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FINITE ELEMENT METHODS FOR THE DARCY-FORCHHEIMER PROBLEM
COUPLED WITH THE CONVECTION-DIFFUSION-REACTION PROBLEM

ToNI SAYAH!, GEORGES SEMAAN'* AND FAOUZI TRIKI?

Abstract. In this article, we consider the convection-diffusion-reaction problem coupled the Darcy-
Forchheimer problem by a non-linear external force depending on the concentration. We establish
existence of a solution by using a Galerkin method and we prove uniqueness. We introduce and analyse
a numerical scheme based on the finite element method. An optimal a priori error estimate is then
derived for each numerical scheme. Numerical investigation are performed to confirm the theoretical
accuracy of the discretization.
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1. INTRODUCTION

This work studies the convection-diffusion-reaction equation coupled with Darcy-Forchheimer problem. The
system of equations is

%K’lqu %|u|u +Vp =f(.,0)inQ,

divu =0 in €,

(P) —aAC+u-VC+roC=g inQ,
u-n =0 onl,

C =0 onl,

where  C ]Rd, d = 2,3, is a bounded simply-connected open domain, having a Lipschitz-continuous boundary
I' with an outer unit normal n. The unknowns are the velocity u, the pressure p and the concentration C' of
the fluid. |.| denotes the Euclidean norm, |u|?> = u-u. The parameters p, u and 3 represent the density of the
fluid, its viscosity and its dynamic viscosity, respectively. 3 is also referred as Forchheimer number when it is a
scalar positive constant. The diffusion coefficient o and the parameter ry are positive constants. The function
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f represents an external force that depends on the concentration C' and the function g represents an external
concentration source. K is the permeability tensor, assumed to be uniformly positive definite and bounded such
that there exist two positive real numbers K,, and Kj; such that

0< Ky, < ||K71||L00(Q)d><d < Kypy. (1.1)

It should be noted that K, should be smaller than the smallest eigenvalue of K ! over Q and Kj; could be
very large.

To simplify, a homogeneous Dirichlet boundary condition is prescribed on the concentration C, but the
present analysis can be easily extended to a non-homogeneous boundary condition.

System (P) couples the Darcy-Forchheimer system with the convection-diffusion-reaction equation satisfied
by the the concentration of the fluid. The same system can also couple the Darcy-Forchheimer system with the
heat equation satisfied by the temperature T of the fluid, it suffices to set ro = 0 and replace C by T.

Darcy’s law (see [31] and [37] for instance for the theoretical derivation) describes the creeping flow of Newto-

nian fluids in porous media. It is simply the first equation of system (P) without the non-linear term —|uju and

where the function f may depend on the concentration C of the fluid. Forchheimer [19] showed experimentally
that when the velocity is higher and the porosity is nonuniform, Darcy’s law becomes inadequate. He proposed
the Darcy-Forchheimer equation which is the first equation of the system (P). A theoretical derivation of Forch-
heimer’s law can be found in [29]. Multiple theoretical and numerical studies of the Darcy-Forchheimer system
were performed and among others we mention [24,26,28,32,33]. Many numerical investigations are performed
and show the importance of the Darcy-Forchheimer equation compared with Darcy equation (see for instance
[32] and the references inside).

For the coupled problem of Darcy’s law with the heat equation, we can refer to [6] where the coupled problem
is treated using the spectral method. The authors in [4] and [14] considered the same stationary system but
coupled with a nonlinear viscosity that depends on the temperature. In [15], the authors derived an optimal
a posteriori error estimate for each of the numerical schemes proposed in [4]. We can also refer to [3] where
the authors used a vertex-centred finite volume method to discretize the coupled system. Furthermore, for the
time-dependent convection-diffusion-reaction equation coupled with Darcy’s equation, we refer to [9,10] where
the authors established the corresponding a priori and a posteriori errors.

The coupling system (P) has many physical applications for the Darcy-Forchheimer mixed convection case
[36]. In this case, the Darcy-Forchheimer system is coupled with the concentration C' of the fluid with an external
force f. We mention that the work of [6] use the spectral method to treat a coupled system very close to (P)
where the Darcy-Forchheimer equation is replaced by the Darcy’s one. It turns out that the non-linear term
appearing in the first equation of (P) makes the treatment of the coupled system more complex.

We first derive an equivalent variational formulation to (P) and we show the existence of a solution. The
uniqueness can be reached under additional constraint on the concentration (see Condition (2.27)). Then,
we discretize the system by using the finite element method and we show the existence and uniqueness of
the corresponding solution. Later, we establish the a priori error estimate between the exact and numerical
solutions under the condition of smallness of the concentration in the fluid. In order to compute the solution,
we introduce an iterative scheme and we study the corresponding convergence. Finally, numerical investigations
are performed to validate the theoretical results.

The outline of the paper is as follows:

— Section 2 is devoted to the continuous problem and the analysis of the corresponding variational formulation.

— In Section 3, we introduce the discrete problems, recall their main properties, study their a priori errors and
derive optimal estimates.

— In Section 4, we introduce an iterative algorithm and prove its convergence.

