃒⃒

𝑣 −Π𝑙
𝐾(𝑣)

⃒⃒
𝐻𝑚(𝐾)

≤ 𝐶ℎ𝑟−𝑚
𝐾 |𝑣|𝐻𝑟(𝐾), (2.10)

where Π𝑙
𝐾 denotes the 𝐿2-orthogonal projection onto P𝑙(𝐾).

Let us briefly highlight some useful consequences of the above results. First, equation (2.10) includes the
following Poincaré-like inequalities (take, respectively, 𝑙 = 0, 𝑟 = 1, and 𝑙 = 1, 𝑟 = 2, 𝑚 ∈ {0, 1} in (2.10)): For
all 𝐾 ∈ 𝒯ℎ, ⃦⃦

𝑣 −Π0
𝐾(𝑣)

⃦⃦
𝐾
≤ 𝐶ℎ𝐾‖∇𝑣‖𝐾 , ∀𝑣 ∈ 𝐻1(𝐾), (2.11)⃦⃦

𝑣 −Π1
𝐾(𝑣)

⃦⃦
𝐾

+ ℎ𝐾

⃦⃦
∇
(︀
𝑣 −Π1

𝐾(𝑣)
)︀⃦⃦

𝐾
≤ 𝐶ℎ2

𝐾

⃦⃦
∇2𝑣

⃦⃦
𝐾

, ∀𝑣 ∈ 𝐻2(𝐾). (2.12)
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The following consequences of (2.11) and (2.12) combined with the multiplicative trace inequality (2.9) will be
useful in our analysis: Letting 𝑘 ≥ 0 be the polynomial degree, we have for all 𝑣 ∈ 𝐻2(𝐾),

ℎ
− 1

2
𝐾

⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦

𝜕𝐾
≤ 𝐶

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾
, (2.13)

ℎ
− 3

2
𝐾

⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦

𝜕𝐾
+ ℎ

− 1
2

𝐾

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝜕𝐾
≤ 𝐶

⃦⃦
∇2
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾
. (2.14)

Recalling that 𝜎𝐾 is defined in (2.5) and the norm ‖·‖𝐾,𝜀 in (2.1) (with 𝑆 := 𝐾), we have for all 𝑣 ∈ 𝐻2(𝐾),

𝜎
1
2
𝐾ℎ

− 1
2

𝐾 ‖𝑣 −Π𝑘+2
𝐾 (𝑣)‖𝜕𝐾 ≤ 𝐶

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾,𝜀
. (2.15)

Remark 2.6 (Proofs). Let us briefly comment on the proofs of the above lemmas. Concerning
Lemmas 2.3 and 2.4, the proof on mesh cells having flat faces can be found, e.g., in Section 1.4.3 of [12].
On mesh cells having a curved face, these results are established, e.g., in [3, 28] assuming that the curved face
is a 𝐶2 manifold. More recently, these results were extended in [6] with fully explicit constants to 𝐶1 manifolds
(and sometimes even Lipschitz) and some mild additional geometric assumptions.

Concerning Lemma 2.5, the key step is to establish the Poincaré inequality (2.11) since (2.10) can then be
derived by using recursively the Poincaré inequality. On the interior mesh cells, which can be decomposed as
a finite union of (convex) subsimplices, this latter inequality is established by proceeding as in [16, 23]. On the
boundary mesh cells, which can have a curved face, one invokes the star-shapedness assumption with respect
to a ball. We refer the reader to [30] for the derivation of this inequality with an explicitly determined constant
under such an assumption.

3. HHO discretization

In this section, we first introduce the local ingredients to formulate the HHO discretization in each mesh cell
and then we derive the global discrete problem.

3.1. Local unknowns, reconstruction, and stabilization

Let 𝑘 ≥ 0 be the polynomial degree. For all 𝐾 ∈ 𝒯ℎ, the local HHO space is

̂︀𝑉 𝑘
𝐾 := P𝑘+2(𝐾)× P𝑘+2(ℱ𝜕𝐾i)× P𝑘(ℱ𝜕𝐾i), (3.1)

where P𝑙(ℱ𝜕𝐾i) := ×𝐹∈ℱ𝜕𝐾i P𝑙(𝐹 ) for all 𝑙 ≥ 0. Notice that we do not introduce any discrete unknowns on the
faces of 𝐾 that lie on the boundary. A generic element in ̂︀𝑉 𝑘

𝐾 is denoted ̂︀𝑣𝐾 = (𝑣𝐾 , 𝑣𝜕𝐾 , 𝛾𝜕𝐾) with 𝑣𝐾 ∈ P𝑘+2(𝐾),
𝑣𝜕𝐾 ∈ P𝑘+2(𝜕𝐾 i), and 𝛾𝜕𝐾 ∈ P𝑘(𝜕𝐾 i). The first component of ̂︀𝑣𝐾 aims at representing the solution inside the
mesh cell, the second its trace on the interior part of the cell boundary, and the third its normal derivative on
the interior part of the cell boundary (along the direction of the outward normal n𝐾).

We define the local reconstruction operator 𝑅i
𝐾 : ̂︀𝑉 𝑘

𝐾 → P𝑘+2(𝐾) such that, for all ̂︀𝑣𝐾 ∈ ̂︀𝑉 𝑘
𝐾 with ̂︀𝑣𝐾 :=

(𝑣𝐾 , 𝑣𝜕𝐾 , 𝛾𝜕𝐾), the polynomial 𝑅i
𝐾(̂︀𝑣𝐾) ∈ P𝑘+2(𝐾) is uniquely defined by solving the following problem with

test functions 𝑤 ∈ P𝑘+2(𝐾)⊥ := {𝑤 ∈ P𝑘+2(𝐾) | (𝑤, 1)𝐾 = 0}:(︀
∇𝑅i

𝐾(̂︀𝑣𝐾),∇𝑤
)︀
𝐾,𝜀

=
(︀
𝑣𝐾 , 𝜀∆2𝑤

)︀
𝐾
− (𝑣𝐾 , ∆𝑤)𝐾 + (𝑣𝜕𝐾 , 𝜕𝑛𝑤)𝜕𝐾i

− 𝜀
{︁

(𝑣𝜕𝐾 , 𝜕𝑛∆𝑤)𝜕𝐾i − (𝛾𝜕𝐾 , 𝜕𝑛𝑛𝑤)𝜕𝐾i − (𝜕𝑡𝑣𝜕𝐾 , 𝜕𝑛𝑡𝑤)𝜕𝐾i

}︁
, (3.2)

together with the condition
(︀
𝑅i

𝐾(̂︀𝑣𝐾), 1
)︀
𝐾

= (𝑣𝐾 , 1)𝐾 . Integration by parts shows that (3.2) is equivalent to
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(︀
∇𝑅i

𝐾(̂︀𝑣𝐾),∇𝑤
)︀
𝐾,𝜀

= (∇𝑣𝐾 ,∇𝑤)𝐾,𝜀 − (𝑣𝐾 − 𝑣𝜕𝐾 , 𝜕𝑛𝑤)𝜕𝐾i − (𝑣𝐾 , 𝜕𝑛𝑤)𝜕𝐾b

+ 𝜀
{︁

(𝑣𝐾 − 𝑣𝜕𝐾 , 𝜕𝑛∆𝑤)𝜕𝐾i − (𝜕𝑛𝑣𝐾 − 𝛾𝜕𝐾 , 𝜕𝑛𝑛𝑤)𝜕𝐾i − (𝜕𝑡(𝑣𝐾 − 𝑣𝜕𝐾), 𝜕𝑛𝑡𝑤)𝜕𝐾i

+ (𝑣𝐾 , 𝜕𝑛∆𝑤)𝜕𝐾b − (∇𝑣𝐾 ,∇𝜕𝑛𝑤)𝜕𝐾b

}︁
. (3.3)

Notice that (∇𝑣𝐾 ,∇𝜕𝑛𝑤)𝜕𝐾b = (𝜕𝑛𝑣𝐾 , 𝜕𝑛𝑛𝑤)𝜕𝐾b + (𝜕𝑡𝑣𝐾 , 𝜕𝑛𝑡𝑤)𝜕𝐾b .
The local stabilization bilinear form is composed of a contribution on 𝜕𝐾 i and one on 𝜕𝐾b. These two

contributions are defined such that, for all (̂︀𝑣𝐾 , ̂︀𝑤𝐾) ∈ ̂︀𝑉 𝑘
𝐾 × ̂︀𝑉 𝑘

𝐾 , with ̂︀𝑣𝐾 := (𝑣𝐾 , 𝑣𝜕𝐾 , 𝛾𝜕𝐾) and ̂︀𝑤𝐾 :=
(𝑤𝐾 , 𝑤𝜕𝐾 , 𝜒𝜕𝐾),

𝑆i
𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑤𝐾) := 𝜎𝐾ℎ−1

𝐾 (𝑣𝜕𝐾 − 𝑣𝐾 , 𝑤𝜕𝐾 − 𝑤𝐾)𝜕𝐾i + 𝜎𝐾ℎ𝐾

(︀
Π𝑘

𝜕𝐾i(𝛾𝜕𝐾 − 𝜕𝑛𝑣𝐾), 𝜒𝜕𝐾 − 𝜕𝑛𝑤𝐾

)︀
𝜕𝐾i , (3.4)

and
𝑆b

𝜕𝐾(𝑣𝐾 , 𝑤𝐾) := 𝜎𝐾ℎ−1
𝐾 (𝑣𝐾 , 𝑤𝐾)𝜕𝐾b + 𝜀ℎ−1

𝐾 (∇𝑣𝐾 ,∇𝑤𝐾)𝜕𝐾b , (3.5)

where Π𝑘
𝜕𝐾i denotes the 𝐿2-orthogonal projection onto the broken polynomial space P𝑘(ℱ𝜕𝐾i).

