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A VARIATIONAL SHEATH MODEL FOR
STATIONARY GYROKINETIC VLASOV–POISSON EQUATIONS

Mehdi Badsi1,*, Martin Campos-Pinto2 ,
Bruno Després3 and Ludovic Godard-Cadillac4

Abstract. We construct a stationary gyrokinetic variational model for sheaths close to the metallic
wall of a magnetized plasma, following a physical extremalization principle for the natural energy. By
considering a reduced set of parameters we show that our model has a unique minimal solution, and
that the resulting electric potential has an infinite number of oscillations as it propagates towards the
core of the plasma. We prove this result for the non linear problem and also provide a simpler analysis
for a linearized problem, based on the construction of exact solutions. Some numerical illustrations
show the well-posedness of the model after numerical discretization. They also exhibit the oscillating
behavior.
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1. Introduction

The mathematical description and numerical simulation of a plasma interacting with a metallic surface is an
active topic of research in plasma physics [8,16,33,40,44,45]. Applications are wide spread over a large spectrum,
from the simulation of solar wind to design of laboratory plasma devices [20] in particular for the ITER project
https://www.iter.org/proj/inafewlines which is to produce electric energy from thermonuclear fusion. One
of the main feature of isolated plasmas interacting with a metallic surface is the development near the surface
of a thin positively charged layer of several Debye length in thickness. This layer is called a sheath and results
from the relative mobility difference between ions and electrons. In the sheath, a significant electric field aims
at repelling the electrons in the core plasma while ions are accelerated towards the surface so that an equal flux
of ions and electrons leaving the plasma to the wall is reached. The mathematical description of this transition
layer between the core plasma and the wall is fundamental for the understanding of the plasma properties in
its globality. Significant efforts have been made in this direction at the physical level [14, 16, 33, 45]. At the
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mathematical level, the kinetic description of plasmas has become standard and the mathematical theory of
kinetic plasma models be it in the absence of boundaries or in the case of bounded plasma is by now well-
established [1, 6, 7, 9, 26–29, 38, 39, 41]. However efficient, little works on the mathematical side have focused on
the precise analysis of sheaths [3–5,18]. In [4], the authors showed the existence and uniqueness of a solution for
a two species Vlasov–Poisson system with boundaries under a moment condition on the incoming flow of ions
that takes the form of a so called kinetic Bohm criterion [8,40]. The extension of this work to the case where a
constant magnetic field is imposed was intended in [2]. At the physical level, when a magnetic field is considered,
numerical simulations [16, 33, 35] seem to show off different physical scenarios according to both the angle of
incidence of the magnetic field with respect to the surface and the ratio of force between the electric field and
the intensity of the magnetic field. The existence of physical stationary states seems nevertheless subjected to
the validity of the so called Bohm–Chodura condition [16, 45] whose mathematical justification is up to our
knowledge a condition for the existence of a monotonic electrostatic potential obtained via a linearized model.

As far as the mathematical modeling of magnetized plasma is concerned, gyrokinetic theory has emerged to
reduce the computational cost of computing the particles distribution functions in perpendicular directions to
the magnetic field. In the classical kinetic description, particles are usually described with their six coordinates
of positions and velocities. In the gyrokinetic description however, particles are identified, through their gyro-
center positions in R3 and two other components: their parallel component along the magnetic field and their
magnetic moment. The magnetic moment enables an identification with the perpendicular velocity. It yields a
representation of the particles distribution function in a five dimensional phase space. The mathematical and
physical justifications can be found in [10, 13, 19, 22, 34, 43]. In practice [11], the transport of particles distribu-
tion functions is made through the gyroaveraged fields which are non local in space. This non locality poses the
question of what are appropriate boundary conditions when material boundaries are considered.

By far, the construction of solutions in the presence of spatial boundaries for a two species gyrokinetic
Vlasov–Poisson system is up to our knowledge an open problem. In this work, we study a magnetized plasma
interacting with a metallic wall by considering a simplified two species gyrokinetic Vlasov–Poisson system. As far
as gyrokinetic Vlasov–Poisson equations are concerned, it is known at the physical level that transient solutions
of such equations are prone to small scales instabilities which are the cause of plasma turbulence [21,24]. These
instabilities are interesting in their own and generally occur on time scale much smaller than that of fusion for
which relaxation towards a stationary state is expected. Our main concern in this work, is the construction of
reference stationary solutions that are compatible with the presence of a material boundary. It is an important
topic [32,42] but rigorous mathematical contributions are very sparse. Using symmetries, particles distribution
functions in our model live in a three dimensional phase space where particles gyrocenter positions are spotted
by the variable 𝑥 < 0, their velocity component along the magnetic field is denoted 𝑣 ∈ R and their magnetic
moments is denoted 𝜇 ∈ R. The angle of the prescribed magnetic field is arbitrary. Incoming flow of particles
is considered at the infinity and partial absorption is considered at the wall. In our model, the infinity is in
fact the core of a plasma assumed to be neutral and at rest. The electrostatic potential is assumed to vanish at
the infinity, while at the wall its gyroaveraged value is computed so as to ensure the neutrality of the current.
These natural equations are supplemented by what we call the closure relations. These closure relations are the
simplest ones, have a clear physical meaning even if they are arbitrary, and yield a well-posed global problem,
as we show in this work.

To construct the model, our methodology follows a standard approach: we integrate the gyrokinetic Vlasov
equations with respect to the gyroaveraged electrostatic potential, and we then consider a non linear Poisson
equation that we treat as an extremalization problem. The density functions are peaked around an electronic
Larmor radius 𝑟𝑒 and an ionic Larmor radius 𝑟𝑖. These radii are arbitrary in the final model.

For the mathematical analysis, it is convenient to choose equal Larmor radius 𝑟𝑒 = 𝑟𝑖 in order to minimize
technical difficulties. This hypothesis, the same unique radius for ions and electrons, is similar of other mono-
kinetic hypotheses in the mathematical literature [12]. This simplification has the advantage that well posedness
(convexity, existence and uniqueness of a minimum, etc.) is proved. A new result is a rigorous justification of
the oscillating behavior of the electric potential, a phenomenon that has been observed numerically [16] but, to
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the best of our knowledge, never analyzed mathematically. Specifically, we are able to prove that under certain
conditions the exact electric potential admits an infinite number of oscillations of comparable length. This is
first shown with a method adapted to the non linearity of the problem, and also with a linear method which
calculates exact solutions to the linear problem far from the wall. Some illustrations are eventually provided in
the numerical section. These illustrations fully confirm our original theoretical findings.

The organization is as follows. The variational model is constructed in Section 2, by means of exact integration
of the kinetic Vlasov equations in the phase space. The value of the wall potential is obtained by solving a pair
of non linear equations which express the neutrality at infinity and the ambipolarity principle. The variational
principle is then formulated with a stability condition at infinity, corresponding to a kinetic Bohm–Chodura
inequality. In Section 3, the model is simplified so as to establish its main properties. The mathematical solution
is based on the minimization of a strictly convex functional. The monotonicity of the solution at the wall is
proved in Section 3.1.2. The oscillating behavior of the solution is then proved by two different methods. The
first one is described in Section 3.1.3. It is non linear and proceeds by means of inequalities and comparison with
convenient test functions. The second one in Section 3.1.4 is linear in nature and is based on the calculation of
exact complex exponential solutions. Finally Section 4 is dedicated to simple numerical tests which illustrate
the theoretical findings. Several technical proofs and results are gathered in the Appendix.

2. Construction of a variational sheath model

2.1. Gyroaverage operator

In magnetized plasma physics, charged particles follow helicoidal trajectories. A key notion is the gyroaver-
aging on the Larmor radius. Let B ̸= 0 be a constant non zero given magnetic field

B = |B| (cos 𝜃 ex + sin 𝜃 ey) ∈ R3 with 𝜃 ∈
(︁

0,
𝜋

2

)︁
. (2.1)

Following [11,13], the dynamics of charged particles is described by averaging along helicoidal trajectories which
oscillate around guiding-center trajectories. A typical helicoidal trajectory starting at X = (𝑥1, 𝑥2, 𝑥3) involves
the Larmor vector 𝜌𝑟(𝛼) := 𝑟 (cos𝛼 v1 + sin𝛼 v2) ∈ R3 with 𝛼 ∈ [0, 2𝜋), and where v1 = (− sin 𝜃, cos 𝜃, 0) and
v2 = (0, 0, 1) are two vectors orthonormal to B. With these notations, a trajectory with radius 𝑟 > 0, parallel
direction b = B

|B| , parallel velocity 𝑣‖ ̸= 0 and cyclotron frequency 𝜔𝑐 ̸= 0 verifies the Newton’s second law of
motion

X′(𝑡) = V(𝑡), (2.2)
V′(𝑡) = 𝜔𝑐V(𝑡) ∧ b (2.3)

whose general solution is
X(𝑡) = 𝑋 + 𝜌𝑟(𝜔𝑐𝑡) + 𝑣‖b𝑡 =: 𝑋̃(𝑡) + 𝑣‖b𝑡. (2.4)

Given a characteristic length 𝐿, gyrokinetic models are based on the approximation 𝑢(𝑋)← 𝜔𝑐

2𝜋

∫︀ 2𝜋/𝜔𝑐

0
𝑢(𝑋̃(𝑡))d𝑡

in the regime 𝜔𝑐 ≫ 𝑣‖/𝐿. Assume now that 𝑢 is an univariate function of the coordinate 𝑥 = 𝑥1. By averaging
on the Larmor circle, one gets the approximation 𝑢(𝑥) ← ⟨𝑢⟩𝑟(𝑥) = 1

2𝜋

∫︀ 2𝜋

0
𝑢(𝑥 + 𝜌𝑟(𝛼) · ex)d𝛼. Using the

change of variable 𝑥 = 𝜌𝑟(𝛼) ·ex = −𝑟 sin 𝜃 cos𝛼, the local gyroaverage operator takes the form of a convolution
operator. Namely for all 𝑢 ∈ 𝐶∞𝑐 (R),

⟨𝑢⟩𝑟(𝑥) :=
∫︁

R
𝑤

(︂
𝑥− 𝑦
𝑟 sin 𝜃

)︂
𝑢(𝑦)

d𝑦
𝑟 sin 𝜃

, (2.5)

where the convolution kernel 𝑤 is defined almost everywhere by

𝑤(𝑥) =
1

𝜋
√

1− 𝑥2
for |𝑥| < 1 and 𝑤(𝑥) = 0 for |𝑥| > 1. (2.6)
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The convolution kernel 𝑤 belongs to 𝐿𝑝(R) for 1 ≤ 𝑝 < 2 and its total mass is normalized,
∫︀

R 𝑤(𝑥)d𝑥 = 1. Some
properties of the associated gyroaverage operator are stated in the Appendix. In particular it can be extended
to a linear continuous operator from 𝐻𝑠(R) to 𝐻𝑠+ 1

2 (R) for any 𝑠 ∈ R.

2.2. Gyrokinetic equations

Following [11, 13, 20], a plasma made of one species of ions and electrons subject to a given magnetic field
B is modeled with gyrokinetic Vlasov–Poisson equations. Positions are denoted as 𝑥 ∈ R. Velocities in the 𝑥
direction are denoted as 𝑣 ∈ R. Magnetic moments are denoted as 𝜇 = ±|v⊥| ∈ R.

The unknowns are the electrostatic potential 𝜑 : 𝑥 ∈ R ↦→ 𝜑(𝑥) ∈ R, the particle density for ions 𝑓𝑖 : (𝑥, 𝑣, 𝜇) ∈
R×R×R ↦→ 𝑓𝑖(𝑥, 𝑣, 𝜇) ∈ R+ and the particle density for electrons 𝑓𝑒:(𝑥, 𝑣, 𝜇) ∈ R×R×R ↦→ 𝑓𝑒(𝑥, 𝑣, 𝜇) ∈ R+.
They satisfy the gyrokinetic Vlasov–Poisson system (2.7)–(2.9)

𝑣𝜕𝑥𝑓𝑖 − ⟨𝜕𝑥𝜑⟩𝑅𝑖(𝜇)𝜕𝑣𝑓𝑖 = 0, (𝑥, 𝑣, 𝜇) ∈ R3, (2.7)

𝑣𝜕𝑥𝑓𝑒 +
1
𝜂
⟨𝜕𝑥𝜑⟩𝑅𝑒(𝜇)𝜕𝑣𝑓𝑒 = 0, (𝑥, 𝑣, 𝜇) ∈ R3, (2.8)

−𝜆2 sin2 𝜃𝜕𝑥𝑥𝜑 = 𝑛𝑖(𝑥)− 𝑛𝑒(𝑥), 𝑥 ∈ R. (2.9)

In the equations, the notations are as follows. The Larmor radius is proportional to the square root of the mag-
netic moment for both species, that is 𝑅𝑖,𝑒(𝜇) = 𝛼𝑖,𝑒

√︀
|𝜇| > 0 where 𝛼𝑖,𝑒 > 0. We refer to p. 5 of Reference [11]

for the definition of the Debye length 𝜆 > 0 in function of physical quantities in the context of fusion plasmas.
In particular small Debye length arise from the physical scaling

𝜌2
𝑠

𝜆2
=

4𝜋𝑛𝑚𝑐2

|B|2
≫ 1. (2.10)

One has 𝜆 ≈ 6.4𝑒−5 in fusion plasmas ([20], p. 126). The mass ratio between ions and electrons is a natural
small parameter denoted as 𝜂 = 𝑚𝑒

𝑚𝑖
≈ 1/2000. The coefficient sin2 𝜃 in equation (2.9) comes from the fact that

it is the projection along the first coordinate of the operator ∇*⊥∇⊥ where ∇⊥ is the gradient orthogonal to the
magnetic field B. Since one also has a sin 𝜃 in the gyroaveraging (2.5), it is immediate to observe that sin 𝜃 can
be conveniently eliminated after a rescaling of the space (it will be performed in the next section).

The macroscopic gyroaveraged densities and parallel current densities are

𝑛𝑖(𝑥) =
∫︁

R2
⟨𝑓𝑖⟩𝑅𝑖(𝜇)(𝑥, 𝑣, 𝜇)d𝑣d𝜇, 𝑛𝑒(𝑥) =

∫︁
R2
⟨𝑓𝑒⟩𝑅𝑒(𝜇)(𝑥, 𝑣, 𝜇)d𝑣d𝜇, (2.11)

𝐽𝑖 =
∫︁

R2
⟨𝑓𝑖⟩𝑅𝑖(𝜇)(𝑥, 𝑣, 𝜇)𝑣d𝑣d𝜇, 𝐽𝑒 =

∫︁
R2
⟨𝑓𝑒⟩𝑅𝑒(𝜇)(𝑥, 𝑣, 𝜇)𝑣d𝑣d𝜇.

By integration of the Vlasov equations (2.7) and (2.8), we find that the parallel current densities 𝐽𝑖 and 𝐽𝑒 are
constant.

Using the order of magnitude of physical quantities in fusion plasma ([20], p. 146) the mean Larmor radius
for ions is 𝑟𝑖 ≈ 5𝑒−3𝑚 and the mean Larmor radius for electrons is 𝑟𝑒 ≈ 8.3𝑒−5𝑚. The ratio comes from
𝑟𝑒/𝑟𝑖 =

√
𝜂 =

√︀
𝑚𝑒/𝑚𝑖. Therefore, for the ease of mathematical simplifications, we will consider particles

density which are peaked at their corresponding (positive) magnetic moment, 𝜇𝑖 such that 𝑅𝑖(𝜇𝑖) = 𝑟𝑖 and 𝜇𝑒
such that 𝑅𝑒(𝜇𝑒) = 𝑟𝑒. That is we will consider

𝑓𝑖(𝑥, 𝑣, 𝜇)←− 𝑓𝑖(𝑥, 𝑣)⊗ 𝛿(𝜇− 𝜇𝑖) and 𝑓𝑒(𝑥, 𝑣, 𝜇)←− 𝑓𝑒(𝑥, 𝑣)⊗ 𝛿(𝜇− 𝜇𝑒).