— Numerical results validating the convergence analysis are presented in Section 5.
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2. ANALYSIS OF THE MODEL

2.1. Notation

Let D(£2) be the space of functions having a compact support in £ with continuous derivatives of all orders
in Q. Let @ = (a1, aa,...a4) be a d-uplet of non-negative integers, set |a| = Z?zl «;, and define the partial
derivative 9% by

olel

= «aq 2 Qg °
0x{" 0x5” ... O0xy

6(1
Then, for any positive integer m and number p > 1, we recall the classical Sobolev space [2,30]
W™P(Q) = {ve LP(Q); V]a| <m, 0% € LP(Q)}, (2.1)
equipped with the seminorm
1

( > [ 10w dX) (2.2)

Pm—e:

[ M— (2)

and the norm

lyonne) = (2 1eaiey) (23)

0<k<m

When p = 2, this space is the Hilbert space H™({2).
The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but with
the following modification for the norms in the non-Hilbert case. Let v be a vector valued function; we set

:
Mooy = ([ rax)”. 2.4

where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

HY(Q) = {ve H'(Q); v, =0},

Wy9(Q) = {v e WH(Q); v, = 0}. (2:5)

We shall often use the following Sobolev embeddings: for any real number p > 1 when d =2,0or 1 <p < %

when d > 3, there exist constants S, and Sg such that
Voe H' (), [vllwr@) < Spllvlla @ (2.6)

and
Vo e Hy(Q), [vllLr@) < Splolm - (2.7)

When p = 2, (2.7) reduces to Poincaré’s inequality.
To deal with the Darcy-Forchheimer, we recall the space

L3(Q) = {v € L*(Q); /dex = 0}. (2.8)
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2.2. Variational formulation

In this section, we introduce the variational formulation corresponding to the problem (P). We assume that
the volumic and boundary sources verify the following conditions:

Assumption 2.1. We assume that £ and g verify:
(1) £ can be written as follows:
vx € Q,VC € R, f(x,C) =f(x) + £ (C), (2.9)
where fy € L%(Q)d and £y is Lipschitz-continuous with constant cg, and satisfies the inequality

vﬁ € ]Rv |f1(§)| < cf ‘€|a

where cg, 15 a strictly positive constant.
(2) g € L*(Q).

Remark 2.2. For the physical interpretation of the choice of the external force f, we refer to [6,7,13,20]. In fact,
in [6] page 3, they considered and justified the choice of f(z,C) = f1(C) (with fy = 0) with the corresponding
properties. For the generalization, we added the function fy to get (2.1).

It follows from the nonlinear term in the system (P) that the velocity u and the test function v must belong
to L3(2)9; then, the gradient of the pressure must belong to L%(Q)d. Furthermore, the concentration C' must
be in HE (). Thus, we introduce the spaces

X =L3Q)% M=w"3@Q)nLiQ), Y =H\).

Furthermore, we recall the following inf-sup condition between X and M [24],

v(x) - Vg(x)dx

inf sup — =1. (2.10)
9€M vex [Vl 1s(q)a ”vq“L%(Q)

With these assumptions on the sources, we introduce the following variational formulation associated to
problem (P):

Find (u,p,C) € X x M x Y such that:

M —1 B
Vv e X, " /Q(K u(x)) - v(x)dx + ’ /Q [u(x)|u(x) - v(x) dx + /Q Vp(x) - v(x)dx
(Vi) = /Qf(x, C(x)) - v(x)dx,

Yq € M, / Vq(x)-u(x)dx =0,
Q

VS Y, a /Q VO(x) - VS(x) dx + /Q (1 VC)(x)S(x) dx-tro /Q C(x)S(x) dx = /Q (%) S(x) dx.

Equivalence between (P) and (V;) in the sense of distribution follows readily from the validity of Green’s
formula:

Vg e M,Vv € H, /QVq(ac) cv(x)dx = — /Q q(x) div(v(x))dx + <q,v.n>(m
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in the space
H= {v € L3 ()% divy € Lﬁﬁ%(Q)},

and the fact that
V= {v € H; van|gg =0, and Vg € M,/ Vg.vdx = O.}
Q

= {v € H; v.anlgg =0, divv =0 1in 9}7

for further details, we refer to [24].
To study problem (V,), it is convenient to introduce the mapping v — A(v) defined by:

A: L3(Q) — L2 (Q)¢
v = Av) = Hr—tv 4 é|v|v.
p p

We refer to [17,24] for the following properties of A.

Property 2.3. A satisfies the following properties:
(1) A maps L3(Q)? into L ()% and we have for all v € L3(Q)%:

I -1 p 2
A5 e < & 1K I, 5 g+ 2 IV

HL%(Q)d )
or all (v,w) € R* x R%, we have,
2) Fi il R4 x R4 h

A(v) — A(w)| < (;‘ &Y+ %(M + |w|>) v —wl. (2.11)

(3) A is monotone from L3(Q)* into L2 ()4, and we have for all v,w € L3()?,

3 K 2
/Q <«4(V(X)) — A(w(x))) - (v(x) = w(x)) dx = max(cpm [|v = Wl|7sq)a ;Km v = wl[L2(q)a )
where ¢, 18 a strictly positive constant.
(4) A is coercive in L3(2)4:

A(u) - udx

= = +00.

Il sy lllpa(0ya

(5) A is hemicontinuous in L*>(Q)¢: for fived u,v € L3(2)%, the mapping
t—»/A(u+tv) -vdx
Q

s continuous from R into R.

Let us first show that for a given C' € Y, the Darcy-Forchheimer problem (first two lines in (V,)) written as
following: find (u(C),p(C)) € X x M such that

Vv e X, /QA(u(C')(a:)) -v(x)dx + /Q Vp(C)(x) - v(x)dx = /Qf(m, C(x)) - v(x)dx, o1
Vg e M, / Vq(x) - u(C)(x)dx = 0,
Q
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admits a unique solution (u, p) = (u(C), p(C)). Problem (2.12) is equivalent to the following: find (u(C),p(C)) €
X x M, such that
Vv eV, / A(u(C)(z)) - v(x)dx = / f(z,C(x)) - v(x)dx. (2.13)
Q Q

Theorem 2.4. For each C € HL(Q), £(.,C) € L2(Q)?, the problem (2.12) has ezactly one solution
(u(C),p(C)) € X x M. Furthermore, (u,p) satisfies the a priori estimates:

