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AN ANALYSIS OF THE UNIFIED FORMULATION FOR THE EQUILIBRIUM
PROBLEM OF COMPOSITIONAL MULTIPHASE MIXTURES

IBTIHEL BEN GHARBIA!, MOUNIR HADDOU?, QUANG HUY TRAND*
AND Duc THACH SoN Vu!

Abstract. In this paper, we conduct a thorough mathematical analysis of the unified formulation
advocated by Lauser et al. [Adv. Water Res. 34 (2011) 957-966] for compositional multiphase flows
in porous media. The interest of this formulation lies in its potential to automatically handle the
appearance and disappearance of phases. However, its practical implementation turned out to be not
always robust for realistic fugacity laws associated with cubic equations of state, as shown by Ben
Gharbia and Flauraud [Oil Gas Sci. Technol. 74 (2019) 43]. By focusing on the subproblem of phase
equilibrium, we derive sufficient conditions for the existence of the corresponding system of equations.
We trace back the difficulty of cubic laws to a deficiency of the Gibbs functions that comes into play
due to the “unifying” feature of the new formulation. We propose a partial remedy for this problem
by extending the domain of definition of these functions in a natural way. Besides, we highlight the
crucial but seemingly unknown fact that the unified formulation encapsulates all the properties known
to physicists on phase equilibrium, such as the tangent plane criterion and the minimization of the
Gibbs energy of the mixture.
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1. INTRODUCTION

1.1. Motivation and objectives

In the numerical simulation of multicomponent (a.k.a. compositional) multiphase fluid flows, a delicate issue
often arises in the handling of the appearance and disappearance of phases for various species, due to the laws
of thermodynamic equilibrium. The traditional dynamic approach, known as wvariable-switching in reservoir
simulations [10], considers only the unknowns and equations of the present phases. Albeit natural, it is awkward
and even costly to implement, insofar as switching can occur all the time. Lauser et al. [17] proposed an
alternative approach, called unified formulation, in which a fixed set of unknowns and equations is maintained
during the calculations. This major theoretical advance is achieved by means of complementarity conditions,
which allow distinct functioning regimes to be expressed in the same mathematical way, as is already the case
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in a wide range of areas such as mechanics, electronics or geology [1,31]. Another key ingredient behind this
“egalitarian” treatment of all regimes is the notion of extended partial fractions that must be assigned to species
in all phases, including absent ones.

As a promise of more efficient simulations, the unified formulation has met with some success among numeri-
cists, as testified by the subsequent works by Ben Gharbia [5], Ben Gharbia and Jaffr [7], Masson et al. [20,21]
and Beaude et al. [4]. These are all based on simple fugacity coefficients, such as given by Henry’s law. Another
series of works at IFPEN [6, 8,19, 30] is focused on realistic fugacity coefficients given by cubic equations of
state, such as Peng—Robinson’s law. Although the latter investigations have demonstrated a clear superiority
of the unified formulation over the variable-switching one regarding computational time in some cases, the out-
come remains unclear in other cases with single-phase transition: the nonlinear solver for the (unified) algebraic
system of equations may not converge at all, unlike its competitor.

There are two possible explanations for this observed lack of robustness from the unified formulation. To
sketch them out in a precise manner, we need the following formal setup. After discretization in time and
space of the continuous flow model using the unified formulation, the system of equations to be solved at each
time-step takes the abstract form

A(X) =
min(G(X), H(X))

(1.1a)
(1.1b)

0,
0,

where X € D c R’ is the unknown vector and A : D — R™ G : D - R™ et H: D — R™ are continuously
differentiable functions on the open domain D. The componentwise action of the minimum function in (1.1b) is
merely a convenient way of expressing the complementarity 0 < G(X) L H(X) > 0. For conciseness, let us put

A(X)
[min(G(X), H(X))] eR’, (1.2)

P(X) =
so that (1.1) becomes F(X) = 0. We can then envision two scenarios that could cause the unified formulation
to perform poorly:

(1) System (1.1) is ill-posed for some data and thermodynamic laws. In other words, it may not have a unique
solution or may not have a solution at all. An even worse situation is when some components of A — and
therefore of F' — are not well-defined over the whole domain of interest D, so that (1.1) no longer makes
sense. As will be seen later, this occurs for cubic equations of state frequently used in realistic simulations.

(2) The numerical algorithm used to solve system (1.1) is not well suited to the semismooth nature of F. Indeed,
the complementarity equations (1.1b) are not differentiable, which prevents the standard Newton method
to be applied. A common remedy is the so-called Newton-min method [2,15]. However, Newton-min may
suffer from periodic oscillations for large time-steps, as evidenced by Ben Gharbia and Flauraud [6].

The first issue originates from physical modeling. It is the subject of this article, whose primary objective
is to clarify the conditions on thermodynamic laws under which system (1.1) is well-behaved and to propose
some improvements of the model so as to guarantee the existence of a solution. The second issue pertains to
numerical methods. It requires a new method to be designed in order to replace Newton-min and was addressed
in a previous paper [35].

1.2. Main results and outline of the paper

Valuable insights into the difficulty can be gained if, instead of the fully discretized flow model, we focus
on an elementary phase equilibrium problem that lies at the core of the thermodynamic part. This is why
we start by stating the phase equilibrium problem for multicomponent mixtures in Section 2, comparing the
variable-switching formulation to the unified formulation (Sect. 2.2) after recalling some preliminary notions in
Section 2.1.
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Section 3 is devoted to the analysis of the unified formulation. We first revisit two thermodynamic properties
in light of the new framework, namely, the principle of Gibbs energy minimization (Sect. 3.1) and the tangent
plane criterion (Sect. 3.2). Although these properties are well-known in thermodynamics by virtue of various
physical arguments, the point we would like to make here is that they are all mathematical consequences of
the unified formulation. In (3.3), we introduce an important phasewise subproblem called local inversion of
extended fugacities in Section 3.3.1. Sufficient conditions are worked out to ensure the existence and uniqueness
of a solution to this extended fugacities inversion subproblem. In essence, we require strict convexity of the Gibbs
functions in each phase, as well as invertibility and surjectivity of their gradient maps. These assumptions are
also shown in Section 3.4 to guarantee the existence of a solution to the full phase equilibrium problem.

Given a fugacity or activity law from physics textbooks, there is no reason for the corresponding molar
Gibbs function to fulfill the hypotheses of strict convexity and invertibility /surjectivity of the gradient map. In
Section 4, we further investigate the question of strict convexity for some simple fugacity and activity models,
namely, Henry’s laws (Sect. 4.1), Margules’ law (Sect. 4.2), and Van Laar’s law (Sect. 4.3). For each of these,
we manage to determine the subregion in the space of parameters for which strict convexity holds.

A prominent category of fugacity laws widely used in realistic simulations of two-phase mixtures stems from
cubic equations of state (EOS). As recalled in Section 5.1, the definition of the corresponding thermodynamic
quantities involves solving a cubic equation which does not always have three real roots. After a careful study
of the critical values (Sect. 5.2) and the frontier between the 1-root and 3-root regions (Sect. 5.3) for Peng—
Robinson’s law, one of the most advanced cubic EOS-based models, we explain the trouble with these laws
regarding the domains of definition for different functions involved in (1.1). In a nutshell, since there are not
always three real roots, the Gibbs functions and fugacity coefficients are not always well-defined simultaneously
for both phases over the whole domain of generalized partial fractions. While this pathology is not detrimental to
the variable-switching formulation, where only present phases are considered, it causes tremendous harm to the
unified formulation, for which information relative to both phases must be permanently available. The uncovering
of this difficulty in Section 6.1 prompts us to design an extension procedure for various thermodynamic functions,
in an attempt to maintain a good behavior for the unified formulation, that is, to hope for the existence of a
solution to (1.1). The basic idea, elaborated on in Section 6.2, is to extend the Gibbs functions by replacing the
missing real root by the common real part of the two conjugate complex roots. This construction is supported
by further calculations.

2. PHASE EQUILIBRIUM FOR MULTICOMPONENT MIXTURES

2.1. Preliminary notions

In this paper, we are concerned with the advantages and drawbacks of the unified formulation for the phase
equilibrium problem at fixed pressure and temperature. To state this problem, one needs some prerequisites on
the thermodynamics of multiphase multicomponent mixtures.

2.1.1. Species, phases and fractions

A multicomponent mixture is a physical system consisting of several chemically distinct components or
species, e.g., hydrogen (Hs), water (H2O), carbon dioxide (COs2), methane (CHy) ... It can be thought of in a
more abstract way by introducing the set of species

K={L1,...,K}, Kz=>2, (2.1)

whose elements are labeled by Roman numerals. The total number of components K = |K| usually ranges from
tens to hundreds. Each component ¢ € K may be present under one or many phases. Intuitively, a phase is more
or less a state of matter, e.g., gas (G), liquid (L), oil (O), solid (S) ... This notion may be subtler, though, at
high pressure [12]. Again, to lay down an abstract framework, we consider the set of all virtually possible phases

P ={1,2,....P}, P=2, (2.2)
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whose elements are labeled by Arabic numerals. The choice of & within a model is the (difficult) task of
physicists: P should be large enough to take into account the appearance of new phases in models with time
evolution, but not too large for computations to remain feasible. In reservoir simulations, the maximum number
of possible phases P = |Z?| is commonly about 3.

The relative importance of each phase a € & within the mixture is measured by the phasic fraction Y, € [0, 1],

such that
D Va=1 (2.3)

aEP

A phase for which Y, = 0 is said to be absent. Otherwise, it is present. The subset of present phases, namely,
F={aeZ| Y,>0c ¥ (2.4)

is referred to as the context. For a present phase o € T', it is possible to compare the relative contribution of
each component i € K within it by defining the partial fractions x?, € [0, 1], such that

Z x; =1. (2.5)

el

The vector x, = (:v}l, . 7:r§*1) e Q c RE1 is called partial composition of phase c. It consists of only the
first K —1 partial fractions, since the quantities z1,, zII, ... X are not independent, in view of (2.5). Whenever
a X turns up in any formula, it should be interpreted as X =1 — 2, — ... — 2X~1. The domain of z,, is the
closure of

Q= {cc = (xl,...,:chl) eREM 2l >0, 28t >01—at— . — 2K > 0}, (2.6a)
namely,

Q= {a: = (wl,...,xK_l) e RE-! | =0, 25t =01—a2"— . — 2K > 0}. (2.6b)

Although this choice somehow breaks the symmetry, it is commonly resorted to in practice.
Finally, there is a third notion of fraction, called global fractions and denoted by ¢’ € [0, 1], which quantifies
the overall relative importance of each component ¢ € K inside the mixture. Of course, we have

D=1 (2.7)

el

The vector ¢ = (c e Q < RE~1 is called global composition of components. Again, because of the
dependence (2.7), only the first K — 1 values in ¢. Whenever a ¢ appears in the text, it should be understood

I chl)

geeey

as ¢ =1—c' — ... — ¢&~1. The material balance of component i implies that
¢ = Z Yok, (2.8)
ael’

Given the context I, the phasic fractions {Y,, }oer and the partial fractions {xfl}(i)a)e,gx 2, it is straightforward
to calculate the global composition {c¢‘};cx by (2.8). The phase equilibrium problem takes exactly the opposite
direction: given the global composition {c'};cc satisfying (2.7), is it possible to find the context I', the phasic
fractions {Ya}aer and the partial fractions {z}}; a)excx» satisfying (2.3), (2.5) and (2.8) beside positivity?
Obviously, we do not have enough equations yet. The missing ones will be supplied at the end of Section 2.1.3.

