Finite element methods for the Darcy-Forchheimer problem coupled with the convection-diffusion-reaction problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2643-2678

In this article, we consider the convection-diffusion-reaction problem coupled the Darcy-Forchheimer problem by a non-linear external force depending on the concentration. We establish existence of a solution by using a Galerkin method and we prove uniqueness. We introduce and analyse a numerical scheme based on the finite element method. An optimal a priori error estimate is then derived for each numerical scheme. Numerical investigation are performed to confirm the theoretical accuracy of the discretization.

DOI : 10.1051/m2an/2021066
Classification : 35K05, 25B45, 74S05
Keywords: Darcy-Forchheimer problem, convection-diffusion-reaction equation, finite element method, $$ error estimates
@article{M2AN_2021__55_6_2643_0,
     author = {Sayah, Toni and Semaan, Georges and Triki, Faouzi},
     title = {Finite element methods for the {Darcy-Forchheimer} problem coupled with the convection-diffusion-reaction problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2643--2678},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021066},
     mrnumber = {4337455},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021066/}
}
TY  - JOUR
AU  - Sayah, Toni
AU  - Semaan, Georges
AU  - Triki, Faouzi
TI  - Finite element methods for the Darcy-Forchheimer problem coupled with the convection-diffusion-reaction problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2643
EP  - 2678
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021066/
DO  - 10.1051/m2an/2021066
LA  - en
ID  - M2AN_2021__55_6_2643_0
ER  - 
%0 Journal Article
%A Sayah, Toni
%A Semaan, Georges
%A Triki, Faouzi
%T Finite element methods for the Darcy-Forchheimer problem coupled with the convection-diffusion-reaction problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2643-2678
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021066/
%R 10.1051/m2an/2021066
%G en
%F M2AN_2021__55_6_2643_0
Sayah, Toni; Semaan, Georges; Triki, Faouzi. Finite element methods for the Darcy-Forchheimer problem coupled with the convection-diffusion-reaction problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2643-2678. doi: 10.1051/m2an/2021066

[1] H. Abboud, V. Girault and T. Sayah, A second order accuracy in time for a full discretized time-dependent Navier-Stockes equations by a two-grid scheme. Numer. Math. 114 (2009) 189–231. | MR | Zbl | DOI

[2] J. A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl

[3] B. Amaziane, M. Bourgeois and M. El Fatini, Adaptive mesh refinement for a finite volume method for flow and transport of radionuclides in heterogeneous porous media. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69 (2014) 687–699. | DOI

[4] C. Bernardi, S. Dib, V. Girault, F. Hecht, F. Murat and T. Sayah, Finite element method for Darcy’s problem coupled with the heat equation. Numer. Math. 139 (2018) 315–348. | MR | DOI

[5] C. Bernardi and V. Girault, A local regularisation operation for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. | MR | Zbl | DOI

[6] C. Bernardi, S. Maarouf and D. Yakoub, Spectral discretization of Darcy’s equations coupled with the heat equation. IMA J. Numer. Anal. 36 (2015) 1193–1216. | MR | DOI

[7] C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations dePlease check & approve edit of the journal title of ref [7] Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis. ESAIM:M2AN 29 (1995) 871–921. | MR | Zbl | Numdam | DOI

[8] O. R. Burggraf, Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24 (1996) 113–151. | DOI

[9] N. Chalhoub, P. Omnes, T. Sayah and R. El Zahlaniyeh, Full discretization of time dependent convection-diffusion-reaction equation coupled with the Darcy system. Calcolo 57 (2020) 4. | MR | DOI

[10] N. Chalhoub, P. Omnes, T. Sayah and R. El Zahlaniyeh, A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system. Calcolo (submitted). | MR

[11] P. G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, North-Holland, volume II of Finite Element Methods (Part 1). North-Holland, Amsterdam (1991) pp. 17–351. | MR | Zbl | DOI

[12] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | MR | Zbl | Numdam

[13] J. Deteix, A. Jendoubi and D. Yakoubi, A coupled prediction scheme for solving the Navier-Stokes and convection-diffusion equations. SIAM J. Numer. Anal. 52 (2014) 2415–2439. | MR | Zbl | DOI

[14] D. Dib, S. Dib and T. Sayah, New numerical studies for Darcy’s problem coupled with the heat equation. Comput. Appl. Math. 39 (2020) 1. | MR | DOI

[15] S. Dib, V. Girault, F. Hecht and T. Sayah, A posteriori error estimates for Darcy’s problem coupled with the heat equation. ESAIM: M2AN 53 (2019) 2121–2159. | MR | Numdam | DOI

[16] E. Erturk, T. C. Corke and C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48 (2005) 747–774. | Zbl | DOI

[17] P. Fabrie, Regularity of the solution of Darcy-Forchheimer’s equation. Nonlinear Anal. Theory Methods 13 (1989) 1025–1045. | MR | Zbl | DOI

[18] E. Feireisl and A. Novotny, Singular limits in thermodynamics of viscous fluids. Adv. Math. Fluid Mech. Birkhäuser, Basel (2009). | MR | Zbl

[19] P. Forchheimer, Wasserbewegung durch Boden. Z. Ver. Deutsh. Ing. 45 (1901) 1782–1788.

[20] M. Gaultier and M. Lezaun, Équations de Navier-Stokes couplées à des équations de la chaleur: Résolution par une méthode de point fixe en dimension infinie. Ann. Sci. Math. Québec 13 (1989) 1–17. | MR | Zbl

[21] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Vol. 224 of Classics in Mathematics. Springer, Berlin (2001). | MR | Zbl

[22] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes problem. ESAIM: M2AN 35 (2001) 945–980. | MR | Zbl | Numdam | DOI

[23] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, in Theory and Algorithms, SCM 5. Springer, Berlin (1986). | MR | Zbl

[24] V. Girault and M. F. Wheeler, Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110 (2008) 161–198. | MR | Zbl | DOI

[25] F. Hecht, development in FreeFem++. J. Numer. Math. 20 (2012) 251–266. | MR | Zbl | DOI

[26] J. S. Jose, H. Lopez and B. Molina, Comparison between different numerical discretizations for a Darcy-Forchheimer model. Electron. Trans. Numer. Anal. 34 (2009) 187–203. | MR | Zbl

[27] M. Kawaguti, Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity. J. Phys. Soc. Jpn 16 (1961) 2307–2315. | MR | Zbl | DOI

[28] H. Lopez, B. Molina and J. J. Salas, An analysis of a mixed finite element method for a Darcy-Forchsheimer model. Math. Comput. Model. 57 (2013) 2325–2338. | MR | Zbl | DOI

[29] H. Ma and D. Ruth, On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7 (1992) 255–264. | DOI

[30] J. Nečas, Les Méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR | Zbl

[31] S. P. Neuman, Theoretical derivation of Darcy’s law. Acta Mech. 25 (1977) 153–170. | Zbl | DOI

[32] H. Pan and H. Rui, Mixed element method for two-dimensional Darcy-Forchheimer model. J. Sci. Comput. 52 (2012) 563–587. | MR | Zbl | DOI

[33] T. Sayah, Convergence analysis of numerical schemes for the Darcy-Forchheimer problem. Mediterr. J. Math. (2021) (submitted).

[34] R. Schreiber and H. B. Keller, Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49 (1983) 310–333. | Zbl | DOI

[35] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. | MR | Zbl | DOI

[36] A. V. Shenoy, Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. Transp. Porous Med. 11 (1993) 219–241. | DOI

[37] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Med. 1 (1986) 3–25. | DOI

Cité par Sources :