P 3
©saars < (51O )
(2.14)
TR B 2
VPO, 3y < 5 1K ey 1O 3 g+ 5 10Oy + £ Ol g
Proof. Let C € HL(£2). Assumption 2.1 allows us to deduce that £(,.C) lies in L2 (£2)%. For the proof, we refer
to [24] (see The. 3, p. 172). O

Thus, problem (V) can be rewritten as a function of the single unknown C. Indeed, for a given C, let
(u(C),p(C)) be the solution of problem (2.12). Then, problem (V,) is equivalent to the following reduced
formulation: find C' € Y such that

VSeY, a /Q VO(x) - VS(x)dx + /Q (W(C) - VCO)(x)S(x) dx + 1o /Q C(x)5(x)dx = /Q g(x)S(x) dx. (2.15)

Before proving that problem (2.15) admits a solution, we will show the following intermediate lemma:

Lemma 2.5. Under Assumption 2.1, let (Cx)k>1 be a sequence of functions in L*(Q) that converges strongly
to C in L*(Q). Then, the sequence (u(Cy))k>1 converges strongly to u(C) in X and the sequence (p(Ck))k>1
converges weakly to p(C) in M.

Proof. Assumption 2.1 allows us to deduce that the sequence (f(.,Cx(.))x>1 converges strongly to f(.,C(.)) in
Lz ()% and then bounded in L2 (Q)%. Bounds (2.14) yield first the weak convergence (up to a subsequence) of
(u(Cr), Vp(C)) in L3(Q)% x L2(Q) to some function (@, h). We will show that (i, h) = (u(C), Vp(C)). Let
us first show that 1 is a solution of problem (2.13). We show first that & € V. Indeed, the second equation of
problem (2.13) satisfied by u(C%), and the weak convergence of u(Cy) to 1 led to the relation

Vo, [ i) Val) =0,
and then @ € V. Now, we show that u satisfies problem (2.13). The monotonicity of A gives
we Ve [ (Am(C) — Aw) () (a(C) = v)(x) dx > 0. (2.16)
The last inequality combined with problem (2.13) satisfied by u(Cy) yields
Vv ev, /Q Av(x)) - (u(Cy) — v)(x) dx < /Q £(Cr)(x) - (u(Cy) — v)(x) dx. (2.17)

We obtain by using the weak convergence of u(Cy) to tt and the strong convergence of f(., C) to f(.,C), the
following relation:

Vv ev, /Q.A(v(x)) (a—v)(x)dx < / f(C)(x) - (0 —v)(x) dx. (2.18)

Q
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By virtue of hemicontinuity of A, a classical argument then yields
Vv eV, / A(a(x)) - v(x)dx = / £(C)(x) - v(x) dx. (2.19)
Q Q

Hence u is a solution of (2.13), and thus G = u(C). Furthermore, problem (2.13) gives the relation

wWev, /Q (A@(C)()) — A(C)())) - v(x) dx = / ((z, C(x)) — £(z, Ci(x))) - v(x) dx

Q

which allows us by taking v = u(Cy) — u(C), by using the monotonicity of A in L3(Q)?, and the strong
convergence of f(.,C) to f(.,C), to obtain the following convergence

klim u(Cy,) = u(C) strongly in L3(Q)%.

Finally, we have to treat the convergence of the pressure. Since u(C) is a solution of problem (2.12), we use
the inf-sup condition (2.10) to deduce the existence of p(C') such that (u(C),p(C)) is the solution of problem
(2.12).

We deduce from problem (2.12) that for all v e X

/(VP(C) = Vp(C))(x) - v(x)dx = — / (A(u(C)(z)) — A(u(Ck)(z))) - v(x) dx
Q Q
+ /Q(f(x, C(x)) — f(x,Cr(x))) - v(x) dx.

The strong convergence of u(Cy) to u(C) in L3(Q)%, of £(.,Cy) to £(.,C) in L2 (Q)%, and the weak convergence
of Vp(Cy) to h in L7 (Q)%, give

Vv e X, /(Vp(C’) —h)(x) - v(x)dx = 0.
Q
Thus h = Vp(C) in L%(Q)d which finishes the proof. Finally, uniqueness of the solution of (2.12) implies the
convergence of the whole sequence. O

The next theorem shows the existence of at least one solution to the problem (V).

Theorem 2.6. Under Assumption 2.1, problem (V) admits a solution in X x M x Y. Furthermore, each
solution (u,p, C) of (V) satisfies the following bounds:

SO
IClia < f (AEIRY
< (2% Sle; ’ (2.20)
[l ps gy < ﬂ(” 0 ||Lg(9)d +er,531Cha) ) s :
" _ g 2 p
HVPHLg(Q)d < ” | K 1HLOO(Q)dxd ||11||Lg(md + P allzs o) + B( | fo ||Lg(md +Cf15%\0|1,9>-

Proof. We propose to construct a solution of (V) by Galerkin’s method. As H}(Q) is separable, it has a
countable basis (6;);>1. Let ©,, be the space spanned by the first m basis functions, (6;)1<i<m. Problem

(2.13) is discretized in ©,, by the square system of nonlinear equations: find C,, = Z w;6; € ©,, solution of:
i=1
V1l <i<m,

a/QVCm(X)~V9i(x)dx+/ﬂ(u(0m)-VC’m)(X)Oi(x)dx—i—TO/QCm(X)Gi(X)dx: /Qg(x)Hi(x) dx, (2.21)
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where (u(Cy,), p(Cp,)) solves (2.12) with C = C,,. Now, given C,, € O,,, we introduce the auxiliary problem:
find ®(C,,) € O,, such that, for all S,, € ©,,, we have