Remark 2.1. We have deliberately not specified whether the three kinds of fractions Y,, z!, and ¢ are molar,
volumic or specific fractions. In fact, this does not matter. The mathematical structure of the problem remains
the same and the theoretical development is similar in all cases.
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2.1.2. Gibbs energy and chemical potential

The behavior of each phase a € & is governed by a single fundamental function g, : @ — R known as the
(intensive) Gibbs free energy of the phase. We require g, to be as smooth as necessary in Q and continuously
extendable to 0S2. However, Vg, may blow up on 0Q. From g,, we define K functions p, : Q@ — R, j € K, called
chemical potentials by 4

(@) = ga(@) + (Vga (), & — ) (2.9)

for € Q, where the vector 6/ = (81, 6j2,..-,0;k-1) € RE~1 is made up of Kronecker’s symbols. The
following statement gives two helpful identities between g, and puf,. The first one (2.10a) relates the Gibbs
energy to the potentials. The second one (2.10b) provides the gradient of the Gibbs energy from the potentials.

Lemma 2.2 (Connection between Gibbs energy and chemical potentials). For all x € Q:

galx) = ) 27 pl(m); (2.10a)
j=1
Do (@) = pl(w) (@), VG e K\K). (2.10b)

Proof. Multiplying (2.9) by 27, summing over j € K and noticing that 3, 2787 = x, we end up with (2.10a).
To prove (2.10b), we subtract the last potential

p @) = ga(@) + (Vga(@), 6% — )

from each p, j € K\{K}, given by (2.9). This cancels out g, (z) and the desired identity follows from §% =
(0,0,...,0). 0

Remark 2.3. In the above, we used the generic variable x to alleviate notations. Of course, g, is to be evaluated
at x,, the composition of phase a. As a matter of fact, the Gibbs function also depends on the pressure P, and
the temperature T, of the phase [33]. But since we work at fixed pressure and temperature, we purposely omit
to write them down in order to concentrate on the dependency with respect to the fractions.

2.1.3. Fugacity, fugacity coefficient and quilibrium conditions

For a solid phase, y!, is a constant. For fluid phases such as gas, liquid and oil, the chemical potentials take

the form _ o
ph (z) = In(2' @) (x)), (2.11a)

in which ® is called the fugacity coefficient of component i in phase «. Note, however, that it depends on the
whole composition vector. As for the quantity

fol@) = 2' @ (2), (2.11b)

it is known as the fugacity of component ¢ in phase «. Substituting the form (2.11a) into (2.10a), we obtain
Jol(x) = Z z'lnx’ + Z ' In®; () (2.12)
i=T i=1
The first sum Zjil 27 Ina? is the ideal part. The second sum, denoted by

K
U,y(x) = Z 2’ In ®° (), (2.13)
i=1
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is the excess part. In this perspective, a fluid phase « is assimilated to a “perturbation” of the ideal gas. As
will be done in Section 6, we shall act only on the excess part to modify the Gibbs function.

Owing to the regularity assumptions made on g, and puf, the functions ¥, : @ — R and In®? : Q@ — R
are also as smooth as necessary, with ¥, extendable by continuity to € but not the In ®?’s. The very useful
relations below between ¥,, and In ®?, are similar to those between g, and p,.

Lemma 2.4 (Connection between excess energy and fugacity coefficients). For all x € §:

In @) (x) = Uy () + (VU (), & —x),  VjeKk; (2.14a)
Z‘I';* () = In®J (x) — In &KX (x), Vje K\{K}; (2.14b)

Proof. The proof is straightforward. For each identity from Lemma 2.2, we just have to separate the ideal part
from the excess part. The ideal part vanishes trivially. (I

In a multicomponent mixture without any chemical reaction (also called non-reactive), the presence of two
phases (a, 8) € I’ x I" implies that some equilibrium conditions must be achieved. According to thermodynamics,
these conditions are the equalities across the two phases of pressure, temperature, and the chemical potentials
corresponding to each component i € K. In other words, the missing conditions for the phase equilibrium
problem at fixed pressure and temperature are

fo (o) = pis(xg), for all (i, o, B) e K x T x T, (2.15a)
or equivalently,
2l O (x,) = x%@iﬂ(mg), forall (i, o, B) e K x T xT. (2.15b)

The fugacity coefficients ®¢ are given empirically or inferred from an equation of state.

Remark 2.5. Our definitions (2.11) are not exactly those of textbooks, where

ﬁfm(mav P,T) = ﬁi(Pa T)+RT ln(xfﬂ’é(fﬂa, P,T)), (2.16a)
fi(@a,P.T) = 2, @ (x4, P, T)P, (2.16b)

with R the universal gas constant and u¢ (P, T) a reference ideal value. Since P and T are equal across the phases,
it is readily checked that the equality of “classical” chemical potentials i, (x4, P, T) = ﬁ%(mg, P, T) is indeed
equivalent to (2.15a). Opting for (2.11) instead of (2.16) amounts to working with the Gibbs energy function
go instead of
o(Ta, P, T) = > L(P, T)a, + RTga(wa),
i€l

which differs from g, by an additive affine function and a multiplicative constant.

A given family of positive real-valued functions {(Dg}(i’a)dcx‘o}) is said to be admissible if, for each o € &,
there exists a Gibbs energy function g, of which they are the fugacity coefficients.

2.2. Two mathematical formulations

Equipped with the preliminary notions of Section 1, we are now in a position to rigorously state the phase
equilibrium problem in two different ways: the “traditional” one and the “modern” one.
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2.2.1. Variable-switching formulation

The first formulation has the advantage of being “natural,” insofar as it uses the variables that have been
introduced so far. It also bears the name of natural variable formulation.

GIVEN ) _
K, 2, {®,}(,a)ckx» admissible, ¢ € Q,

FIND
I'c 97 {Ya}aeF > 0, {xfl}(i,oz)elel" =0

so as to satisfy

D Ysah—c =0, Viek; (2.17a)
pBel’
zh @ (o) — 2,0 (z,) =0,  V(i,a) € K x I'\{w}, (2.17b)
dal-1=0, VaeTl, (2.17¢)
JeK

where w is a fixed phase of I'.

Obviously, equation (2.17b) is none other than (2.15b), but expressed in such a way to avoid redundancy. The
material balances (2.17a), (2.17¢) respectively match (2.8), (2.5). Note that (2.3) is not explicitly prescribed
because it can be deduced from the existing equations by summing (2.17a) over i € K, switching order, and
invoking (2.17c). For a given context T', system (2.17) contains (K + 1)|T'| equations and unknowns. It must
of course be assumed that the physical properties of the species involved are such that the K (|T'| — 1) fugacity
equalities (2.17b) are independent.

The price to be paid for naturality is that the context I' is itself an unknown. To circumvent this difficulty,
we start by making an “educated guess” for I'. At every fixed I', we attempt to solve the algebraic equations
(2.17): this is what physicists call a (P, T)-flash. After exiting the flash, we check the positivity of Y, and
the non-negativity of z¢, for a € I'. Should one of these fractions have the wrong sign, we must change I' by
adding or deleting phases and go for another flash! The number of unknowns and equations for a flash strongly
depends on the assumption currently made about the context I'. There is a vast literature on numerical methods
[22-24, 36] for the flash problem (2.17) at fixed I'. In addition to the classical and generic Newton-Raphson
method [3,33], many special purpose algorithms have been dedicated to the flash problem. These are itera-
tive methods based on various kinds of substitution [13], the most famous of them being the Rachford-Rice
substitution [32].

2.2.2. Unified formulation

To avoid the annoyance of dynamically handling the context, Lauser et al. [17] put forward another formu-
lation for the phase equilibrium problem.

GIVEN B
admissible, ¢ € €,

’C’ ‘@7 {q)fl}(z‘,a)eICxt@

FIND
{Yatoer =20, {fzv}(i,a)em@ >0

S0 as to satisfy

D Vpgh—c' =0,  Viek; (2.18a)
Be»

O (1) — £ (2,) =0,  VY(i,a) e K x 2\{w}, (2.18b)
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min (Ya, 1-— Z 5(3)‘) =0, Yae P, (2.18¢)

JeEK
where w is a fixed phase of & and z,, = (z),, ..., 2571) e RE~! is defined as
rl = fiaj (2.18d)
ZjE)C EQ

In this second formulation, the partial fractions z¢, have been replaced by a new notion, that of extended
fractions £,. The latter are defined over (i, ) € K x & instead of being restricted to (i,«) € K x I'. Although the
connection between extended fractions and partial fractions is given by the renormalization (2.18d), the z%’s
here are merely auxiliary variables that can be eliminated by inserting (2.18d) into (2.18b). The thermodynamic
equilibrium (2.18b) is now the equality of extended fugacity across phases for each component.

The complementarity conditions (2.18¢) actually mean that, for each a € &2,

Y,>0, 1->&>0, Ya<1—25g>—o. (2.19)

JeK Jjex
As a consequence, for each phase a € &2, there are three possible regimes:

~ Y, > 0 (phase a is present). This implies ;- &, = 1 and by (2.18d), &, = z,. Hence, the extended
fractions of a present phase coincide with the usual partial fractions.

~ 1 =3k & > 0. This entails Y, = 0 (phase « is absent) and &}, # x7,. The extended fractions of an absent
phase differ from the usual partial fractions (see exception below).

-Y,=0and 1-> jeK ¢J = 0. This corresponds to a transition point, where phase « starts appearing or
disappearing.

It is legitimate to wonder about the origin of the sign condition 1 — >, & > 0. After all, it brings a new
piece of information that was not included in the variable-switching formulation (2.17). As will be proven in
Section 3.2, this condition ensures a stability property known as the tangent plane criterion by physicists. It
can also be related to the minimization of the Gibbs energy of the mixture, as will be done in Section 3.1.

The ability of formulation (2.18) to deal with all possible configurations (arising from the presence or the
absence of each phase) in a unified way is very attractive not only for convenience but also for computational
efficiency. The context I' no longer appears in the statement of the problem, but can be determined a posteriori
by collecting those phases a for which Y, > 0. As before, note that the phase balance (2.3) is not explicitly
imposed because it can be recovered from the existing equations by summing (2.18a) over i € K, permuting
order and taking advantage of (2.18c). System (2.18) has (K + 1)P equations and unknowns. It can be cast
under the abstract form (1.1) with

(=(K+1)P, m=P, ((Vloew: €} paprxs) = X €D = RE x (RE)".

The existence of a solution to (2.18) can be guaranteed under some sufficient conditions on the Gibbs functions
Ja, as elucidated in Section 3.4.