Finally, we define the local bilinear form ̂︀𝑎𝐾 on ̂︀𝑉 𝑘
𝐾 × ̂︀𝑉 𝑘

𝐾 such that

̂︀𝑎𝐾(̂︀𝑣𝐾 , ̂︀𝑤𝐾) :=
(︀
∇𝑅i

𝐾(̂︀𝑣𝐾),∇𝑅i
𝐾( ̂︀𝑤𝐾)

)︀
𝐾,𝜀

+ 𝑆i
𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑤𝐾) + 𝑆b

𝜕𝐾(𝑣𝐾 , 𝑤𝐾). (3.6)

Remark 3.1 (Reconstruction). There are two differences with the reconstruction operator introduced in [15]
for the biharmonic problem. First, as expected, the terms related to the second-order operator are added,
whereas the terms related to the fourth-order operator are scaled by 𝜀. The second difference is more subtle and
is inspired from the ideas in [4] for the second-order operator and extended here to the fourth-order operator as
well. It consists in discarding the integrals over 𝜕𝐾b and only keeping the integrals over 𝜕𝐾 i for all the boundary
terms on the right-hand side of (3.2). Following the ideas in [7], it is also possible to keep the boundary terms and
to use the trace of the cell unknown 𝑣𝐾 and its normal derivative on 𝜕𝐾b to evaluate them. The disadvantage of
this latter approach is that the Nitsche-type boundary penalty terms need then to be weighted by a coefficient
that is large enough, whereas the weighting coefficient needs only to be positive in the present setting.

Remark 3.2 (Stabilization). The interior stabilization bilinear form 𝑆i
𝜕𝐾 is inspired from [15] and is weighted

here by the local coefficient 𝜎𝐾 defined in (2.5) to cover both regimes of interest (dominant Laplacian and
dominant bi-Laplacian). Moreover, the boundary stabilization bilinear form 𝑆b

𝜕𝐾 is associated with the Nitsche-
type boundary penalty. We emphasize that this latter bilinear form does not need to be weighted by a coefficient
which is large enough.

3.2. The global discrete problem

Recall that 𝑘 ≥ 0 is the polynomial degree and that the local HHO space ̂︀𝑉 𝑘
𝐾 is defined in (3.1) for all 𝐾 ∈ 𝒯ℎ.

The global HHO space is defined as ̂︀𝑉 𝑘
ℎ := P𝑘+2(𝒯ℎ)× P𝑘+2(ℱ i

ℎ)× P𝑘(ℱ i
ℎ). (3.7)

A generic element in ̂︀𝑉 𝑘
ℎ is denoted ̂︀𝑣ℎ := (𝑣𝒯ℎ

, 𝑣ℱ i
ℎ
, 𝛾ℱ i

ℎ
) with 𝑣𝒯ℎ

:= (𝑣𝐾)𝐾∈𝒯ℎ
, 𝑣ℱ i

ℎ
:= (𝑣𝐹 )𝐹∈ℱ i

ℎ
, and 𝛾ℱ i

ℎ
:=

(𝛾𝐹 )𝐹∈ℱ i
ℎ
, where 𝛾𝐹 is meant to approximate the normal derivative in the direction of the unit normal vector

n𝐹 orienting 𝐹 . For all 𝐾 ∈ 𝒯ℎ, the local components of ̂︀𝑣ℎ are collected in the triple ̂︀𝑣𝐾 := (𝑣𝐾 , 𝑣𝜕𝐾 , 𝛾𝜕𝐾) ∈ ̂︀𝑉 𝑘
𝐾

with 𝑣𝜕𝐾 |𝐹 := 𝑣𝐹 and 𝛾𝜕𝐾 |𝐹 := (n𝐹 ·n𝐾)𝛾𝐹 for all 𝐹 ∈ ℱ𝜕𝐾i .
For all ̂︀𝑣ℎ, ̂︀𝑤ℎ ∈ ̂︀𝑉 𝑘

ℎ , the global bilinear form ̂︀𝑎ℎ is assembled cellwise as follows:

̂︀𝑎ℎ(̂︀𝑣ℎ, ̂︀𝑤ℎ) :=
∑︁

𝐾∈𝒯ℎ

̂︀𝑎𝐾(̂︀𝑣𝐾 , ̂︀𝑤𝐾), (3.8)
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with ̂︀𝑎𝐾 defined in (3.6). To assemble the right-hand side of the discrete problem, we define the discrete linear
form

ℓℎ( ̂︀𝑤ℎ) :=
∑︁

𝐾∈𝒯ℎ

{︁
(𝑓, 𝑤𝐾)𝐾 +

(︀
𝑔D, 𝜎𝐾ℎ−1

𝐾 𝑤𝐾 + 𝜀𝜕𝑛∆
(︀
𝑅i

𝐾( ̂︀𝑤𝐾)
)︀
− 𝜕𝑛

(︀
𝑅i

𝐾( ̂︀𝑤𝐾)
)︀)︀

𝜕𝐾b

+ 𝜀
(︀
𝑔Nn + (𝜕𝑡𝑔D)t, ℎ−1

𝐾 ∇𝑤𝐾 −∇𝜕𝑛

(︀
𝑅i

𝐾( ̂︀𝑤𝐾)
)︀)︀

𝜕𝐾b

}︁
. (3.9)

The devising of ℓℎ is motivated by the consistency error analysis (see the proof of Lem. 4.4 in Sect. 6.3). Finally,
the discrete problem consists in finding ̂︀𝑢ℎ ∈ ̂︀𝑉 𝑘

ℎ such that

̂︀𝑎ℎ(̂︀𝑢ℎ, ̂︀𝑤ℎ) = ℓℎ(𝑤ℎ), ∀𝑤ℎ ∈ ̂︀𝑉 𝑘
ℎ . (3.10)

In the next section, we establish stability and consistency properties for (3.10), leading to robust and optimal
error estimates. Let us also mention that, at the algebraic level, the discrete problem (3.10) is amenable to
static condensation: all the cell unknowns can be eliminated locally, leading to a global problem coupling only
the face unknowns approximating the trace and the normal derivative of the solution at the mesh interfaces.

Remark 3.3 (Limit regime 𝜀 = 0). We emphasize that the discrete problem (3.10) remains well-posed even in
the limit regime where 𝜀 = 0. The resulting HHO discretization though differs from the usual HHO discretizations
for second-order PDEs. Indeed, taking 𝜀 = 0 in (3.10), one still has triples of local unknowns. In other words,
discrete unknowns approximating the normal derivative at the mesh interfaces are still present and coupled to
the other discrete unknowns.

Remark 3.4 (Other HHO method). In the two-dimensional case, one can also think of using the HHO-A
method developed in Section 3 of [15] for the biharmonic operator. The advantage is that the global HHO space
can be reduced to P𝑘+2(𝒯ℎ) × P𝑘+1(ℱ i

ℎ) × P𝑘(ℱ i
ℎ). However, it is not yet clear how to design the stabilization

bilinear form so as to derive stability and error estimates that remain robust in the singularly perturbed regime
𝜀 ≪ 1.

4. Main results

In this section, we state our main results concerning the analysis of the above HHO method: stability and
well-posedness, polynomial approximation and bound on consistency error, and, finally, the main error estimate
leading to robust and optimally decaying convergence rates. The proofs of these results are contained in Section 6.
Recall that in this work, we use the symbol 𝐶 in bounds to denote any positive generic constant (its value can
change at each occurrence) that is independent of ℎ > 0, the considered mesh cell 𝐾 ∈ 𝒯ℎ, and the considered
function in the bound. The value of 𝐶 can depend on the parameters quantifying the shape-regularity of the
mesh sequence and the polynomial degree. In addition, the value of 𝐶 is independent of the singular perturbation
parameter 𝜀 ≥ 0.

4.1. Stability and well-posedness

We define the local energy seminorm defined such that, for all 𝐾 ∈ 𝒯ℎ and all ̂︀𝑣𝐾 := (𝑣𝐾 , 𝑣𝜕𝐾 , 𝛾𝜕𝐾) ∈ ̂︀𝑉 𝑘
𝐾 ,

|̂︀𝑣𝐾 |2̂︀𝑉 𝑘
𝐾

:= ‖∇𝑣𝐾‖2𝐾,𝜀 + 𝜎𝐾ℎ−1
𝐾 ‖𝑣𝜕𝐾 − 𝑣𝐾‖2𝜕𝐾i + 𝜎𝐾ℎ𝐾‖𝛾𝜕𝐾 − 𝜕𝑛𝑣𝐾‖2𝜕𝐾i

+ 𝜎𝐾ℎ−1
𝐾 ‖𝑣𝐾‖2𝜕𝐾b + 𝜀ℎ−1

𝐾 ‖∇𝑣𝐾‖2𝜕𝐾b . (4.1)

The proof of the following result is postponed to Section 6.1.

Lemma 4.1 (Local stability and boundedness). There is a real number 𝛼 > 0, depending only on the mesh
shape-regularity and the polynomial degree 𝑘, such that, for all ℎ > 0, all 𝐾 ∈ 𝒯ℎ, and all ̂︀𝑣𝐾 ∈ ̂︀𝑉 𝑘

𝐾 ,

𝛼|̂︀𝑣𝐾 |2̂︀𝑉 𝑘
𝐾

≤ ‖∇𝑅i
𝐾(̂︀𝑣𝐾)‖2𝐾,𝜀 + 𝑆i

𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾) + 𝑆b
𝜕𝐾(𝑣𝐾 , 𝑣𝐾) ≤ 𝛼−1|̂︀𝑣𝐾 |2̂︀𝑉 𝑘

𝐾

. (4.2)
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We equip the space ̂︀𝑉 𝑘
ℎ with the norm ‖̂︀𝑣ℎ‖2̂︀𝑉 𝑘

ℎ

:=
∑︀

𝐾∈𝒯ℎ
|̂︀𝑣𝐾 |2̂︀𝑉 𝑘

𝐾

. It is readily verified that ̂︀𝑣ℎ ↦→ ‖̂︀𝑣ℎ‖̂︀𝑉 𝑘
ℎ

indeed defines a norm on ̂︀𝑉 𝑘
ℎ . An immediate consequence of Lemma 4.1 is the following bound establishing that

the discrete bilinear form ̂︀𝑎ℎ is coercive on ̂︀𝑉 𝑘
ℎ :

̂︀𝑎ℎ(̂︀𝑣ℎ, ̂︀𝑣ℎ) ≥ 𝛼‖̂︀𝑣ℎ‖2̂︀𝑉 𝑘
ℎ

, ∀̂︀𝑣ℎ ∈ ̂︀𝑉 𝑘
ℎ . (4.3)

Invoking the Lax–Milgram lemma readily yields the following result.