2.3. Dimensionless equations

There are three characteristic lengths in the model which are 𝜆, 𝑟𝑖 and 𝑟𝑒. It is convenient to perform a
rescaling of the space variable

𝑥̂ =
𝑥

𝜆 sin 𝜃
, 𝑟𝑖 =

𝑟𝑖
𝜆
, 𝑟𝑒 =

𝑟𝑒
𝜆
.
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The convolution kernels given by (2.6) are rescaled as well, that is 𝑤̂𝑖(𝑥̂) = 1
𝑟𝑖
𝑤
(︁
𝑥̂
𝑟𝑖

)︁
and 𝑤̂𝑒(𝑥̂) = 1

𝑟𝑒
𝑤
(︁
𝑥̂
𝑟𝑒

)︁
.

The rescaled density functions are 𝑓𝑖(𝑥̂, 𝑣) = 𝑓𝑖(𝑥, 𝑣) and 𝑓𝑒(𝑥̂, 𝑣) = 𝑓𝑒(𝑥, 𝑣). The rescaled electric potential is
𝜑(𝑥̂) = 𝜑(𝑥). One gets a dimensionless Vlasov equations

𝑣𝜕𝑥̂𝑓𝑖(𝑥̂, 𝑣)− (𝑤̂𝑖 ⋆ 𝜑)′(𝑥̂)𝜕𝑣𝑓𝑖(𝑥̂, 𝑣) = 0 and 𝑣𝜕𝑥̂𝑓𝑒(𝑥̂, 𝑣) +
1
𝜂

(𝑤̂𝑒 ⋆ 𝜑)′(𝑥̂)𝜕𝑣𝑓𝑒(𝑥̂, 𝑣) = 0 (2.12)

and a dimensionless Poisson equation

−𝜕𝑥̂𝑥̂𝜑(𝑥̂) = 𝑛̂𝑖(𝑥̂)− 𝑛̂𝑒(𝑥̂). (2.13)

Here the dimensionless densities correspond to the gyroaveraged ones 𝑛̂𝑖(𝑥) = 𝑛𝑖(𝑥) and 𝑛̂𝑒(𝑥) = 𝑛𝑒(𝑥), namely

𝑛̂𝑖(𝑥) =
∫︁

(𝑤̂𝑖 ⋆ 𝑓𝑖)(𝑥̂, 𝑣)d𝑣 = 𝑤̂𝑖 ⋆ 𝑛̂
phys
𝑖 and 𝑛̂𝑒(𝑥) =

∫︁
(𝑤̂𝑒 ⋆ 𝑓𝑒)(𝑥̂, 𝑣)d𝑣 = 𝑤̂𝑒 ⋆ 𝑛̂

phys
𝑒 , (2.14)

where we have denoted by 𝑛̂phys
𝑖 :=

∫︀
𝑓𝑖(·, 𝑣)d𝑣 and 𝑛̂phys

𝑒 :=
∫︀
𝑓𝑒(·, 𝑣)d𝑣 the “physical” densities in dimensionless

variables. In the rest of this work, the non dimensional notation ·̂ will be discarded.

2.4. Modeling sheath and boundary conditions

A sheath is the boundary layer at a metallic wall observed in real devices. We write (2.12) and (2.13) in the
domain

(𝑥, 𝑣) ∈ 𝒟 = (−∞, 0)× R

and we must complement the equations with boundary conditions. However there is still a major difficulty near
the wall, which is that some fundamental assumptions behind the gyroaveraging procedure are not satisfied
near the wall at 𝑥 = 0: indeed the validity of helicoidal trajectories (2.4) in the vicinity of the wall is quite
questionable. This problem is well known in physical literature [8, 16,33,40,44,45].

In our approach, we will firstly use natural boundary conditions and we will secondly close the model with
the energy extremalization principle. The natural boundary conditions are generalization of a previous work [4].
The energy extremalization principle can be seen as a way to recover some compatibility with the Hamiltonian
description of Vlasov–Maxwell equations [36,46].

The zero reflection law for particles at the wall writes

𝑓𝑖(0, 𝑣 < 0) = 0 and 𝑓𝑒(0, 𝑣 < 0) = 0. (2.15)

We will extend the functions inside the wall with{︃
𝜕𝑥𝜑 = 0 in (0,+∞),
𝑓𝑖 = 𝑓𝑒 = 0 in (0,+∞)× R2.

(2.16)

These closure relations express that the spatial domain (0,+∞) corresponds to the inside of a perfectly con-
ducting wall. Consequently there is neither an electric field inside, nor plasma particles that travel inside. These
closure relations are arbitrary in a sense, however they are simple and have a clear physical meaning.

2.5. Electronic phase diagram

Starting from a given smooth potential

𝜓 = 𝑤𝑒 ⋆ 𝜑, 𝜓 ∈ 𝐶1(−∞, 0], (2.17)

which may have oscillations as described in Figure 1, the electronic phase diagram constructs a physically
and mathematically admissible solution of the gyroaveraged kinetic equation 𝑣𝜕𝑥𝑓𝑒 + 1

𝜂𝜓
′(𝑥)𝜕𝑣𝑓𝑒 = 0 in 𝒟.
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Figure 1. Graph of potentials 𝜑, 𝜓 = 𝑤𝑒 ⋆ 𝜑 and 𝜙 = 𝑤𝑖 ⋆ 𝜑 with oscillations. A priori
𝜑 ̸= 𝜓 ̸= 𝜙, but the general shape is similar.

The oscillations of the gyroaveraged potential 𝜓 are caused by similar oscillations of the physical potential 𝜑.
The level curves are defined by 1

2𝑣
2 − 1

𝜂𝜓(𝑥) = constant. Where the potential is regular enough (𝜓 ∈ 𝐶1
loc for

example), the trajectories correspond the characteristics curves which are the solutions of the characteristics
equations 𝑥′ = 𝑣 and 𝑣′ = 1

𝜂𝜓
′(𝑥). The characteristics curves correspond to connected components of the level

curves. Therefore, if two points (𝑥, 𝑣) ∈ 𝒟 and (𝑦, 𝑤) ∈ 𝒟 are connected by a characteristic curve then

1
2
𝑣2 − 1

𝜂
𝜓(𝑥) =

1
2
𝑤2 − 1

𝜂
𝜓(𝑦).

For 𝑦 = 0, one gets the condition
1
2
𝑣2 − 1

𝜂
𝜓(𝑥) ≥ −1

𝜂
𝜓(0). (2.18)

Making the assumption that the minimum of 𝜓 is reached at the wall, that is

𝜓(0) = min
R−

𝜓,

then the inequality (2.18) delimits 3 open regions in 𝒟, as described in Figure 2

𝒟1 =
{︁

(𝑥, 𝑣) ∈ 𝒟, 𝑣 >
√︁

2
𝜂 (𝜓(𝑥)− 𝜓(0))

}︁
,

𝒟2 =
{︁

(𝑥, 𝑣) ∈ 𝒟, −
√︁

2
𝜂 (𝜓(𝑥)− 𝜓(0)) < 𝑣 <

√︁
2
𝜂 (𝜓(𝑥)− 𝜓(0))

}︁
,

𝒟3 =
{︁

(𝑥, 𝑣) ∈ 𝒟, 𝑣 < −
√︁

2
𝜂 (𝜓(𝑥)− 𝜓(0))

}︁
.

The superior region 𝒟1 is connected to 𝑥 = −∞, so particles coming from the infinity with a positive velocity
travel through 𝒟1 and are absorbed at the wall. The internal region 𝒟2 contains closed loops because the
function 𝜓 may have some oscillations (we will prove this fact). Particles in this region do not reach the wall.
The inferior region 𝒟3 is connected to the wall at 𝑥 = 0. However no electron with negative velocity is emitted
at the wall (2.15), so this region is empty of electrons.

Remark 2.1. The assumption 𝜓(0) = min
R−

𝜓 originates from the pure electrostatic setting (that is b = 0) for

which the physics of the sheath is dominant [4]. The case 𝜓(0) ̸= min
R−

𝜓 would yield a different phase diagram

from Figure 1. Especially, one would obtain the existence of trapping sets, that is, sets which contain closed
trajectories that do not intersect the boundary. On these sets, the density function may take arbitrary values,
which makes the analysis more technical if they are non zero. Although such sets are possible in theory, our
numerical experiments in Section 4 seem to sustain the fact that our simplifying assumption remains valid when
a magnetic field is considered.
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Figure 2. Three different regions of the electron phase space. The dotted lines are general
characteristics. The bold line is the characteristic 1

2𝑣
2 − 1

𝜂𝜓(𝑥) = − 1
𝜂𝜓(0).

We consider
𝑓𝑒(𝑥, 𝑣) = 𝑛ref exp

(︀
−𝜂2𝑣

2 + 𝜓(𝑥)
)︀

for (𝑥, 𝑣) ∈ 𝒟1 ∪ 𝒟2,
𝑓𝑒(𝑥, 𝑣) = 0 for(𝑥, 𝑣) ∈ 𝒟3,

(2.19)

where 𝑛ref is a reference density that will be determined later in Section 2.7. This representation is compatible
with standard assumptions in plasma physics [15].

Lemma 2.2. The function 𝑓𝑒 defined in (2.19) is a weak solution in 𝒟 to the equation 𝑣𝜕𝑥𝑓𝑒+ 1
𝜂𝜓

′(𝑥)𝜕𝑣𝑓𝑒 = 0.

The “physical” electronic density 𝑛phys
𝑒 =

∫︀
𝑓𝑒d𝑣, see (2.14), can be written in different ways

𝑛phys
𝑒 (𝑥) = 𝑛ref

∫︀
−
√︁

2
𝜂 (𝜓(𝑥)−𝜓(0))

exp
(︀
−𝜂2𝑣

2 + 𝜓(𝑥)
)︀

d𝑣

= 𝑛ref exp𝜓(𝑥)
√︁

2
𝜂

∫︀
−
√
𝜓(𝑥)−𝜓(0)

𝑒−𝑡
2
d𝑡.

Another possibility that will be used later is

𝑛phys
𝑒 (𝑥) = 𝑛ref exp𝜓(𝑥)

√︂
𝜋

2𝜂

(︁
1 + erf

(︁√︀
𝜓(𝑥)− 𝜓(0)

)︁)︁
, (2.20)

where the Gauss error function is erf(𝑥) = 2√
𝜋

∫︀ 𝑥
0

exp(−𝑡2)d𝑡. The density at infinity 𝑛∞𝑒 = lim
−∞

∫︀
𝑓𝑒(𝑥, 𝑣)d𝑣 is

𝑛∞𝑒 = 𝑛ref

√︂
𝜋

2𝜂

(︁
1 + erf

(︁√︀
−𝜓(0)

)︁)︁
. (2.21)

The constant electronic current is equal to its limit 𝐽∞𝑒 = lim
−∞

∫︀
𝑓𝑒(𝑥, 𝑣)𝑣d𝑣, that is

𝐽∞𝑒 =
𝑛ref

𝜂
exp𝜓(0). (2.22)
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Figure 3. Four different regions of the ion phase space. The dotted lines are general charac-
teristics. The bold line is the characteristic 1

2𝑣
2 + 𝜓(𝑥) = 𝜓+.

2.6. Ionic phase diagram

Next we construct the phase diagram for ions for the potential

𝜙 = 𝑤𝑖 ⋆ 𝜑, 𝜙 ∈ 𝐶1(−∞, 0].

The function 𝜙 may also have oscillations as in Figure 1. With the method of characteristics 𝑥′ = 𝑣 and
𝑣′ = −𝜓′(𝑥), if two points (𝑥, 𝑣) ∈ 𝒟 and (𝑦, 𝑤) ∈ 𝒟 are connected with a characteristic curve then 1

2𝑣
2 +𝜙(𝑥) =

1
2𝑤

2 + 𝜙(𝑦). The maximal value
𝜙+ = sup

𝑥∈R−
𝜙(𝑥) = 𝜙(𝑥+)

is a barrier of the potential. For simplicity as illustrated in Figure 1, we assume that the maximum value 𝜙+ > 0
is positive (consistently with the condition at infinity lim

−∞
𝜙 = 0) and that 𝑥+ is unique. Indeed a point (𝑥, 𝑣)

such that 1
2𝑣

2 + 𝜙(𝑥) < 𝜙+ cannot be connected to (𝑥+, 𝑤). This is the reason of the decomposition of the
domain in four open regions

𝒟4 =
{︁

(𝑥, 𝑣) ∈ 𝒟, 𝑣 >
√︀

2(𝜙+ − 𝜙(𝑥))
}︁
,

𝒟5 =
{︁

(𝑥, 𝑣) ∈ 𝒟, 𝑥+ < 𝑥 < 0, −
√︀

2(𝜙+ − 𝜙(𝑥)) < 𝑣 <
√︀

2(𝜙+ − 𝜙(𝑥))
}︁
,

𝒟6 =
{︁

(𝑥, 𝑣) ∈ 𝒟, 𝑣 < −
√︀

2(𝜙+ − 𝜙(𝑥))
}︁
,

𝒟7 =
{︁

(𝑥, 𝑣) ∈ 𝒟, 𝑥 < 𝑥+, −
√︀

2(𝜙+ − 𝜙(𝑥)) < 𝑣 <
√︀

2(𝜙+ − 𝜙(𝑥))
}︁
.

Remark 2.3. Note that the assumption that 𝑥+ is unique simplifies the phase diagram 3. The case of several
points where the maximum value 𝜙+ > 0 is reached would yield the existence of trapping sets, that is, set which
contain closed trajectories that do not intersect the boundary. On these sets, the density may take arbitrary
values, which makes the analysis more technical if they are non zero.

To construct a weak solution of 𝑣𝜕𝑥𝑓𝑖 − 𝜙′(𝑥)𝜕𝑣𝑓𝑖 = 0 in 𝒟 based on the diagram of Figure 3, we consider
a function at infinity for incoming ions 𝑓∞𝑖 (𝑣). Using the approach [4], we assume that 𝑓∞𝑖 is continuous with
compact support in {𝑣 >

√︀
2𝜙+ + 𝜀}. More precisely

𝑓∞𝑖 ∈ 𝐶0(R), 𝑓∞𝑖 (𝑣) = 0 for 𝑣 ∈ (−∞,
√︀

2𝜙+ + 𝜀] ∪ [𝐴,+∞),
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where 0 < 𝜀 is a small number and 𝐴 is taken large enough so that
√︀

2𝜙+ + 𝜀 < 𝐴.
We consider the continuous function 𝑓𝑖

𝑓𝑖(𝑥, 𝑣) = 𝑓∞𝑖

(︁√︀
𝑣2 + 2𝜙(𝑥)

)︁
for (𝑥, 𝑣) ∈ 𝒟4,

𝑓𝑖(𝑥, 𝑣) = 0 for (𝑥, 𝑣) ∈ 𝒟5 ∪ 𝒟6 ∪ 𝒟7.
(2.23)

Lemma 2.4. The function 𝑓𝑖 defined in (2.23) is a weak solution in 𝒟 to the equation 𝑣𝜕𝑥𝑓𝑖 − 𝜙′(𝑥)𝜕𝑣𝑓𝑖 = 0.

The “physical” ionic density 𝑛phys
𝑖 =

∫︀
𝑓𝑖d𝑣, see (2.14), is

𝑛phys
𝑖 (𝑥) =

∫︀ +∞√
2(𝜙+−𝜙(𝑥))

𝑓∞𝑖 (
√︀
𝑣2 + 2𝜙(𝑥))d𝑣

=
∫︀ +∞√

2𝜙+ 𝑓
∞
𝑖 (𝑤) 𝑤√

𝑤2−2𝜙(𝑥)
d𝑤

=
∫︀ +∞
0

𝑓∞𝑖 (𝑤) 𝑤√
𝑤2−2𝜙(𝑥)

d𝑤,

(2.24)

where the last equality is obtained using the fact that 𝑓∞𝑖 vanishes for 𝑣 <
√︀

2𝜙+. The ionic density at infinity
is

𝑛∞𝑖 =
∫︁ +∞

0

𝑓∞𝑖 (𝑤)d𝑤.