3. PROPERTIES OF THE UNIFIED FORMULATION

The unified formulation enjoys many remarkable properties that seem to be unknown so far, at least to our
knowledge. In particular, by postulating 1 =, _,- &, = 0 from the beginning, it achieves a deep connection with
some classical results in thermodynamics.
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3.1. Connection with Gibbs energy minimization

We would like to better understand where this sign information comes from. In the literature, the condition
1—>.c& = 0is customarily derived from a phase stability analysis [22] (see also [6] for a more recent
presentation). However, this classical analysis suffers from a few limitations. First, it is restricted to two phases.
Second, it is local: the Gibbs energy difference under study must be linearized via a first-order Taylor expansion,
before minimizing. Third, the notion of extended fractions appears only at the end, in a very ad hoc way.

We propose a more direct connection between the unified formulation (2.18) and some Gibbs energy mini-
mization problem expressed in terms of the extended fractions ¢!, without any linearization. In this problem, the
quantities 1 — > . & will appear to be the Lagrange multipliers associated with the constraints Y, > 0. Con-
versely, while not every critical point of the minimization problem (P) is a solution of the unified formulation,
some “natural” choice of critical points satisfies the unified formulation.

3.1.1. Towards a novel interpretation

In order to state the minimization problem, we need to introduce a new Gibbs function. For each phase
ae P, let g, - ]Rf — R be the extended molar Gibbs energy defined as

ga (€., €%) = X € (g (x), (3.1)

i€lC
using the renormalization (2.18d) to compute @ € Q from & = (¢',..., &) e RE\{0}. For normalized fractions,
gzl ... 2%) = go(x). Thus, g, lifts the intensive Gibbs function g, to the domain of extended fractions, but

it does not coincide with the usual extensive Gibbs function [33]. The following Lemma summarizes its most
useful properties.

Lemma 3.1. For £ € RE\{0} and j € K, we have

O o
%(5) = In(€904,(x)) + 1, (3.2a)
Z & gg? — 0, with o = Z I3 (3.2b)
€KX 5 e
(71 it
-3¢ “a; <) (g). (3.2¢)

Proof. The readers are referred to Lemma 2.3 from [34]. The calculations involve the extensive Gibbs energy
that we have not introduced here for conciseness, but are not difficult. (I

We can now consider the following minimization problem (P).

GIVEN ) _
K, 2, {®4}(i,a)ekx» admissible, c € Q,
FIND
min 2 Yo0a(& (3.3a)
Yatacsr aEP
{Eu}ae;’%
subject to
D Ya-1=0, (3.3b)
ace?
DYkl =t =0, Viek, (3.3¢)

ae?
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—-Y, <0, Yae L. (3.3d)

The objective function in (3.3a) represents the extended Gibbs energy for the mixture. The equality constraints
(3.3b), (3.3c) are exactly the material balances (2.3), (2.18a). This time, there is no redundancy since we have
not imposed the complementarity conditions (2.18c).

Let u, {v'};exc and {wq}ae be the Lagrange multipliers associated respectively with the constraints (3.3b),
(3.3¢) and (3.3d). The Lagrangian of the minimization problem (3.3) reads

Z({Ya} (€} u {v'} {wa}) = ) Yagal€a) +u< > Yo - 1) + Zvl( PRAH —ci> ) waYa

aEP aEP el aed aEP

The saddle-points of .Z are given by the Karush-Kuhn-Tucker (KKT) conditions [26]

gp(€s) +u+ Y Vi —ws =0, VBeP (3.4a)
ek
o9
Ys [a@ (€s) + vﬂ] =0, V(§,pBekxZ, (3.4b)
D Ya—1=0, (3.4c)
aeP
D Yall,—c =0, Viek, (3.4d)
aEP
min(Y3, wg) = 0, Ve 2. (3.4e)

The last equation (3.4e) expresses the complementarity between each inequality constraint (3.3d) and its
Lagrange multiplier at optimality. It can be rephrased as

Y5 =0, wg = 0, Yswg = 0.
A set of values {(Ya, €,)}ace is said to be a critical point for problem (3.3) if there exists a set of values
(u, {v'}iexc, {Wa}acw) such that the KKT optimality system (3.4) is satisfied.

3.1.2. From one formulation to the other

We first show that it is easy to go from the unified formulation to the minimization problem.

Theorem 3.2. FEvery solution {(Y’a, EQ)}
mization problem (3.3), with

wep Of the unified formulation (2.18) is a critical point of the mini-

u=1, v =—[ln(¢)+1], wz=1-20g, (3.5)
where @7 is the common value of the extended fugacity &,®J (%) across all phases a € 2.

Proof. Let {(Ya, EOC)}&E&7 be a solution of (2.18). The material balances (3.4c), (3.4d) are naturally met,
as observed in Section 2.2.2. The equality of extended fugacities (2.18b) makes it possible to define v/ =
—[In(¢?) + 1] in the way described in the theorem. This choice of ¥/ trivially fulfills (3.4b) because of (3.2a).
The choice of wg implies (3.4e) because of (2.18¢c). It remains to check (3.4a). To this end, we use Lemma 3.1
to write

gg(éﬁ)ﬁ“ﬂ‘#Z’UiEE*@g—Zfﬂagﬂ (€s) — a5 +17255 (€5) — (1 —75) =0.
555 855

ek ek i€l

This completes the proof. (I
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The reverse direction is more delicate. The main difficulty lies in the indetermination of the extended fractions
for an absent phase.

Theorem 3.3. Let {()N/a,ga)}  be a critical point of the minimization problem (3.3).

ae?

(1) If two phases (o, 3) € P x P are both present, i.e., Yo >0 and Yz > 0, then
Fo=055=1, E.0 (%) = E505(F5) for all i€ K. (3.6)

This implies that the complementarity condition (2.18c) holds for both phases and that the extended fugacity
equalities (2.18b) hold between the two phases considered.
(2) If phase « is present and phase (3 is absent, i.e., Yo, > 0 and Yz = 0, then

Fo =1, e [m(g”g@;;(&;g)) - 1n(5gc1>;(.%a))] +1-552>0. (3.7)
ek

This implies that, in general, the complementarity condition (2.18c) does not hold for phase [ and the
extended fugacity equalities (2.18b) do not hold between o and 3. But (2.18¢) is automatically met for phase
B as soon as (2.18b) holds between « and 3.

Proof. Let {(?a,§a>} ' (ﬂ, {17i}.€,<, {ﬁa}%@) be a solution of the KKT system (3.4). First, assume that
a€g v ‘

Y, > 0 and 375 > 0. Dividing (3.4b) by Y, we obtain O¢i Ba (EQ) +07 =0 and ¢ gp (Eﬁ) + 97 = 0. From this, we

deduce that 0gjga (Ea) = 0eigp (Eﬁ) = —7. According to (3.2a) (Lem. 3.1), this is equivalent to the equality

of extended fugacities (2.18b), rewritten in the second part of (3.6). On the other hand, Y, > 0 implies @, = 0
by (3.4e). Equation (3.4a) then becomes

00 (&) + @ Z & gg; (&) -o.

Combining this with (3.2b) (Lem. 3.1), we infer that &, = u. Repeating the same reasoning for 3, we also get
o3 = 4. Hence, 64 = 04. This means that & takes on the same value @ in all present phases. Let I' be set of
m e & such that Y; > 0. Note that I" # ¢ because of (3.4c). Summing (3.4d) over ¢ € K and permuting the
order of summation yields
=3V D= Y Ve 1=y Vel =0— 1.
€K neP ielC e rel
Therefore, @ = 1, which proves the first part of (3.6).

Assume now that Y, > 0 and Y3 = 0. It is no longer possible to divide (3.4b) by Y3 to retrieve information
on the extended fugacities. Likewise, we now simply have wg = 0 from (3.4¢). Equation (3.4a) for phase [ leads
to

95(53) + 4+ Y8 = @ > 0.
el
Because phase « is present, 6o = & = 1 and ¥ = —0¢ifa (Ea> Invoking (3.2b) (Lem. 3.1) for phase 8, we can
transform the above equality into

zgﬁ[;gf( )_gg(za)]_aﬁl;o.

el

This is none other than the second part of (3.7). O
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To fully grasp the meaning of Theorem 3.3, it is capital to observe that when a critical point of (3.3) has
a vanishing phase 8 € & for which Y3 = 0, the corresponding extended fractions £; cannot be uniquely
determined. Indeed, Eﬁ plainly does not contribute to neither the objective function (3.3a) nor the constraint
(3.3¢) at fixed ?ﬂ = 0. To put it another way, changing Ea to any other vector Rf will provide another acceptable

critical point. Thus, as soon as there is a critical point of (3.3) for which 173 = 0, there are in fact an infinity of
such critical points. Among this infinity of critical points, only those for which

EL0%(%5) = E.®1 (Fa) forall i€k, (3.8)

where « is present phase 17@ > 0], will be also solutions of the unified formulation (2.18). Combining this with

Theorem 3.2, we can interpret the unified formulation as a set of equations that is slightly “stronger” than that
of the KKT system for the critical points. It is stronger in the sense that it helps selecting some special critical
points — and hopefully just one — among the infinity of possible critical points that appear when one of the
phases disappears.

3.1.8. A continuity principle

We even have heuristic arguments to claim the critical points selected by the unified formulation are “natural”
ones. By this, we mean that the additional conditions (3.8) to be prescribed on the extended fractions of an
absent phase (§ can be construed as the limit of a continuous process during which 3 was present before vanishing.
To build up this process, let us reformulate the minimization problem (P) or (3.3) as the bilevel or hierarchical
problem

min  min D1 Yaga(él) + Yags(€p) (3.92)
Ys {Ya}aeﬂ\{ﬁ} aE{’}\{ﬁ}
afae?
subject to
D YatYs-1=0, (3.9b)
ae 7 \(B}
D Yall +Ypeh - =0, Viek, (3.9¢)
a2 \(5}
Y, <0, VYaeP\{3). (3.9d)
The constraints (3.9b)—(3.9d) are imposed on the inner minimization problem (Py,)
min D Yaga(€) + Yags(€p) (3.10)
{Yag}aew\{ﬁ} ae PVB)
aSaEP

for a fixed Y > 0. Assume that for each small enough Y3 > 0 there is a unique critical point, denoted by
(Vo (Y5) a5}, {€a(Y5)} aes. From the KKT conditions for (3.10) subject to (3.9b)~(3.9d), it follows that
(see [34], Sect. 2.3.2.4 for details)

& (Vo) 2(@s(Vp)) = &' (Vo) 2(Fa(Yp))  forall icK.
Now, we let Yz | 0. If all of the quantities involved in the above equality have finite limits, we clearly end up
with (3.8).
3.2. Tangent plane criterion

Another set of properties can be established by looking at the geometric significance of the extended fugacity
equalities (2.18b). Recall that € defined in (2.6b), is the domain of the partial fractions @ renormalized from &
by (2.18d). The generic element of 2 x R is denoted by (z,y). Let

Go={(x, ) eAxR|y=ga(x)} (3.11)
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be the graph of the Gibbs energy function g, : @ — R. For an interior point x,, € 2, we designate by Ty G, the
tangent hyperplane to G, at x,. This tangent hyperplane, which exists thanks to the regularity assumptions
on ga, is the graph of the affine function Ty_g, : RE~! — R defined as

Tmaga(x) = Ja (wa) + <v9a($o¢)7 T — $a>~ (312)

) exists to the unified formulation (2.18), in which the

renormalized fractions Z,, € {2 are computed from &, by (2.18d). We are going to learn as much as we can about
it.