Corollary 4.2 (Well-posedness). The discrete problem (3.10) is well-posed.

4.2. Approximation and consistency

For all 𝐾 ∈ 𝒯ℎ, we define the local reduction operator ̂︀ℐ𝑘
𝐾 : 𝐻2(𝐾) → ̂︀𝑉 𝑘

𝐾 such that, for all 𝑣 ∈ 𝐻2(𝐾),̂︀ℐ𝑘
𝐾(𝑣) :=

(︀
Π𝑘+2

𝐾 (𝑣), Π𝑘+2
𝜕𝐾i(𝑣), Π𝑘

𝜕𝐾i(n𝐾 ·∇𝑣)
)︀
∈ ̂︀𝑉 𝑘

𝐾 . (4.4)

In addition, we define the operator ℰ i
𝐾 := 𝑅i

𝐾∘̂︀ℐ𝑘
𝐾 : 𝐻2(𝐾) → P𝑘+2(𝐾). This operator does not have approxima-

tion properties if 𝐾 ∈ 𝒯 b
ℎ because some boundary terms have been removed in the definition of the reconstruction

operator. This leads us to define the lifting operator ℒ𝐾 : 𝐻2(𝐾) → P𝑘+2(𝐾) for all 𝐾 ∈ 𝒯ℎ such that, for all
𝑣 ∈ 𝐻2(𝐾) and all 𝑤 ∈ P𝑘+2(𝐾)⊥,

(∇ℒ𝐾(𝑣),∇𝑤)𝐾,𝜀 := −𝜀((𝑣, 𝜕𝑛∆𝑤)𝜕𝐾b − (𝜕𝑛𝑣, 𝜕𝑛𝑛𝑤)𝜕𝐾b − (𝜕𝑡𝑣, 𝜕𝑛𝑡𝑤)𝜕𝐾b) + (𝑣, 𝜕𝑛𝑤)𝜕𝐾b , (4.5)

together with the condition (ℒ𝐾(𝑣), 1)𝐾 = 0. Notice that ℒ𝐾(𝑣) = 0 for all 𝐾 ∈ 𝒯 i
ℎ. We then define the operator

ℰ𝐾 : 𝐻2(𝐾) → P𝑘+2(𝐾) such that
ℰ𝐾(𝑣) := ℰ i

𝐾(𝑣) + ℒ𝐾(𝑣). (4.6)

The definition of 𝑅i
𝐾 implies that

(∇𝑅i
𝐾(̂︀ℐ𝑘

𝐾(𝑣)),∇𝑤)𝐾,𝜀 = 𝜀
(︁

(Π𝑘+2
𝐾 (𝑣), ∆2𝑤)𝐾 − (Π𝑘+2

𝜕𝐾i(𝑣), 𝜕𝑛∆𝑤)𝜕𝐾i + (Π𝑘
𝜕𝐾i(𝜕𝑛𝑣), 𝜕𝑛𝑛𝑤)𝜕𝐾i

+ (𝜕𝑡(Π𝑘+2
𝜕𝐾i(𝑣)), 𝜕𝑛𝑡𝑤)𝜕𝐾i

)︁
− (Π𝑘+2

𝐾 (𝑣), ∆𝑤)𝐾 + (Π𝑘+2
𝜕𝐾i(𝑣), 𝜕𝑛𝑤)𝜕𝐾i .

Since 𝑤 ∈ P𝑘+2(𝐾), we infer that

(∇𝑅i
𝐾(̂︀ℐ𝑘

𝐾(𝑣)),∇𝑤)𝐾,𝜀 = 𝜀
(︁

(𝑣, ∆2𝑤)𝐾 − (𝑣, 𝜕𝑛∆𝑤)𝜕𝐾i + (𝜕𝑛𝑣, 𝜕𝑛𝑛𝑤)𝜕𝐾i + (𝜕𝑡𝑣, 𝜕𝑛𝑡𝑤)𝜕𝐾i

+ (𝜕𝑡(Π𝑘+2
𝜕𝐾i(𝑣)− 𝑣), 𝜕𝑛𝑡𝑤)𝜕𝐾i

)︁
− (𝑣, ∆𝑤)𝐾 + (𝑣, 𝜕𝑛𝑤)𝜕𝐾i .

Using the definitions of ℒ𝐾 and ℰ𝐾 shows that

(∇ℰ𝐾(𝑣),∇𝑤)𝐾,𝜀 = 𝜀
(︁

(𝑣, ∆2𝑤)𝐾 − (𝑣, 𝜕𝑛∆𝑤)𝜕𝐾 + (𝜕𝑛𝑣, 𝜕𝑛𝑛𝑤)𝜕𝐾 + (𝜕𝑡𝑣, 𝜕𝑛𝑡𝑤)𝜕𝐾

+ (𝜕𝑡(Π𝑘+2
𝜕𝐾i(𝑣)− 𝑣), 𝜕𝑛𝑡𝑤)𝜕𝐾i

)︁
− (𝑣, ∆𝑤)𝐾 + (𝑣, 𝜕𝑛𝑤)𝜕𝐾 . (4.7)

Integration by parts then implies that

(∇(ℰ𝐾(𝑣)− 𝑣),∇𝑤)𝐾,𝜀 = 𝜀
(︀
𝜕𝑡

(︀
Π𝑘+2

𝜕𝐾i(𝑣)− 𝑣
)︀
, 𝜕𝑛𝑡𝑤

)︀
𝜕𝐾i .

This shows that the operator ℰ𝐾 is a projection and that it coincides with the 𝐻1-elliptic projection if 𝜀 = 0.
The following result establishes the approximation properties of the projection operator ℰ𝐾 in the general case,
as well as the approximation properties for the stabilization operators. To state the result, we consider the
following norm for all 𝐾 ∈ 𝒯ℎ and all 𝑣 ∈ 𝐻2+𝑠(𝐾), 𝑠 > 3

2 :

‖𝑣‖2♯,𝐾 := ‖∇𝑣‖2𝐾,𝜀 + 𝜀
(︀
ℎ3

𝐾‖𝜕𝑛∆𝑣‖2𝜕𝐾 + ℎ𝐾‖𝜕𝑛𝑛𝑣‖2𝜕𝐾 + ℎ𝐾‖𝜕𝑛𝑡𝑣‖2𝜕𝐾

)︀
+ ℎ𝐾‖𝜕𝑛𝑣‖2𝜕𝐾 . (4.8)

The proof of the following lemma is postponed to Section 6.2.
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Lemma 4.3 (Approximation). The following holds for all 𝐾 ∈ 𝒯ℎ and all 𝑣 ∈ 𝐻2+𝑠(𝐾), 𝑠 > 3
2 :

‖𝑣 − ℰ𝐾(𝑣)‖2♯,𝐾 + 𝑆i
𝜕𝐾(̂︀ℐ𝑘

𝐾(𝑣), ̂︀ℐ𝑘
𝐾(𝑣)) + 𝑆b

𝜕𝐾

(︀
𝑣 −Π𝑘+2

𝐾 (𝑣), 𝑣 −Π𝑘+2
𝐾 (𝑣)

)︀
≤ 𝐶

⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦2

♯,𝐾
. (4.9)

The global interpolation operator ̂︀ℐ𝑘
ℎ : 𝐻2(Ω) → ̂︀𝑉 𝑘

ℎ is defined such that, for all 𝑣 ∈ 𝐻2(Ω),

̂︀ℐ𝑘
ℎ(𝑣) :=

(︁(︀
Π𝑘+2

𝐾 (𝑣)
)︀
𝐾∈𝒯ℎ

,
(︀
Π𝑘+2

𝐹 (𝑣)
)︀
𝐹∈ℱ i

ℎ

,
(︀
Π𝑘

𝐹 (n𝐹 ·∇𝑣)
)︀
𝐹∈ℱ i

ℎ

)︁
∈ ̂︀𝑉 𝑘

ℎ , (4.10)

so that the local components of ̂︀ℐ𝑘
ℎ(𝑣) are ̂︀ℐ𝑘

𝐾(𝑣|𝐾) for all 𝐾 ∈ 𝒯ℎ. We define the consistency error 𝛿ℎ ∈ (̂︀𝑉 𝑘
ℎ )′

such that, for all ̂︀𝑤ℎ ∈ ̂︀𝑉 𝑘
ℎ ,

⟨𝛿ℎ, ̂︀𝑤ℎ⟩ := ℓ( ̂︀𝑤ℎ)− ̂︀𝑎ℎ(̂︀ℐ𝑘
ℎ(𝑢), ̂︀𝑤ℎ), (4.11)

where the brackets refer to the duality pairing between
(︁̂︀𝑉 𝑘

ℎ

)︁′
and ̂︀𝑉 𝑘

ℎ . The proof of the following bound on the
consistency error is postponed to Section 6.3.