The electronic current is constant in space, so it is equal to its value at infinity

𝐽∞𝑖 =
∫︁ ∞

0

𝑓∞𝑖 (𝑤)𝑤d𝑤.

2.7. Determination of the sheath potential 𝜓wall and the reference density 𝑛ref

In the physics of sheaths, the value of the potential at the wall is of critical importance. Here since the
current densities are constant we may use the method from [4] which is to consider the equations obtained from
𝑛∞𝑒 = 𝑛∞𝑖 and 𝐽∞𝑒 = 𝐽∞𝑖 . Considering equations (2.21) and (2.22), we denote

𝜓wall = 𝜓(0). (2.25)

Observe that the condition of neutral charge at −∞ and the condition of neutral flux take the form{︃
𝑛ref

√︁
𝜋
2𝜂

(︀
1 + erf

(︀√
−𝜓wall

)︀)︀
= 𝑛∞𝑖 ,

𝑛ref
𝜂 exp (𝜓wall) = 𝐽∞𝑖 .

(2.26)

In this system, the right hand side is given because it depends on the function 𝑓∞𝑖 which is independent of 𝜓
and 𝜑. The unknown is the pair (𝜓wall, 𝑛ref) with the sign conditions

𝜓wall < 0 and 𝑛ref > 0. (2.27)

Proposition 2.5. There exists a unique solution (𝜓wall, 𝑛ref) to (2.26) and (2.27) if and only if
√
𝜋𝜂𝐽∞𝑖 <√

2𝑛∞𝑖 .

Proof. From (2.26) one gets by division the reduced equation

𝐻(𝑢) =
√

2𝑛∞𝑖√
𝜋𝜂𝐽∞𝑖

, 𝐻(𝑢) =
(︀
1 + erf

(︀√
𝑢
)︀)︀

exp (𝑢) , 𝑢 = −𝜓wall > 0.

The function 𝐻 is strictly monotone, with 𝐻(0) = 1 and 𝐻(+∞) = +∞. Therefore there exists a positive
solution, necessarily unique, if and only if 1 <

√
2𝑛∞𝑖√
𝜋𝜂𝐽∞𝑖

. Once 𝜓wall is determined, the reference density is
given. �
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2.8. A principle of energy extremalization

Energy minimization, or more generally energy extremalization, is a general principle in mathematical physics.
It allows to identify those solutions which realize a minimum, or more generally a critical point, of some potential
referred to as an energy. In the sequel, we show how to use this principle in order to complete the construction
of our model.

Firstly we express the densities in function of the electric potential 𝜑, secondly we give the energy and thirdly
we write the Euler–Lagrange equations for critical points. A stability condition is expressed in the form of a
Bohm–Chodura condition.

2.8.1. Potential representation of the densities

From the general definition (2.13) and (2.19), one gets

𝑛𝑒(𝜑)(𝑥) = 𝑤𝑒 ⋆

(︂
𝑛ref

√︂
𝜋

2𝜂
exp (𝑤𝑒 ⋆ 𝜑(·))

(︁
1 + erf

(︁√︀
𝑤𝑒 ⋆ 𝜑(·)− 𝜓wall

)︁)︁)︂
(𝑥).

Let us define the function

𝑁𝑒(𝜓) = 𝑛ref

√︂
𝜋

2𝜂

∫︁ 𝜓

0

exp (𝑧)
(︁

1 + erf
(︁√︀

𝑧 − 𝜓wall

)︁)︁
d𝑧, 𝜓 ≥ 𝜓wall. (2.28)

By definition one has that 𝑛𝑒(𝜑(𝑥)) = 𝑤𝑒 ⋆ (𝑁 ′
𝑒(𝑤𝑒 ⋆ 𝜑)) (𝑥). In (2.28), the function 𝑁𝑒 is defined as a double

integral because the Gauss error function erf is itself an integral. Another definition is possible with just one
integral.

Lemma 2.6. One has another formula

𝑁𝑒(𝜓) = 2𝑛ref

√︂
𝜋

2𝜂

(︂
exp𝜓 − 1− 2√

𝜋

∫︁ ∞

√
−𝜓wall

exp(−𝑤2)𝑤
(︁√︀

𝑤2 + 𝜓 − 𝑤
)︁

d𝑤
)︂
, 𝜓 ≥ 𝜓wall. (2.29)

Proof. Differentiate the claim 𝑁 ′
𝑒(𝜓) = 𝑛ref

√︁
𝜋
2𝜂

(︂
2 exp𝜓 − 2√

𝜋

∫︀∞√
−𝜓wall

exp(−𝑤2) 𝑤√
𝑤2+𝜓

d𝑤
)︂

. Make a change

of variable 𝑧2 = 𝑤2 + 𝜓 with
√︀

(𝜓 − 𝜓wall) ≤ 𝑧 <∞. One obtains

𝑁 ′
𝑒(𝜓) = 𝑛ref

√︁
𝜋
2𝜂

(︁
2 exp𝜓 − 2√

𝜋

∫︀∞√
𝜓−𝜓wall

exp(−𝑧2 + 𝜓)d𝑧
)︁

= 𝑛ref

√︁
𝜋
2𝜂 exp𝜓

(︁
2− 2√

𝜋

∫︀∞√
𝜓−𝜓wall

exp(−𝑧2)d𝑧
)︁

= 𝑛ref

√︁
𝜋
2𝜂 exp𝜓

(︁
1 + 2√

𝜋

∫︀√𝜓−𝜓wall

0
exp(−𝑧2)d𝑧

)︁
= 𝑛ref

√︁
𝜋
2𝜂 exp𝜓

(︀
1 + erf

(︀√
𝜓 − 𝜓wall

)︀)︀
By definition the function of the claim vanishes at the origin 𝑁𝑒(0) = 0. So it is equal to (2.28). �

We use a similar approach for the ions. Let us consider

𝑛𝑖(𝜑)(𝑥) = 𝑤𝑖 ⋆

(︃∫︁
√

2(𝜙+−𝑤𝑖⋆𝜑(·))
𝑓∞𝑖

(︁√︀
𝑣2 + 2𝑤𝑖 ⋆ 𝜑(·)

)︁
d𝑣

)︃
(𝑥). (2.30)

Define the function
𝑁𝑖(𝜙) = −

√
2
∫︁ ∞

√
2𝜙+

𝑓∞𝑖 (𝑧)𝑧
(︁√︀

𝑧2 − 2𝜙− 𝑧
)︁

d𝑧, 𝜙 ≤ 𝜙+ (2.31)

By definition 𝑁𝑖(0) = 0.
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Lemma 2.7. One has the identity 𝑛𝑖(𝜑)(𝑥) = 𝑤𝑖 ⋆ (𝑁 ′
𝑖(𝑤𝑖 ⋆ 𝜑)) (𝑥).

Proof. One has 𝑁 ′
𝑖(𝜙) =

∫︀∞√
2𝜙+ 𝑓

∞
𝑖 (𝑧) 𝑧√

𝑧2−2𝜙
d𝑧. Make the change of variable 𝑧 =

√︀
𝑣2 + 2𝜙 or equivalently

𝑣 =
√︀
𝑧2 − 2𝜙 which satisfies 𝑧d𝑧 = 𝑣d𝑣. So 𝑁 ′

𝑖(𝜙) =
∫︀∞√

2(𝜙+−𝜙)
𝑓∞𝑖

(︁√︀
𝑣2 + 2(𝜙− 𝜙+)

)︁
d𝑣. Plugging this

identity in (2.30) yields the claim. �

2.8.2. The energy

For mathematical correctness of the material presented below, it is necessary to have continuous extension
of the function 𝑁𝑒(𝜓) for 𝜓 < 𝜓wall and continuous extension of the function 𝑁𝑖(𝜙) for 𝜙 > 𝜙+. It can be made
on many ways, even if we expect that physical solutions might not depend on these continuous extensions, as
it will be visible in the numerical simulations at the end of this work. So, from now on, we will assume that

𝑁𝑒, 𝑁𝑖 ∈ 𝐶0(R), 𝑁𝑒, 𝑁𝑖 are piecewise 𝐶1(R) and 𝑁𝑒, 𝑁𝑖 ∈ 𝐶2(−𝜀, 𝜀) for some 𝜀 > 0.

Definition 2.8. The energy is defined formally by

𝐽(𝜑) =
∫︁ 0

−∞

(︂
1
2
|𝜑′(𝑥)|2 +𝑁𝑒(𝑤𝑒 ⋆ 𝜑(𝑥))−𝑁𝑖(𝑤𝑖 ⋆ 𝜑(𝑥))

)︂
d𝑥. (2.32)

An affine functional space naturally adapted to this energy is

𝑉 =
{︁
𝜑 ∈ 𝐻̇1(R) ∩ 𝐿2(R−) | 𝜑′ ∈ 𝐿2(R), 𝜑(𝑥) = 𝜑(0) for 𝑥 > 0, 𝑤𝑒 ⋆ 𝜑(0) = 𝜓wall

}︁
,

where we remind that 𝐻̇1(R) is the set of measurable functions 𝜑 such that 𝜑′ ∈ 𝐿2(R). The definition of 𝑉
accounts for the first condition of (2.16) inside the wall and for the boundary condition (2.25) at the wall.
Functions 𝜑 ∈ 𝑉 are such that lim+∞ 𝜑(𝑥) = 0. We observe that 𝑉 is a complete space for the norm of 𝐻1(R−),
‖𝜑‖ =

√︁
‖𝜑‖2𝐿2(R−) + ‖𝜑′‖2𝐿2(R−). Since 𝐻̇1(R) is continuously embedded in 𝐿∞(R−) and functions in 𝑉 are

constant on R+, then one has then

𝑉 ⊂ 𝒞0(R) ∩ 𝐿∞(R).

Lemma 2.9. The function 𝐽 is continuously defined from 𝑉 := 𝑉 ∩ 𝐿1(R−) into R.

Remark 2.10. The need for 𝐿1 integrability is due to a mismatch between the 𝑁𝑖 and 𝑁𝑒 functionals at −∞,
it will be relaxed in the mathematical analysis of Section 3.

Proof. We need to prove that the integral (2.32) is convergent for functions in 𝑉 and focus on the only problem
which is at −∞. Since any 𝜑 ∈ 𝑉 tends to zero at −∞, we have |𝜓(𝑥)|, |𝜙(𝑥)| → 0 as 𝑥→ −∞ for 𝜓 = 𝑤𝑒 ⋆ 𝜑
and 𝜙 = 𝑤𝑖 ⋆ 𝜑. Now, by construction 𝑁𝑒(0)−𝑁𝑖(0) = 0 and

𝑁 ′
𝑒(0)−𝑁 ′

𝑖(0) = 𝑛∞𝑒 − 𝑛∞𝑖 = 0, (2.33)

so that one has a structural bound |𝑁𝑒(𝜓)−𝑁𝑖(𝜓)| ≤ 𝐶𝜓2 for −𝑥 large enough. In particular, one has

|𝑁𝑒(𝜓)−𝑁𝑖(𝜙)| ≤ |𝑁𝑒(𝜓)−𝑁𝑖(𝜓)|+ |𝑁𝑖(𝜓)−𝑁𝑖(𝜙)| ≤ 𝐶𝜓2 +𝐷|𝜓 − 𝜙|

for −𝑥 large enough. As ‖𝜓‖𝐿𝑝 , ‖𝜙‖𝐿𝑝 ≤ ‖𝜑‖𝐿𝑝 for 𝑝 ≥ 1 (see Appendix), this a priori estimate shows the
convergence of the integral for 𝜑 ∈ 𝑉 . Refining this arguments shows that 𝐽 is continuous from 𝑉 into R. �
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2.8.3. A stability condition at infinity

Here we study a condition such that 𝐽 is convex with respect to small perturbation at 𝑥 ≈ −∞ of the null
function. The condition is written as a convex condition around 𝜑 = 0

𝑁 ′′
𝑒 (0)−𝑁 ′′

𝑖 (0) > 0. (2.34)

Lemma 2.11. Assume
∫︀ +∞
0

𝑓∞𝑖 (𝑤) 1
𝑤2 d𝑤 ≤

∫︀ +∞
0

𝑓∞𝑖 (𝑤)d𝑤. Then the condition (2.34) of convexity at infinity
holds.

Remark 2.12. The condition of this Lemma takes the form of a kinetic Bohm–Chodura condition [16,33,44,45].

Proof. Using the physical densities, one gets easily

𝑁 ′′
𝑒 (0)−𝑁 ′′

𝑖 (0) = d
d𝜓

(︁
𝑛ref

√︁
2
𝜂 𝑒
𝜓
∫︀
−
√
𝜓−𝜓wall

𝑒−𝑡
2
d𝑡
)︁

(0)− d
d𝜙

(︂∫︀ +∞√
2𝜙+ 𝑓

∞
𝑖 (𝑤) 𝑤√

𝑤2−2𝜙
d𝑤
)︂

(0)

= 𝑛ref

√︁
2
𝜂

∫︀
−
√
−𝜓wall

𝑒−𝑡
2
d𝑡+ 𝑛ref

√︁
1
2𝜂 𝑒

𝜑wall −
∫︀ +∞√

2𝜙+ 𝑓
∞
𝑖 (𝑤) 1

𝑤2 d𝑤.

Using 𝜙+ ≥ 0, one gets 𝑁 ′′
𝑒 (0)−𝑁 ′′

𝑖 (0) > 𝑛∞𝑖 −
∫︀ +∞
0

𝑓∞𝑖 (𝑤) 1
𝑤2 d𝑤 ≥ 0 which ends the proof. �

2.8.4. Extremalization

Even if the functional is convex at infinity under the condition of Lemma 2.11, a general guarantee of convexity
is not known so far for arbitrary values of the physical coefficients (𝑟𝑖, 𝑟𝑒, 𝑓∞𝑖 , . . . ). Note however that a general
convexity result will be established in Section 3 but for 𝑟𝑖 = 𝑟𝑒 which is usually not true in real plasmas. This
is the reason we focus on the weaker notion of extremal solutions in this section.

Let 𝑉0 = 𝑉0 ∩ 𝐿1(R−) be the function space tangent to 𝑉 , with

𝑉0 =
{︁
ℎ ∈ 𝐻̇1(R) ∩ 𝐿2(R−) | ℎ(𝑥) = ℎ(0) for 𝑥 > 0, 𝑤𝑒 ⋆ ℎ(0) = 0

}︁
.

For 𝜑 ∈ 𝑉 , the differential d𝐽(𝜑) ∈ 𝑉 ′0 is defined weakly by

⟨d𝐽(𝜑), ℎ⟩ =
∫︁ 0

−∞
[𝜑′(𝑥)ℎ′(𝑥) +𝑁 ′

𝑒(𝑤𝑒 ⋆ 𝜑(𝑥))𝑤𝑒 ⋆ ℎ(𝑥)−𝑁 ′
𝑖(𝑤𝑖 ⋆ 𝜑(𝑥))𝑤𝑖 ⋆ ℎ(𝑥)] d𝑥, ∀ℎ ∈ 𝑉0.

Definition 2.13. We call 𝜑 ∈ 𝑉 an extremal solution of the gyrokinetic Poisson equation if d𝐽(𝜑) = 0.