Let us assume that a solution ({Yo‘}ae,@’ (Ea)%'@

Theorem 3.4. For any pair (o, 3) € & x P of phases, present or absent:

(1) The potentials in phase 8 are shifted from their counterparts in phase o by a same constant, i.e.,

1(®p) = 1i,(Za) + [I0Ga — InGg] (3.13a)
for all j € KC, where
Go = ), & (3.13b)
el

2) The two tangent hyperplanes Tz G, and Tz ,Gg are parallel. Put another way,
a 80
Vga(:Tca) = Vgg(i:g). (3.13(:)

Proof. For each phase a € £, let us define &, as in (3.13b), so that for j € K we have £/ = 5,2/, in view of
(2.18d). The extended fugacity equalities (2.18b) then become

GaT) Pl (Za) = G120 (2s). (3.14)
Taking the logarithm of both sides and recalling (2.11a), we obtain
InGo + 4 (Zo) = &g + 1y (Zp). (3.15)

From this, we deduce the translation property (3.13). Subtracting the last equality Inc, + pX(z,) = Ings +
,ug(:ig) from (3.15) and recalling (2.10b) (Lem. 2.2), we have

090 — \ _ 098 -
@( a) = Oz (@s)

for all j € {I, II,..., K — 1}. This completes the proof for (3.13c). O

The first part of Theorem 3.4 reveals that, in general, there is no equality of chemical potentials if these were
computed using the renormalized partial fractions. The second part of Theorem 3.4 is more interesting. Let us
investigate this further by making an additional assumption on one of the phases. We recall the definition (3.12)
of the linearized expansion Ty, go ().

Theorem 3.5 (Tangent plane criterion). Assume that a phase o € P is present, i.e., Yo > 0. Then, for any
other phase 0 € &2, absent or present,

Tz,98(x) = Tz, ga(x), for all e RE-1, (3.16)

Thus, the tangent hyperplane Tz ,Gs lies above or coincides with the tangent hyperplane Tz, G .
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Proof. From equality (3.13a), we have
uff(@;) = 15 (Zo) + Cup, Cop =Ino, —Inog.

Since Y,, > 0, the complementarity condition (2.18c) entails &, = Zjelc & =1, hence Ing, = 0. For any
other 8 € &, we have 65 = Zje,c f_é < 1, also by virtue of (2.18c). Therefore, Ingg < 0 and Cyhg = 0. Hence,
,ué{ (z5) = pk(z,). Using (2.9) from Lemma 2.2, we can rewrite the previous inequality as

98(3) — (Vagp(®s), Tp) = 9a(@p) — (Vaga(®a), Ta)- (3.17)
On the other hand, taking the dot product of the equality of gradients (3.13¢) with any x € 2, we have
<vw95(j5)7 x> = <v:cgoz(-'ioc)a :13> (3.18)

Adding together (3.17) and (3.18), we end up with

95(@p) +(Vags(Zp),  — Tp) = ga(@p) + (Vaga(Za), T — Za)
which is the desired result (3.16). O

This result, notoriously known as the tangent plane criterion, is usually derived by physicists from a local
analysis of phase stability [22] (see also Sect. 3.1). Theorem 3.5 testifies to the fact that this stability property
is already encoded in the unified formulation via the sign of 1 — > ek 52,. If phase [ is “strictly” absent, namely,

if1— Zje,c 5% > (0 and Yg = 0, then the tangent hyperplane Tz ,Gg will lie strictly abclve T%.Ga.
We now push one step further by looking at the case of several present phases. Let I" be the set of all « € &
such that Y, > 0.

Corollary 3.6 (Common tangent hyperplane). At a solution of the unified formulation satisfying @, € § for
all a € P, the tangent hyperplanes {Tz_ Gao}oer, are all the same. Moreover,

c=(c,...,c" ) eint(conv({Za},cr)), (3.19)

i.e., the global composition point belongs to the open convex hull spanned by the points {Za} cp-

Proof. Let (o, 3) € T x I'. Applying Theorem 3.5 twice and switching their roles, we have Tz,98(x) = Tz, ga(x)
and T, go(x) = Tz,95(x), whence Tz, go(x) = Tz,95(x) for all x € Q. Thus, Tz, Ga = Tz,Gs. The material

balance (2.18a) reads
¢ = Y Vslh =) Yz,
BeP ael

where the last equality comes from retaining only those summands in T. Extracting the first K — 1 components
from the above equation yields

c= > Yo (3.20)
ael’
Since Y, > 0 and Y. Yo = 1, the point ¢ belongs to the interior of conv({Zq }acr)- O

From this common tangent plane property, a purely geometric procedure can be devised in order to build a
solution of the phase equilibrium problem (2.18). The construction involves the lower convex envelope of the
function @ — mingew go(x). More details will be given in Section 3.4.

3.3. Existence and uniqueness for a phasewise subproblem

The key step towards ensuring the existence of a solution to (2.18) is to study a phasewise subproblem that
arises in two different forms.
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3.8.1. Extended fugacities local inversion problem

To solve (2.18) in practice, Lauser et al. [17] advocated using the common values {¢’};cx of extended fugacity
across phases as main unknowns. This gives rise to a two-level algorithm. In the inner level, we solve P nonlinear

systems of size K x K o _
KACHET A (8:21)

one for each a € &. These local fugacity inversion problems express the extended fractions as implicit functions
&l () of the extended fugacity vector ¢ = (¢!, ... ) € RE. In the outer level, we solve one nonlinear system
consisting of the K + P remaining equations

per Yobh(p) —c' =0,  Viek, (3.22a)
min(Ya, 1Yk gg;(ga)) 0, VYaedX, (3.22b)

in the K + P unknowns ({Ya},cs. {@i}ielc)' This approach, the interest of which is to involve only “small”
systems, was adopted by many authors [6, 8,20, 21].

Taking the logarithm of both sides of (3.21), writing &, = 04!, and proceeding as in the proof of Theorem 3.4,
we can transform the inner system (3.21) into

Vga(®a) = {lng’ —In @K}lsigK_l, (3.23a)
Ino, + pX(x,) = Inpk. (3.23b)

Thus, our ability to solve (3.23) for all reasonable inputs ¢ € ]Rf relies on the existence of an unambiguous
reciprocal function [Vga] ™.
3.8.2. Extended fractions for a single-phase solution

~ The second situation occurs when the solution of (2.18) is single-phase, say, in phase 8. Put another way,
Y3 =1and Y, = 0 for all a € Z\{}. By (2.18a), rewritten as (3.20), we have Zg = c. Assume c € 2. After
Theorem 3.4, the extended fractions in a vanishing phase oo € 2\{3} satisfy

Vga(Za) = Vygs(c), (3.24a)

NG, + pk (Ta) = 1f (c), (3.24b)

If the function Vg, were invertible, we could write Zo, = [Vga]™!(Vgs(c)). Then, it could deduced from (3.24b)
that 7, = exp[ug(c) — uX(z,)] and &, = 5,7%,. Hence, phase a would be entirely known. The ability to

assign well-determined values to the extended fractions in an absent phase is an important feature of the unified
formulation. System (3.24) has the same structure as (3.23).

3.3.3. Fundamental assumptions

The superiority of the unified formulation over the variable-switching formulation hinges upon the invertibility
of (3.23) and (3.24), which cannot be taken for granted. To this end, additional assumptions need to be made.
Below is the most natural set of assumptions.

Hypotheses 3.7. The gradient map Vg, :  — RE~1 is surjective. Moreover, the Gibbs energy g, :  — R is
strictly convex, that is, it satisfies one of the two conditions below, which are equivalent for a twice differentiable
function:

(a) For all (z, y) € Q x Q with « # y,

(Vga(@) = Vgaly), z —y) > 0. (3.25)

(b) For all x € Q, the Hessian matrix V2g, () is positive definite .
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We refer the reader to [9] for the notion of strict convexity and for the equivalence between the two conditions
(a) and (b) for twice differentiable functions.

Theorem 3.8 (Existence and uniqueness of the phasewise subproblem). Under Hypotheses 3.7, the extended
fugacities local inversion problem (3.23) has a unique solution.

Proof. Surjectivity provides existence of a solution & € Q to Vg, () = wu for all w € RE~1. Strict convexity
enforces uniqueness of such a solution. (I

Hypotheses 3.7 is neither unrealistic nor unreachable, as shown by the following example.

Proposition 3.9. The Gibbs energy function of an ideal gas

K . .
= Z z'lnzx’, (3.26)
i=I
where 2 =1 — ' — ... — 2K~ satisfies Hypotheses 3.7.
Proof. The gradient Vg, :  — R~ is given by
Vga(x) = (lnxl—lnxK, ...,lna:K_l—lna:K). (3.27)
This map is continuous over . For any given u = (u',...,u® =) € RE~! the nonlinear system Vg, (z) = u

can be easily inverted and the only solution is
exp (uj )
1+ Z 1 exp(u’)

This defines a unique continuous inverse map [Vg,] ! : RE-1 — Q.
From the expression (3.27) of the gradient, the Hessian matrix can be found to be

) =

. je{LI,...,K—1}

1 1 1
V2 = —E + Di — e, =
o) = B+ Ding S g )

where E is the matrix whose all entries are equal to 1. It follows that, for a generic v e REX~1,

2 _i I Kl |U|2
(V?g(x)v, v) = xK’U +... 4 |+ Z

When x € €, it is obvious that (VZg(z)v, v) > 0 for all v # 0. O

3.4. Existence for the phase equilibrium problem in the unified formulation

Thanks to Hypotheses 3.7, a solution of (2.18) can also be worked out explicitly. Its construction is inspired
by Gibbs’ geometric one [12] for the two-phase binary (K = 2) case. This settles the issue of existence under
some minor technicalities.

Hypotheses 3.7 are taken for granted throughout this section. Additionally, we recall that the functions
{ga}aco are smooth (say, twice differentiable), take finite values on the boundary 0§ but their gradients blow
up there, i.e., limz 00| Vga(x)|| = +00. The latter is due to the presence of logarithms in the ideal parts of the
Gibbs functions. The function

= 2
g= gél;l o (3.28)

is continuous on © but may not be differentiable. Let § be the lower convex envelope of g on Q. By design, § is
a convex function. Like g, g is continuous. Here, we have a stronger property.
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Lemma 3.10. The lower convex envelope § is differentiable at all interior points c € Q.
Proof. The lower convex envelope at ¢ can be characterized as

gle) = sup  h(c). (3.29)
h<g, h affine

It is a convex function, which allows us to consider its subdifferential dg(c) at ¢ € Q. It is known that dg(c) is
a nonempty and convex set [9]. Let us distinguish two cases.

Case 1: j(c) = g(c). Let p € dj(c). By definition of a subgradient, j(z) > j(c) + (p, ¢ — ¢) for all = € Q.
Let o € & such that g(¢) = go(c). Combining the previous inequality with g,(z) = g(x) > g(x) and
J(c) = ga(c), we obtain g, () = ga(c) + {(p, T — ¢) for all & € Q. This means that p € dgn(c) = {Vga(c)},
which results in p = Vg,(c). Since the subdifferential dg(c) is reduced to a singleton, g is differentiable at
c.