Lemma 4.4 (Consistency). Assume that 𝑢 ∈ 𝐻2+𝑠(Ω), 𝑠 > 3
2 . The following holds:

⟨𝛿ℎ, ̂︀𝑤ℎ⟩ ≤ 𝐶

(︃ ∑︁
𝐾∈𝒯ℎ

‖𝑢−Π𝑘+2
𝐾 (𝑢)‖2♯,𝐾

)︃ 1
2

‖ ̂︀𝑤ℎ‖̂︀𝑉 𝑘
ℎ
, ∀ ̂︀𝑤ℎ ∈ ̂︀𝑉 𝑘

ℎ . (4.12)

4.3. Error estimate

The above results lead to the following error bound. The proof is postponed to Section 6.4. Let ̂︀𝑢ℎ ∈ ̂︀𝑉 𝑘
ℎ

be the discrete HHO solution and recall from Section 3.1 that for all 𝐾 ∈ 𝒯ℎ, ̂︀𝑢𝐾 ∈ ̂︀𝑉 𝑘
𝐾 denotes the local

components of ̂︀𝑢ℎ associated with the mesh cell 𝐾 and its faces in ℱ i
𝜕𝐾 . To simplify the notation, we set

𝑅𝐾(̂︀𝑢𝐾) := 𝑅𝑖
𝐾(̂︀𝑢𝐾) + ℒ𝐾(𝑢) for all 𝐾 ∈ 𝒯ℎ, and recall that ℒ𝐾(𝑢) is nonzero only on boundary cells where it

is fully computable from the boundary data.

Theorem 4.5 (Error estimate). Assume that 𝑢 ∈ 𝐻2+𝑠(Ω) with 𝑠 > 3
2 . The following holds true:∑︁

𝐾∈𝒯ℎ

‖∇(𝑢−𝑅𝐾(̂︀𝑢𝐾))‖2𝐾,𝜀 ≤ 𝐶
∑︁

𝐾∈𝒯ℎ

⃦⃦
𝑢−Π𝑘+2

𝐾 (𝑢)
⃦⃦2

♯,𝐾
. (4.13)

Consequently, if 𝑘 ≥ 1, assuming 𝑢|𝐾 ∈ 𝐻𝑘+3(𝐾) for all 𝐾 ∈ 𝒯ℎ, we have∑︁
𝐾∈𝒯ℎ

‖∇(𝑢−𝑅𝐾(̂︀𝑢𝐾))‖2𝐾,𝜀 ≤ 𝐶
∑︁

𝐾∈𝒯ℎ

(︁
𝜎

1
2
𝐾ℎ𝑘+2

𝐾 |𝑢|𝐻𝑘+3(𝐾)

)︁2

, (4.14)

and if 𝑘 = 0, assuming 𝑢|𝐾 ∈ 𝐻4(𝐾) for all 𝐾 ∈ 𝒯ℎ, we have∑︁
𝐾∈𝒯ℎ

‖∇(𝑢−𝑅𝐾(̂︀𝑢𝐾))‖2𝐾,𝜀 ≤ 𝐶
∑︁

𝐾∈𝒯ℎ

(︁
𝜎

1
2
𝐾ℎ2

𝐾

(︀
|𝑢|𝐻3(𝐾) + ℎ𝐾 |𝑢|𝐻4(𝐾)

)︀)︁2

. (4.15)

Remark 4.6 (Error estimate (4.14)). In the case where 𝜀 ≈ ℓ2Ω, i.e., the fourth-order operator is dominant, we
have 𝜎𝐾 ≈ 𝒪(ℎ−2

𝐾 ), so that the error estimate (4.14) implies that∑︁
𝐾∈𝒯ℎ

⃦⃦
∇2(𝑢−𝑅𝐾(̂︀𝑢𝐾))

⃦⃦2

𝐾
≤ 𝐶

∑︁
𝐾∈𝒯ℎ

(︀
ℎ𝑘+1

𝐾 |𝑢|𝐻𝑘+3(𝐾)

)︀2
,
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which corresponds to the error estimate obtained in [15] for the biharmonic problem. Instead, in the case where
𝜀 ≪ 1, one has in practice 𝜎𝐾 = 1 (unless extremely fine meshes are used), and the error estimate (4.14) implies
that ∑︁

𝐾∈𝒯ℎ

‖∇(𝑢−𝑅𝐾(̂︀𝑢𝐾))‖2𝐾 ≤ 𝐶
∑︁

𝐾∈𝒯ℎ

(︀
ℎ𝑘+2

𝐾 |𝑢|𝐻𝑘+3(𝐾)

)︀2
.

Similar comments can be made for (4.15).

Remark 4.7 (Regularity assumption). The present error analysis requires that the exact solution has the
minimal regularity 𝑢 ∈ 𝐻2+𝑠(Ω), with 𝑠 > 3

2 . This assumption is consistent with the rather classical paradigm
encountered in the literature when analyzing nonconforming approximation methods. Notice that this regularity
requirement is less stringent than the one needed to achieve optimal decay rates as soon as 𝑘 ≥ 1. Moreover,
this requirement can be lowered to 𝑠 > 1 by using the techniques developed in [18] and Chapters 40, 41 of [17]
in the context of second-order elliptic PDEs.

Remark 4.8 (𝑘 = 0). The regularity assumption 𝑢|𝐾 ∈ 𝐻4(𝐾) on the exact solution is slightly subopti-
mal in the case 𝑘 = 0 whenever 𝑠 < 1. This assumption can be avoided if a multiplicative trace inequal-
ity in fractional Sobolev spaces is available on cells with a curved boundary. Specifically, we need to assert
that for 𝑠 ∈ ( 1

2 , 1), there is 𝐶 such that for all ℎ > 0, all 𝐾 ∈ 𝒯ℎ, and all 𝑣 ∈ 𝐻1(𝐾), we have

‖𝑣‖𝜕𝐾 ≤ 𝐶
(︁
ℎ
− 1

2
𝐾 ‖𝑣‖𝐾 + ℎ

𝑠− 1
2

𝐾 |𝑣|𝐻𝑠(𝐾)

)︁
. This inequality can be established on cells with a flat boundary by

invoking affine geometric mappings, see Lemma 7.2 of [16].

5. Numerical examples

In this section, we present numerical examples to illustrate the theoretical results on the present HHO method.
We first study convergence rates and robustness for smooth solutions in domains with a polygonal (Sect. 5.1) and
a curved (Sect. 5.2) boundary. Then we consider a more challenging test case with unknown analytical solution
and a boundary layer forming as 𝜀 → 0. All the computations were run with Matlab R2018a on the NEF platform
at INRIA Sophia Antipolis Méditerranée using 12 cores, and all the linear systems after static condensation are
solved using the backslash function. The quadratures in polygonal cells are performed by sub-triangulating
the polygon into triangles. For every curved element, the sub-triangulation is constructed by considering a
sufficiently fine decomposition of its curved edge into smaller straight sub-edges. In our implementation, we
consider 30 sub-edges; this number was verified to be sufficient on the finest meshes and highest polynomial
degrees reported in Section 5.1. We emphasize that the sub-triangulation is only used to generate the quadrature
rules and that these calculations are fully parallelizable.

5.1. Convergence rates and robustness in a polygonal domain

We select 𝑓 and the boundary conditions on Ω := (0, 1)2 so that the exact solution to (1.1) is

𝑢(𝑥, 𝑦) = sin(𝜋𝑥)2 sin(𝜋𝑦)2 + 𝑒−(𝑥−0.5)2−(𝑦−0.5)2 .

We employ polynomial degrees 𝑘 ∈ {0, . . . , 3} and meshes consisting of {16, 64, 256, 1024, 4096, 16 384} elements.
The meshes can be either composed of rectangular cells or of polygonal (Voronoi-like) cells (generated through
the PolyMesher Matlab library [22]). Two examples of rectangular and polygonal meshes, both composed of
256 cells, are shown in Figure 2. Despite an ℎ𝑝-error analysis falls beyond the present scope, we implement the
stabilization terms in (3.4) and (3.5) with ℎ−1

𝐾 replaced by (𝑘 + 1)2ℎ−1
𝐾 for all 𝐾 ∈ 𝒯ℎ.

Let us first verify the convergence rates. We measure relative errors in the (broken) energy seminorm used
on the left-hand side of our main error estimate (4.13). The errors are reported as a function of

√
DoFs, where

DoFs denotes the total number of globally coupled discrete unknowns (that is, the face unknowns). The results
are reported in Figure 3. The first observation is that there is almost no difference in the convergence rates
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Figure 2. Examples of rectangular (left) and polygonal (Voronoi-like) (right) meshes composed
of 256 cells.

obtained on rectangular and polygonal meshes, and that these rates match the prediction of Theorem 4.5 for all
the polynomial degrees. Next, we observe that the errors obtained with 𝜀 = 1 and 𝜀 = 0 converge, respectively,
at the optimal rates 𝑂(ℎ𝑘+1) and 𝑂(ℎ𝑘+2), in agreement with Remark 4.6. For values of 𝜀 between these two
extreme values, a transition between the above two regimes is observed for 𝜀 ≈ ℎ2. Whenever 𝜀 ≥ ℎ2, the
convergence rate is 𝑂(ℎ𝑘+1) as expected for a fourth-order differential operator. Instead, whenever 𝜀 ≤ ℎ2, the
convergence rate is closer to the value 𝑂(ℎ𝑘+2) expected for a second-order differential operator. In Table 1,
we list the convergence rates on rectangular meshes (those on polygonal meshes lead to the same conclusions).
Reading the table horizontally, the transition between the two regimes is clearly visible. For completeness, we
also report the relative errors in the 𝐿2-norm in Table 2. As for the energy seminorm error, there is almost
no difference in the convergence rates obtained on rectangular and polygonal meshes, so that we focus on
rectangular meshes. For 𝜀 = 0, the convergence rate is always 𝑂(ℎ𝑘+3) which is optimal (recall that polynomials
of order (𝑘 + 2) are employed to approximate the traces on the mesh faces). For 𝜀 = 1, the convergence rate
is suboptimal for 𝑘 = 0, i.e., only 𝑂(ℎ2), as also observed with other nonconforming finite element methods
applied to fourth-order PDEs. Instead, the optimal rate 𝑂(ℎ𝑘+3) is recovered for 𝑘 ≥ 1. For 𝑘 = 0, a transition
between second- and third-order convergence is observed as 𝜀 → 0.