Let us define now the non linear operators

𝑛̃𝑒(𝜑) = 𝑤𝑒 ⋆
(︀
1R−𝑁

′
𝑒(𝑤𝑒 ⋆ 𝜑)

)︀
and 𝑛̃𝑖(𝜑) = 𝑤𝑖 ⋆

(︀
1R−𝑁

′
𝑖(𝑤𝑖 ⋆ 𝜑)

)︀
(2.35)

where 1R−(𝑥) = 1 for 𝑥 ≤ 0 and = 0 for 𝑥 > 0 is the characteristic function of R−. Using the physical densities
(2.20) and (2.24), we observe that

𝑛̃𝑒(𝜑)(𝑥) = 𝑤𝑒 ⋆
(︀
1R−𝑛

phys
𝑒

)︀
(𝑥) and 𝑛̃𝑖(𝜑)(𝑥) = 𝑤𝑖 ⋆

(︀
1R−𝑛

phys
𝑖

)︀
(𝑥)

so that 𝑛̃𝑒(𝜑) and 𝑛̃𝑖(𝜑) coincide with the gyroaveraged densities 𝑛𝑒 = 𝑤𝑒 ⋆𝑛
phys
𝑒 and 𝑛𝑖 = 𝑤𝑖 ⋆𝑛

phys
𝑖 for 𝑥 < −1,

see (2.11). Close to the wall they can be seen as a perturbation of the latter.
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Proposition 2.14. An extremal solution satisfies 𝜑′ ∈ 𝐶0(R−), and the Euler–Lagrange relations⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 𝜑′′(𝑥) + 𝑛̃𝑒(𝜑)(𝑥)− 𝑛̃𝑖(𝜑)(𝑥) + 𝜎𝑤𝑒(𝑥) = 0, 𝑥 < 0,

𝜎 = − 2
[︁
𝜑′(0−) +

∫︁
R+

(𝑛̃𝑒(𝜑)− 𝑛̃𝑖(𝜑))(𝑥)d𝑥
]︁

𝑤𝑒 ⋆ 𝜑(0) = 𝜓wall

(2.36)

where 𝜓wall < 0 is the (electronic) gyroaveraged wall potential defined by Proposition 2.5, and 𝜎 ∈ R is a
Lagrange multiplier associated to the boundary constraint.

Remark 2.15. For 𝑥 < −𝑟𝑒 away from the wall, 𝑤𝑒 vanishes and the first equation in (2.36) coincides with
the initial gyrokinetic Poisson equation (2.13). For the same reason, the perturbed densities 𝑛̃𝑒, 𝑛̃𝑖 vanish for
𝑥 > max(𝑟𝑒, 𝑟𝑖), so that in the second equation the integral only involves values of the potential close to the
wall.

Proof. Such formulations for extremal solutions with linear constraints are very classical. The shortest path
to the result is achieved with the Lagrangian 𝐿(𝜑, 𝜎) = 𝐽(𝜑) + 𝜎 (𝑤𝑒 ⋆ 𝜑(0)− 𝜓wall) for which a convenient
functional space is 𝑊̃0 = 𝑊0 ∩ 𝐿1(R−) with

𝑊0 =
{︁
ℎ ∈ 𝐻̇1(R) ∩ 𝐿2(R−) | ℎ(𝑥) = ℎ(0) for 𝑥 > 0

}︁
. (2.37)

Note that 𝑉 ⊂ 𝑊̃0 and 𝑉 ̸= 𝑊̃0. Observing that the energy functional 𝐽 is continuously defined from 𝑊̃0 into
R (and not only from 𝑉 as in Lem. 2.9), we see that the Lagrangian 𝐿 is also continuously defined from 𝑊̃0

into R. Let us calculate the variation with respect to test functions ℎ ∈ 𝑊̃0∫︁ 0

−∞
[𝜑′(𝑥)ℎ′(𝑥) +𝑁 ′

𝑒(𝑤𝑒 ⋆ 𝜑(𝑥))𝑤𝑒 ⋆ ℎ(𝑥)−𝑁 ′
𝑖(𝑤𝑖 ⋆ 𝜑(𝑥))𝑤𝑖 ⋆ ℎ(𝑥)] d𝑥 + 𝜎

∫︁
R
𝑤𝑒(𝑥)ℎ(𝑥)d𝑥 = 0. (2.38)

One has ∫︁
R−

𝜑′(𝑥)ℎ′(𝑥)d𝑥 = −
∫︁

R−
𝜑′′(𝑥)ℎ(𝑥)d𝑥+ 𝜑′(0−)ℎ(0), (2.39)

where we note that for ℎ(0) ̸= 0 this relation is only justified provided 𝜑′ ∈ 𝐶0(R−), then for 𝑠 ∈ {𝑒, 𝑖}, using
the symmetry of the kernels 𝑤𝑠,∫︁

R−
𝑁 ′
𝑠(𝑤𝑠 ⋆ 𝜑(𝑥))𝑤𝑠 ⋆ ℎ(𝑥)d𝑥 =

∫︁
R
1R−(𝑥)𝑁 ′

𝑠(𝑤𝑠 ⋆ 𝜑(𝑥))𝑤𝑠 ⋆ ℎ(𝑥)d𝑥 =
∫︁

R
𝑛̃𝑠(𝜑)(𝑥)ℎ(𝑥)d𝑥

=
∫︁

R−
𝑛̃𝑠(𝜑)(𝑥)ℎ(𝑥)d𝑥+

(︂∫︁
R+
𝑛̃𝑠(𝜑)(𝑥)d𝑥

)︂
ℎ(0)

and finally ∫︁
R
𝑤𝑒(𝑥)ℎ(𝑥)d𝑥 =

∫︁
R−

𝑤𝑒(𝑥)ℎ(𝑥)d𝑥+
1
2
ℎ(0).

This yields (with the same reservation as above if ℎ(0) ̸= 0)∫︁
R−

[−𝜑′′ + 𝑛̃𝑒(𝜑)− 𝑛̃𝑖(𝜑) + 𝜎𝑤𝑒] (𝑥)ℎ(𝑥)d𝑥+
[︂
𝜑′(0−) +

∫︁
R+

(𝑛̃𝑒(𝜑)− 𝑛̃𝑖(𝜑))(𝑥)d𝑥 +
1
2
𝜎

]︂
ℎ(0) = 0.

Taking an arbitrary ℎ ∈ 𝑊̃0 with ℎ(0) = 0 gives the first equation of (2.36). This shows that 𝜑′′ ∈ 𝐿1
loc(R−), so

that 𝜑′ ∈ 𝐶0(R−) and (2.39) holds indeed with ℎ(0) ̸= 0. The second equation of (2.36) is then the remaining
coefficient in front of ℎ(0). Finally the boundary condition in (2.36) follows from the variations in 𝜎. �
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3. Mathematical study

To have clearer insight into the existence, uniqueness and qualitative properties of the solution of the physical
extremalization problem (2.13), we simplify the problem so as to concentrate on the main features. The main
simplification is that the physical characteristic lengths discussed in Section 2.2 are taken all three of them
equal to one

𝜆 = 𝑟𝑒 = 𝑟𝑖 = 1. (3.1)

This condition may not be justified on physical grounds, but it allows us to prove that the above model is
well-posed. It will be relaxed in Section 4 where numerical experiments will be performed in the regime 𝑟𝑒 < 𝑟𝑖.
We also modify the problem for mathematical simplicity: instead of working in the physical domain consisting
of a negative half-axis and a physical electric potential which is negative at the wall, we will now work in the
positive half axis 𝑥 > 0 with a positive wall potential 𝜓wall > 0. This modification is applied also to the functional
spaces which are (re)defined accordingly.

Thus, in this section we consider the following simplified mathematical minimization problem:

min
𝜑∈𝑉

𝒥 (𝜑) (3.2)

with an energy functional now defined as

𝒥 (𝜑) :=
∫︁ ∞

0

[︂
1
2

⃒⃒⃒ d
d𝑥
𝜑(𝑥)

⃒⃒⃒2
+ 𝐹

(︀
𝑤 ⋆ 𝜑(𝑥)

)︀]︂
d𝑥. (3.3)

The functional space 𝑉 is redefined as

𝑉 :=
{︁
𝜑 ∈ 𝐻̇1(R) ∩ 𝐿2(R+) : 𝑤 ⋆ 𝜑(0) = 𝜓wall > 0 and 𝜑(𝑥) = 𝜑(0) for 𝑥 < 0

}︁
. (3.4)

Here the parameters are the function 𝐹 : R → R whose properties will be discussed below, the gyroaveraging
kernel 𝑤 defined in (2.6) and the wall potential 𝜓wall, which is now assumed positive for mathematical simplicity,
as specified above. We also remind that the space 𝐻̇1 is defined as the set of measurable functions 𝜑 which
derivative is in 𝐿2, and that functions 𝜑 in the affine space 𝑉 are such that lim+∞ 𝜑 = 0. The tangent space is

𝑉0 :=
{︁
𝜑 ∈ 𝐻̇1(R) ∩ 𝐿2(R+): 𝑤 ⋆ 𝜑(0) = 0 and 𝜑(𝑥) = 𝜑(0) for 𝑥 < 0

}︁
. (3.5)

Note that if the function 𝑤 is replaced by a Dirac mass, we recover a standard nonlinear Poisson problem with
a Dirichlet constraint at 𝑥 = 0.

With our simplification (3.1), the function 𝐹 : R → R corresponds to the difference 𝑁𝑒 − 𝑁𝑖 from the
modeling Section 2.8.1. Thus it should gather some main properties of the density potentials 𝑁𝑒 and 𝑁𝑖. For
the mathematical analysis we assume that it satisfies the following hypotheses:

∙ 𝐹 (0) = 0; (3.6)
∙ 𝐹 ′ is increasing; (3.7)
∙ 𝐹 ′′ is in 𝐿1

loc(R); (3.8)
∙ ∃ 0 < 𝛼 < 𝛽, ∀ 𝑠 ∈ R, min

{︀
𝛼 𝑠 ; 𝛽 𝑠

}︀
≤ 𝐹 ′(𝑠) ≤ max

{︀
𝛼 𝑠 ; 𝛽 𝑠

}︀
. (3.9)

The condition (3.6) expresses the physical condition 𝑁𝑖(0) = 𝑁𝑒(0) = 0. The condition 𝐹 ′(0) = 0 expresses the
charge neutrality at infinity (2.33). The monotonicity (3.7) is a generalization of the physical stability condition
at infinity (2.34). Condition (3.9) means that the derivative 𝐹 ′ lays between the curves 𝑦 = 𝛼𝑥 and 𝑦 = 𝛽𝑥 as
illustrated in Figure 4. We also draw in Figure 4 the fact that the function 𝐹 ′′ may have a mild singularity at
𝜓wall since it is the case for the physical model, see equations (2.28)–(2.29). Since the singularity there scales like
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Figure 4. Condition (3.9) states that the function 𝐹 ′′ may show integrable singularities, as it
is the case for the physical model in the vicinity of the wall at the value 𝜑wall.

the inverse of a square root, it is locally integrable which gives a physical justification for the requirement (3.8).
The condition (3.9) is justified in the vicinity of the null electric potential 𝑠 = 𝜑 = 0 by the local smoothness of
the functions 𝑁𝑖 and 𝑁𝑒 and the local convexity of 𝑁𝑒−𝑁𝑖. This insures the coercivity of the function 𝒥 . Since
the physical problem satisfies the four conditions (3.6)–(3.9), they are not a restriction. Finally all conditions
(3.6)–(3.9) imply the lower boundedness and upper boundedness inequalities for all 𝑠 ∈ R

𝛼𝑠2 ≤ 𝑠𝐹 ′(𝑠) ≤ 𝛽𝑠2 and
𝛼

2
𝑠2 ≤ 𝐹 (𝑠) ≤ 𝛽

2
𝑠2. (3.10)

3.1. Main results

In this section we state our main results concerning the minimization problem defined by (3.2), (3.3), and (3.4).
For the clarity of the presentation, the proofs of the latter are postponed to Appendix B. Essentially we will show
that the minimization problem has a unique solution, and also prove that for certain parameters the solution
admits an infinite number of oscillations as it propagates towards the core of the plasma. This oscillating
behavior has already been observed in numerical simulations [16], it is related with the gyroaverage operator.

3.1.1. Existence, uniqueness, first properties

For the sake of readability, the proofs of the two next propositions are postponed in the appendix. They are
rather standard for such a problem.

Proposition 3.1 (Existence and uniqueness of the minimizer 𝜑). The minimization problem given
by (3.2), (3.3) and (3.4) admits a unique solution. This solution 𝜑 ∈ 𝑉 satisfies 𝜑′ ∈ 𝐶0(R+) and it is charac-
terized by the Euler-Lagrange equations

∀ 𝑥 > 0, − 𝜑′′(𝑥) + 𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(𝑥) = 𝜎 𝑤(𝑥), (3.11)

where
𝜎

2
= −𝜑′(0+) +

∫︁ 0

−1

𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(𝑥) d𝑥, (3.12)

and 𝑤 ⋆ 𝜑(0) = 𝜓wall > 0. (3.13)

The real number 𝜎 is the Lagrange multiplier associated to the constraint at the wall (3.13).

These equations correspond to (2.36) rewritten in the setting of Section 3. In particular Remark 2.15 also
applies here, with the simplification (3.1) namely 𝑟𝑒 = 𝑟𝑖 = 1. Concerning the function 𝜑, minimizer of 𝒥 on 𝑉 ,
we are able to extract the following elementary properties.
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Proposition 3.2 (Basic properties of the minimizer 𝜑). Let 𝜑 ∈ 𝑉 be the solution to the minimizing prob-
lem (3.2), (3.3) and (3.4). Then the solution 𝜑 satisfy the following properties.

(i) One has an estimate of the 𝐻1 semi-norm of 𝜑:

𝛼

∫︁ ∞

−1

⃒⃒
𝑤 ⋆ 𝜑(𝑥)

⃒⃒2d𝑥 ≤
∫︁ ∞

−1

|𝜑′(𝑥)|2d𝑥− 𝜎
∫︁ 1

−1

𝑤(𝑥)𝜑(𝑥) d𝑥 ≤ 𝛽

∫︁ ∞

−1

⃒⃒
𝑤 ⋆ 𝜑(𝑥)

⃒⃒2d𝑥.

(ii) With 𝛽 defined at (3.9), the energy satisfies 𝒥 (𝜑) ≤ 2𝜓2
wall

√
𝛽 (1 + 𝛽).

(iii) The following identity holds 𝜑′(0+) = 1
2

∫︀ 1

0
𝑔(−𝑥)− 𝑔(𝑥) d𝑥 where 𝑔 = 𝑤 ⋆

(︀
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︀
.

(iv) The Lagrange multiplier is positive 𝜎 > 0. For 𝑥→ 1−, one has the equivalent −𝜑′′(𝑥)
𝜎 𝑤(𝑥) −→ 1.

(v) The function 𝜑 is not identically equal to 0 on the interval [1; +∞).

3.1.2. Local monotonicity of 𝑤 ⋆ 𝜑 near the wall

The property of local monotonicity near the wall guarantees that, at least in the vicinity of the wall, the
function 𝑤⋆𝜑 takes values below 𝜓wall. This property is important because the physical modeling of Section 2.5
give a priori zero information for values above 𝜓wall. In other words, the local monotonicity property states that
the solution takes only physical values (in the vicinity of the wall). At infinity, the solution converges to zero
with oscillation, as explained in the next two sections, but the oscillations are asymptotically in bounds with
the admissible domain (for the physical model in Sect. 2.6, the fact that 𝜓+ > 0 also helps).

Proposition 3.3. At 𝑥 = 0+ the gyroaverage of 𝜑 satisfies d
d𝑥 (𝑤 ⋆ 𝜑)(0+) < 0.