(VO(Crn), VSim)y = a(VCrn, Vi), +/

A (u(Ch) - VCi ) (%) S (x) dx + 7 /Q Con (%) Sm (x) dx

(2.22)
—/g(x)Sm(x) dx.
Q

In fact, for each Cp,, the left hand side of (2.22) is a bilinear map of the form (V.,V.) and the right hand
side is a linear map with respect to S,,. Relation (2.22) defines a continuous mapping from 0,, into ©,,, due
to the fact that ©,, is a finite dimension space and Lemma 2.5. By taking S,, = C,,, we get

(V9(Cu). Vo) = alCult i+ 701Gl = | a0 ax

V

> |Clia (01Cmlie = 8919l 20y )-
In other words, we have
(vq>(cm), vcm) >0
for all C), € ©,, such that
S5
|Cml10 = o ||g||L2(Q) :
Therefore, Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution to the

problem (2.21).
Let C,, be a solution of problem (2.21), satisfying V.S, € O,,,

a(VCm,VSm> v A (u(cm).vcm)(x)sm(x) dx + 7o A Crn — Sy (x) dx = A 9(%)Som (x) dx.

By taking S,, = C,, in the last equation, we get immediately the bound

59
|Ciml1,0 < o |9 llz2(0) -
The last uniform bound implies that, up to a subsequence, (C.,),, converges weakly to a function C in

H} (). Therefore, it converges strongly in L"(f2), for any r < %, and it follows from Lemma 2.5 that
(u(Chn), p(Ch))m converges weakly to (u(C),p(C)) in X x M, and (u(Cy,)).m converges strongly to u(C) in
L3(92)?%. Now, we freeze the index i in (2.21), and let m tends to infinity. The weak convergence of (Cy, ). to C
in H}(€), and the strong convergence of (u(Cy,))., to u(C) in L3(Q)? allow us to deduce that C is a solution

of the following problem: Find C' € H}(Q) such that

a/QVC’(x)~V9¢(x)dx+/Q (u(C’)~VC)(x)0i(x)dx+r0/

C’(x)ﬂi(x)dx:/g(x)ﬂi(x) dx. (2.23)
Q

Q
From this system and the density of the basis in H}(2), we infer that C is a solution of problem (2.15).
The first bound in (2.20) can be straightly obtained by taking S = C' in the last equation in (2.15). The first
and second bounds in (2.20) can be deduced from the inequalities (2.14) and Assumption 2.1. O

Theorem 2.7. Assume that Q) is of class C1'1. Let (u,p,C) be a solution of problem (P). If g € L>=(Q), then
the concentration C is in L () and satisfies the following bound:
<

1
||C\|Loc(9) = To ||g||L°°(Q)‘
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Proof. Let (u,p,C) be a solution of problem (P), then the velocity u € V. Using the fact that V' is separable
and that the space

Voo = {cb € D(Q)%divd = o}

is dense in V' (see for instance [18], Lem. 10.8), there exists a sequence (un)nen in Voo which converges strongly
to u in L3(2)¢ when N tends to +oo.
Now, for each N € N, let Cy € Hg () the unique solution to the following problem:

2.24
Cny=0 on I ( )

{aACN fuy VOy+7Cy=g  inQ,
The elliptic regularity (see [21]) allows us to get that Cy € W2P(Q) N HE(Q), for all p > 1.
Multiplying the first equation of (2.24) by 012\/;7+1 and integrating by parts give,

a(2p+1)

W/ﬂ|VC]1<[+1(X>|2dX+TO/QC]2\?+2(X> dx:/ﬂg(x)C?f*‘l(x) dx.

By remarking that the first term of the left hand side of the previous equation is non-negative and by applying
2p+ 2

Holder’s inequality for the right-hand-side with the conjugate exponents m = 1
D

and n = 2p + 2, we get
the following inequality:

1

||CN||L2P+2(Q) < o ||9||L2p+2(9) . (2.25)

The next step shows that C'y converges strongly to C € H}(Q2). In order to prove it, we start by subtracting
the third equation of problem (P) from first equation of (2.24) to get, for all S € HE(Q),
a/ V(C’fCN)~Vde+r0/(CfC’N)de: 7/ u~V(C'fC’N)de7/(ufuN)~VC’Nde.
Q Q Q Q

By taking S = C' — Cy and using the antisymmetric property, the estimate (2.20) we obtain

593

|C — Cn|mi(a) < [u —anllps e 19l 2 (0
which gives the strong convergence of Cy to C' in H{ ().

As Cy is uniformly bounded in L?P*2(Q), we can extract a subsequence still denoted by Cx such that Cy
converges weakly in L?PT2((2) to some function h satisfying (2.25). The strong convergence of Cy to C'in H*(£2)

and the uniqueness of the limit allows us to deduce that h = C' in Lo+ (©) and we get
1
||C||L2p+2(Q) < = ||g||L2p+2(Q) Vp > 1. (2.26)
To

Thus h = C € L?*72(Q) and finally, taking the limit in (2.26) as p — oo, we get the desired result. O

Theorem 2.8. Under Assumption 2.1, We suppose that the problem (V) admits a solution (u,p,C) € X x

M xY such that
Ko

1Ol L= (o) < (2.27)

0
pcf1‘92

then, the solution of the problem (V) is unique.
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Proof. Let (u1,p1,C1) and (uz,pa, C2) be two solutions of problem (V,), and let u = u; — uz, p = p1 — p2 and
C = Cy — Cs. Then, (u,p,C) satisfies for all (v,S5) € X x Y,