Finally, we present in Table 3 the (Euclidean) condition number of the linear system after static condensation
for all the considered values of 𝜀. To compare the value obtained for 𝜀 = 0, we also report the condition number
for the linear system discretized by a genuine HHO method for the second-order PDE, employing polynomials
of order (𝑘 + 2) for the cell unknowns and (𝑘 + 1) for the face unknowns. The first observation is that the
condition number for 𝜀 = 1 scales as 𝒪(ℎ−4) (as expected) and is larger than the condition number for all the
other values of 𝜀 by two orders of magnitude for all 𝑘 ≥ 0. Instead, for 𝜀 = 0, the condition number scales as
𝒪(ℎ−2) (again, as expected). In addition, the condition number for the genuinely second-order HHO method
has the same quadratic scaling for the condition number, with values that are two orders of magnitude smaller
than those reported in the column 𝜀 = 0. This is reasonable since the proposed HHO method is not designed
for genuinely second-order operators, but it still gives the optimal quadratic scaling for the condition number in
the limit case 𝜀 = 0. This encouraging observation indicates that the linear systems obtained with the present
HHO method remain relatively well-behaved as 𝜀 → 0. Further studies are, however, needed, including, e.g.,
preconditioned iterative methods (as, for instance, the one conducted in [20]). Finally, for decreasing 𝜀 between
the two extreme values 1 and 0, the condition number for fixed 𝑘 and ℎ decreases first and then increases. This
nonmonotone behavior is probably related to the two different asymptotic regimes associated with 𝜀 = 1 and
𝜀 = 0.
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Figure 3. Polygonal domain and smooth solution. Convergence rates in the energy seminorm
on rectangular (solid line) and polygonal (dotted line) meshes for different values of 𝜀. The
polynomial degree is 𝑘 = 0 (top left), 𝑘 = 1 (top right), 𝑘 = 2 (bottom left) and 𝑘 = 3 (bottom
right).

5.2. Convergence rates and robustness in a domain with curved boundary

In this second example, we consider an annular domain constructed as the unit disc centered at the origin,
with a circular hole centered at (0.25, 0.25) and with radius 0.4; see Figure 4. We select 𝑓 and the boundary
conditions so that the exact solution to (1.1) is

𝑢(𝑥, 𝑦) = (1 + sin(𝜋(𝑥2 + 𝑦2 − 1)))𝑒(−𝑥2−𝑦2).

We consider a quasi-uniform sequence of triangular meshes composed of 65, 109, 527, 2266, and 9411 triangular
elements. All the meshes fit the domain Ω exactly, and for every mesh in the sequence, each interior cell has
only straight edges, whereas each boundary cell has one curved edge that exactly fits the boundary of Ω.
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Table 1. Polygonal domain and smooth solution. Convergence rates in the energy seminorm
on rectangular meshes for different values of 𝑘 and 𝜀.

# Cells 𝜀 = 1 𝜀 = 10−2 𝜀 = 10−3 𝜀 = 10−4 𝜀 = 10−5 𝜀 = 10−6 𝜀 = 0

Rectangular meshes with 𝑘 = 0
64 0.85 0.52 1.41 1.93 2.03 2.04 2.04
256 0.94 1.01 0.89 1.62 1.92 1.97 1.97
1024 1.06 1.24 0.93 1.30 1.82 1.98 2.00
4096 1.10 1.22 1.25 1.00 1.55 1.92 2.00

16 384 1.06 1.12 1.14 1.13 1.23 1.75 2.00
Rectangular meshes with 𝑘 = 1

64 1.81 1.84 1.85 2.49 2.59 2.60 2.60
256 1.98 1.99 2.03 2.37 2.81 2.86 2.86
1024 2.01 2.01 2.08 1.99 2.71 2.93 2.96
4096 2.01 2.01 2.02 2.17 2.26 2.88 2.99

16 384 2.01 2.01 2.01 2.06 2.08 2.61 2.99
Rectangular meshes with 𝑘 = 2

64 2.65 2.68 2.84 3.26 3.49 3.52 3.53
256 2.85 2.85 2.92 3.19 3.68 3.80 3.82
1024 2.93 2.93 2.95 3.09 3.50 3.86 3.93
4096 2.97 2.97 2.97 3.02 3.24 3.74 3.97

16 384 2.98 2.98 2.98 3.00 3.10 3.42 3.98
Rectangular meshes with 𝑘 = 3

64 3.55 3.56 3.68 4.04 4.35 4.40 4.40
256 3.80 3.81 3.85 4.08 4.54 4.72 4.74
1024 3.91 3.91 3.92 4.02 4.37 4.79 4.88
4096 3.97 3.95 3.94 3.99 4.18 4.63 4.94

We perform the same numerical experiment as in the previous section and report the results in Figure 5. The
conclusions are the same as in the previous test case. The transition from the 𝑂(ℎ𝑘+2) to the 𝑂(ℎ𝑘+1) regimes
is clearly visible in all cases.

5.3. Test case with boundary layer

We conclude this series of numerical experiments with a somewhat more challenging test case featuring a
boundary layer. We consider the same annular domain as in the previous section, we set the source term to
𝑓 := 10 and we enforce homogeneous boundary conditions. The considered values for the singular perturba-
tion parameter are 𝜀 ∈ {10−1, 10−2, 10−3, 10−6, 0}. In all cases, the analytical solution is unknown. Numerical
solutions are obtained on the curved triangular meshes considered in the previous section using the polynomial
degree 𝑘 = 1. We report in Figure 6 the reconstructed solution 𝑅ℎ(̂︀𝑢ℎ) defined as 𝑅ℎ(̂︀𝑢ℎ)|𝐾 := 𝑅𝐾(̂︀𝑢𝐾) for all
𝐾 ∈ 𝒯ℎ (with 𝑅𝐾(̂︀𝑢𝐾) defined just above Thm. 4.5), its piecewise gradient (Euclidean norm), and its piece-
wise Hessian (Frobenius norm) for 𝜀 = 10−1 and 𝜀 = 10−3 on the mesh composed of 9411 curved triangular
cells. Since ℎ = 0.0344 for this mesh, the boundary layer is well resolved for 𝜀 = 10−1 and barely resolved for
𝜀 = 10−3. Notice that 𝑅ℎ(̂︀𝑢ℎ) is a piecewise cubic polynomial since we are using here 𝑘 = 1. We observe in
Figure 6 that the presence of the boundary layer is reflected by larger values of the Hessian near the boundary,
whereas the reconstructed solution and its piecewise gradient take moderate values. To illustrate that the HHO
method remains stable even if the boundary layer is not resolved, we present in Figure 7 the same quantities
as in Figure 6 obtained on the same mesh, but this time with 𝜀 = 10−6 and 𝜀 = 0. We notice in particular that
the larger values of the Hessian remain localized close to the boundary for 𝜀 = 10−6, whereas the solution to
the second-order PDE is recovered for 𝜀 = 0.
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Table 2. Polygonal domain and smooth solution. Convergence rates in the 𝐿2-norm on rect-
angular meshes for different values of 𝑘 and 𝜀.

# Cells 𝜀 = 1 𝜀 = 10−2 𝜀 = 10−3 𝜀 = 10−4 𝜀 = 10−5 𝜀 = 10−6 𝜀 = 0

Rectangular meshes with 𝑘 = 0
64 1.40 0.17 2.36 2.92 2.94 2.94 2.94
256 1.76 1.36 0.52 2.81 2.95 2.96 2.96
1024 1.83 1.66 0.81 2.36 3.01 3.03 3.03
4096 1.90 1.84 1.75 0.74 2.97 3.02 3.03

16 384 1.98 1.97 1.94 1.52 2.57 3.01 3.01
Rectangular meshes with 𝑘 = 1

64 3.35 3.24 1.71 3.49 3.46 3.45 3.45
256 3.68 3.80 2.96 3.10 3.77 3.75 3.74
1024 3.84 3.94 3.78 1.98 3.90 3.89 3.87
4096 3.92 3.97 3.96 3.42 2.54 3.98 3.94

16 384 4.05 4.02 4.01 3.93 2.69 3.92 3.97
Rectangular meshes with 𝑘 = 2

64 4.51 4.60 4.32 4.42 4.37 4.36 4.36
256 4.77 4.81 4.72 4.57 4.74 4.70 4.69
1024 4.98 4.93 4.82 4.57 4.99 4.88 4.85
4096 2.49 4.17 4.92 4.83 4.69 5.02 4.97

Rectangular meshes with 𝑘 = 3
64 5.29 5.26 5.05 5.12 5.21 5.20 5.19
256 5.87 5.87 5.59 5.37 5.66 5.62 5.61
1024 5.06 5.28 5.89 5.87 5.86 5.85 5.88

Table 3. Condition number of condensed linear system on rectangular meshes for different
values of 𝑘 and 𝜀 for the proposed HHO method and the mixed order HHO method.

# Cells 𝜀 = 1 𝜀 = 10−4 𝜀 = 10−5 𝜀 = 10−6 𝜀 = 0 2nd-order

Rectangular meshes with 𝑘 = 0
1024 2.10e+06 8.44e+04 2.49e+05 3.13e+05 3.18e+05 2.47e+03
4096 3.38e+07 5.99e+05 6.15e+05 1.20e+06 1.33e+06 9.72e+03

16 384 5.42e+08 6.84e+06 1.64e+06 3.84e+06 4.91e+06 3.85e+04
Rectangular meshes with 𝑘 = 1

1024 2.52e+07 3.72e+05 4.34e+05 7.98e+05 8.82e+05 4.89e+03
4096 3.97e+08 4.86e+06 1.20e+06 2.44e+06 3.63e+06 1.92e+04

16 384 6.29e+09 7.76e+07 9.84e+06 6.25e+06 1.49e+07 7.60e+04
Rectangular meshes with 𝑘 = 2

1024 1.45e+08 2.04e+06 6.45e+05 1.75e+06 2.27e+06 9.29e+03
4096 2.28e+09 2.86e+07 1.20e+06 2.44e+06 9.30e+06 3.64e+04

16 384 3.62e+10 4.52e+08 5.96e+07 1.02e+07 3.77e+07 1.44e+05
Rectangular meshes with 𝑘 = 3

1024 4.77e+08 7.37e+06 1.40e+06 2.81e+06 4.88e+06 1.28e+04
4096 7.51e+09 9.59e+07 1.61e+07 5.77e+06 1.98e+07 5.04e+04

16 384 1.19e+11 1.49e+09 2.02e+08 3.17e+07 8.01e+07 1.99e+05
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Figure 4. Two examples of curved triangular meshes with 65 (left) and 527 (right) cells fitting
exactly the annular domain with a hole.