Case 2: j(c) < g(c). Let p € 0g(c). Since g(x) = g(x) = g(c) + (p, ¢ — c) for all x € Q, the affine map
h(z) = g(e) + (p, ¢ — ¢) is a legitimate “competitor” in the supremum (3.29). If the graph of h does not
intersect that of g, namely, if h(x) < g(z) for all € Q, we can find € > 0 such that h(x) + € < g(x) for
all € Q, thanks to continuity of the functions and compactness of the domain. But then h + € would be
a better “candidate” in (3.29), as it would raise by € the value of g(c). To avoid this contradiction, there
exists Z,, € Q such that h(Z,) = go(Za) = 9(Za).

Let us investigate §(Z,). On the one hand, h(Z,) < §(Zn) < g(Z4). On the other hand, h(Z,) = g(Z,) as
said above. Therefore, §(Z,) = g(Zo). By the same argument as in Case 1, we conclude that g is differentiable
at o and V§(Za) = Vga(Za). From the inequality go(x) = g(x) = g(c) + (p, ¢ — ¢) and the equality
9o (Zo) = §(e)+{p, T,—c), we infer that Z, achieves the minimum of the function & — g, (x)—g(c)—{p, x—c)
over Q. Since the latter function is strictly convex with unbounded derivatives on the boundary, the minimum
cannot take place on 0Q. Thus, Z,, € Q and minimality then entails p = Vg, (Z, ). Hence, Z, is a tangent point.

At this stage, we have proved that to each p € dg(c) there corresponds a phase a € & and a point &, €
such that p = Vg, (Z,) and §(e) = go(Ton) + (P, ¢ — T, (the last condition simply expresses that ¢ belongs
to the tangent hyperplane Ty _g,. Assume that dg(c) contains two distinct elements p # q. By convexity,
(1 —u)p + uq € d¢(c) for all u € [0,1]. To each u € [0,1] there correspond a phase a(u) € & and point
Zo(u)(u) € Q such that (1 —u)p +uq = Vgq ) (o) (u)). If necessary and up to a reparametrization, we can
always take another g in this segment that is sufficiently close to p so that a(u) = « for all u. Let

Ye(u) = T, (w)9a(€) = ga(@a(u)) + (1 —uw)p + ugq, ¢ — Ta(u)) (3.30)

be the value at ¢ of the tangent map at &, (u). Since y.(u) = g(c) for all u € [0,1], the derivative of y. with
respect to w must identically vanish. The calculation of this derivative leads to

(q—p, c—xa(u) =0. (3.31)
Taking the difference of (3.31) between u = 0 and u = 1 leads to
<v9a(ja(0)) - Vgoz(@a(l))a :]_'Ja(O) - ia(1>> =0,
which violates the strict convexity condition (3.25). Therefore, dg(c) is a singleton. O

Thus, for ¢ € 2, it makes sense to speak about the gradient V§(e) and the tangent hyperplane, defined as
the graph of the linearized expansion T.g(x) = g(c) + (Vg(c), £ — ¢). We introduce

L(e)={ae P [3Za€Q, ga(@a) = TeJ(Za), V9a(@a) = Vi(c)} (3.32)

as the set of thoses phases whose Gibbs function g, is tangent to the hyperplane T.g.
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Lemma 3.11. For c € 2, the following properties hold true:
(1) T(e) # &.

(2) For each phase a € T'(c), the contact point X, is unique.
(3) If P< K, then c € conv{Za} \er(c)-

Proof. Ezistence of at least a contact point. The argument is similar to the proof of Lemma 3.10, with p = Vj(c).
Uniqueness of the contact point in each phase. If the hyperplane T,.g were tangent to g, at two distinct points
ZTo # Tq, then Vi(c) = Vya(Za) = Vga(Z4), and we would have (Vgo (%) — Vo (Za), To — Ty = 0, which
violates the strict convexity condition (3.25).
Convex hull of the contact points. In the characterization (3.29) of g, the supremum is also a maximum
reached at h = T.g due to differentiability. The idea is to express this optimality by rotating the common
tangent hyperplane of the contact points {ia}aef(c) using the gradient vector p as parameter. For p € RE—1,

we define Z,(p) = [Vga] ! (p) for a € T'(c). Note that Z,(Vg(c)) = Z,. The tangent map of g, at &, (p) reads

Tcia(p)ga (:IZ) = ga(ioc(p)) + <p, x —Zo(p)) = <pa 33> - g:(p)v (333)
where g¥ stands for the Legendre conjugate of g,. Let I'(c) = {a, 3,...,7,w} and consider the maximization
problem

max Tz (p)9a(c) (3.34a)
p

subject to the |I'(c)| — 1 equality constraints
9aP) = 95(p), 9a(p) =g5(P), ..., 9a(P)=g7(P), 9a(P) = 9i(p). (3.34b)

The constraints (3.34b) are aimed at making the |T'(¢)| functions (3.33) coincide with each other, so as to preserve
common tangency. Since |['(c)| < P < K, the number of constraints does not exceed the space dimension and
problem (3.34) keeps a chance of being feasible. The objective function (3.34a) is the value taken by this common
tangent hyperplane at c.

If p stays in a small enough neighborhood of Vg(c), then Ty (p) remains below g (thanks to the compactness
of ) and h = T (p) can be considered as a valid “candidate” in (3.29). Therefore, it is expected that p = Vg(c)
achieves a local optimum of (3.34). The first-order optimality conditions for (3.34) imply

c—Vgi(p) + X3(Vgi(p) — Vgi(p)) + ...+ A(Vgi(p) — Vgi(p) = 0, (3.35)

where Ag, ..., A, are the Lagrange multiplies associated with the constraints (3.34b). Plugging p = Vg(c) into
(3.35) and using Vg (p) = Zo(p), we end up with

c=(1=Xg— ... A) T + ATp + - .. + Anx + Ao (3.36)

Since the coefficients in the right-hand side sum to 1, at least one of them must be positive. Up to a permuation
of T'(¢), we can assume that 1 — Ag — ... — A\, > 0. Let us prove that the other coefficients are nonnegative.
Suppose that A, < 0. The idea is now to rotate the common tangent hyperplane but to leave out the tangency
constraint for w, so that the new affine function becomes strictly lower that g, remains tangent to the other
Gibbs functions in I'(c) and achieves a higher value at ¢, which is contradiction.

Let p = V§(c)+0p, where dp is orthogonal to the subspace spanned by o —Zg, ..., Zs—Z,. Since T, —Tg =
(Vg;’j — Vgg) (V3(c)) and similarly for other phases, the |T'(c)|—2 constraints g* (p) = 95(P),-- .. 95(p) = 95 (p)
remain satisfied at first-order expansion. Let y.(p) = T3, (p)9a(c) and yz,(p) = Tz, (p)9a(Zw) be the values
of the new hyperplane evaluated at ¢ and Z,. It is straigthforward to show that Vy.(p) = ¢ — Z,(p) and
Vyz, (P) = T, — To(p), so that Vy.(Vi(e)) = ¢ — T, and Vyz, (§(c)) = T, — To. In view of (3.36),

C— Ty = )\5(:235 — :Ea) + ...+ )\.,T(ZE7T — :ita) + )\w(iw — :Ea).
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Taking the dot product with dp yields (Vy.(Vi(c)), 0p) = A\, {Vyz,(g(e)), dp). Hence, it is possible to choose
dp so as to increase y. and to decrease yz,, in other words such that T (p)9a(c) > g(c) and Ty (p)9a(Zw) <
9w (Z.,) at first-order expansion. The affine function h = T _(p)go Would then be a strictly better candidate
than T.g in (3.29). This is impossible. O

The last property means that ¢ is a convex combination of the contact points, that is, there exist {Ya}aef(c) >
0 such that Zaef‘(c) Y, =1 and Zaef(c) Y. %, = c. We are now ready to describe a solution.

Theorem 3.12. Assume P < K, c€ Q. Let {Za}aer(e); {?a}aef(c) be defined as above and set

& =7at, for (a,i)eT(e) x K. (3.37a)

For (B,i) e 2\I'(c) x K, set
V5=0,  ®5=[Vgs] (Vile), & =exp[Ti(xs) — g5(2p)]T}. (3.37b)
This procedure supplies us with a solution of (2.18).

Proof. The material balance (2.18a) is an easy consequence of >
for 3 e 2\I'(c).

The equality of extended fugacities (2.18b) across phases is equivalent to that of Vg, (Z,) and of Ing, +
u%(Z,), as was pointed out in Sections 3.2 and 3.3. On the one hand, it follows from (3.32) and (3.37b) that
Viu(Zo) = Vi(c) for all a € &. On the other hand, if o € T'(c), the common tangency §(c) +{Vg(c), o — c) =
9o (@) implies that

)?aiza = c, Zaef(c) Y, =1 and }75 =0

ael (e

H’K(i‘(x) = g(x(ia) - <v9a(ia)a 570¢> = :q/(c) - <v§(c)ﬂ C>.

Since Go = ;i £, = 1 after (3.37a), we have Ing,, + p(Z,) = glc) — (Vi(e), c). If B e P\I'(c), by virtue of
(3.37b),

5 = Y. & = exp|Tej(®s) — g5(®p)]- (3.38)

i€lC

Therefore, Inag + u® (z5) = Teg(Zs) — 95(x5) = §(c) —(Vi(c), ¢). As aresult, InG, + p(Z,) takes the same
value for all o € Z. B
_ To prove the complementarity conditions (2.18c), we first notice from various definitions that Y, > 0 and
Yo (1= &) = 0for all @ € &2. Moreover, 1 — Y, &, = 0 for « € I'(e). Hence, it just remains to prove
that 1 — >, fé > 0 for § e Z\I'(c). Starting from (3.38) and invoking the convexity of g, we have

op < exp[g(Zp) — 95(Zp)] < exp[g(Zs) — g5(Zp)] < exp(0) = 1,
which is the desired result. O
The assumption P < K turns out to be true in practice: there are about two or three phases at most for tens

to hundreds of components. For the two-phase binary case, namely, when K = P = 2, the previous solution can
be proved to be unique ([34], Thm. 2.5).

4. CONVEXITY ANALYSIS OF SIMPLE LAWS

The goal of this section is to review some commonly used laws that satisfy Hypotheses 3.7 unconditionally
or conditionally. Each law will be given by the excess Gibbs function ¥,, which is connnected to the Gibbs
function g, by

K . .
galm) = D o' Ina’ + Wy (x). (4.1)
=1

The subscript « stands for the phase to which the physical law under consideration applies.
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4.1. Henry’s law
In Section 3.3 (Prop. 3.9), we saw that an ideal gas ¥, = 0 fulfills Hypotheses 3.7. Next in the level of

complexity is Henry’s law [14]

U, (x) = i r'In k' (4.2)

where {ki}iGK are positive constants, each of them embodying a property of the corresponding species. The
fugacity coefficients calculated by (2.14a) are then

In®J () = In k', for all je K. (4.3)
This is why this law is also called the constant coefficients law.

Proposition 4.1. For all (kl,...,kK) € (Rf’;)K, the Gibbs energy function g, associated with Henry’s law
fulfills Hypotheses 3.7.