Proof. One considers the following test function:

𝜒 := 𝛾𝜑+ 𝜑′(𝑥), (3.14)

where the coefficient 𝛾 is chosen such that

𝛾 𝑤 ⋆ 𝜑(0) + 𝑤 ⋆ (𝜑′)(0+) = 0. (3.15)

One must take care that 𝜒 ̸∈ 𝐻̇1 because the right hand side in (3.11) is not square integrable (indeed 𝜎 > 0
and 𝑤 ∈ 𝐿𝑝(R) for 1 ≤ 𝑝 < 2). Nevertheless one performs the calculation using a preliminary regularization
argument (not detailed). Thus,

0 =
∫︁ ∞

0

𝜑′(𝑥)𝜒′(𝑥) d𝑥+
∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀
𝑤 ⋆ 𝜒(𝑥) d𝑥

= 𝛾

∫︁ ∞

0

|𝜑′(𝑥)|2d𝑥+
∫︁ ∞

0

𝜑′(𝑥)𝜑′′(𝑥)d𝑥

+ 𝛾

∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀
𝑤 ⋆ 𝜑(𝑥) d𝑥+

∫︁ ∞

0

𝐹 ′(𝑤 ⋆ 𝜑(𝑥))𝑤 ⋆ 𝜑′(𝑥) d𝑥,

(3.16)

where for the second equality one uses (3.14). Using now the definition of 𝛾 given at (3.15), equation (3.16)
becomes

0 = −𝑤 ⋆ 𝜑
′(0+)

𝜓wall

(︂∫︁ ∞

0

⃒⃒
𝜑′(𝑥)|2d𝑥+

∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀
𝑤 ⋆ 𝜑(𝑥) d𝑥

)︂
+
∫︁ ∞

0

𝜑′(𝑥)𝜑′′(𝑥) d𝑥+
∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀
𝑤 ⋆ 𝜑′(𝑥) d.

Then one is led to

0 = −𝑤 ⋆ 𝜑
′(0+)

𝜓wall

(︂∫︁ ∞

0

⃒⃒
𝜑′(𝑥)|2d𝑥+

∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀
𝑤 ⋆ 𝜑(𝑥) d𝑥

)︂
−|𝜑

′(0+)|2

2
−𝐹
(︀
𝜓wall

)︀
.

Observing now that assumption (3.9) implies 𝐹 ′(𝑠)𝑠 ≥ 0 for all 𝑠 ∈ R and also 𝐹 (𝑠) ≥ 0 with (3.6), one
concludes with the above equality that 𝑤 ⋆ 𝜑′(0+) < 0. �
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3.1.3. Oscillatory nature of the solution for large 𝛼

The analysis of the solution near the wall is rather complicated but we expect it to be concave decreasing –
at least on a neighborhood of the wall. The difficulty comes from the presence of the Lagrange multiplier 𝜎 in
equation (3.11), which is active only for 𝑥 < 1 since the support of 𝑤 is [−1, 1]. Concerning the behavior of the
solution when the distance to the wall is larger than 1, we are able to extract the following property when 𝛼 is
large. We remind that, by Proposition 3.2-(𝑣), there exists 𝑥0 ∈ [1; +∞) such that 𝜑(𝑥0) ̸= 0.

Proposition 3.4 (Oscillatory nature of the solution). Assume that 𝛼 defined at (3.10) satisfies 𝛼 ≥ 5𝜋2. Take
𝑥0 ∈ [1; +∞) such that 𝜑(𝑥0) ̸= 0. Then there exists 𝑥1 ∈ [𝑥0; 𝑥0 + 10] such that 𝜑(𝑥0)𝜑(𝑥1) < 0.

Remark 3.5. From this proposition, we conclude that the solution 𝜑 oscillates infinitely many times around
the value 𝜑 = 0. Indeed, by using this proposition recursively we get an increasing sequence (𝑥𝑛)𝑛∈N such that
for all index 𝑛 we have 𝜑(𝑥𝑛)𝜑(𝑥𝑛+1) < 0. Proposition 3.2-(𝑣) is important to initialize this recursive argument.
We also emphasize on the fact that this proposition gives an upper bound on the wave length of the oscillations.
Indeed, it is required that 𝑥1 is lower than 𝑥0 + 10.

This phenomenon generates new open questions. What is the limit value of 𝛼? Is it possible to characterize
the amplitude and wave length of the oscillations? Some answers are possible with the method of exact solutions
of next Section 3.1.4.

Proof. ∙ Step 1: Let 𝑥0 ∈ [1; +∞) such that 𝜑(𝑥0) ̸= 0. Without loss of generality, we make the assumption
that 𝜑(𝑥0) > 0 because the following reasoning works the same in the case 𝜑(𝑥0) < 0, by simply changing all
the signs. Suppose for the sake of contradiction that

∀ 𝑥 ∈ [𝑥0; 𝑥0 + 10], 𝜑(𝑥0) ≥ 0, (3.17)

We now construct a particular admissible direction ℎ ∈ 𝑉0 (with 𝑉0 defined at (3.5)). We ask the function
ℎ ∈ 𝑉0 ∩ 𝐶1(R) to be non-negative, bounded, with support suppℎ = [𝑥0 + 4; 𝑥0 + 6] and such that ℎ′′ ∈ 𝐿∞.
There exists an infinite choice of such functions. Since 𝑤 is also non negative and has its support is a segment
of size 2, one has

supp 𝑤 ⋆ ℎ = [𝑥0 + 2; 𝑥0 + 8], and supp 𝑤 ⋆ 𝑤 ⋆ ℎ = [𝑥0; 𝑥0 + 10]. (3.18)

One now studies the variations of the functional 𝒥 in the direction ℎ. One gets by a direct computation

lim
𝑠→0

𝒥 (𝜑+ 𝑠 ℎ)− 𝒥 (𝜑)
𝑠

=
∫︁ 𝑥0+6

𝑥0+4

𝜑′(𝑥)ℎ′(𝑥) d𝑥+
∫︁ 𝑥0+8

𝑥0+2

𝐹 ′(𝑤 ⋆ 𝜑)(𝑥) (𝑤 ⋆ ℎ)(𝑥) d𝑥. (3.19)

Since the function 𝜑 is supposed to be non-negative on [𝑥0; 𝑥0 +10], then 𝑤⋆𝜑 is non-negative on [𝑥0 +2; 𝑥0 +8].
One also has ℎ is non-negative. The property (3.9) combined with (3.18) yields∫︀ 𝑥0+8

𝑥0+2
𝐹 ′(𝑤 ⋆ 𝜑)(𝑥) (𝑤 ⋆ ℎ)(𝑥) d𝑥 ≥ 𝛼

∫︀ 𝑥0+8

𝑥0+2
(𝑤 ⋆ 𝜑)(𝑥) (𝑤 ⋆ ℎ)(𝑥) d𝑥

= 𝛼
∫︀

R(𝑤 ⋆ 𝜑)(𝑥) (𝑤 ⋆ ℎ)(𝑥) d𝑥
= 𝛼

∫︀
R 𝜑(𝑥)

(︀
𝑤 ⋆ 𝑤 ⋆ ℎ

)︀
(𝑥) d𝑥

= 𝛼
∫︀ 𝑥0+10

𝑥0
𝜑(𝑥)

(︀
𝑤 ⋆ 𝑤 ⋆ ℎ

)︀
(𝑥) d𝑥.

(3.20)

On the other hand, an integration by part gives∫︁ 𝑥0+6

𝑥0+4

𝜑′(𝑥)ℎ′(𝑥) d𝑥 = −
∫︁ 𝑥0+6

𝑥0+4

𝜑(𝑥)ℎ′′(𝑥) d𝑥.

Therefore (3.19) implies

lim
𝑠→0

𝒥 (𝜑+ 𝑠 ℎ)− 𝒥 (𝜑)
𝑠

≥
∫︁ 𝑥0+10

𝑥0

𝜑(𝑥)
[︁
𝛼
(︀
𝑤 ⋆ 𝑤 ⋆ ℎ

)︀
(𝑥)− ℎ′′(𝑥)

]︁
d𝑥. (3.21)
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∙ Step 2: Given the function ℎ, one defines the quantity

𝜇 := sup
𝑥∈]𝑥0; 𝑥0+10[

ℎ′′(𝑥)
𝑤 ⋆ 𝑤 ⋆ ℎ(𝑥)

= sup
𝑥∈[𝑥0+4; 𝑥0+6]

ℎ′′(𝑥)
𝑤 ⋆ 𝑤 ⋆ ℎ(𝑥)

(3.22)

because 𝑤 ⋆ 𝑤 ⋆ ℎ is positive on ]𝑥0; 𝑥0 + 6[ as stated in (3.18), whereas ℎ′′ has its support contained in the
support of ℎ which is [𝑥0 + 4;𝑥0 + 6]. These two facts imply that the quantity 𝜇 is finite. On the other hand,
one has 0 = ℎ′(𝑥0 + 6) − ℎ′(𝑥0 + 4) =

∫︀ 𝑥0+6

𝑥0+4
ℎ′′(𝑥) d𝑥. Since ℎ′′ is not identically 0 on the support of ℎ, then

the equation above gives that

meas
{︀
𝑥 ∈ [𝑥0 + 4;𝑥0 + 6]: ℎ′′(𝑥) > 0

}︀
is positive.

One concludes that 𝜇 > 0. One now uses the definition of 𝜇 to study the right-hand side of equation (3.21).
One has ℎ′′(𝑥) ≤ 𝜇

(︀
𝑤 ⋆ 𝑤 ⋆ ℎ

)︀
(𝑥) for all 𝑥 ∈ [𝑥0; 𝑥0 + 10]. Therefore,∫︁ 𝑥0+10

𝑥0

𝜑(𝑥)
[︁
𝛼
(︀
𝑤 ⋆ 𝑤 ⋆ ℎ

)︀
(𝑥)− ℎ′′(𝑥)

]︁
d𝑥 ≥

(︀
𝛼− 𝜇

)︀ ∫︁ 𝑥0+10

𝑥0

𝜑(𝑥)
(︀
𝑤 ⋆ 𝑤 ⋆ ℎ

)︀
(𝑥) d𝑥, (3.23)

where again 𝜑 ≥ 0 on [𝑥0; 𝑥0 + 10]. One now considers 𝛼 very large so that 𝛼 > 𝜇 and obtains
(︀
𝛼 − 𝜇

)︀(︀
𝑤 ⋆

(𝑤 ⋆ ℎ)
)︀
(𝑥) > 0 for all 𝑥 ∈ [𝑥0; 𝑥0 + 10]. Moreover, as a consequence of (3.17) the function 𝜑 is non-negative on

[𝑥0; 𝑥0 + 10] but it is not identically 0 since 𝜑(𝑥0) > 0. Thus, the right-hand side of (3.23) is positive. Plugging
this back into (3.21) gives

lim
𝑠→0

𝒥 (𝜑+ 𝑠 ℎ)− 𝒥 (𝜑)
𝑠

> 0,

which eventually contradicts the minimality of the function 𝜑. It already proves the claim for 𝛼 large enough.
It remains to show the lower bound on 𝛼.

∙ Step 3: Here, we prove that 𝛼 > 5𝜋2. The idea here is to consider a particular function ℎ for the formula (3.21)
and to provide an estimate on its associated coefficient 𝜇.
∙ Firstly one defines a function 𝜓: R → R+ (this notation has nothing to do with the previous function 𝜓 in
the modeling section) as follows

∀𝑥 ∈ R, 𝜓(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑥 ≤ 0,
𝑥2/2 if 0 ≤ 𝑥 ≤ 1/2,
−(𝑥− 1)2/2 + 1/4 if 1/2 ≤ 𝑥 ≤ 3/2,
(𝑥− 2)2/2 if 3/2 ≤ 𝑥 ≤ 2,
0 if 2 ≤ 𝑥.

(3.24)

By definition, one has that 𝜓 ∈𝑊 2,∞(R) is supported on [0; 2], is non-negative and is such that

𝜓′′(𝑥) = 1(0; 1
2 )(𝑥)− 1( 1

2 ; 3
2 )(𝑥) + 1( 3

2 ; 2)(𝑥) almost everywhere. (3.25)

Since 𝑤 is lower bounded by 1
𝜋 on the interval [−1, 1], one has

𝑤 ⋆ 𝑤 ⋆ 𝜓(𝑥) =
∫︁ 𝑥+1

𝑥−1

∫︁ 𝑦+1

𝑦−1

𝑤(𝑥− 𝑦)𝑤(𝑦 − 𝑧)𝜓(𝑧) d𝑦d𝑧 ≥ 1
𝜋2

∫︁ 𝑥+1

𝑥−1

∫︁ 𝑦+1

𝑦−1

𝜓(𝑧) d𝑦d𝑧

because |𝑥− 𝑦| ≤ 1 and |𝑦 − 𝑧| ≤ 1. One is now going to compute explicitly this last integral. One writes it as

1
𝜋2

∫︁∫︁
𝐷𝑥

𝜓(𝑧) d𝑧 d𝑦 (3.26)
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Figure 5. An illustration of the set 𝐷𝑥 ⊆ R2, subdivided into 𝐷𝑥,1 · · ·𝐷𝑥,6 represented by the
different shades of grey. This subdivision intervenes in the computation of the integral (3.26).

where 𝐷𝑥 :=
{︀

(𝑦, 𝑧) ∈ R2 : 𝑥 − 1 ≤ 𝑦 ≤ 𝑥 + 1 and 𝑦 − 1 ≤ 𝑧 ≤ 𝑦 + 1
}︀

. Subdivide the set 𝐷𝑥 into the six
following subsets

𝐷𝑥,1 := 𝐷𝑥 ∩ {(𝑦, 𝑧) ∈ R2 : 𝑧 ≤ 0}, 𝐷𝑥,2 := 𝐷𝑥 ∩ {(𝑦, 𝑧) ∈ R2 : 0 ≤ 𝑧 ≤ 𝑥},
𝐷𝑥,3 := 𝐷𝑥 ∩ {(𝑦, 𝑧) ∈ R2 : 𝑥 ≤ 𝑧 ≤ 1/2}, 𝐷𝑥,4 := 𝐷𝑥 ∩ {(𝑦, 𝑧) ∈ R2 : 1/2 ≤ 𝑧 ≤ 3/2},
𝐷𝑥,5 := 𝐷𝑥 ∩ {(𝑦, 𝑧) ∈ R2 : 3/2 ≤ 𝑧 ≤ 2}, 𝐷𝑥,6 := 𝐷𝑥 ∩ {(𝑦, 𝑧) ∈ R2 : 2 ≤ 𝑧}.

(3.27)

One computes
∫︀∫︀
𝐷𝑥

𝜓(𝑧)d𝑧 d𝑦 by splitting the computation on these 6 sub-domains and using directly (3.24).
First, one has ∫︁∫︁

𝐷𝑥,1

𝜓(𝑧) d𝑧 d𝑦 =
∫︁∫︁

𝐷𝑥,6

𝜓(𝑧) d𝑧 d𝑦 = 0

One gets the 4 remaining terms by a direct computation using the Fubini theorem, that is in order∫︁∫︁
𝐷𝑥,2

𝜓(𝑧)d𝑧 d𝑦 =
∫︁ 𝑥

0

∫︁ 𝑧+1

𝑥−1

𝜓(𝑧) d𝑦 d𝑧 =
∫︁ 𝑥

0

∫︁ 𝑧+1

𝑥−1

𝑧2

2
d𝑦 d𝑧 =

𝑥3

3
− 𝑥4

24
,

∫︁∫︁
𝐷𝑥,3

𝜓(𝑧)d𝑧 d𝑦 =
∫︁ 1/2

𝑥

∫︁ 𝑥+1

𝑧−1

𝜓(𝑧) d𝑦 d𝑧 =
∫︁ 1/2

𝑥

∫︁ 𝑥+1

𝑧−1

𝑧2

2
d𝑦 d𝑧 = −𝑥

4

24
− 𝑥3

3
+

𝑥

48
+

(︃
1
24
− 1

128

)︃
,

∫︁∫︁
𝐷𝑥,4

𝜓(𝑧)d𝑧 d𝑦 =
∫︁ 3/2

1/2

∫︁ 𝑥+1

𝑧−1

𝜓(𝑧) d𝑦 d𝑧 =
∫︁ 3/2

1/2

∫︁ 𝑥+1

𝑧−1

[︃
1
4
− (𝑧 − 1)2

2

]︃
d𝑦 d𝑧 =

5
24

(𝑥+ 1)
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and ∫︁∫︁
𝐷𝑥,5

𝜓(𝑧)d𝑧 d𝑦 =
∫︁ 2

3/2

∫︁ 𝑥+1

𝑧−1

𝜓(𝑧) d𝑦 d𝑧 =
∫︁ 2

3/2

∫︁ 𝑥+1

𝑧−1

(𝑧 − 2)2

2
d𝑦 d𝑧 =

𝑥

48
− 1

128
.

