An analysis of the unified formulation for the equilibrium problem of compositional multiphase mixtures
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2981-3016

In this paper, we conduct a thorough mathematical analysis of the unified formulation advocated by Lauser et al. [Adv. Water Res. 34 (2011) 957–966] for compositional multiphase flows in porous media. The interest of this formulation lies in its potential to automatically handle the appearance and disappearance of phases. However, its practical implementation turned out to be not always robust for realistic fugacity laws associated with cubic equations of state, as shown by Ben Gharbia and Flauraud [Oil Gas Sci. Technol. 74 (2019) 43]. By focusing on the subproblem of phase equilibrium, we derive sufficient conditions for the existence of the corresponding system of equations. We trace back the difficulty of cubic laws to a deficiency of the Gibbs functions that comes into play due to the ``unifying’’ feature of the new formulation. We propose a partial remedy for this problem by extending the domain of definition of these functions in a natural way. Besides, we highlight the crucial but seemingly unknown fact that the unified formulation encapsulates all the properties known to physicists on phase equilibrium, such as the tangent plane criterion and the minimization of the Gibbs energy of the mixture.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021075
Classification : 76T99, 80M25, 90C33
Keywords: Complementarity condition, unified formulation, phase equilibrium, Gibbs energy function, cubic EOS
@article{M2AN_2021__55_6_2981_0,
     author = {Ben Gharbia, Ibtihel and Haddou, Mounir and Tran, Quang Huy and Vu, Duc Thach Son},
     title = {An analysis of the unified formulation for the equilibrium problem of compositional multiphase mixtures},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2981--3016},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021075},
     mrnumber = {4347302},
     zbl = {1491.76083},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021075/}
}
TY  - JOUR
AU  - Ben Gharbia, Ibtihel
AU  - Haddou, Mounir
AU  - Tran, Quang Huy
AU  - Vu, Duc Thach Son
TI  - An analysis of the unified formulation for the equilibrium problem of compositional multiphase mixtures
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2981
EP  - 3016
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021075/
DO  - 10.1051/m2an/2021075
LA  - en
ID  - M2AN_2021__55_6_2981_0
ER  - 
%0 Journal Article
%A Ben Gharbia, Ibtihel
%A Haddou, Mounir
%A Tran, Quang Huy
%A Vu, Duc Thach Son
%T An analysis of the unified formulation for the equilibrium problem of compositional multiphase mixtures
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2981-3016
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021075/
%R 10.1051/m2an/2021075
%G en
%F M2AN_2021__55_6_2981_0
Ben Gharbia, Ibtihel; Haddou, Mounir; Tran, Quang Huy; Vu, Duc Thach Son. An analysis of the unified formulation for the equilibrium problem of compositional multiphase mixtures. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2981-3016. doi: 10.1051/m2an/2021075

[1] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Vol. 35 of Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2008). | Zbl

[2] M. Aganagić, Newton’s method for linear complementarity problems. Math. Program. 28 (1984) 349–362. | MR | Zbl | DOI

[3] L. Asselineau, G. Bogdanic and J. Vidal, A versatile algorithm for calculating vapour-liquid equilibria. Fluid Phase Equilib. 3 (1979) 273–290. | DOI

[4] L. Beaude, K. Brenner, S. Lopez, R. Masson and F. Smai, Non-isothermal compositional liquid gas Darcy flow: formulation, soil-atmosphere boundary condition and application to high-energy geothermal simulations. Comput. Geosci. 23 (2019) 443–470. | MR | Zbl | DOI

[5] I. Ben Gharbia, Résolution de problèmes de complémentarité: Application à un écoulement diphasique dans un milieu poreux. Ph.D. thesis Université Paris Dauphine (Paris IX) (December 2012) http://tel.archives-ouvertes.fr/tel-00776617.

[6] I. Ben Gharbia and É. Flauraud, Study of compositional multiphase flow formulation using complementarity conditions. Oil Gas Sci. Technol. 74 (2019) 43. | DOI

[7] I. Ben Gharbia and J. Jaffré, Gas phase appearance and disappearance as a problem with complementarity constraints. Math. Comput. Simul. 99 (2014) 28–36. | MR | Zbl | DOI

[8] I. Ben Gharbia, É. Flauraud and A. Michel, Study of compositional multi-phase flow formulations with cubic EOS. In: Vol. 2 of SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas, USA (2015) 1015–1025.

[9] S. Boyd and L. Vandenberghe, Convex Optimization. Berichte über verteilte messysteme. Cambridge University Press, Cambridge, UK (2004). | MR | Zbl

[10] K. H. Coats, An equation of state compositional model. SPE J. 20 (1980) 363–376.