Proof. Since ¥, is affine with respect to & = (ml, oz _1), its second derivatives all vanish. Therefore, the

Hessian matrix V?2g, coincides with that of the Gibbs function of the ideal gas. But this matrix was shown to
be positive definite in Proposition 3.9. We still have to check that the range of the gradient map

Vgao(x) = (ln(klfcl) — ln(kK:cK), ceey ln(k:KflxK*l) — ln(k:KwK)).

is equal to RE~1. For a given u = (uI, .. .,uK_l) e RE~1, the nonlinear system Vg, (x) = u can be easily
inverted and the only solution is
) exp(u’) /k!
2 = p(w)/ je(LI,..., K —1).

/R + 25 exp(ud)
This defines a unique continuous inverse map [Vga]f1 (RE-1 Q. O

4.2. Margules’ law

We now consider two laws dedicated to liquid binary mixtures (K = 2), namely, Margules’ and Van Laar’s
[29]. For liquids, physicists rather talk about activity coefficients instead of fugacity coefficients. This distinction
is however anecdotical, since the mathematical structure of thermodynamic equilibria remains the same [27].

Since K — 1 = 1, we simply write z instead of ' and «. The excess function associated with Margules’ law
is

Uy(z) =x(1 —2)[A12(1 — x) + Aoy 2], (4.4)

where (A2, A1) € (R*)? are two nonzero parameters. By (2.14a), the fugacity coefficients are

In @ () = [A1a + 2(A2; — Asa)z](1 — 2)?, (4.5a)
In (I)LI(.’E) = [A21 + 2(1412 — Agl)(l — .’17)].7}2 (45b)

To meet Hypotheses 3.7, the pair (Aja, Az1) must be restricted to some region of R2.

Proposition 4.2. Let S = A5 + Aoy and D = A5 — Asy. Then, the Gibbs energy function g, associated with
Margules’ law fulfills Hypotheses 3.7 if and only if

1 1/2
S <4and |D| < 5[52 —185+54+2(9—25)3/2] . (4.6)
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FIGURE 1. Region of strict convexity for the parameters of Margules’ law in the (S, D)-plane.

The region indicated by (4.6) is colored in striped green in Figure 1. Its right-most point is located at
(S,D) = (4,0), where it has a vertical tangent.

Proof. The first derivative of g, is
g () =Inz —In(1 —z) + Ajp + (2491 — 4A410)x + 3(A1o — Agy)z?
This is a continuous function over (0,1), with lim, ¢ ¢/ () = —o0 and lim;4; g/, () = +o0. Thus, g}, has range
" ?he second derivative of g, multiplied by (1 — ) to remove singularities, is equal to
h(z) = 2(l —z)gh(z) = 1 + (z — 2*)[242, — 4412 + 6(A12 — A21)z].
Let us change the variable to y = z — § € (=3, 1) to work with the more symmetric function

H(y) := h(ac - ;) =1+ (i - y2) [6(A12 — A21)y — (A12 + A21)].

It remains to study H in order to determine the region of strict positivity H(y) > 0. The technical details can
be found in [16] or Proposition 3.2 of [34]. O

4.3. Van Laar’s law
Van Laar’s law is also a model for activity coeflicients of a liquid [29]. The excess Gibbs function associated

with it is

A12A21$(1 — LL’)

\Ila = 5 4.7
(CC) Algx + A21(1 - J}) ( )
where (A2, A1) € (R*)? are two nonzero parameters. By (2.14a), the fugacity coefficients are
Agl(l — SC) 2
In @, (z) = A 4,
. a($) 12 [Algl' + A21(1 - (,E) ’ ( 8a)
In®(z) = A [ Ara ]2. (4.8b)
« 2 A12JZ + A21(1 — l‘) '
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D

D = +[52 — 185 + 54 + 2(9 — 25)¥/2]/*

FIGURE 2. Region of strict convexity for the parameters of Van Laar’s law.

To make sure that formulae (4.7) and (4.8) are well-defined over z € (0, 1), the denominator Ajsx + Az1 (1 — )
must keep the same sign. This amounts to requiring that

A12A21 > 0. (49)

Besides, the pair (A2, A21) must be further restricted in order to comply with Hypotheses 3.7.

Proposition 4.3. Let S = A3+ Aoy and D = A5 — Asy. Then, the Gibbs energy function g, associated with
Van Laar’s law fulfills Hypotheses 3.7 if and only if

(S,D)e R_UR,, (4.10a)

where
R_={S<0and |D| < -5}, (4.10b)
R+:{0<S<4am1un<nm(sws?—w5+54+2@—2ﬁwﬂuw}. (4.10c)

The region indicated by (4.10) is colored in yellow in Figure 2. It lies inside the cone D? < S? that corresponds
to condition (4.9). The origin (0,0) must be excluded.

Proof. The first derivative of g, is

Aoy (1= 2)” — Appa®

/
ga(ﬂ?) =Ilnz— 11’1(1 — Z‘) + A12A21
[Aroz + A1 (1 — 2)]?

Under assumption (4.9), this is a continuous function over (0,1), with lim, o g/, () = —o0 and limgq g, (2) =
+00. Thus, g/, has range in R.
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The second derivative of g, multiplied by z(1 — z) to get rid of singularities, is equal to

z(1—x) '
(Algl‘ + Agl(l — $))3

h(z) == z(1 - x)gg(z) =1- 2A%2A§1

Let us change the variable to y = = — % € (—%, %) to work with the more symmetric function

2

1 1 —y
)= (2= 3 ) = 1- 2454 : .
2 [3(Arz + A21) + (A1 — A21)y]3

It remains to study H in order to determine the region of strict positivity H(y) > 0. The technical details can
be found in [16] or Proposition 3.3 in [34]. O

5. CUBIC EQUATION OF STATES FOR TWO-PHASE MIXTURES

The fugacity laws investigated in Section 4 are simple and apply to a selected phase «, regardless of the
remaining ones. We are now going to examine a prominent category of laws for a two-phase (gas and liquid)
mixture, in which the fugacity coefficients for both phases are computed in a “simultaneous” way. Throughout
the rest of this paper, it is therefore assumed that

P =1{G, L}, P=2 (5.1)

The new labels G (gas) and L (liquid) are aimed at being more meaningful. To fix ideas, the presentation is
done for Peng-Robinson’s law [28]. The philosophy is the same for other cubic laws.

5.1. Peng—Robinson’s law

5.1.1. Mizing rules and cubic equation

Each component i € K in a pure state is characterized by a pair of positive parameters a’ (cohesion term) and
b® (covolume). These are highly sophisticated functions of the pressure and the temperature, but at fixed (P, T)
can be considered as constants. This gives rise at fixed (P, T) to a pair of positive dimensionless parameters

Pa? . P

Al = Bl = .
(RT)2 RT

(5.2)

)

As before, we shall never write down explicitly the dependency of (A%, B) on (P,T).

A multicomponent mixture is supposed to behave approximately as a fictitious pure component endowed with
an averaged value for the pair (A, B). The latter is computed from the (Ai, Bi) ’s and the current partial fractions
by means of a mizing rule. More specifically, let € 2 be the partial fractions of some phase. There can be
found [27] a wide variety of mixing rules  — (A(x), B(x)). We require mixing rules to be smooth and to satisfy
the compatibility relation (A(d"), B(8°)) = (A%, B?) for all i € K. We recall that 8" = (3,1, 0i2,. .., 0 x-1)
was introduced in Section 2.1.2 for ¢ € K and consists of elementary Kronecker symbols J; ;.

The next step is to consider the cubic equation

Z3(x) + (B(x) — 1) Z%(x) + [A(:c) —2B(x) — 3B2(:c)]Z(:c) + [B2(:c) + B3(x) — A(:c)B(:c)] =0 (5.3)

in the variable Z(z). This accounts for the name “cubic EOS.” The dimensionless quantity Z(«), called com-
pressibility factor, can be intuitively understood by noting that for a pure component, the cubic equation

Z°+(B-1)Z2+ (A-2B—-3B*)Z + (B*+ B* - AB) =0 (5.4)
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simply results from an algebraic transformation of the equation of state

RT a
RV Vg v (5:5)
using
PV Pa Pb
Z=—2, A= B=—. 5.6
RT’ (RT)?’ RT (5.6)

Thus, for an ideal gas (a = b = 0), we have Z = 1.
In the most favorable situation, there are three real roots, all greater than B(x). These are then named

B(x) < Zp(x) < Zi(x) < Zg(x). (5.7)

In other words, the smallest root is associated with the liquid phase L, while the largest one is associated with
the gas phase G. This is grounded on the physical fact that, at the same pressure and temperature, the gas
phase occupies a larger volume than the liquid phase, which by (5.6) implies that Zg(x) > Zp(x). As for the
intermediate root Z;(x), it does not have any physical meaning.

5.1.2. Gibbs functions and fugacity coefficients

Let a € {G, L} and assume that the real root Z,(x) > B(x) is well-defined. Then, the Peng—Robinson excess
Gibbs energy is defined as

B A(z) Zo(z) + (1 +V2)B(x)
U,(x) =Zo(x) — 1 —In[Z,(x) — B(x)] — 2VaB(z) IH[ZQ(:B) (V- 1)B@) (5.8)
From this, the fugacity coefficients can be deduced with the help of (2.14a).
Theorem 5.1. The Peng—Robinson fugacity coefficients are given by
A x x), 6 —x
i (@) = X EEO I 17 ) 1) iz (@) - Bl
. B(z) +{(VB(z), §' — z)  2A(z) + (VA(=), §'—z)
B(z) Az)
_A@) | Zal@) + (1++/2)B(=) (5.9)
2V2B(x) | Zo(x) — (V2 —1)B(= .

for allie K and for any phase o € {G, L} in which Z,(x) > B(x) is well-defined.

Proof. Taking the gradient of (5.8), we have

1 A
V\Pa_{1_ZQ—B_2\/§B[Z+(\/§+1)B] 2v2B|Z - (\/§+1) ]}VZ‘“
+{ 1 A(V2Z+1) A(V2-1)
Zo—B 22[Z+ (V2+1)B] 2v2[Z - (vV2+1)B]

2)

A [Za(m)+(1+f)

+ In (
2V2B? | Zo(z) — (V2 — 1) B(

1 Zo(x) + (14 v2)B(x)
}VB — WoT: lnl

2)
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in which we dropped the variable x for clarity. By virtue of the cubic equation (5.3),

1 A A
1— — =
Za—B 22B[Z+ (V2+1)B]  2v2B[Z - (v2 1 1)B]
and
1 A(V2+1) - A(V2-1) _ Za—1
Zo—B  2\2[Z+ (V2+1)B] 2v2[Z-(V2+1)B] B
Thus,
Zy—1 A Zo(x) + (1 +V/2)B(z) {1 1 }
V¥, = VB 1 —VB—-—VA;.
B N 228 Zo(x) — (vV2-1)B(z) | | B A
Applying (2.14a) and using (5.8), we arrive at the desired result. O

5.1.3. Two crucial questions

Formulae (5.8) and (5.9) are well-known to thermodynamicists. A delicate but less often clarified issue is to
know which phase « € {G, L} they can be applied to, especially in the unfavorable situation when equation
(5.3) has only one real root greater than B(x). The simple-minded idea of taking Zg = Z, equal to this real
root is of common practice in industrial codes, but is ill-advised since it gives rise to discontinuities in the Gibbs
functions, as will be explained in Remark 6.1.