Thus one concludes that
∫︀∫︀
𝐷𝑥

𝜓(𝑧) d𝑧 d𝑦 = −𝑥
4

12 + 𝑥
4 + 15

64 . An analysis of the function 𝑥 ∈ [0, 1/2] ↦→ −𝑥4/12+𝑥/4
shows that it is non-negative and thus

∫︀∫︀
𝐷𝑥

𝜓(𝑧) d𝑧 d𝑦 ≥ 15
64 >

1
5 . Plugging this back into (3.26) gives

∀ 𝑥 ∈
[︁
0;

1
2

]︁
, (𝑤 ⋆ 𝑤 ⋆ 𝜓)(𝑥) >

1
5𝜋2

(3.28)

Invoking now the fact that 𝜓 is symmetrical with respect to 𝑥 = 1, one can do the very same reasoning with
𝑥 ∈ [3/2; 2]. Therefore

∀ 𝑥 ∈
[︁3

2
; 2
]︁
, (𝑤 ⋆ 𝑤 ⋆ 𝜓)(𝑥) >

1
5𝜋2

(3.29)

Gathering now the estimates (3.28) and (3.29), one concludes

∀ 𝑥 ∈ R, (𝑤 ⋆ 𝑤 ⋆ 𝜓)(𝑥) >
1

5𝜋2
𝜓′′(𝑥), (3.30)

where 𝜓′′ was computed at (3.25).
∙ Finally one defines ℎ(𝑥) := 𝜓(𝑥 − 𝑥0 − 4). It is straight-forward to check that ℎ is in 𝑉0, non-negative,
supported on [𝑥0 + 4;𝑥0 + 6] and satisfy ℎ′′ ∈ 𝐿∞(R). As a consequence of (3.30), the coefficient 𝜇 defined
at (3.22) associated to this function ℎ0 is smaller than 5𝜋2. It shows that 𝛼 ≥ 5𝜋2. �

3.1.4. Linearization of the equation far from the wall

The equation (3.11) linearized at infinity (that is far from the wall) around the asymptotic value 𝜑 = 0 yields
the linear problem. It is also a particular case of the general situation, since it is sufficient to take 𝛼 = 𝛽 in
(3.10). It appears that the linear problem helps to explain the oscillating behavior of the solution by means of
the construction of exact solutions.

The homogeneous linear equation that we consider is written as

−𝑢′′(𝑦) + 𝛾𝑤 ⋆ 𝑤 ⋆ 𝑢(𝑦) = 0, 𝑦 > 0. (3.31)

By compatibility with (3.10), the coefficient 𝛾 is positive with 𝛽 ≥ 𝛾 ≥ 𝛼 > 0. If the convolution operator would
be atomic (a Dirac mass), then the linearized equation would be the classical Laplace equation −𝑢′′ + 𝛾𝑢 = 0
with classical particular real solutions 𝑢𝑟(𝑦) = exp(±√𝛾𝑦). But the situation is now very different due to the
convolution operator.

Let us look for a general complex exponential solution 𝑢𝑟(𝑦) = exp(−𝑟𝑦) with 𝑟 ∈ C. One has by a direct
calculation that 𝑤 ⋆𝑢𝑟(𝑦) =

∫︀
R 𝑤(𝑥) exp(−𝑟(𝑦−𝑥))d𝑥 =

∫︀
R 𝑤(𝑥) exp(𝑟𝑥)d𝑥 exp(−𝑟𝑦) = 𝐶(𝑟)𝑢𝑟(𝑦) with 𝐶(𝑟) =

𝑤 ⋆ 𝑢𝑟(0). Plugging in (3.31), one obtains the compatibility relation 𝑟2 = 𝛾𝐶(𝑟)2, that is 𝑟 = ±√𝛾 𝐶(𝑟).

Lemma 3.6. One has 𝐶(𝑟) = 𝐼0(𝑟) where 𝐼0 is the first modified Bessel function.

Proof. One starts from 𝐶(𝑟) = 1
𝜋

∫︀ 1

−1
exp(𝑟𝑥) 1√

1−𝑥2 d𝑥. By derivation and integration by parts, one gets 𝐶 ′(𝑟) =
1
𝜋

∫︀ 1

−1
exp(𝑟𝑥) 𝑥√

1−𝑥2 d𝑥 = 𝑟
𝜋

∫︀ 1

−1
exp(𝑟𝑥)

√
1− 𝑥2d𝑥. Another derivation yields 𝐶 ′′(𝑟) = 1

𝜋

∫︀ 1

−1
exp(𝑟𝑥) 𝑥2

√
1−𝑥2 d𝑥.

One can also write 𝐶(𝑟) − 𝐶 ′′(𝑟) = 1
𝜋

∫︀ 1

−1
exp(𝑟𝑥) 1−𝑥2

√
1−𝑥2 d𝑥 = 1

𝜋

∫︀ 1

−1
exp(𝑟𝑥)

√
1− 𝑥2d𝑥 so one obtains the

differential equation

𝐶(𝑟)− 𝐶 ′′(𝑟) =
1
𝑟
𝐶 ′(𝑟)⇐⇒ 𝑟2𝐶 ′′(𝑟) + 𝑟𝐶 ′(𝑟)− 𝑟2𝐶(𝑟) = 0.

This is the modified Bessel equation, see Formula 10.25.1 of p. 248 from [37]. Therefore 𝐶 = 𝑎𝐼0 + 𝑏𝐾0 where
𝑎, 𝑏 ∈ R. Since 𝐶(0) = 1 and 𝐶 ′(0) = 0, one gets 𝑎 = 1 and 𝑏 = 0 and the proof is ended. �



STATIONARY GYROKINETIC VARIATIONAL MODEL FOR SHEATHS 2629

Figure 6. Intersection of 𝑥 ↦→ 𝑥 with 𝑥 ↦→ 𝑡𝐼0(𝑥) for three different values of 𝑡. The correspon-
dence is: 𝑓 is for 𝑡 > 𝑡*, 𝑔 is for 𝑡 = 𝑡* and ℎ is for 𝑡 < 𝑡*.

The first modified Bessel function 𝐼0 is even, so it is sufficient to study positive solutions 𝑧 > 0

𝑧 = 𝑡𝐼0(𝑧), 𝑡 =
√
𝛾 > 0. (3.32)

The functions 𝑢𝑟(𝑦) = exp(−𝑟𝑦) solution to (3.31) that we study correspond to 𝑟 = ±𝑧.
For real 𝑥 ∈ R, the graph of the function 𝑥 ↦→ 𝐼0(𝑥) is strictly convex and lower bounded by a quadratic,

that is 𝐼0(𝑥) ≥ 1 + 𝑐𝑥2 with 𝑐 = 1
2𝐼
′′
0 (0) > 0. Therefore there exists 𝑡* > 0 such that the graph of 𝑥 ↦→ 𝑡*𝐼0(𝑥)

is tangent to the graph 𝑥 ↦→ 𝑥. It is characterized by the transcendental equations{︂
𝑥* = 𝑡*𝐼0(𝑥*),
1 = 𝑡*𝐼

′
0(𝑥*).

Lemma 3.7. For 0 < 𝑡 < 𝑡*, there exists two real solutions 0 < 𝑥−(𝑡) < 𝑥* < 𝑥+(𝑡) of the equation 𝑥 = 𝑡𝐼0(𝑥).

Proof. The proof is by intersection of graphs, as in the Figure 6. �

Now we study equation (3.32) for 𝑡 > 𝑡*, and for possible complex solutions 𝑧 ∈ C.

Lemma 3.8. One can rewrite equation (3.32) under the form

𝑧 − 𝑥* = ±
√︂
𝑡* − 𝑡
𝑡*

𝐻(𝑧 − 𝑥*) (3.33)

where 𝐻 is an analytic series (with a certain radius of convergence) with real coefficients.

Proof. One rewrites equation (3.32) as

𝑧 − 𝑥* = 𝑡* (𝐼0(𝑧)− 𝐼0(𝑥*)) + (𝑡− 𝑡*)𝐼0(𝑧),

then
(︁
𝑡*
𝐼0(𝑧)−𝐼0(𝑥*)

𝑧−𝑥* − 1
)︁

(𝑧−𝑥*) = (𝑡*− 𝑡)𝐼0(𝑧), then
(︁
𝑡*
𝐼0(𝑧)−𝐼0(𝑥*)

𝑧−𝑥* − 𝑡*𝐼 ′0(𝑥*)
)︁

(𝑧−𝑥*) = (𝑡*− 𝑡)𝐼0(𝑧), then

(𝑧 − 𝑥*)2 =
𝑡* − 𝑡
𝑡*
× 𝐼0(𝑧)

𝐼0(𝑧)−𝐼0(𝑥*)−𝐼′0(𝑥*)(𝑧−𝑥*)
(𝑧−𝑥*)2

. (3.34)
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By continuity, the function 𝐺(𝑧) = 𝐼0(𝑧)
𝐼0(𝑧)−𝐼0(𝑥*)−𝐼′0(𝑥*)(𝑧−𝑥*)

(𝑧−𝑥*)2

admit a finite value at 𝑧 = 𝑥*, namely 𝐺(𝑥*) =

2 𝐼0(𝑥*)𝐼′′0 (𝑥*)
> 0. The function 𝐼0 is an analytic series in the whole complex plane with real coefficients so 𝐺(𝑧) is

also an analytic series in the whole complex plane with real coefficients. Therefore one can take the square root
of 𝐺

𝐻(𝑧) =
√︀
𝐺(𝑧) = ℎ0

√︃
1 +

𝐺(𝑧)−𝐺(𝑥*)
ℎ2

0

where ℎ0 =
√︀
𝐺(𝑥*) > 0.

This is an analytic series 𝐻(𝑧) =
∑︀
𝑛≥0 ℎ𝑛(𝑧 − 𝑥*)𝑛 in function of 𝑧 − 𝑥* with real coefficients and with a

certain radius of convergence (because of the square root). Therefore taking the square root of (3.34) yields the
claim. �

It is now evident to study the solution of equation (3.32), at least for |𝑡− 𝑡*| small enough.

First case 0 < 𝑡 < 𝑡* The square root
√
𝑡* − 𝑡 ∈ R takes real values. Then the equation can be solved with a

fixed point method for 𝑧 ∈ R. In this case one recovers the two real solutions of Lemma 3.7.
Second case 𝑡* < 𝑡 The square root

√
𝑡* − 𝑡 ∈ 𝑅 takes imaginary values. Then it is better to write the equation

as

𝑧 − 𝑥* = ±i

√︃
|𝑡* − 𝑡|
𝑡*

𝐻(𝑧 − 𝑥*).

A fixed point method yields two solutions in the vicinity of 𝑥*, but in the complex plane, that is 𝑧 = 𝑎+ i𝑏
with 𝑎, 𝑏 ∈ R and 𝑏 ̸= 0.

In summary of this discussion is that the solutions of (3.32) are either real or complex.

– If 𝑡 > 𝑡*, one can rewrite complex solutions of the linearized equation (3.31) as real solutions under the form

𝑢(𝑦) = exp(−𝑎𝑦) cos(𝑏𝑦), where 𝑧 = 𝑎+ i𝑏 solves (3.33) with 𝑎 > 0, 𝑏 ̸= 0, and 𝑦 > 0.

This solution is clearly oscillating.

– If 𝑡 < 𝑡*, it is also possible to construct solutions that change sign under the form

𝑢(𝑦) = 𝑎 exp(−𝑥−(𝑡)𝑦) + 𝑏 exp(−𝑥+(𝑡)𝑦), 𝑏 > −𝑎 > 0, 𝑦 > 0.

– If 𝑡 = 𝑡*, it is also possible to construct solutions that change sign under the form

𝑢(𝑦) = 𝑎𝑡 exp(−𝑥*𝑦) + 𝑏 exp(−𝑥*𝑦), 𝑏,−𝑎 > 0, 𝑦 > 0.

– Since 𝑤 ⋆ 𝑢 = 𝐶(𝑟)𝑢 and 𝑤 ⋆ 𝑤 ⋆ 𝑢 = 𝐶(𝑟)2𝑢, then the changes of sign hold also for the convolved functions
𝑤 ⋆ 𝑢 and 𝑤 ⋆ 𝑤 ⋆ 𝑢. So the convolution operator has no smoothing effect for these functions.

The construction of this section and the result of Proposition 3.4 exemplify the fact that the behavior of the
mathematical solutions is deeply affected by the convolution operator. To our understanding, it seems that this
phenomenon has not been studied in the mathematical literature [19,22,25,30].
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3.1.5. A physical interpretation of the oscillatory solutions

The two methods explained in Sections 3.1.3 and 3.1.4 exhibit oscillatory solutions for 𝛼 > 0 large enough,
which means for a function 𝐹 with a magnitude large enough. Going back to the physical equations (2.7)–(2.9)
and to the physical scaling (2.10) of the Debye length 𝜆, a natural physical interpretation is that the physical
Debye length is small enough in relative units. We arrive at the conclusion that the gyroaveraging procedure
has the ability to generate oscillatory mathematical solutions for the range of parameters considered in physical
papers such as [11]. We also note that oscillatory potentials have already been observed in numerical simulations
[16], where they are associated to the so-called magnetic pre-sheath.

4. Numerical study

The objective hereafter is, on the one hand to explain that it is possible to discretize the minimization/extre-
malization problem with standard numerical methods, and the other hand to show that the oscillatory/non
oscillatory behavior of the solutions predicted in the theoretical section is observed. In this section we use the
sign convention of the physical modeling Section 2: we work in the negative half line 𝑥 < 0, with negative wall
potentials 𝜓wall < 0.

4.1. Description of the numerical method

The numerical method is made of two steps.

– The first step consists in assembling the density potentials 𝑁𝑖 and 𝑁𝑒 and computing the reference density
𝑛ref > 0 and the Dirichlet boundary condition on the wall potential 𝜓wall < 0 by solving (2.26)–(2.27). We
will consider a function 𝑓∞𝑖 that is piecewise continuous, so that standard quadrature formulas for velocity
integrals can be used to assemble the potential 𝑁𝑖. The other potential poses no additional difficulty. Next,
𝑛ref > 0 and 𝜓wall < 0 are computed by means of a Newton–Raphson method applied to the function
𝒲 : 0 < 𝑢 ↦→ 𝐻(𝑢) −

√
2𝑛∞𝑖√
𝜋𝜂𝐽∞𝑖

, see Proposition 2.5. Provided
√
𝜋𝜂𝐽∞𝑖 <

√
2𝑛∞𝑖 , we know that this function

has a unique zero, 𝒲(−𝜓wall) = 0.