/Q(A(ul) — A(u)) (%) - v(x) dx:/

(F(C1) ~ £(C2) () - v dx [ V(o ~ p2)(0) - v(x)dx
Q Q

(2.28)
a/ VC(x)-VS(x)dx + / (u-VC; 4+ uy - VO) (x)S(x) dx + ro/ C(x)S(x)dx = 0.
Q Q Q
By taking S = C' in the second equation of (2.28), we get by using the Green formula,
10T +70 1€ o= [ (u-VO)x)C1 () dx,
and then
alCli g +ro | Clze@ =l a2l VO llrz@a [IC1 |~ (0)-
Finally, we get
1
ICl10 < > [ allz2@)all C1 llo=(@) - (2.29)
Substituting v by u in the first equation of (2.28), we get
/ (A(ur) — A(ug))(x) - (0 — ug)(x)dx = / (£(C1) — £(C2)) (%) - (u1 — uz)(x) dx.
Q Q
By using the monotonicity of A, Assumption 2.1, and the fact that f; is cg -Lipschitz, we obtain
I
=K | w2 < || £1(C1) — £1(C2) |2
p (2.30)

< ¢, S9Cl1q-

Thus, relations (2.29) and (2.30), give
I Cf.
EKm | llp20)e< Eng | allzz@)all C1 llLe=(q) -

Relation (2.27) allows us to deduce that || u ||z2(q)= 0 and then u; = uy. Relation (2.29) implies C; = Cs.
Finally, the first equation of system (2.28) and the inf-sup condition provide p; = ps, which yields the uniqueness
of the solution. O

Corollary 2.9. Under Assumption 2.1 and Theorems 2.7 and 2.8, if the data g satisfies the following smallness
condition

rouf o
I9ll ey < ——co-
pcf152

then the solution (u,p,C) of problem (P) is unique in L3(Q)% x W12 (Q) N LE(Q) x HE ().

3. DISCRETIZATION

From now on, we assume that €2 is a polygon when d = 2 or polyhedron when d = 3, so it can be completely
meshed. For the space discretization, we consider a regular (see Ciarlet [11]) family of triangulations (7)n
of  which is a set of closed non degenerate triangles for d = 2 or tetrahedra for d = 3, called elements,
satisfying
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— for each h,  is the union of all elements of Tj;

— the intersection of two distinct elements of 7}, is either empty, a common vertex, or an entire common edge
(or face when d = 3);

— the ratio of the diameter h, of an element x € 7} to the diameter p, of its inscribed circle when d = 2 or
ball when d = 3 is bounded by a constant independent of h, that is, there exists a strictly positive constant
o independent of h such that,

hy
max — < 0. (3.1)
K,e?'h ,DK,

As usual, h denotes the maximal diameter of all elements of 7. To define the finite element functions, let r
be a non-negative integer. For each k in 73, we denote by P,.(x) the space of restrictions to x of polynomials in
d variables and total degree at most r, with a similar notation on the faces or edges of k. For every edge (when
d = 2) or face (when d = 3) e of the mesh 7}, we denote by h. the diameter of e.

We shall use the following inverse inequality [15]: for any dimension d, there exists a constant Cy such that
for any polynomial function v, of degree r on K,

_d
th”Ls(m) S C]hHGHUhH]ﬂ(N). (32)

The constant C; depends on the regularity parameter o of (3.1), but for the sake of simplicity this is not
indicated.

Let X, C X, My C M, and Y}, C Y be the discrete spaces corresponding to the velocity, the pressure and
the concentration. We assume that X, and M, satisfy the following inf-sup condition:

/th-vhdx
Van € Mp, sup =

> Ballqnll sy (3.3)
vnex,  Ivallx,

where (35 is a strictly positive constant independent of h.
Problem (V) can be discretized as following: find (up,pn, Cr) € X5 X M}, x Y}, such that

Vv € Xp, / A(uyp) -vhdx—i—/ Vpp - vpdx = / f(Ch) - vp dx,
Q Q Q

th € Mha / vqh'uhdx:07
(Van)u Q

1
VS, €Yy, Ve, - VS, dx + / (uh . VCh)Sh dx + 5 / div(uh) CrLSpdx
Q 2

Q
+T0/Ch5th=/gSth.
Q Q

In the following, we will introduce the finite dimension spaces X}, M} and Y. Let x be an element of 7,
with vertices a;, 1 < ¢ < d+ 1, and corresponding barycentric coordinates ;. We denote by b,, € Py11(k) the
basic bubble function:

Bre (%) = A1 (%) A1 (). (3.5)

We observe that b, (x) = 0 on 9k and that b.(x) > 0 in the interior of &.



2654 T. SAYAH ET AL.

We introduce the following discrete spaces:
Xn :{vh € (CO(M)) Ve €Ty, vils € ”P(/@)d},

=g, € C°(Q); VK €Th, qh|H€1P1(n)}ﬂL3(Q),
(3.6)

{thC’O ); VK €T, Qh|m€P1(ﬁ)}mH&(Q)7
{Vh S Xh,th S Mh,/ th Vi dx = 0}

where

P (k) =P1(k) & Vect{b,}.

In this case, for the inf-sup condition (3.3), we refer to [23].
We shall use the following results:

(1) For the concentration: there exists an approximation operator (when d = 2, see Bernardi and Girault [5]
or Clément [12]; when d = 2 or d = 3, see Scott and Zhang [35]), Ry, in L(WP(£2);Y}) such that for all
in7,, m=0,1,1=0,1,and all p > 1,

VS e WHEP(Q), [S = Ru(S)lwmn ey < c(pom, 1) RS wiina, ). (3.7)

where A, is the macro element containing the values of S used in defining Ry (.5).
(2) For the velocity: we introduce a variant of R;, denoted by F, (see [4] and [22]) which is stable in L3(Q)%:

vv € LX), [1Fa(v)llzs(e < Cillvlzacana (3.8)

such that F,(v) € Vj, when divv = 0, and satisfies (3.7).