In fact, in the one-root scenario, two subcases have to be envisaged. If we manage to assign a “natural” phase
label o« = G or L to the real root, then the corresponding excess Gibbs energy VU, is defined by (5.8), leaving its
counterpart in the other phase undefined. If we do not succeed in attributing a “logical” phase label to the real
root, then ¥, is undefined in both phases. This process is intuitive enough to describe with words, but raises
two serious questions:

(1) When does the cubic equation have three real roots greater than B(x) and when does it have only one real
root greater than B(x)?
(2) When and how can a “natural” phase label be assigned to the unique real root greater than B(x)?

The upcoming subsections answer to these questions by working on the generic form (5.4). Part of these issues
was already addressed in [18] for Van der Waals’ law. We are not aware of any similar work for Peng—Robinson’s
law. This is why we are taking this opportunity to undertake a rigorous study.

5.2. Assignment of phase labels to roots
Instead of the polynomial
Yap(Z)=2+(B-1)2>+ (A—2B-3B*Z+ (B*+ B* - AB), (5.10)
which is naturally associated with (5.4), it is more convenient to work with the rational function

1 A
 Z—-B Z2+2BZ— B?

a,5(Z) -1, (5.11)
obtained from T 4 g through division by —(Z — B)(Z? + 2BZ — B?). Insofar as the roots of Z? + 2BZ — B?,
namely, —B(\/§ + 1) and B(\/§ — 1), are both lesser than B, I14 g and Y 4 g have the same roots over (B, +©).
Since

%lln’é HA)B(Z) = +00, ZETOC HA)B(Z) = —1, (5.12)

there is at least one root larger than B.
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A triplet (Z., A, B.) € (B, +m) x (R*)? is said to be a critical point if
HAC’BC(ZC) =0, H;}C,BC (ZC) =0, ZXC,BC (ZC) =0. (5'13)

Critical points, also called triple points, are physically important. Here, this notion will help us divide the space
of parameters into various subregions with physically distinct behaviors.

Lemma 5.2. For Peng—Robinson’ law, there is a unique critical point given by

1 o 3

Ze = 32_11+\/16\/§—13—\/16\/§+ 13], (5.14a)
1 [ 5 3

Ae = =5 | =59+ 3\/276 831 — 192512v/2 + 3\/276 231 + 192 512\/5], (5.14b)
1] 3 3

B, = 32¥13\/16\/§13+3\/16\/§+ 13]. (5.14c)

Approzimately,
Z, ~ 0.307401308, A, ~ 0.457235529,  B. ~ 0.077796073. (5.14d)

In physics textbooks [27,33], only decimal approximations (5.14d) of the critical point can be found, without
any proof. The interest of Lemma 5.2 is to derive the exact values (5.14a)—(5.14c) of the critical point.

Proof. System (5.13) can be turned into a set of 3 polynomial equations in (Z., A, B.). By eliminating A., we
obtain the cubic equation zg’ — 323 —32.—3=0in 2z, = Z./B., whose only real root is

Ze=1+ \3/4 —2v2+ {/4 +2v/2 ~ 3.951373036. (5.15)
From this A./B. can be deduced exactly. Once this is done, we can get back to (Z., A., B.). See Lemma 3.3 in
[34] for more details. O

Theorem 5.3 (Supercritical and subcritical regimes).

(1) If B/A > B./A. ~ 0.170144420, the function I1 4 p is decreasing over (B, +0) and has only one zero greater
than B.

(2) If B/JA < B./A, ~ 0.170144420, the function I14 g has two disctinct local extrema. In other words, there
exist two distinct values (1, < (¢ in (B, +w) such that

Iy p(¢L) =y p(Ca) = 0.

Then, 114 p is decreasing on (B,(r), increasing on (Cr,Cqc) and decreasing on (Ca,+00). It may have one
or three distinct zeros over (B, +00).

Theorem 5.3 paves the way to a natural association of a root with a phase in the subcritical regime. Note
that B/A plays the role of a temperature (up to a multiplicative constant).

Definition 5.4 (Phase label assignment). The region 0 < B < (B./A.)A is said to be subcritical. In the
subcritical region, a root Z > B of the cubic equation (5.4) is said to be associated with the liquid phase L if
7Z < (r; aroot Z > B of the cubic equation (5.4) is said to be associated with the gas phase G if Z > (.

Let us elaborate on this definition before proving Theorem 5.3. If there is only one root Z > B, this root
cannot belong to (1, (). Therefore, either Z € (B, (1) or Z € (¢, +0). This way of assigning a phase label
to Z is most natural, since it extends by continuity the “topological” pattern observed in the case of three real
roots.

The region B > (B./A:)A is said to be supercritical. The graph of II4 g no longer has two discernable
branches. In this configuration, there is no natural way to associate Z with a phase. Physically speaking, the
critical threshold B./A. corresponds to a critical temperature T.. Above the critical temperature, the distinction
between gas and liquid phases no longer holds [12].
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Proof. To find the local extrema of II4 g on (B, +00), we search for the zeros on (B, +0) of

2y A(27Z + 2B)
B (Z-B? " (22 +2BZ - B2

or equivalently, of the polynomial
Qap(Z) = —(Z° +2BZ — B?)® + 2A(Z + B)(Z — B)?,

which is equal to (Z—B)*(Z? + 2BZ — B2)2HZ4,B(Z). An even more convenient choice is toset T = (Z—B)/B €
(0, +00) and to study

1 A
44.5(%) = 57 Qup(BT + B) = —(T +4T + 2)° +2 5 (T +2) (5.16)

The key idea is to insert A./B. and to put the latter function under the form

A A
ga5() = (T—T) (g0 + 0T + :52) + z(B - B) (T+2)7°

where T, = 2. — 1 and gy < 0, ¢1 < 0, g2 < 0. See Theorem 3.5 in [34] for the calculation of gg,q1,g2. Thus,
the graph of qa_ p. is tangent to the T-axis at ¥ = T, with ga4_ 5. (%) <0 for T > 0. If A/B > A./B., then
qa,B(%.) > 0 and g4, p vanishes twice on (0, +0). If A/B < A./Bc, then ga,5(%) < qa,,5.(%) for all ¥ > 0 and
ga,p does not vanish on (0, +00). O

5.3. Three-root and one-root regions

We also have the following necessary (and perhaps sufficient) condition for the existence of three real roots
greater than B. To the best of our knowledge, the frontier given by (5.17) has never been investigated before.

Theorem 5.5. In the quarter-plane (A, B) € (Rj)z, the region for which Peng—Robinson’s cubic equation (5.4)
has three real Toots, all greater than B, is contained in the region

{0 <B< B, Ag(B)<A<AL(B)}, (5.17a)
where Ag(B) and Ay (B) are respectively the middle root and greatest roots of the cubic equation

—4A® — (8B% —40B — 1) A* + (16B* — 112B® — 88B” — 8B) A
+ (32B°% + 128B° + 160B* + 64B” + 8B?) = 0. (5.17b)

The region (5.17) lies itself inside the subcritical domain 0 < B < (B./A.)A. Moreover,

— for {0 < B < B., (A./B.)B < A < Ag(B)}, the only real root is associated with the gas phase G, in the
sense of Definition 5.4;

— for {0 < B < B, AL(B) < A} or {B. < B, (A./B.)B < A}, the only real root is associated with the liquid
phase L, in the sense of Definition 5.4.

The region characterized by (5.17) is colored in cyan in Figure 3. Inside it, Peng—Robinson’s cubic equation
(5.4) has three real roots. Nevertheless, we could not prove that all the roots are greater than B, despite abundant
numerical evidences supporting the validity of this claim. The first branch Ag(+) starts at (A, B) = (0,0) with
slope A%(B = 0) = 4 + 2v/2. The second branch Ap(-) starts at (A, B) = (1/4,0) with slope A} (B = 0) = 2.
Both branches end at (A, B) = (A, B.), with the common slope A (B = B.) = A} (B = B.) ~ 2.95686087.
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FIGURE 3. Number of roots for Peng—Robinson’s law in the (A, B)-quarter plane.

Proof. The discriminant® of the cubic equation (5.4) is

A(A,B) = —4A% — (8B*> —40B — 1) A% + (16B* — 112B® — 88B° — 8B) A
+ (32B% + 128B° + 160B” + 64B® + 8B7). (5.18)

For (5.4) to have three real roots, A(A, B) must be positive. If the polynomial (5.18) has only one real root
Ap(B), since the leading coefficient —4 is negative, we must have A < Ay(B) to ensure A(A, B) > 0. If (5.18) has
three real roots Ag(B) < Ag(B) < Ar(B), we must have A < Ay(B) or A € (Ag(B), AL(B)). The discriminant
of (5.18) with respect to A is equal to

Aa(B) = —32B*(64B% + 6B% + 12B — 1) - (4096B° + 768B° + 1572B" + 16 3° + 132B*> — 24B +1).

It can be shown that A4(B) > 0 for B € (0, B.), As(B.) = 0 and Ay (B) < 0 for B > B.. Therefore, if B > B,
only Ag(B) exists. If B € (0, B.), there exist Ag(B) < Ag(B) < AL(B).

The rest of the proof goes as follows. We first show that Ag(B) > 0. Then, we rule out the region {0 <
B < B, 0 < A < Ap(B)} which in fact belongs to the supercritical region. Next, in the region {(A./B.)B <
A < A¢(B), By < B}, where By ~ 2.435425 is the ordinate at which the graphe of Ag(-) enters the subcritical
region, we show that the three real real roots cannot be all larger than B. In conclusion, the only way for (5.4)
to have three real roots, all greater than B, is that B € (0, B.) and A € (Ag(B), Ar(B)). This region is shown
to be contained in the subcritical domain. The comprehensive discussion can be found in Theorem 3.6 from
[34]. O

6. DOMAIN EXTENSION FOR CUBIC EOS-BASED GIBBS FUNCTIONS

From Section 5.3, it appears that the cubic equation (5.3) may not always have three real roots greater than
B(z) for all x € 2. As a consequence, the domain of definition for the functions ¥, ®;, for a given phase «
may not always cover the whole simplex 2. This turns out to be detrimental to the unified formulation (2.18).

6.1. Difficulty of the unified formulation with cubic EOS

In a nutshell, the Gibbs energy functions g, may grossly violate Hypotheses 3.7. To give a visual picture
of the nature of the obstruction, let us consider the simplistic case of a two-phase binary (K = 2) mixture,
governed by Peng—Robinson’s law combined with the mixing rule

Az) = [:m/ﬁ +(1- x)\/ﬁr, B(z) = «B'+(1—2)B". (6.1)

For an arbitrary choice of the two pairs (AI, BI) and (AH7 BH) in the subcritical region 0 < B < (B./A.)A,

the parametrized curve v : [0,1] 2 2 — (A(z), B(z)) € (Rj)Q is an arc of parabola.

3The discriminant of the equation a X3 +bX2 4+ ¢cX +d=0is A = b2c? — dac® — 4b3d — 27a%d? + 18abcd.
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FIGURE 4. Curve v defined by the mixing rule in the (A, B)-plane.