– The second step consists in solving the minimization problem (3.2), (3.3) and (3.4) by means of a gradient
method based on a finite element approximation. Since the solution 𝜑 to the minimization problem (3.2), (3.3)
and (3.4) belongs to 𝐻1(R−), it has a zero limit at −∞, that is lim−∞ 𝜑 = 0. As a consequence, for the
numerical method we take 𝐿 > 0 large enough such that for 𝑥 < −𝐿, then |𝜑(𝑥)| < 𝜀machine where 𝜀machine

corresponds to the relative machine error. Given 𝑁𝑥 ∈ N, we subdivide the computational domain [−𝐿, 0]
in 𝑁𝑥 + 1 intervals 𝐼𝑘 = [𝑥𝑘, 𝑥𝑘+1] of uniform size ℎ = 𝐿

𝑁𝑥+1 , We then consider the finite element space
𝑊ℎ

0 ⊂𝑊0 made of globally continuous and piecewise affine functions which are constant outside the domain
[−𝐿, 0]. That is, we set

𝑊ℎ
0 = {𝑣ℎ ∈ 𝐶0(R) : 𝑣ℎ|𝐼𝑘

∈ P1(𝐼𝑘) ∀𝑘 = 0, .., 𝑁𝑥 and 𝑣ℎ(𝑥) = 0 for 𝑥 ≤ −𝐿, 𝑣ℎ(𝑥) = 𝑣ℎ(0) for 𝑥 > 0}.

As for the Dirichlet boundary condition at the wall, we use a standard penalty method [23]. We consider
𝜀 > 0 small enough and the following penalized minimization problem on 𝑊ℎ

0 : find 𝜑ℎ ∈𝑊ℎ
0 such that

𝜑𝜀ℎ = arg
𝑣ℎ∈𝑊ℎ

0

min𝐿𝜀(𝑣ℎ) (4.1)

where the Lagrangian 𝐿𝜀 is defined for all 𝑣ℎ ∈𝑊ℎ
0 by

𝐿𝜀(𝑣ℎ) = 𝐽(𝑣ℎ) +
1
2𝜀

(𝑤𝑒 ⋆ 𝑣ℎ(0)− 𝜓wall)2

with 𝐽 the energy functional from (2.32). For any 𝜀 > 0 the minimization problem (4.1) has a unique solution
𝜑𝜀ℎ since 𝑊ℎ

0 is a finite dimensional subspace of 𝑊0 and 𝐿𝜀 is coercive and strictly convex. It is standard that
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Figure 7. Plot of the electrostatic potential and gyroaveraged electrostatic potential.

Figure 8. Plot in log-scale of the electrostatic potential and gyroaveraged electrostatic poten-
tial. The drop at 𝑥 ≈ −15 is due to machine precision, because the boundary condition was
numerically set to 𝜑 = 0 on the left boundary to emulate the condition at infinity.
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Figure 9. Plot of the ionic density and electronic density.

𝜑𝜀ℎ → 𝜑ℎ in 𝐻1(R−) as 𝜀→ 0+ (see Thm. 7.1 of [23]) where 𝜑ℎ is the unique minimizer of 𝐽 on 𝑊ℎ
0 such that

𝑤𝑒 ⋆ 𝜑ℎ(0) = 𝜓wall. To compute 𝜑𝜀ℎ, we use a standard gradient method which consists in computing recursively
the sequence (𝜑𝜀,𝑛ℎ )𝑛∈N ⊂𝑊ℎ

0 given by{︃
𝜑𝜀,0ℎ ∈𝑊ℎ

0

𝜑𝜀,𝑛+1
ℎ = 𝜑𝜀,𝑛ℎ − 𝜌∇𝐿𝜀(𝜑

𝜀,𝑛
ℎ ) ∀𝑛 ∈ N,

where 𝜌 > 0 is a given parameter.
By the Riesz representation theorem, the gradient ∇𝐿𝜀(𝜑𝜀,𝑛ℎ ) ∈ 𝑊ℎ

0 is the unique solution of the variational
problem

(∇𝐿𝜀(𝜑𝜀,𝑛ℎ ), 𝑣ℎ)𝐻1(R−) = d𝐿𝜀(𝜑
𝜀,𝑛
ℎ )(𝑣ℎ) ∀𝑣ℎ ∈𝑊ℎ

0 ,

where (·, ·)𝐻1(R−) is the usual inner product on 𝐻1(R−) and d𝐿𝜀(𝜑
𝜀,𝑛
ℎ ) is the Fréchet derivative of 𝐿𝜀 at 𝜑𝜀,𝑛ℎ ,

d𝐿𝜀(𝜑
𝜀,𝑛
ℎ ) : 𝑣ℎ ↦→ d𝐽(𝜑𝜀,𝑛ℎ )(𝑣ℎ) +

1
𝜀

(𝑤𝑒 ⋆ 𝜑
𝜀,𝑛
ℎ (0)− 𝜓wall)(𝑤𝑒 ⋆ 𝑣ℎ(0)).

To apply the gyroaverage operator (2.5) we use a Gauss–Chebyshev quadrature which is well suited for the
numerical treatment of the convolution with the singular kernel 𝑤 given by equation (2.6).

4.2. Numerical illustrations for 𝑟𝑖 = 𝑟𝑒

4.2.1. Oscillatory solutions

We desire to exhibit the oscillatory nature of the solution 𝜑 to the minimization problem (3.2), (3.3) and (3.4).
The values of the parameters are : 𝑟𝑖 = 𝑟𝑒 = 1, 𝜆 = 1, 𝜃 = 𝜋

4 , 𝜂 = 1/3000, 𝐿 = 15. We consider the ion boundary
condition

𝑓∞𝑖 (𝑣) =
𝑛ref
𝑖√

2𝜋𝑣th
(𝑣 − 𝑣𝑐)2𝑒

− (𝑣−𝑣𝑑)2

2𝑣2
th 1𝑣>𝑣𝑐(𝑣), (4.2)
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Figure 10. Plot of the electric potential, linear-scale on top and log-scale on bottom, for three
different values of the reference ionic density at infinity. One observes that the oscillations for
high value of 𝑛ref

𝑖 vanish for low value of 𝑛ref
𝑖 .

with 𝑣th = 0.5, 𝑣𝑐 = 1.0, 𝑣𝑑 = 3/2. Provided the condition 𝛼 > 5𝜋2 is satisfied, our theory predicts that at least
oscillatory solutions exist. In our case, a rough estimation 𝛼 ≈

∫︀ +∞
0

𝑓∞𝑖 (𝑣)d𝑣 −
∫︀ +∞
0

𝑓∞𝑖 (𝑣)
𝑣2 d𝑣 shows that 𝛼 is

proportional to 𝑛ref
𝑖 . Therefore choosing 𝑛ref

𝑖 large enough is a simple way to enforce 𝛼 > 5𝜋2. In the numerical
illustrations reported in Figures 7, 8 and 9, we set 𝑛ref

𝑖 = 100. For the finite element approximation we choose
𝑁𝑥 = 1000. For the gradient algorithm we choose 𝜀 = 1 × 10−2, 𝜌 = 10−4. The gradient algorithm is stopped
when the 𝐿∞ norm of the gradient of 𝐿𝜀 is smaller than 𝛿 = 10−15. We plot in Figures 7–9 the computed
electrostatic potential, its gyroaverage, and the ionic and electronic densities.
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Figure 11. Electric potential 𝜑 (linear-scale on top and log-scale on bottom) for four values
of the mass ratio 𝜂. One observes that the oscillations disappear for small value of 𝜂.

4.2.2. Transition from oscillatory solutions to non oscillatory solutions

Here we recompute the problem of the previous section, except that 𝑛ref
𝑖 in (4.2) is set to three different

values
𝑛ref
𝑖 = 100, 40 and 10.

We plot the three profiles of the electric potential 𝜑 (in linear-scale and log-scale) in Figure 10. The oscillations
for 𝑛ref

𝑖 = 100 are mitigated with a larger wavelength for 𝑛ref
𝑖 = 40, and eventually vanish for 𝑛ref

𝑖 = 10. We
believe that this behavior is in accordance with the results of the theoretical section.

4.3. Numerical illustrations for 𝑟𝑖 ̸= 𝑟𝑒

We provide some numerical illustrations when the Larmor radii 𝑟𝑒 and 𝑟𝑖 are different and scale as 𝑟𝑒 =
√
𝜂𝑟𝑖

where 𝜂 < 1 is the mass ratio between electrons and ions. In this case, we have modified the quadrature formulas
used to calculate the potentials 𝑁𝑖 and 𝑁𝑒. Indeed it is better to guarantee that the equilibrium at 𝑥 ≈ −∞ is
perfectly respected in order to reduce numerical oscillations and to accelerate the numerical convergence. Such
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Figure 12. Ionic and electronic densities for different values of the mass ratio: 𝜂 = 1
160 (top

left), 𝜂 = 1
320 (top right), 𝜂 = 1

640 (bottom left), 𝜂 = 1
1280 (bottom right). One observes that

the charge separation close to 𝑥 = 0 tends to increase for smaller values of the mass ratio.

modified quadrature techniques are standard and are not described.
The values of the parameters are : 𝑟𝑖 = 1, 𝜆 = 1, 𝜃 = 𝜋

4 , 𝐿 = 15. We consider the ion boundary condition (4.2)
with 𝑣th = 0.5, 𝑣𝑐 = 1.0, 𝑣𝑑 = 3/2 and 𝑛ref

𝑖 = 100. We solve the minimization problem (4.1) for four different
values

𝜂 =
1

160
,

1
320

,
1

640
and

1
1280

.

For the finite element approximation we choose 𝑁𝑥 = 1000. For the gradient algorithm we choose 𝜀 = 1× 10−2

and we normalize the gradient of 𝐿𝜀 with respect to the first iterate. We stop the gradient algorithm when the
relative 𝐿∞ norm of the gradient is smaller than 𝛿 = 5 × 10−4. We plot in Figures 11 and 12 the computed
electrostatic potential, and the ionic and electronic densities for different values of the mass ratio. We essentially
observe that the smaller the mass ratio, the weaker the oscillations on the electric potential and the larger the
charge separation approaching 𝑥 = 0.

We believe that it is in accordance with the mathematical structure of the Poisson equation (2.36) for which
decreasing the mass ratio tends to make the electronic density dominant with respect to the ionic density. At
the limit, the effect of the convolution operator vanishes so potential oscillations are less prone to manifest.
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Appendix A. Properties of the gyroaverage operator

We state the main mathematical properties of the gyroaverage operator, which is the convolution with the
kernel 𝑤 defined by (2.6).

Lemma A.1 (Properties of the gyroaverage operator).
One has:

(i) The function 𝑤 belong to ∈ 𝐿𝑝(R) for all 𝑝 ∈ [1, 2[.
(ii) For all 𝑞, 𝑟 ∈ [1,+∞] and 𝑝 ∈ [1, 2[ such that 1

𝑝 + 1
𝑞 = 1 + 1

𝑟 , one has ‖𝑤 ⋆ 𝑓‖𝐿𝑟 ≤ ‖𝑤‖𝐿𝑝 ‖𝑓‖𝐿𝑞 . In
particular, by taking 𝑝 = 1, one gets ‖𝑤 ⋆ 𝑓‖𝐿𝑞 ≤ ‖𝑤‖𝐿1 ‖𝑓‖𝐿𝑞 = ‖𝑓‖𝐿𝑞 .

(iii) Define 𝑞 and 𝑟 as above. If 𝑓 ∈ 𝐿𝑞loc(R), then 𝑤 ⋆ 𝑓 ∈ 𝐿𝑟loc(R).
(iv) Let 𝑝 ∈ [1,+∞[ and let 𝑠 ∈ R. Suppose that 𝑓 ∈ 𝑊̇ 𝑠,𝑝(R). Then 𝑤 ⋆ 𝑓 ∈ 𝑊̇ 𝑠+ 1

2 ,𝑝.

Proof. Proof of point (𝑖): The function 𝑤 is even. Then, it is enough to study its integrability near 𝑥 = 1. Let
𝑥 ≥ 0, one has 0 ≤ 𝜋 𝑤(𝑥) = 1√

1−𝑥2 ≤ 1√
1−𝑥 = |1 − 𝑥|−1/2. This last function belongs to 𝐿𝑝([0, 1[) for all

𝑝 ∈ [1, 2[.
Proof of point (𝑖𝑖): This is the Young inequality for the convolution [31].
Proof of point (𝑖𝑖𝑖): Let 𝐾 := [𝑎, 𝑏] be a measurable compact interval of R and let 𝑓 ∈ 𝐿𝑞loc(R). The support
of the function 𝑤 ⋆ (𝑓.1𝐾) is contained in [𝑎 − 1, 𝑎 + 1] and coincide with 𝑤 ⋆ 𝑓 on the set [𝑎 + 1, 𝑏 − 1] as a
consequence of supp (𝑤) = [−1, 1]. By applying the result given by the previous point to the two functions 𝑤
and 𝑓.1𝐾 , one gets that 𝑤 ⋆ 𝑓 ∈ 𝐿𝑟([𝑎+ 1, 𝑏− 1]). This implies that 𝑤 ⋆ 𝑓 ∈ 𝐿𝑟loc(R).
Proof of point (𝑖𝑣): As a consequence of the standard theory on fractional Sobolev spaces [17], it is enough to
prove that the Fourier transform of 𝑤 satisfies | ̂︀𝑤(𝜉)| ≤ 𝐶

1+|𝜉|1/2 for all 𝜉 ∈ R. Using the parity of the function
𝑤 and a change of variable, one gets

| ̂︀𝑤(𝜉)| =
⃒⃒⃒ ∫︁ 1

−1

𝑒𝑖𝜉𝑥√
1− 𝑥2

d𝑥
⃒⃒⃒

= 2
⃒⃒⃒ ∫︁ 1

0

𝑒𝑖𝜉𝑥√︀
(1− 𝑥)(1 + 𝑥)

d𝑥
⃒⃒⃒
≤ 2
⃒⃒⃒ ∫︁ 1

0

𝑒𝑖𝜉𝑥√
𝑥

d𝑥
⃒⃒⃒

=
2
|𝜉|1/2

⃒⃒⃒ ∫︁ 𝜉

0

𝑒𝑖𝑦
√
𝑦

d𝑦
⃒⃒⃒
.

Since
⃒⃒⃒ ∫︀ 𝜉

0
𝑒𝑖𝑦
√
𝑦d𝑦

⃒⃒⃒
≤ min(𝑐, |𝜉|1/2) holds for some constant 𝑐 > 0, one gets | ̂︀𝑤(𝜉)| ≤ 𝐶

1+|𝜉|1/2 for all 𝜉 ∈ R. The
rate of decrease of 𝑊 at infinity yields the gain of regularity of the claim. �

Appendix B. Basic properties of the minimizer

B.1. Proof of Proposition 3.1

Equations (2.36) correspond to (3.11)–(3.13) (see below), so that we only need to prove the existence and
uniqueness of a solution to the minimization problem (3.2)–(3.4). For this we first check that the functional 𝒥
is well-defined on the vector space

𝑊0 :=
{︀
𝜓 ∈ 𝐻̇1(R) ∩ 𝐿2(R+) : 𝜓(𝑥) = 𝜓(0) for 𝑥 < 0

}︀
, (B.1)

where the homogeneous Sobolev space 𝐻̇1 is the set of functions that admit a weak derivative in 𝐿2. Up to the
redefinition of the physical space for the 𝑥 variable, this space is identical to the one in (2.37). One has that

∀ 𝜓 ∈𝑊0,

∫︁ ∞

0

|𝜓′(𝑥)|2 d𝑥 < +∞.

On the other hand, as a consequence of (3.10),

∀ 𝜓 ∈𝑊0,

∫︁ ∞

0

𝐹
(︀
𝑤 ⋆ 𝜓

)︀
(𝑥) d𝑥 ≤ 𝛽

2

∫︁ ∞

0

⃒⃒
𝑤 ⋆ 𝜓(𝑥)

⃒⃒2 d𝑥 ≤ 𝛽

2

∫︁ ∞

−1

|𝜓(𝑥)|2d𝑥 < +∞,
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where for the second inequality one uses Proposition 3.2-(𝑖𝑖) in Appendix A. It is straightforward that the
functional 𝒥 defined at (3.3) is strictly convex on 𝑊0 as a consequence of the strict convexity of the function 𝐹
given by Hypothesis (3.7). Recall that the affine space 𝑉 (3.4) inside which the minimization problem is defined
is an affine subspace of 𝑊0.