[11] L. Contento, A. Ern and R. Vermiglio, A linear-time approximate convex envelope algorithm using the double Legendre-Fenchel transform with application to phase separation. Comput. Optim. Appl. 60 (2015) 231–261. | MR | Zbl | DOI

[12] U. K. Deiters and T. Kraska, High-pressure Fluid Phase Equilibria: Phenomenology and Computation. Vol. 2 ofSupercritical Fluid Science and Technology. Elsevier, Amsterdam (2012). http://store.elsevier.com/High-Pressure-Fluid-Phase-Equilibria/isbn-9780444563545/.

[13] R. A. Heidemann, Computation of high pressure phase equilibria. Fluid Phase Equilib. 14 (1983) 55–78. | DOI

[14] W. Henry and J. Banks Iii, Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil. Trans. R. Soc. London 93 (1803) 29–274. | DOI

[15] S. Kräutle, The semismooth Newton method for multicomponent reactive transport with minerals. Adv. Water Res. 34 (2011) 137–151. | DOI

[16] T. C. Lai Nguyen, Analysis of a nonlinear algebraic system arising in phase equilibria problems. Master’s thesis, INSA Rennes (2018).

[17] A. Lauser, C. Hager, R. Helmig and B. Wohlmuth, A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Res. 34 (2011) 957–966. | DOI

[18] S. Le Vent, A summary of the properties of van der Waals fluids. Int. J. Mech. Engrg Edu. 29 (2001) 257–277. | DOI

[19] I. Lusetti, Numerical methods for compositional multiphase flow models with cubic EOS. Tech. report. IFPEN (2016).

[20] R. Masson, L. Trenty and Y. Zhang, Formulations of two phase liquid gas compositional Darcy flows with phase transitions. Int. J. Finite 11 (2014) 1–34. | MR | Zbl

[21] R. Masson, L. Trenty and Y. Zhang, Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface. J. Comput. Phys. 321 (2016) 708–728. | MR | Zbl | DOI

[22] M. L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9 (1982) 1–19. | DOI

[23] M. L. Michelsen, The isothermal flash problem. Part II. Phase-split calculation. Fluid Phase Equilib. 9 (1982) 21–40. | DOI

[24] M. L. Michelsen and J. M. Mollerup, Thermodynamic Models: Fundamentals & Computational Aspects. Tie-Line Publications, Holte (2007).

[25] A. Mitsos and P. I. Barton, A dual extremum principle in thermodynamics. AIChE J. 53 (2007) 2131–2147. | DOI

[26] J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). | MR | Zbl

[27] H. Orbey and S. I. Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules. Cambridge Series in Chemical Engineering. Cambridge University Press (1998).

[28] D.-Y. Peng and D. B. Robinson, A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15 (1976) 59–64. | Zbl | DOI

[29] R. H. Perry and D. W. Green, Perry’s Chemical Engineers’ Handbook. McGraw-Hill Chemical Engineering Series. McGraw-Hill (1999).

[30] N. Peton, Comparaison de plusieurs formulations pour les écoulements multiphasiques et compositionnels en milieu poreux. Tech. report. IFPEN (2015).

[31] N. Peton, C. Cancès, D. Granjeon, Q.-H. Tran and S. Wolf, Numerical scheme for a water flow-driven forward stratigraphic model. Comput. Geosci. 24 (2020) 37–60. | MR | Zbl | DOI

[32] H. H. Rachford and J. D. Rice, Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium. J. Petrol. Technol. 4 (1952) 19. | DOI

[33] J. Vidal, Thermodynamics. Applications in Chemical Engineering and The Petroleum Industry. Institut Français du Pétrole Publications, Technip, Paris (2003).

[34] D. T. S. Vu, Numerical resolution of algebraic systems with complementarity conditions: application to the thermodynamics of compositional multiphase mixtures. Ph.D. thesis. Université Paris-Saclay (2020). https://tel.archives-ouvertes.fr/tel-02987892.

[35] D. T. S. Vu, I. Ben Gharbia, M. Haddou and Q. H. Tran, A new approach for solving nonlinear algebraic systems with complementarity conditions: application to compositional multiphase equilibrium problems. Math. Comput. Simul. 190 (2021) 1243–1274. | MR | Zbl | DOI

[36] C. H. Whitson and M. L. Michelsen, The negative flash. Fluid Phase Equilib. 53 (1989) 51–71. | DOI

Cité par Sources :