A variational sheath model for stationary gyrokinetic Vlasov–Poisson equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2609-2642

We construct a stationary gyrokinetic variational model for sheaths close to the metallic wall of a magnetized plasma, following a physical extremalization principle for the natural energy. By considering a reduced set of parameters we show that our model has a unique minimal solution, and that the resulting electric potential has an infinite number of oscillations as it propagates towards the core of the plasma. We prove this result for the non linear problem and also provide a simpler analysis for a linearized problem, based on the construction of exact solutions. Some numerical illustrations show the well-posedness of the model after numerical discretization. They also exhibit the oscillating behavior.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021067
Classification : 78A30, 49J05, 34C10
Keywords: Plasma-wall interaction, Vlasov–Poisson equation, gyrokinetic model, gyroaverage operator, Bohm criterion, floating potential, stationary solutions
@article{M2AN_2021__55_6_2609_0,
     author = {Badsi, Mehdi and Campos-Pinto, Martin and Despr\'es, Bruno and Godard-Cadillac, Ludovic},
     title = {A variational sheath model for stationary gyrokinetic {Vlasov{\textendash}Poisson} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2609--2642},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021067},
     mrnumber = {4337454},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021067/}
}
TY  - JOUR
AU  - Badsi, Mehdi
AU  - Campos-Pinto, Martin
AU  - Després, Bruno
AU  - Godard-Cadillac, Ludovic
TI  - A variational sheath model for stationary gyrokinetic Vlasov–Poisson equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2609
EP  - 2642
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021067/
DO  - 10.1051/m2an/2021067
LA  - en
ID  - M2AN_2021__55_6_2609_0
ER  - 
%0 Journal Article
%A Badsi, Mehdi
%A Campos-Pinto, Martin
%A Després, Bruno
%A Godard-Cadillac, Ludovic
%T A variational sheath model for stationary gyrokinetic Vlasov–Poisson equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2609-2642
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021067/
%R 10.1051/m2an/2021067
%G en
%F M2AN_2021__55_6_2609_0
Badsi, Mehdi; Campos-Pinto, Martin; Després, Bruno; Godard-Cadillac, Ludovic. A variational sheath model for stationary gyrokinetic Vlasov–Poisson equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2609-2642. doi: 10.1051/m2an/2021067

[1] A. Arsenev, Existence in the large of a weak solution of Vlasov’s system of equations. Mat. Mat. Fiz. 15 (1975) 136–147. | MR

[2] M. Badsi, Etude mathématique et simulation numérique de modèles de gaines bi-cinétiques. Ph.D. thesis, Université Pierre et Marie Curie, Paris (2016).

[3] M. Badsi, Linear electron stability for a bi-kinetic sheath model. J. Math. Anal. Appl. 453 (2017) 954–872. | MR | DOI

[4] M. Badsi, M. Campos Pinto and B. Després, A minimization formulation of a bikinetic sheath. Kinet. Relat. Models 9 (2016) 621–656. | MR | DOI

[5] M. Badsi, M. Merhemberger and L. Navoret, Numerical stability of plasma sheath. ESAIM: Proc. 64 (2018) 17–36. | MR | DOI

[6] C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. Henri Poincaré 2 (1985) 101–118. | MR | Zbl | Numdam | DOI

[7] N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system. M2AS 17 (1994) 451–476. | MR | Zbl

[8] D. Bohm, The characteristics of electrical discharges in magnetic fields. McGraw Hill, New York (1949).

[9] M. Bostan, Existence and uniqueness of the mild solution for the 1D Vlasov-Poisson initial-boundary value problem. SIAM J. Math. Anal. 37 (2005) 156–188. | MR | Zbl | DOI

[10] M. Bostan, Gyrokinetic models for strongly magnetized plasmas with general magnetic shape. Discrete Contin. Dyn. Syst 5 (2012) 257–269. | MR | Zbl

[11] A. Bottino and E. Sonnendrucker, Monte Carlo particle-in-cell methods for the simulations of the Vlasov-Maxwell gyrokinetic equations. J. Plasma Phys. 81 (2015) 435810501. | DOI

[12] Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Diff. Equ. 25 (2000) 737–754. | MR | Zbl | DOI

[13] A. J. Brizard and J. W. Burby, Gauge-free electromagnetic gyrokinetic theory. Phys. Lett. 18 (2019) 2172–2175. | MR

[14] R. Chalise and R. Khanal, A kinetic trajectory simulation model for magnetized plasma sheath. Plasma Phys. Control. Fusion 54 (2012) 095006. | DOI

[15] F. F. Chen, Introduction to Plasma Physics and controlled fusion. Springer (1984). | DOI

[16] R. Chodura, Plasma-wall transition in an oblique magnetic field. AIP Publishing (1982). | Zbl

[17] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. math. 136 (2012) 521–573. | MR | Zbl | DOI