To obtain existence and uniqueness of this constrained minimization problem, it remains to prove that the
functional 𝒥 is coercive on 𝐻1(R+). Note that one has separately

𝒥 (𝜑) ≥ 1
2

∫︁ ∞

0

⃒⃒⃒⃒
𝑑

d𝑥
𝜑(𝑥)

⃒⃒⃒⃒2
d𝑥 and 𝒥 (𝜑) ≥ 𝛼

2

∫︁ ∞

0

|𝑤 ⋆ 𝜑(𝑥)|2 d𝑥 (B.2)

so one needs to obtain a good lower bound on the second term. One has 𝑤 ⋆ 𝜑(𝑥) = 𝜑(𝑥) +𝑅(𝑥) where

𝑅(𝑥) =
∫︁ 1

−1

𝑤(𝑦)(𝜑(𝑥− 𝑦)− 𝜑(𝑥))d𝑦 =
∫︁ 1

𝑦=−1

∫︁ 𝑥−𝑦

𝑧=𝑥

𝑤(𝑦)𝜑′(𝑧)𝑑𝑧𝑑𝑦.

One has directly (Fubini Theorem then Cauchy–Schwarz inequality)

|𝑅(𝑥)| ≤
∫︁ 1

𝑦=−1

∫︁ 𝑥+1

𝑧=𝑥−1

𝑤(𝑦)|𝜑′(𝑧)|d𝑧d𝑦 =
∫︁ 𝑥+1

𝑧=𝑥−1

|𝜑′(𝑧)|d𝑧 ≤
√

2
(︂∫︁ 𝑥+1

𝑧=𝑥−1

|𝜑′(𝑧)|2d𝑧
)︂ 1

2

.

One has the basic inequality |𝑤 ⋆ 𝜑(𝑥)|2 = |𝜑(𝑥) +𝑅(𝑥)|2 ≥ 1
2 |𝜑(𝑥)|2 − |𝑅(𝑥)|2. Therefore one can write∫︁ ∞

0

|𝑤 ⋆ 𝜑(𝑥)|2 d𝑥 ≥ 1
2

∫︁ ∞

0

|𝜑(𝑥)|2 d𝑥− 2
∫︁ ∞

𝑥=0

∫︁ 𝑥+1

𝑧=𝑥−1

|𝜑′(𝑧)|2d𝑧d𝑥

that is ∫︁ ∞

0

|𝑤 ⋆ 𝜑(𝑥)|2 d𝑥 ≥ 1
2

∫︁ ∞

0

|𝜑(𝑥)|2 d𝑥− 4
∫︁ ∞

0

⃒⃒⃒⃒
d

d𝑥
𝜑(𝑥)

⃒⃒⃒⃒2
d𝑥. (B.3)

Plugging (B.3) in (B.2), one gets

(6𝛼+ 1)𝒥 (𝜑) ≥ 3𝛼
∫︀∞
0

⃒⃒
d
d𝑥𝜑(𝑥)

⃒⃒2
d𝑥+ 𝛼

4

∫︀∞
0
|𝜑(𝑥)|2 d𝑥− 2𝛼

∫︀∞
0

⃒⃒
d
d𝑥𝜑(𝑥)

⃒⃒2
d𝑥

≥ 𝛼
4

∫︀∞
0
|𝜑(𝑥)|2 d𝑥+ 𝛼

∫︀∞
0

⃒⃒
d
d𝑥𝜑(𝑥)

⃒⃒2
d𝑥.

This is the coercivity estimate, so the proof of the existence is ended. The functional being strictly convex, the
minimum is unique.

Equations (3.11)–(3.13) then follow by rewriting Proposition 2.14 in the setting of Section 3. Indeed for the
mathematical analysis we have replaced the physical variable and potential (denoted here 𝑥̃ < 0 and 𝜑 to avoid
confusion) by 𝑥 = −𝑥̃ > 0 and 𝜑(𝑥) = −𝜑(𝑥̃). With the simplification (3.1) we have 𝑤 = 𝑤𝑒 = 𝑤𝑖, and the
function 𝐹 involved in the model energy (3.3) corresponds to 𝐹 (𝜓) = (𝑁𝑒 −𝑁𝑖)(−𝜓), in particular (2.35) gives(︀

𝑛̃𝑒(𝜑)− 𝑛̃𝑖(𝜑)
)︀
(𝑥̃) = −𝑤 ⋆

(︁
1R+ 𝐹 ′

(︀
𝑤 ⋆ 𝜑

)︀)︁
(𝑥).

Together with 𝜑′′(𝑥̃) = −𝜑′′(𝑥) and 𝜑′(0−) = 𝜑′(0+), these relations allow to rewrite (2.36) into (3.11)–(3.13).
In passing we note that the variational principle (2.38) reads here∫︁ ∞

0

𝜑′(𝑥)ℎ′(𝑥) d𝑥+
∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀ (︀
𝑤 ⋆ ℎ(𝑥)

)︀
d𝑥− 𝜎𝑤 ⋆ ℎ(0) = 0 (B.4)

for any test function ℎ ∈𝑊0 defined by (B.1).
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B.2. Proofs for Proposition 3.2

B.2.1. Proof of Proposition 3.2-(𝑖)

Using the variational principle (B.4) with the test function ℎ = 𝜑, one ends up with∫︁ ∞

0

|𝜑′(𝑥)|2d𝑥+
∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀ (︀
𝑤 ⋆ 𝜑(𝑥)

)︀
d𝑥 = 𝜎

∫︁ 1

−1

𝑤(𝑥)𝜑(𝑥) d𝑥 (B.5)

One now uses assumption (3.9) to write for all 𝑥 ∈ R+,

min
{︀
𝛼𝑤 ⋆ 𝜑(𝑥) ; 𝛽 𝑤 ⋆ 𝜑(𝑥)

}︀
≤ 𝐹 ′

(︀
𝑤 ⋆ 𝜑(𝑥)

)︀
≤ max

{︀
𝛼𝑤 ⋆ 𝜑(𝑥) ; 𝛽 𝑤 ⋆ 𝜑(𝑥)

}︀
.

The combination of these two facts with 𝛼 ≤ 𝛽 gives

𝛼

∫︁ ∞

0

|𝑤 ⋆ 𝜑(𝑥)|2d𝑥 ≤
∫︁ ∞

0

|𝜑′(𝑥)|2d𝑥− 𝜎
∫︁ 1

−1

𝑤(𝑥)𝜑(𝑥)d𝑥 ≤ 𝛽

∫︁ ∞

0

|𝑤 ⋆ 𝜑(𝑥)|2d𝑥.

⊓⊔

B.2.2. Proof of Proposition 3.2-(𝑖𝑖)

Take 𝜈 > 0. One defines

𝜑𝜈(𝑥) :=
{︂
𝜈 𝑒−

√
𝛽(𝑥+1) if 𝑥 > 0,

𝜈 𝑒−
√
𝛽 otherwise.

A direct computation gives
1
2

∫︁ ∞

0

⃒⃒
𝜑′𝜈(𝑥)

⃒⃒2d𝑥 =
𝜈2
√
𝛽

4
𝑒−2

√
𝛽 . (B.6)

On the other hand, using (3.10) one has∫︁ ∞

0

𝐹
(︀
𝑤 ⋆ 𝜑𝜈(𝑥)

)︀
d𝑥 ≤ 𝛽

2

∫︁ ∞

0

⃒⃒
𝑤 ⋆ 𝜑𝜈(𝑥)

⃒⃒2 d𝑥 (B.7)

Since the function 𝑥 ↦→ 𝜑𝜈(𝑥) is non-increasing and since
∫︀
𝑤 = 1, one has that 0 ≤ 𝑤 ⋆ 𝜑𝜈(𝑥) ≤ 𝜑𝜈(𝑥− 1).

Therefore (B.7) implies
∫︀∞
0
𝐹
(︀
𝑤 ⋆𝜑𝜈(𝑥)

)︀
d𝑥 ≤ 𝛽

2

∫︀∞
0

⃒⃒
𝜑𝜈(𝑥− 1)

⃒⃒2 d𝑥. One infers by a direct computation that∫︁ ∞

0

𝐹
(︀
𝑤 ⋆ 𝜑𝜈(𝑥)

)︀
d𝑥 ≤ 𝜈2

√
𝛽

4
𝑒−2

√
𝛽(1 + 2𝛽). (B.8)

Gathering (B.6) and (B.8) gives

𝒥 (𝜑𝜈) ≤ 𝜈2
√
𝛽

2
𝑒2
√
𝛽(1 + 𝛽) (B.9)

One sets the value of 𝜈 such that 𝑤 ⋆ 𝜑𝜈(0) = 𝜓wall so that 𝜑𝜈 ∈ 𝑉 . This means

𝜓wall = 𝜈

∫︁ 0

−1

𝑤(𝑥)𝑒−
√
𝛽d𝑥+ 𝜈

∫︁ 1

0

𝑤(𝑥)𝑒−
√
𝛽(𝑥+1)d𝑥

Thus,

𝜈 =
𝜓wall∫︀ 0

−1
𝑤(𝑥)𝑒−

√
𝛽d𝑥+

∫︀ 1

0
𝑤(𝑥)𝑒−

√
𝛽(𝑥+1)d𝑥

≤ 2
𝑒−
√
𝛽 + 𝑒−2

√
𝛽

where for the last inequality one used 𝑒−
√
𝛽(𝑥+1) ≥ 𝑒−2

√
𝛽 when 𝑥 ∈ [0; 1]. Therefore (B.9) gives 𝒥 (𝜑𝜈) ≤

2 2
√
𝛽(1 + 𝛽) 𝑒−2

√
𝛽

(𝑒−
√

𝛽+𝑒−2
√

𝛽)2
. Since one has 𝑒−2

√
𝛽 ≤ (𝑒−

√
𝛽 + 𝑒−2

√
𝛽)2, one concludes 𝒥 (𝜑) ≤ 𝒥 (𝜑𝜈) ≤

2𝜓2
wall

√
𝛽 (1 + 𝛽). ⊓⊔
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B.2.3. Proof of Proposition 3.2-(𝑖𝑖𝑖)

One starts by integrating equation (3.11) and get∫︁ ∞

0

−𝜑′′(𝑥) d𝑥+
∫︁ ∞

0

𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(𝑥) d𝑥 = 𝜎

∫︁ ∞

0

𝑤(𝑥) d𝑥.

Therefore, 𝜑′(0+) +
∫︀∞
0
𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆𝜑)

)︁
(𝑥) d𝑥 = 𝜎

2 . One plugs this in (3.12) to get the desired equation. ⊓⊔

B.2.4. Proof of Proposition 3.2-(𝑖𝑣)

From (B.5), one has ∫︁ ∞

0

|𝜑′(𝑥)|2d𝑥+
∫︁ ∞

0

𝐹 ′
(︀
𝑤 ⋆ 𝜑(𝑥)

)︀ (︀
𝑤 ⋆ 𝜑(𝑥)

)︀
d𝑥 = 𝜎𝜓wall.

The left hand side is positive and 𝜓wall is also positive. So 𝜎 is positive.
As a consequence of equation (3.11) and since 𝑤 → +∞ at +1 , it is enough to prove that

𝑥 ↦−→ 𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(𝑥) ∈ 𝐿∞([0, 1]). (B.10)

For 𝑥 ∈ [0, 1], one has by triangular inequality
⃒⃒⃒
𝑤 ⋆

(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(𝑥)
⃒⃒⃒
≤
∫︀ 2

−1
𝑤(𝑥− 𝑦)

⃒⃒
𝐹 ′(𝑤 ⋆ 𝜑)(𝑦)

⃒⃒
d𝑦. One

uses Hypothesis (3.9) and gets⃒⃒⃒
𝑤 ⋆

(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(𝑥)
⃒⃒⃒
≤ 𝛽

∫︁ 2

−1

𝑤(𝑥− 𝑦)
⃒⃒
𝑤 ⋆ 𝜑(𝑦)

⃒⃒
d𝑦

≤ 𝛽
∫︁ 2

−1

∫︁ 3

−2

𝑤(𝑥− 𝑦)𝑤(𝑦 − 𝑧) |𝜑(𝑧)|d𝑧 d𝑦

≤ 𝛽
∫︁ 3

−2

|𝜑(𝑧)| (𝑤 ⋆ 𝑤)(𝑥+ 𝑧) d𝑧,

(B.11)

where one uses the Fubini Theorem for the last inequality. Using now the Cauchy–Schwarz inequality and then
using Property (𝑖𝑖) of Lemma A.1 in appendix with parameters 𝑝 = 𝑞 = 4/3 and 𝑟 = 2, one gets⃒⃒⃒

𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(𝑥)
⃒⃒⃒
≤
⃦⃦
𝜑1[−2,3]‖𝐿2 ‖𝑤 ⋆ 𝑤‖𝐿2 ≤

⃦⃦
𝜑1[−2,3]‖𝐿2 ‖𝑤‖2𝐿4/3 .

Then one has proved (B.10) and this complete the proof. �

B.2.5. Proof of Proposition 3.2-(𝑣)

As a consequence of Proposition 3.2-(𝑣), the function 𝜑 cannot change sign infinitely many times as 𝑥 → 1
with 𝑥 < 1. In other words, there exists 𝜀 with 0 < 𝜀 < 1 such that

∀ 𝑥 ∈]1− 𝜀, 1[, 𝜑(𝑥) ̸= 0. (B.12)

Suppose now by the absurd that 𝜑(𝑥) = 0 for all 𝑥 > 1. One is going to prove that in this case 𝜑′′(3− 𝜀) ̸= 0,
which yields a contradiction. For that purpose, one computes

𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(3− 𝜀) =

∫︁ 4−𝜀

2−𝜀
𝑤(3− 𝜀− 𝑦)𝐹 ′

(︂∫︁ 𝑦+1

𝑦−1

𝑤(𝑦 − 𝑧)𝜑(𝑧) d𝑧
)︂

d𝑦

Using the fact that 𝜑(𝑥) = 0 for all 𝑥 > 1 with 𝐹 ′(0) = 0, consequence of (3.9), the equality above becomes

𝑤 ⋆
(︁
1R+𝐹 ′(𝑤 ⋆ 𝜑)

)︁
(3− 𝜀) =

∫︁ 2

2−𝜀
𝑤(3− 𝜀− 𝑦)𝐹 ′

(︂∫︁ 1

𝑦−1

𝑤(𝑦 − 𝑧)𝜑(𝑧) d𝑧
)︂

d𝑦 (B.13)
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Nevertheless, as stated by (B.12), the function 𝜑 does not change sign on ] − 1;−1 + 𝜀[. Suppose for instance
and without loss of generality that 𝜑(𝑥) > 0 for all 𝑥 ∈]1 − 𝜀; 1[. Then

∫︀ 1

𝑦−1
𝑤(𝑦 − 𝑧)𝜑(𝑧) d𝑧 > 0 for all

𝑦 ∈]2− 𝜀; 2[. Since 𝐹 ′ > 0 on R+
* as stated by (3.9) and since 𝑤 is positive on its support, one gets

∫︀ 2

2−𝜀 𝑤(3−

𝜀 − 𝑦)𝐹 ′
(︂∫︀ 1

𝑦−1
𝑤(𝑦 − 𝑧)𝜑(𝑧) d𝑧

)︂
d𝑦 > 0. Plugging this back into (B.13) and using equation (3.11) leads to

𝜑′′(3− 𝜀) > 0. Since 𝜀 < 1, this is in contradiction with 𝜑(𝑥) = 0 for all 𝑥 > 1. ⊓⊔
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