(3) For the pressure: as M) contains all constants, an easy modification of Rj yields an operator r, €
LWLP(Q)NLE(Q); My) (see for instance Abboud et al. [1]), satisfying (3.7). Indeed, rj, can be constructed
as follows:

1
Vge M, rng=Rnqg— = [ (Rnq)(x)dx
12| Jo

Existence of a solution of (V) is derived by duplicating the steps of the previous section concerning the
existence of a solution of problem (V). First (V) is split as in the previous section, i.e., find C), € Y}, such
that: VS, € Y3,

1
Oé/ VCy, - VS, dx + / (uh(Ch) . VCh)Sh dx + 5/ diV(uh(Ch)) CrSpdx + ’I“o/ CrSpdx = / 9SSy dx, (3.9)
Q Q Q Q Q
where up,(C},) is the velocity solution of: find (up(Chr), pr(Ch)) € Xn X My, such that

Vv € X, / A(uh(Ch)) - v dx —‘r/ Vph<Ch) -vpdx = / f(., Ch) - vy dx,
Q Q Q
(3.10)

Yan € My, / Van - up dx = 0.
Q

For each C} € Xp, an easy finite-dimensional variant of the argument of Theorem 2.4 allows one to prove
that the scheme (3.10) has a unique solution (u(Ch),pr(Cr)) € X X Mp, and this solution satisfies the a
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priori estimates similar to (2.14):

1
p 2
Jun Colssiaye < (18Ol 5 ) .
M LB
52 192 (O e < B 1 ey IO 5 gy + 2 0O e+ IO 5
We address now the existence of at least one solution of the problem (3.9) written with the only variable

C},. For this purpose, we apply Brouwer’s Fixed-Point Theorem. Indeed, we introduce the following map: for a
given Cy, € Yy, find ®(C}) € Y}, such that: VS, € Yy,

(®(Ch), Sh) ZCV/ VCh - VS dX-i—/(uh(Ch)'VCh)Sh dx
Q Q
Jrl/diV(uh(Ch))ChSthJrTo/ChShdxf/gSth.
2 Ja Q Q

This last relation defines a mapping from Y}, into itself, and we easily derive its continuity. By taking S, = C},
we get

(VO(Ch), VCh) = alChl2 g + 70 | Chlls e — / 9(%)Ch(x) dx
Q
> Chlua(alChlie — S 1]l 12)-

In other words, we have
(VO(Ch),VCh) 20

for all C, € Y}, such that
SO
|Chl1,0 = EQ ||9||L2(Q)

The Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution of the problem
(3.9). Hence, problem (V,;,) admits at least one solution (up,pp, Cr) € Xp X My, x Y}, Furthermore, by taking
S = C}, in the last equation of (V,p) gives, in addition to inequality (3.11), the following bound:

SO
|Chl1,0 < Ez | 9llz2) - (3.12)

Finally, uniqueness follows easily since C}, belongs to L (2). This is summed up in the following existence
and uniqueness theorems.

Theorem 3.1. Under Assumption 2.1, (Var) has at least a solution (up,pp,Cr) € Xp X My, x Y. Moreover,
every solution of (Vap) satisfies bounds similar to (2.20).

Theorem 3.2. We assume that the data £ and g satisfies assumption 2.1. Suppose that problem (V,p) has a
solution (uyp, pp, Ch) € Xp, X My, x Yy, such that

2au Ky,

o (3.13)
PCe, S9

IC L= () + S5IChlwra() <

Then problem (V1) has no other solution in Xp X My, x Y.
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Proof. We consider two solutions (up,1,pn1,Ch,1) and (up,2,pn,2, Ch,2) of problem (Vgp) and we denote by

Uy = Up,1 — Up2, Ph = Ph,1 — Ph,2 and Cp, = Cp 1 — C} 2. By following the same steps of the proof of Theorem
2.8, uy, satisfies the analogue of (2.30),

% w1l 20y < €6,S31Ch]1.0- (3.14)

The treatment of the concentration is slightly different. By using the Green’s formula, the difference of the
equations satisfied by the concentrations reads with S, = T,

1
OZ‘C}J%H S 5 ‘/ (uh . VCh)C’hJ dr — / (llh . VC’h,l)Ch dz|. (315)
Q Q
Therefore, using Holder’s inequality, we obtain

[unll 2 (0)a

[Cn 2

10 < (Hch,l”Loo(Q) + 581Chalwra))- (3.16)
Thus, inequalities (3.14) and (3.16) give,

0
I ¢, 95 [unll 2y
B lunllagoye £ =5 = (IOl + SEICh s lwr o) (3.17)

Condition (3.13) allows us to deduce that |lus||;2qye = 0 and hence up,1 = up,2. Inequality (3.16) gives
Ch,1 = Ch 2. Finally, the inf-sup condition provides ppn 1 = pa,- O

Now, we address the convergence of the subsequence of the numerical solution to the exact one.
Bounds (3.12) and (3.11), and the compactness of the embedding of H!(Q) into LP(Q) ((p > 1if d=2,1 <
p < 6if d = 3), allow us to get the following lemma:

Lemma 3.3. Let f and g satisfy Assumption 2.1 and let (up,pr,Ch) be any solution of the discrete problem
(Van). We can extract a subsequence, still denoted (uy,, pp, Ch) verifying

}Linlo Cn=C weakly in H} (),

}lin})C’h:C_' strongly in LP(Q), (p>1ifd=2,1<p<6ifd=3),
— ) 3.18
}llirrb u, =u weakly in L(Q), (3.18)

}llimo Vpn=h  weakly in L3 Q)4,

where a € L3(Q)?, h e L2 (Q)? and C € HE ().