Finally, to give some insight on the resolution of the boundary layer for 𝜀 ∈ {10−1, 10−2, 10−3}, we flag the
mesh cells as belonging to the boundary layer by means of the following criterion:

𝒯 *ℎ :=
{︂

𝐾 ∈ 𝒯ℎ

⃒⃒
‖∇2𝑅𝐾(̂︀𝑢𝐾)‖𝐿∞(𝐾) ≥ 𝜃 max

̃︀𝐾∈𝒯ℎ

⃦⃦
∇2𝑅 ̃︀𝐾

(︀̂︀𝑢 ̃︀𝐾)︀⃦⃦𝐿∞( ̃︀𝐾)

}︂
,

with the threshold parameter set here to 𝜃 := 0.3, and the 𝐿∞-norm estimated by computing the mean of
the values taken by the Hessian norm at the three vertices of 𝐾. We report in Table 4 the two following
quantities: (i) the maximal value of the Hessian, max ̃︀𝐾∈𝒯ℎ

‖∇2𝑅 ̃︀𝐾(̂︀𝑢 ̃︀𝐾)‖𝐿∞( ̃︀𝐾); (ii) the area of the boundary
layer,

∑︀
𝐾∈𝒯 *ℎ

|𝐾|. First, we observe that the maximal value of the Hessian on the two finest meshes (which
both resolve the boundary layer) are almost the same for all the values of 𝜀. Moreover, the maximal value of
the Hessian appears to scale as 𝒪(𝜀−

3
4 ). This scaling is consistent with the expected scaling of the 𝐻2-norm

of the Hessian as 𝒪(𝜀−
1
2 ) and a boundary layer with surface scaling as 𝒪(𝜀

1
2 ). Furthermore, the set 𝒯 *ℎ covers

a region whose area decays a bit slower than the expected rate 𝒪(𝜀
1
2 ). This behavior indicates that somewhat

finer meshes are still needed to fully resolve the geometric description of the boundary layer. This conclusion is
corroborated in Figure 8, where we show the region covered by the cells in 𝒯 *ℎ for 𝜀 ∈ {10−1, 10−2, 10−3} and
the curved triangular meshes composed of 2266, 9411, or 29 496 cells. For 𝜀 = 0.1, the set 𝒯 *ℎ contains not only
cells close to the boundary but also cells in the interior. As 𝜀 becomes smaller, the set 𝒯 *ℎ contains fewer and
fewer cells in the interior of the domain, and for both 𝜀 = 10−2 and 10−3, the region covered by 𝒯 *ℎ is fully
localized at the boundary. We notice, however, that even for 𝜀 = 10−3, there are boundary cells that are not
flagged as members of 𝒯 *ℎ ; those cells are located in the part of the domain where the boundary of the inner
disk is close to the boundary of the outer disk.

6. Proof of main results

In this section, we present the proof of Lemmas 4.1, 4.3, 4.4, and Theorem 4.5.

6.1. Proof of Lemma 4.1

(1) We start with the lower bound in (4.2). Choosing the test function 𝑤 = 𝑣𝐾 in (3.3) gives

‖∇𝑣𝐾‖2𝐾,𝜀 =
(︀
∇𝑅i

𝐾(𝑣𝐾),∇𝑣𝐾

)︀
𝐾,𝜀

+ (𝑣𝐾 − 𝑣𝜕𝐾 , 𝜕𝑛𝑣𝐾)𝜕𝐾i + (𝑣𝐾 , 𝜕𝑛𝑣𝐾)𝜕𝐾b

− 𝜀
{︁

(𝑣𝐾 − 𝑣𝜕𝐾 , 𝜕𝑛∆𝑣𝐾)𝜕𝐾i − (𝜕𝑛𝑣𝐾 − 𝛾𝜕𝐾 , 𝜕𝑛𝑛𝑣𝐾)𝜕𝐾i − (𝜕𝑡(𝑣𝐾 − 𝑣𝜕𝐾), 𝜕𝑛𝑡𝑣𝐾)𝜕𝐾i

− (𝑣𝐾 , 𝜕𝑛∆𝑣𝐾)𝜕𝐾b + (∇𝑣𝐾 ,∇𝜕𝑛𝑣𝐾)𝜕𝐾b

}︁
.
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Figure 5. Annular domain and smooth solution. Convergence rates in the energy seminorm
on curved triangular meshes for different values of 𝜀. The polynomial degree 𝑘 = 0 (top left),
𝑘 = 1 (top right), 𝑘 = 2 (bottom left) and 𝑘 = 3 (bottom right).

Using the Cauchy–Schwarz inequality, the discrete inverse inequalities (2.7), (2.6), (2.8), and that 𝜕𝑛𝑛𝑣𝐾 ∈
P𝑘(𝜕𝐾 i) to introduce the projection Π𝑘

𝜕𝐾i , we infer that

‖∇𝑣𝐾‖𝐾,𝜀 ≤ ‖∇𝑅i
𝐾(̂︀𝑣𝐾)‖𝐾,𝜀 + 𝐶

(︁
ℎ
− 1

2
𝐾 ‖𝑣𝐾 − 𝑣𝜕𝐾‖𝜕𝐾i + ℎ

− 1
2

𝐾 ‖𝑣𝐾‖𝜕𝐾b

+ 𝜀
1
2

{︁
ℎ
− 3

2
𝐾 ‖𝑣𝐾 − 𝑣𝜕𝐾‖𝜕𝐾i + ℎ

− 1
2

𝐾 ‖Π𝑘
𝜕𝐾i(𝜕𝑛𝑣𝐾 − 𝛾𝜕𝐾)‖𝜕𝐾i + ℎ

− 3
2

𝐾 ‖𝑣𝐾‖𝜕𝐾b + ℎ
− 1

2
𝐾 ‖∇𝑣𝐾‖𝜕𝐾b

}︁)︁
.

Since 𝜎𝐾 = max{1, 𝜀ℎ−2
𝐾 }, this implies that

‖∇𝑣𝐾‖𝐾,𝜀 ≤ ‖∇𝑅i
𝐾(̂︀𝑣𝐾)‖𝐾,𝜀 + 𝐶

(︀
𝑆i

𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾) + 𝑆b
𝜕𝐾(𝑣𝐾 , 𝑣𝐾)

)︀ 1
2 .

It remains to bound the four boundary terms on the right-hand side of (4.1). It is clear that

𝜎𝐾ℎ−1
𝐾 ‖𝑣𝜕𝐾 − 𝑣𝐾‖2𝜕𝐾i + 𝜎𝐾ℎ−1

𝐾 ‖𝑣𝐾‖2𝜕𝐾b + 𝜀ℎ−1
𝐾 ‖∇𝑣𝐾‖2𝜕𝐾b ≤ 𝑆i

𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾) + 𝑆b
𝜕𝐾(𝑣𝐾 , 𝑣𝐾),
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Figure 6. Test case with boundary layer on the mesh composed of 9411 cells, 𝜀 = 10−1

(top row) and 𝜀 = 10−3 (bottom row). Left column: reconstructed solution; middle column:
piecewise gradient of reconstructed solution (Euclidean norm); right column: piecewise Hessian
of reconstructed solution (Frobenius norm).

so that it only remains to bound 𝜎𝐾ℎ𝐾‖𝛾𝜕𝐾 − 𝜕𝑛𝑣𝐾‖2𝜕𝐾i . To this purpose, using a Poincaré–Steklov inequal-
ity followed by a discrete trace inequality on 𝜕𝐾 i, we observe that

𝜎
1
2
𝐾ℎ

1
2
𝐾‖𝛾𝜕𝐾 − 𝜕𝑛𝑣𝐾‖𝜕𝐾i ≤ 𝜎

1
2
𝐾ℎ

1
2
𝐾

⃦⃦
Π𝑘

𝜕𝐾i(𝛾𝜕𝐾 − 𝜕𝑛𝑣𝐾)
⃦⃦

𝜕𝐾i + 𝜎
1
2
𝐾ℎ

1
2
𝐾

⃦⃦
𝜕𝑛𝑣𝐾 −Π𝑘

𝜕𝐾i(𝜕𝑛𝑣𝐾)
⃦⃦

𝜕𝐾i

≤ 𝑆i
𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾)

1
2 + 𝐶𝜎

1
2
𝐾ℎ

3
2
𝐾‖𝜕𝑛𝑡𝑣𝐾‖𝜕𝐾

≤ 𝑆i
𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾)

1
2 + 𝐶𝜎

1
2
𝐾ℎ𝐾

⃦⃦
∇2𝑣𝐾

⃦⃦
𝐾

.

The definition of 𝜎𝐾 implies that 𝜎
1
2
𝐾 ≤ 1 + 𝜀

1
2 ℎ−1

𝐾 , so that

𝜎
1
2
𝐾ℎ𝐾‖∇2𝑣𝐾‖𝐾 ≤ ℎ𝐾‖∇2𝑣𝐾‖𝐾 + 𝜀

1
2 ‖∇2𝑣𝐾‖𝐾 ≤ 𝐶‖∇𝑣𝐾‖𝐾 + 𝜀

1
2 ‖∇2𝑣𝐾‖𝐾 ≤ 𝐶‖∇𝑣𝐾‖𝐾,𝜀,

where we used the discrete inverse inequality (2.7). Owing to the above bound on ‖∇𝑣𝐾‖𝐾,𝜀, we infer that

𝜎
1
2
𝐾ℎ

1
2
𝐾‖𝛾𝜕𝐾 − 𝜕𝑛𝑣𝐾‖𝜕𝐾i ≤ 𝐶

(︁
‖∇𝑅i

𝐾(̂︀𝑣𝐾)‖𝐾,𝜀 +
(︀
𝑆i

𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾) + 𝑆b
𝜕𝐾(𝑣𝐾 , 𝑣𝐾)

)︀ 1
2
)︁
.