[18] M. Feldman, S. Y. Ha and M. Slemrod, A geometric level-set formulation of a plasma sheat interface. Arch. Rat. Mech. Anal. 178 (2005) 81–123. | MR | Zbl | DOI

[19] E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation. SIAM J. Math. Anal. 32 (2001) 1227–1247. | MR | Zbl | DOI

[20] J. P. Friedberg, Plasma Physics and Fusion Energy. Cambridge University Press (2007). | DOI

[21] X. Garvet, P. Mantica, C. Angioni and E. Asp, Physics of transport in tokamaks. Plasma Phys. Control. Fusion 46 (2004) B557–B574. | DOI

[22] P. Ghendrih, M. Hauray and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions. Kinet. Relat. Models 2 (2009) 707–725. | MR | Zbl | DOI

[23] R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag (1984). | MR | Zbl | DOI

[24] V. Grandgirard and Y. Sarazin, Gyrokinetic simulations of magnetic fusion plasmas. Numerical models for fusion 39 (2013) 91–176. | MR | Zbl

[25] E. Grenier, Oscillatory limits with varying spectrum. In: Congrès National de Mathématiques Appliquées et Industrielles, Volume 35 of ESAIM Proc. EDP Sciences. Les Ulis (2011) pp. 46–58. | MR | Zbl

[26] Y. Guo, Regularity for the Vlasov equations in a half space. Indiana Univ. Math. J. 43 (1994) 255–320. | MR | Zbl | DOI

[27] Y. Guo, The dynamics of a plane diode. SIAM J. Math. Anal. 35 (2004) 1617–1635. | MR | Zbl | DOI

[28] J.-H. Hwang and J. Schaeffer, Uniqueness for weak solutions of a one-dimensional boundary value problem for the Vlasov-Poisson system. J. Diff. Equ. 244 (2008) 2665–2691. | MR | Zbl | DOI

[29] H.-J. Hwang, J. J. L. Velazquez, Global existence for the Vlasov-Poisson system in bounded domains. Arch. Rat. Mech. Anal. 195 (2010) 763–796. | MR | Zbl | DOI

[30] J. Kromes, Dielectric response and thermal fluctuations in gyrokinetic plasma. Phys. Fluids B Plasma Phys. 5 (1993) 1066. | DOI

[31] E. Lieb and M. Loss, Analysis (2nd version). Graduate Studies in Mathematics, Vol 14. American Mathematical Society (2001). | MR | Zbl

[32] N. Mandell, A. Hakim, G. Hamett and M. Francisquez, Electromagnetic full-f gyrokinetics in the tokamak edge with discontinuous galerkin methods. J. Plasma Phys. 86 (2020) 905860109. | DOI

[33] G. Manfredi and D. Coulette, Kinetic simulations of the Chodura and Debye sheaths for magnetic fields with grazing incidence. Plasma Phys. Control. Fusion 58 (2016) 025008. | DOI

[34] E. Miot, The gyrokinetic limit for the Vlasov-Poisson system with a point charge. Nonlinearity 32 (2019) 654–677. | MR | DOI

[35] J. Moritz, E. Faudot, S. Devaux and S. Heuraux, Plasma sheath properties in a magnetic field parallel to the wall. Phys. Plasmas (2016).

[36] P. J. Morrison, The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80 (1980) 383–386. | MR | DOI

[37] F. W. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of mathematical functions. Cambridge University Press (2010). | MR | Zbl

[38] F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system. Forum Math. 4 (1992) 499–527. | MR | Zbl | DOI

[39] P. A. Raviart and C. Greengard, A boundary-value problem for the stationary Vlasov-Poisson equations: the plane diode. Commun. Pure Appl. Math. 43 (1990) 473–507. | MR | Zbl | DOI

[40] K. U. Riemann, The Bohm criterion and sheath formation. J. Phys. D: Appl. Phys. 24 (1991) 493. | DOI

[41] J. Schaeffer, Global existence of smooth solutions to the Vlasov Poisson system in three dimensions. Commun. Partial Diff. Equ. 16 (2009) 1313–1335. | MR | Zbl | DOI

[42] E. Shi, A. Hakim and G. W. Hammet, A gyrokinetic 1D scrape-off layer model of an elm heat pulse. Phys. Plasmas 22 (2015) 022504. | DOI

[43] L. St-Raymond, Control of large velocities in the two-dimensional gyrokinetic approximation. J. Math. Pure. Appl. 81 (2002) 379–399. | MR | Zbl | DOI

[44] P. Stangeby, The plasma boundary of magnetic fusion devices. Institute of Physics Publishing (2000). | DOI

[45] P. Stangeby, The Chodura sheath for angles of a few degrees between the magnetic field and the surface of divertor targets and limiters. Nucl. Fusion 52 (2012) 083012. | DOI

[46] A. Weinstein and P. J. Morrison, Comments on the Maxwell-Vlasov equations as a continuous Hamiltonian System. Phys. Lett. A 86 (1981) 383–386. | MR | DOI

Cité par Sources :