Proposition 3.4. Let (up, pn, Cr) be any solution of the discrete problem (Vap). Under assumption of Lemma
3.8, we have h = Vp, where (@, p) solves the first two equations of (V) with C = C. Furthermore, we have the
following strong convergence:
. = . 3 d
}1111% u, =u strongly in L*(Q)%. (3.19)
Proof. First, we shall show that i is a solution of the problem (2.12) for C = C.
The monotonicity of A gives

Vv € Vi, /Q (A(un) — A¥)) - (wh — Vi) dx > 0. (3.20)
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As uy, is a solution of problem (V) we get
Vv, € Vp, /Q.A(uh) c(up —vp)dx = /Qf(., Ch) - (up — vp) dx. (3.21)
Therefore,
Vv, € Vi, /QA(vh) (ap —vp)dx < /Qf(.,Ch) < (up —vp) dx. (3.22)

We now choose vy, = Fp,(v) where v is an arbitrary element of V. The strong convergence of F3(v) to v in
L3(2)% and (2.11) allow us to get

A(Fi(v)) — A(v) strongly in L3 (). (3.23)

Furthermore, since uy, — 7 (v) converges weakly to 11— v in L3(Q)¢ and f(.,C},) converges strongly to f(.,C)
in L3 (Q)%, we get by passing to the limit in (3.22),

Yvev, /Q.A(V)~(ﬁ—v)dxg/gf(.,é)-(ﬁ—v)dx. (3.24)

In particular, for v=1u+tw, where t € R and w € V, we get

VtER, t(/ﬂA(ﬁ—&—tw)-wdx) >t</Qf(C’)~wdx>.

By taking t > 0 (resp. t < 0), simplifying by ¢, tending ¢ to 0 and using the hemicontinuity of A, we get:

VeV, /QA(ﬁ)-vdxz/Qf(.,C')-vdx <resp./QA(ﬁ)-vdxg/Qf(.,é)-vdx>,

We obtain finally:
Vv eV, / A@) -vdx = / £(.,0) - vdx. (3.25)
Q Q

Hence u is the solution of (2.12), and we construct by using the inf-sup condition (2.10) the corresponding
pressure p.

The next step consists to show that uy converges strongly to @ in L2(Q)?. In order to prove it, we start by
taking v = vy, in (2.12) and subtracting from (3.10), we have

Vv € Vi, /Q(.A(uh) — A@) ~vhdx:/

(£(.,Cn) —£(.,0)) - vy, dx +/ V(p—pp)-vpdx
Q Q

(3.26)
:/(f(.,Ch)—f(.,C_’))-vhdx—i—/Vﬁ-vhdx.
Q Q

By inserting A(Fp(@)) and taking v, = u, — Fp(a), we get

/Q(A(uh) — A(Fa(0)) - (up = Fr(@)) dx = — [o(A(Fn(w) — A(W)) - (up — Fa(1)) dx

+IQV13' (up — Fp(u))dx (3.27)
[ o (£, Cn) = £(,0)) - (wy, — Fi()) dx.
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The monotonicity of A allows us to obtain,

e[ = F(@) e < | | (ACF(@) = AG@) - (wy — Fi (1) dx
¢ (3.28)
+‘ V- (un — Fu( dx’+‘/ (,Ch) —£(.,0)) - (up — Fa()) dx|.
Q

We pass to the limit in the previous equation. We deduce from the strong convergence of A(Fy (1)) to A(a)
and of f(.,C},) to f(.,C) that the first and last terms of the right-hand-side of the previous inequality tend to 0.
Furthermore, the weak convergence of uy, to u, and the strong convergence of Fj (1) to u imply the convergence
of the second term of the right hand side of the previous inequality to 0. Thus, u; converges strongly to u in
L3(Q)4.

To finish the proof, it remains to show that h = Vp, which can be easily obtained by passing to the limit in
(3.26), and by using the strong convergence of uy to i in L3(2)4, and the uniqueness of the weak limit.

O

Theorem 3.5. Let f and g satisfy Assumption 2.1, the limit (@,p,C) defined in Proposition 3.4 is a solution
of problem (V).

Proof. We have proved in Proposition 3.4 that (1, , C') solves the first two equations of problem (V). It remains
to show that (1@, C) solves the third equation of problem (V). We consider the third equation of problem (V).
By taking S, = Rp,S for a regular S € D(Q) (taking into account the density of D(Q) in H}(2)), we can show
easily the convergence of the linear terms except the non-linear ones which can be written as:

1 1 1
/ (uh . VCh)Sh dx + */ div(up) CpSpdx = = / (uh . VCh)Sh dx — = / (up, - VSh)Ch dx. (3.29)

d

)

The strong convergence of Sy, to S in Hy(Q2), and in L%(Q), the strong convergence of uy, to @ in L?(9)
and the weak convergence of Cj, to C in H}(2) lead to the convergence of (3.29). O

After showing the convergence of the discrete solution (up,pn, Ch) of problem (V,},) to a solution (u, p, C) of
problem (V), we next derive the corresponding a priori error estimate.