Combining the above bounds, we conclude that the lower bound in (4.2) holds true.
(2) Let us now establish the upper bound in (4.2). This time we choose 𝑤 = 𝑅i

𝐾(̂︀𝑣𝐾) in (3.3) and proceeding
as above yields ⃦⃦

∇𝑅i
𝐾(̂︀𝑣𝐾)

⃦⃦
𝐾,𝜀

≤ ‖∇𝑣𝐾‖𝐾,𝜀 + 𝐶
(︀
𝑆i

𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾) + 𝑆b
𝜕𝐾(𝑣𝐾 , 𝑣𝐾)

)︀ 1
2 .
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Figure 7. Test case with boundary layer on the mesh composed of 9411 cells, 𝜀 = 10−6 (top
row) and 𝜀 = 0 (bottom row). Left column: reconstructed solution; middle column: piecewise
gradient of reconstructed solution (Euclidean norm); right column: piecewise Hessian of recon-
structed solution (Frobenius norm).

Moreover, it is clear that

𝑆i
𝜕𝐾(̂︀𝑣𝐾 , ̂︀𝑣𝐾) + 𝑆b

𝜕𝐾(𝑣𝐾 , 𝑣𝐾) ≤ 𝜎𝐾ℎ−1
𝐾 ‖𝑣𝜕𝐾 − 𝑣𝐾‖2𝜕𝐾i + 𝜎𝐾ℎ𝐾‖𝛾𝜕𝐾 − 𝜕𝑛𝑣𝐾‖2𝜕𝐾i

+ 𝜎𝐾ℎ−1
𝐾 ‖𝑣𝐾‖2𝜕𝐾b + 𝜀ℎ−1

𝐾 ‖∇𝑣𝐾‖2𝜕𝐾b ,

since ‖Π𝑘
𝜕𝐾i(𝜕𝑛𝑣𝐾 − 𝛾𝜕𝐾)‖𝜕𝐾i ≤ 𝜎𝐾ℎ

1
2
𝐾‖𝜕𝑛𝑣𝐾 − 𝛾𝜕𝐾‖𝜕𝐾i . This completes the proof.

6.2. Proof of Lemma 4.3

(1) Let us first bound ‖𝑣−ℰ𝐾(𝑣)‖♯,𝐾 . The triangle inequality followed by the discrete inverse inequalities (2.6)
and (2.7) implies that

‖𝑣 − ℰ𝐾(𝑣)‖♯,𝐾 ≤
⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦

♯,𝐾
+
⃦⃦
ℰ𝐾(𝑣)−Π𝑘+2

𝐾 (𝑣)
⃦⃦

♯,𝐾

≤
⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦

♯,𝐾
+ 𝐶

⃦⃦
∇
(︀
ℰ𝐾(𝑣)−Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾,𝜀
,

so that we only need to bound the last term on the right-hand side. Straightforward algebra shows that,
for all 𝜉 ∈ P𝑘+2(𝐾),(︀
∇ℰ𝐾(𝑣)−∇Π𝑘+2

𝐾 (𝑣),∇𝜉
)︀
𝐾,𝜀

= −
(︀
Π𝑘+2

𝐾 (𝑣)− 𝑣, 𝜕𝑛𝜉
)︀
𝜕𝐾

+ 𝜀
{︁(︀

Π𝑘+2
𝐾 (𝑣)− 𝑣, 𝜕𝑛∆𝜉

)︀
𝜕𝐾

−
(︀
𝜕𝑛

(︀
Π𝑘+2

𝐾 (𝑣)− 𝑣
)︀
, 𝜕𝑛𝑛𝜉

)︀
𝜕𝐾

−
(︀
𝜕𝑡

(︀
Π𝑘+2

𝐾 (𝑣)−Π𝑘+2
𝜕𝐾i(𝑣)

)︀
, 𝜕𝑛𝑡𝜉

)︀
𝜕𝐾i −

(︀
𝜕𝑡

(︀
Π𝑘+2

𝐾 (𝑣)− 𝑣
)︀
, 𝜕𝑛𝑡𝜉

)︀
𝜕𝐾b

}︁
.
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Table 4. Test case with boundary layer. Maximal Hessian value and area covered by 𝒯 *ℎ for
𝜀 ∈ {10−1, 10−2, 10−3} and the curved triangular meshes composed of 527, 2266, 9411, and
29 496 cells.

Mesh 527 cells 2266 cells 9411 cells 29 496 cells

ℎ 0.1416 0.0704 0.0344 0.0205
Max Hessian

𝜀 = 10−1 6.94 7.09 7.11 7.11
𝜀 = 10−2 38.13 40.48 40.88 41.22
𝜀 = 10−3 88.63 128.33 147.96 151.32

Area covered by 𝒯 *
ℎ

𝜀 = 10−1 5.50e-01 4.51e-01 4.16e-01 3.86e-01
𝜀 = 10−2 3.78e-01 2.47e-01 2.16e-01 2.13e-01
𝜀 = 10−3 4.38e-01 1.65e-02 1.12e-01 1.22e-01

Choosing 𝜉 = ℰ𝐾(𝑣)−Π𝑘+2
𝐾 (𝑣) and using the discrete inverse inequalities (2.6), (2.7), (2.8) gives⃦⃦

∇
(︀
ℰ𝐾(𝑣)−Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾,𝜀
≤ 𝐶

(︁
𝜎

1
2
𝐾ℎ

− 1
2

𝐾

⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦

𝜕𝐾
+ 𝜀

1
2 ℎ
− 1

2
𝐾

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝜕𝐾

+ 𝜀
1
2 ℎ
− 1

2
𝐾

⃦⃦
𝜕𝑡

(︀
Π𝑘+2

𝐾 (𝑣)−Π𝑘+2
𝜕𝐾i(𝑣)

)︀⃦⃦
𝜕𝐾i

)︁
.

The first two terms on the right-hand side are bounded using (2.14) and (2.15) leading to

𝜎
1
2
𝐾ℎ

− 1
2

𝐾

⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦

𝜕𝐾
+ 𝜀

1
2 ℎ
− 1

2
𝐾

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝜕𝐾
≤ 𝐶

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾,𝜀
.

Moreover, for the last term on the right-hand side, proceeding as in [15], we invoke the discrete trace
inequality (2.8) and observe that Π𝑘+2

𝐾 (𝑣) − Π𝑘+2
𝜕𝐾i(𝑣) = Π𝑘+2

𝜕𝐾i

(︀
Π𝑘+2

𝐾 (𝑣)− 𝑣
)︀
. Since Π𝑘+2

𝜕𝐾i is 𝐿2-stable, we
conclude that

𝜀
1
2 ℎ
− 1

2
𝐾

⃦⃦
𝜕𝑡

(︀
Π𝑘+2

𝐾 (𝑣)−Π𝑘+2
𝜕𝐾i(𝑣)

)︀⃦⃦
𝜕𝐾i ≤ 𝐶𝜀

1
2 ℎ
− 3

2
𝐾

⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦

𝜕𝐾i .

Invoking (2.14), this yields

𝜀
1
2 ℎ
− 1

2
𝐾

⃦⃦
𝜕𝑡

(︀
Π𝑘+2

𝐾 (𝑣)−Π𝑘+2
𝜕𝐾i(𝑣)

)︀⃦⃦
𝜕𝐾i ≤ 𝐶

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾,𝜀
.

We have thus shown that ⃦⃦
∇
(︀
ℰ𝐾(𝑣)−Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾,𝜀
≤ 𝐶

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦

𝐾,𝜀
.

Putting the above bounds together shows that ‖𝑣 − ℰ𝐾(𝑣)‖♯,𝐾 ≤ 𝐶‖𝑣 −Π𝑘+2
𝐾 (𝑣)‖♯,𝐾 .

(2) Let us now bound 𝑆i
𝜕𝐾(̂︀ℐ𝑘

𝐾(𝑣), ̂︀ℐ𝑘
𝐾(𝑣)). We have

𝑆i
𝜕𝐾(̂︀ℐ𝑘

𝐾(𝑣), ̂︀ℐ𝑘
𝐾(𝑣)) = 𝜎𝐾ℎ−1

𝐾

⃦⃦
Π𝑘+2

𝜕𝐾 (𝑣)−Π𝑘+2
𝐾 (𝑣)‖2𝜕𝐾i + 𝜎𝐾ℎ𝐾‖Π𝑘

𝜕𝐾i

(︀
Π𝑘

𝜕𝐾i(𝜕𝑛𝑣)− 𝜕𝑛

(︀
Π𝑘+2

𝐾 (𝑣)
)︀)︀⃦⃦2

𝜕𝐾i

≤ 𝜎𝐾ℎ−1
𝐾

⃦⃦
𝑣 −Π𝑘+2

𝐾 (𝑣)
⃦⃦2

𝜕𝐾i + 𝜎𝐾ℎ𝐾

⃦⃦
𝜕𝑛

(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦2

𝜕𝐾i ,

since Π𝑘+2
𝜕𝐾i(Π𝑘+2

𝐾 (𝑣)) = Π𝑘+2
𝐾 (𝑣)|𝜕𝐾i , Π𝑘+2

𝜕𝐾 is 𝐿2-stable, and Π𝑘
𝜕𝐾i ∘ Π𝑘

𝜕𝐾i = Π𝑘
𝜕𝐾i . The first term on the

right-hand side is bounded by means of (2.15), yielding

𝜎𝐾ℎ−1
𝐾 ‖𝑣 −Π𝑘+2

𝐾 (𝑣)‖2𝜕𝐾i ≤ 𝐶‖∇(𝑣 −Π𝑘+2
𝐾 (𝑣))‖2𝐾,𝜀.
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Figure 8. Region (blue color) covered by the cells in the set 𝒯 *ℎ for a mesh composed of 2266
(left column), 9411 (middle column), or 29 496 cells, 𝜀 = 10−1 (top row), 𝜀 = 10−2 (middle row),
or 𝜀 = 10−3 (bottom row).