Assume that (AI,BI) belongs to the one-root region labelled G, while (AH,BH) belongs to the one-root
region labelled L, as illustrated in Figure 4. At z = 0, the curve ~ starts from (AH, BH) in the L-root region.
At some parameter value x = x;, € (0, 1), it enters the three-root region. At some further value z = x4 € (z,,1),
it exits the three-root region. At x = 1, it finally meets (AI, BI) in the G-root region. It is not difficult to realize
that:

— the quantities Zy (z), U1 (2), gr(z) are well-defined only for z € [0, z4]; g1 (xﬁ*) and g7 <$t17> remain bounded,
while g} (m[ ) and Z; (Jc blow up;

#
— the quantities Za(x), Y (), go(z) are well-defined only for z € [2,,1]; ge (#;") and g (") remain bounded,
while g, (z,") and Z{,(z}") blow up.

Since g () and g}, (m;) are finite, the image sets g¢([xy,1)) and g7 ((0,24]) are not equal to R. This
prevents us from being always able to assign a well-defined extended fraction to the vanishing phase for the
single-phase problem (3.24) of Section 3.3.2. Indeed, when c is sufficiently close to 0, ¢} (c) ¢ g ([, 1)) because
limg g7 (x) = —oo, and it is impossible to find Z¢ € [z},1) such that g, (Zg) = ¢ (c). Likewise, when c is
sufficiently close to 1, gi(c) ¢ g7,((0,24]) because limgq1 g¢;(x) = +00, and it is impossible to find Zr, € (0, xy]
such that ¢} (Z1) = g (c). Figure 5 depicts this situation.

It could be argued that the same flaw of cubic EOS laws should cause the same prejudice to the variable-
switching formulation of Section 2.2.1. But this is not true. In the variable-switching formulation, if the context
is correctly guessed, we do not need to compute anything from the absent phase and the above problem is
irrelevant. If the context is incorrectly alleged, the flash does not converge or may even crash, but there is an
opportunity for us to make up for it by changing the context. The natural variable formulation does not seek
to explore the regions where information is missing. The unified formulation has to do so, by its very vocation
to treat all phases on an equal footing.

Remark 6.1. From Figure 5, it can be seen that if we abruptly take Zg = Zr, in the one-root regions x € [0, z;)
and x € (wy,1], as often done by practitioners, then we will have go = g1 over these two intervals. As a
consequence, gg will exhibit a discontinuity at x, and gz a discontinuity at xy. These unphysical discontinuities
are not a favorable feature for numerical robustness.
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FIGURE 5. Typical situation where the fraction in the absent phase cannot be computed.

6.2. A natural domain extension method

To enhance the performance of the unified formulation, it is essential that the domains of definition for the
excess functions ¥, can be extended to Q. Note that here we just want to extend the domains of definition of
various functions. We do not strive to fulfill Hypotheses 3.7, since these assumptions may already be violated
for the original unextended Gibbs functions. Even without strict convexity, a smooth extension of the Gibbs
functions helps iterative methods [35] to remain well-defined everywhere.

6.2.1. Construction in the one-root region

When the cubic equation does not have three real roots, our idea is to use the common real part of the two
complex conjugate roots, as a “surrogate” of the missing real root. Assume that Z, is the only real root greater
than B of Peng—Robinson’s cubic equation

Z*+(B-1)Z*+ (A—2B—3B*)Z + (B> + B® — AB) =0,

where the label o € {G, L} has been assigned in accordance with Definition 5.4. To alleviate notations, we do
not explicitly indicate the dependency of A, B and Z on x.

Let 8 be the other phase, that is, 5 = L if @« = G and 8 = G if @ = L. Since the sum of the three (complex)
roots is equal to 1 — B, the two remaining conjugate roots share the common real part

1-B-2,

W;g 5

(6.2)

The following properties of Wy speak in favor of its enrollment as a substitute for Z3, which would have been
subject the same constraints, had it existed.

Lemma 6.2. Let (A, B) be a pair in the subcritical region 0 < B < (B./A.)A and assume that Peng—Robinson’s
cubic equation has only one real root Z, > B that corresponds to phase «.

(1) If B < 0.206813, then
Ws > B. (6.3a)

(2) If B < 0.137072, then
Zo <Ws if a =1, Wy < Zo if a=G. (6.3b)
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Proof. The proof is based on the rational function II4 p introduced in (5.11) and its behavior described in
Theorem 5.3. Full details are available in Lemma 3.5 of [34]. O

By restricting ourselves to B < 0.137072, which is reasonable since B, ~ 0.077796, we can rely on Lemma 6.2
to stipulate that

Wngﬁ—l—ln[WB—B]—Q\/éB In gZJFEnggi (6.4)
for the missing phase . By (2.14a), we can derive the corresponding fugacity coeflicients.
Theorem 6.3. With extension (6.4), the Peng—Robinson fugacity coefficients phase 3 are
@i, = 2 +<v1;, =) [W; — 1] — ln[W; — B]
B+(VB,8' —z) 24+ (VzA 6 —-x)| A Ws+ (V2+1)B
B - A 0V32B | Ws— (V2-1)B
. (VWp, 8' —x) (VB,§' —z) W5 Y a,5(Wps) (6.5)
W B (W — B) (W3 + 2BW, — B?)
Jor alli € K, with Y4, 5(W) = W3 4+ (B—1)W? + (A—2B —3B*)W + (B* + B* — AB).
Proof. The proof is similar to that of Theorem 5.1. (]

The gradient of W required by (6.5) can be computed by VWg = —%(VB +VZ,), in which VZ, comes
from differentiating Peng—Robinson’s cubic equation with respect to x, i.e.,

[322 +2(B—1)Zo + (A—2B —3B*)|VZy = (B— Z,)VA
+ (A—2B—3B*+6BZ, +2Z, — Z2)VB. (6.6)

6.2.2. Alteration in the three-root region

In the one-root region, the gradient VWg = f%(VB + VZ,) remains bounded. If we start from the three-
root region and move towards the transition boundary where Zg disappears, the gradient VZz does not remain
bounded. Indeed, Z3 also obeys (6.6) (just replace Z, by Zg), and as Zg gets closer to being a double root,
VZs blows up. However, we need a finite gradient VZ3 for the numerical resolution of system (2.18) by, say,
the Newton method.

To achieve a smooth junction, we introduce a further approximation on a tiny portion of the three-root
region. Assuming that we are in the three-root region, with B < Z;, < Z; < Zg, we introduce

 Zi- 7

9= 2L AL
Zg — 4L

€ [0,1] (6.7)

as an indicator of the closeness to the transition boundary. Indeed, the cubic equation has double roots when
¥ =0o0r ¥ =1.Let ¢ € (0,1/4) be a small threshold.

— If 9 € [2¢,1 — 2¢], we apply the usual formulas for the case of three real-roots.

— If 9 € (1 — 2¢,1], the two roots Z; and Zg are close to each other. We keep Zj, but progressively replace
Za by Wg = (1 — B~ Z1) = L(Zr + Zg) whose gradient is bounded. Instead of Zg, we plug Zg =
[1—ve(¥)]Za + va(0)Weg into (5.8), where

0 if ¥ <1-—2¢,
ve(9) =< q((9—(1—-2¢))/e) ifde(l—21—¢), (6.8)
1 ifd>=1-—¢,
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1

and q(y) = y?(3 — 2y). The rescaled function y — q(y/c) serves as a C! step function over the interval [0, ¢].

We note that ¢(0) =0, ¢(1) = 1 and ¢/(0) = ¢’(1) = 0. From the modified excess Gibbs energy

\I/(;=Zg—1—ln[ZG_B]

A

— n
24/2B

: Zg+(W2+1)B
Za— (vV2-1)B

and from the rule (2.14a), the fugacity coefficients are inferred as

In &%, =

B+(VB,é§ —=z)

B

[EG _ 1] —In [ZG _ B]

(6.9a)
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B+{VB,§ —z) 24+(VyA 8 -2)| 4 Zo+(V2+1)B
_ ol 2
B A 22B | Zg - (V2-1)B
| V26, 8 -2y (VB & - w>1 Za Y a5(%) . (6.9b)
Za B (ZG - B) (Zg +2BZ — B2)

— If ¥ € [0, 2¢), we proceed in a similar and symmetric fashion to replace Zy, by Z;, = [1 — v, (9)] 21 +vi (9)W,
in the expression of W, while preserving Zg.

Figures 6 and 7 display a few examples of the extension method for Peng—Robinson’s law in the binary case.
Figures 8 and 9 provide a close-up comparison between two choices of €.

6.2.3. Numerical validation of the extension method

Extensive numerical simulations are provided in [35], a companion paper to the present one, to demonstrate
the relevance of the above extension method. In [35], we considered various systems of equations in the unified
form (2.18) with a wide range of physical parameters and initial points. A careful comparison is carried out
between two numerical methods used to solve these systems: the Newton-min method and the Non-Parametic
Interior Point Method (NPIPM) that we designed on purpose to deal with such systems.

It turned out that very good results (nearly 100% convergence) can be achieved thanks to the combination
of both ingredients, i.e., the extension of Gibbs functions and the NPIPM algorithm. A single ingredient alone
is not enough in the following sense: unextended Gibbs functions always cause divergence of both numerical
methods (Newton-min and NPIPM), but extended Gibbs functions combined with Newton-min does not bring
significant improvement.

7. CONCLUSION

Beyond implementational advantages, the unified formulation has been shown to be able to recover all the
properties known to physicists on phase equilibrium. Indeed, the complementary equations do encapsulate the
tangent plane criterion (Thm. 3.4), as the sign information is related to some stability condition. The unified
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formulation can also be regarded as a solution of some constrained minimization problem (Thms. 3.2 and 3.3)
in which the objective function is a Gibbs energy of the mixture. This solution is characterized by a set of
equations that is slightly stronger than the KKT optimality conditions when a phase vanishes.

The possibility of assigning well-defined values to the extended fractions of an absent phase can only be
achieved if the Gibbs functions meet some restrictive requirements. Strictly convexity and surjectivity of the
gradient over the whole domain of fractions (Hypotheses 3.7) are sufficient for this purpose. Remarkably, these
assumptions also guarantee the existence of a solution to the phase equilibrium problem in the unified formu-
lation (Thm. 3.12).

Unfortunately, Hypotheses 3.7 are not satisfied by realistic Gibbs functions. The obligation of assigning
well-defined fraction values to an absent phase then becomes a weakness that jeopardizes the whole unified
approach. This is especially true for the Gibbs functions derived from cubic EOS, for which they are not
even defined on the whole domain of fractions. The extension procedure of Section 6 is aimed at improving
the robustness of the unified formulation. The corresponding numerical results will be the subject of another
simulation-oriented article, where we also design an interior-point algorithm ([34], Sect. 5) in order to efficiently
cope with complementarity conditions.

Despite its solid theoretical foundation, the current unified formulation is not able to support the phenomenon
of phase separation, where the same phase is split into two or several distinct subphases due to the non-convexity
of its Gibbs function. Note that the variable-switching formulation cannot do it either. Future works should
tackle this question perhaps by combining the unified formulation with some judicious approaches advocated
by [11,25].
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