Moreover, we have

𝜎𝐾ℎ𝐾‖𝜕𝑛(𝑣 −Π𝑘+2
𝐾 (𝑣))‖2𝜕𝐾i ≤ 𝜀ℎ−1

𝐾 ‖𝜕𝑛(𝑣 −Π𝑘+2
𝐾 (𝑣))‖2𝜕𝐾i + ℎ𝐾‖𝜕𝑛(𝑣 −Π𝑘+2

𝐾 (𝑣))‖2𝜕𝐾i

≤ 𝐶‖∇(𝑣 −Π𝑘+2
𝐾 (𝑣))‖2𝐾,𝜀 + ℎ𝐾‖𝜕𝑛(𝑣 −Π𝑘+2

𝐾 (𝑣))‖2𝜕𝐾i

≤ 𝐶‖𝑣 −Π𝑘+2
𝐾 (𝑣)‖2♯,𝐾 ,

where we used (2.14) and the definition of the ‖·‖♯,𝐾-norm. Putting the above bounds together, we infer
that 𝑆i

𝜕𝐾(̂︀ℐ𝑘
𝐾(𝑣), ̂︀ℐ𝑘

𝐾(𝑣)) ≤ 𝐶‖𝑣 −Π𝑘+2
𝐾 (𝑣)‖2♯,𝐾 .

(3) Finally, let us bound 𝑆b
𝜕𝐾(𝑣 −Π𝑘+2

𝐾 (𝑣), 𝑣 −Π𝑘+2
𝐾 (𝑣)). We have

𝑆b
𝜕𝐾(𝑣 −Π𝑘+2

𝐾 (𝑣), 𝑣 −Π𝑘+2
𝐾 (𝑣)) = 𝜎𝐾ℎ−1

𝐾 ‖𝑣 −Π𝑘+2
𝐾 (𝑣)‖2𝜕𝐾b + 𝜀ℎ−1

𝐾

⃦⃦
∇
(︀
𝑣 −Π𝑘+2

𝐾 (𝑣)
)︀⃦⃦2

𝜕𝐾b ,
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and the two terms on the right-hand side can be bounded by invoking the same arguments as in Step (2).
This concludes the proof.

6.3. Proof of Lemma 4.4

Recalling the definition (4.5) of the lifting operator and the definition (3.5) of the boundary stabilization
operator, we observe that

ℓℎ( ̂︀𝑤ℎ) =
∑︁

𝐾∈𝒯ℎ

{︁
(𝑓, 𝑤𝐾)𝐾 −

(︀
∇ℒ𝐾(𝑢),∇𝑅i

𝐾( ̂︀𝑤𝐾)
)︀
𝐾,𝜀

+ 𝑆b
𝜕𝐾(𝑢, 𝑤𝐾)

}︁
.

This implies that

⟨𝛿ℎ, ̂︀𝑤ℎ⟩ =
∑︁

𝐾∈𝒯ℎ

{︁
(𝑓, 𝑤𝐾)𝐾 −

(︀
∇ℰ𝐾(𝑢),∇𝑅i

𝐾( ̂︀𝑤𝐾)
)︀
𝐾,𝜀

− 𝑆i
𝜕𝐾(̂︀ℐ𝑘

𝐾(𝑢), 𝑤𝐾)− 𝑆b
𝜕𝐾

(︀
Π𝑘+2

𝐾 (𝑢)− 𝑢, 𝑤𝐾

)︀}︁
. (6.1)

We bound the four terms on the right-hand side of (6.1). The first two terms are combined together by using
that 𝑓 = 𝜀∆2𝑢−∆𝑢, integration by parts, the regularity of the exact solution, and the definition of 𝑅i

𝐾( ̂︀𝑤𝐾).
Let us set 𝜂|𝐾 := 𝑢|𝐾 − ℰ𝐾(𝑢|𝐾) for all 𝐾 ∈ 𝒯ℎ. Proceeding as in [15] for the fourth-order operator and as in
[4, 14] for the second-order operator, we obtain∑︁

𝐾∈𝒯ℎ

{︁
(𝑓, 𝑤𝐾)𝐾 − (∇ℰ𝐾(𝑢|𝐾),∇𝑅i

𝐾( ̂︀𝑤𝐾))𝐾,𝜀

}︁
=
∑︁

𝐾∈𝒯ℎ

{︂
(∇𝜂,∇𝑤𝐾)𝐾,𝜀 −

(︀
𝜕𝑛𝜂, 𝑤𝐾 − 𝑤𝜕𝐾

)︀
𝜕𝐾i −

(︀
𝜕𝑛𝜂, 𝑤𝐾

)︀
𝜕𝐾b

+ 𝜀
(︁(︀

𝜕𝑛𝛥𝜂, 𝑤𝐾 − 𝑤𝜕𝐾

)︀
𝜕𝐾i −

(︀
𝜕𝑛𝑛𝜂, 𝜕𝑛𝑤𝐾 − 𝜒𝜕𝐾

)︀
𝜕𝐾i −

(︀
𝜕𝑛𝑡𝜂, 𝜕𝑡(𝑤𝐾 − 𝑤𝜕𝐾)

)︀
𝜕𝐾i

+
(︀
𝜕𝑛𝛥𝜂, 𝑤𝐾

)︀
𝜕𝐾b −

(︀
∇𝜕𝑛𝜂,∇𝑤𝐾

)︀
𝜕𝐾b

)︁}︂
.

Invoking the Cauchy–Schwarz inequality and the discrete inverse inequalities from Lemma 2.3, we infer that

∑︁
𝐾∈𝒯ℎ

{︁
(𝑓, 𝑤𝐾)𝐾 − (∇ℰ𝐾(𝑢|𝐾),∇𝑅i

𝐾( ̂︀𝑤𝐾))𝐾,𝜀

}︁
≤ 𝐶

(︃ ∑︁
𝐾∈𝒯ℎ

‖𝜂‖2♯,𝐾

)︃ 1
2

‖ ̂︀𝑤ℎ‖̂︀𝑉 𝑘
ℎ
.

Moreover, the third and fourth terms on the right-hand side of (6.1) are estimated by means of Lemma 4.3.
Putting everything together concludes the proof.

6.4. Proof of Theorem 4.5

(1) Let us set ̂︀𝑒𝑘
ℎ := ̂︀ℐ𝑘

ℎ(𝑢) − ̂︀𝑢ℎ ∈ ̂︀𝑉 𝑘
ℎ , so that ̂︀𝑒𝑘

𝐾 := ̂︀ℐ𝑘
𝐾(𝑢|𝐾) − ̂︀𝑢𝐾 ∈ ̂︀𝑉 𝑘

𝐾 for all 𝐾 ∈ 𝒯ℎ. The property (4.3)
and the identity 𝑎ℎ

(︀̂︀𝑒𝑘
ℎ, ̂︀𝑒𝑘

ℎ

)︀
= −

⟨︀
𝛿ℎ, ̂︀𝑒𝑘

ℎ

⟩︀
imply that

𝛼
∑︁

𝐾∈𝒯ℎ

⃦⃦
∇
(︀
𝑅i

𝐾

(︀̂︀𝑒𝑘
𝐾

)︀)︀⃦⃦2

𝐾,𝜀
≤ 𝛼

⃦⃦̂︀𝑒𝑘
ℎ

⃦⃦2
̂︀𝑉 𝑘

ℎ

≤ 𝑎ℎ

(︀̂︀𝑒𝑘
ℎ, ̂︀𝑒𝑘

ℎ

)︀
=
⟨︀
𝛿ℎ, ̂︀𝑒𝑘

ℎ

⟩︀
.

Owing to the Lemma 4.4, we infer that∑︁
𝐾∈𝒯ℎ

⃦⃦
∇
(︀
𝑅i

𝐾

(︀̂︀𝑒𝑘
𝐾

)︀)︀⃦⃦2

𝐾,𝜀
≤ 𝐶

∑︁
𝐾∈𝒯ℎ

⃦⃦
𝑢−Π𝑘+2

𝐾 (𝑢)
⃦⃦2

♯,𝐾
.

By adding and subtracting 𝑅i
𝐾(̂︀ℐ𝑘

𝐾(𝑢|𝐾)), we have

𝑢|𝐾 −𝑅i
𝐾(̂︀𝑢𝐾)− ℒ𝐾(𝑢|𝐾) =

(︀
𝑢|𝐾 − ℰ𝐾(𝑢|𝐾)

)︀
+ 𝑅i

𝐾

(︀̂︀𝑒𝑘
𝐾

)︀
.

Using the triangle inequality and Lemma 4.3, the error estimate (4.13) is derived.
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(2) Let us assume that 𝑢|𝐾 ∈ 𝐻𝑘+3(𝐾) for all 𝐾 ∈ 𝒯ℎ if 𝑘 ≥ 1 and that 𝑢|𝐾 ∈ 𝐻4(𝐾) for all
𝐾 ∈ 𝒯ℎ if 𝑘 = 0. Combining the multiplicative trace inequality (2.9) with the polynomial approxima-

tion result (2.10) shows that
⃦⃦
𝑢−Π𝑘+2

𝐾 (𝑢)
⃦⃦

♯,𝐾
≤ 𝐶𝜎

1
2
𝐾ℎ𝑘+2

𝐾 |𝑢|𝐻𝑘+3(𝐾) if 𝑘 ≥ 1 and
⃦⃦
𝑢−Π𝑘+2

𝐾 (𝑢)
⃦⃦

♯,𝐾
≤

𝐶𝜎
1
2
𝐾ℎ𝑘+2

𝐾

(︀
|𝑢|𝐻𝑘+3(𝐾) + ℎ𝐾 |𝑢|𝐻4(𝐾)

)︀
if 𝑘 = 0. Summing these estimates over the mesh cells and using the

error estimate derived in Step (1) proves (4.14).
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