Theorem 3.6. Under Assumption 2.1, let (up, pp, Cr) be a solution of problem (Var), and (u, p, C) be a solution
of problem (Vou). If (u,p,C) are such that C € W13(Q) N L>(Q), u € L>=(Q)? and p € H(Q), and satisfies

the following condition:
auk,,

SAUC | wrs o+ || C ll poe () < ———2—| 3.30
6|Clwrs@)t || C llpe@)= 2720, 1 (3.30)
then, we have the following a priori error estimates:
C = Chlme) < o7 ((1 + c10)|C = Rp(C)|m(0) + c2r/C1u [V (rn(p) = )l 20y
(3.31)
3
+62r\/c3uH f}z(u) —u st(ﬂ)d + CQT‘\/C4U|| fh(u) —-u ||L2(Q)d)7
2

[u—u, ||2L2(Q)d§ 1w [V(p = rh(p))HLQ(Q)d + c|C — Chl%ﬂ(ﬂ) + csul| Fr(u) —u H%S(Q)d (3.32)

+ aul| Fr(w) =) |72
[ w—up [[ps0)< ¢ IV = a(p )||L2(Q 0+ |C — Ch| o)t cy || Fr(u) —u |30 (3.33)

+‘34u ” fh( ) ) ”Lz (Q)dr
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and

IV =) Il < c1plC = Crlra +ezp [l u = un [[Ls@ya +esp | Vrn(p) =) I 5 o0 (3.34)

L2(Q)d—

where c1p, Cop are constants given in relation (3.52), C1u, Cou, C3u, Can are given in relation (3.42), ¢y, Chy,
Chys Chy aTe given in relation (3.42), and cip, cap, c3p are given in relation (3.49).

Proof. We shall proof the result by proceeding by steps.

(1) Let us estimate the velocity error in terms of the temperature error. By taking the difference between the
first equations of (V) and (V},1) and testing with v = v, € V3, we obtain

[ (Aw) = Agw) -viax = |

(£1(C) — £1(Ch)) - v dx — / V(p—rn(p)) - v dx. (3.35)
Q Q

Then, by inserting Fp(u) and testing with v, = Fj(u) — up, that belongs indeed to V4, we easily derive
/ (A(Fn(u)) — A(up)) - vpdx = / (£1(C) — £1(Ch)) - va, dx+/ (A(Fp(u)) — A(u)) - vpdx
Q Q

Q
—/ V(p— ra(p)) - v dx.
Q

Let us bound the second term in the right hand side of (3.36). We have

(3.36)

/Q (.A(]-'h(u)) —A(u)) - vpdx = %/S)K_l(fh(u) —u)-vpdx+ i/ﬂ(|fh(u)| — [u))(Fr(u) —u) - vy dx

B B
+; /Q [u|(Frn(u) —u) - vy dx + - /Q(\]:h(uﬂ — Ju))u - vy dx.
(3.37)
Then,

‘/ (A(Fr(u)) — A(u)) -Vth‘ < PR | Frn(u) =) | 2@)all vi llL2()a
¢ P (3.38)

p 26
+; | Frn(u) —u H%?*(Q)dH Vh ||L3(Q)d +? | u ||L°°(Q)d|| Fr(u) —u ||L2(Q)d|| Vh HL2(Q)d~
Thus, the monotonicity of A and the fact that f; is cf, -Lipschitz with values in R? allow us to obtain,
Cs K 2
5 | Fn(u) —up ||L3(Q)d +Em | Fr(a) —an (720ya < | V(rn(p) = p) lz@)all va l[22@)a
0 wE M
+ecg,93|C = Chlai) | va llp2 (o) +T | Frn(a) =) L2yl Vi [l 22(0)e (3.39)

B 23
+; | Fr(w) = a [|Zsyall Vi llsye +7 [ allze @l Frla) —ull2)all va 220 -

To treat the last inequality, we bound all the terms of the right hand side containing b = || vy || L2(Q)d
using the formula

1 K,
ab < —a2+§b2, with € = u,
2e 2 8p

and, the term containing b =|| v, |13 (q)a, using the formula

a%b < 3( 20%a® + (5) b3) with § — (;i )1/3.
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Then, we infer the following bound:

Cs K 4p
T | Fr(w) = ap (1730 2 Fu(w) -y 172 (0ya< LK, I V(ra(p) = p) 172
4p 4uK?
+ WK, (cg, SS)Q\C — Chli o) + pr | Fr(w) =) (1720 (3.40)
46 3 166> | o )
+ W | Fn(u) —u HL3(Q)'1 *m | u ||Loo(Q)d|| Fn(u) —u HL2(Q)'1 :

By using the following triangle inequality

1
5 o= [ e <l Fa(w) = n 20y + Il Fa(w) = [[Z2 )

we get
lu =y [[720)0 < c1u [V (ra(p) = P)l[72(0)0 + 2ulC = Cil31 (g (3.41)
esu | Fu(w) = s g)a +eau | Fa(w) = w) [ gy, |
where
32,2 323% 32K%, 128432

and cq,, = Hu||L,,o (@ 2. (342)

W= s u = c1u(ce, S9)?,  =— —A
SR A U Y VG o K3 ieKE
Furthermore, relation (3.40) gives

K’I’n. &
L(Clu [V (rn(p) *P)”QL?(Q)d + 24|C — Oh\?{l(g) + ¢y || Fr(u) —u HiS(Q)d

3
| Frn(u) —ap 730y < e

2
+ Cay | Fr(w) = ull72(gya )
Thus, a triangle inequality allows us to get
I =y (30 < b V() = P) [ Fatgya + chalC = Clia) + hu | Fa(w) — 1 || sy
Jrcﬁlu H]:h( ) )”Lz (Q)ds

where

r s S /

el = 2pcm’ o = €, Ctuy Chy = CoySCouy oy = (1 + Yezy) and ¢y, = ¢, &/ Can. (3.43)
S

Hence relations (3.32) and (3.33) are proved

The proof of the error estimate for the pressure follows the same lines of the previous step. By taking
the difference between the first equations of (V,) and (V,4), inserting r4(p) and testing with v, € Xp,, we
obtain

/Q V(ra(p) = pn) - vidx = /Q (F1(C) — £1(C)) - vidx — /Q (Au) — A(uy)) - vy dx

(3.44)
—/QV(p— ri(p)) - vi dx.
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In order to estimate the second term in the right hand side of (3.44), we will proceed as follows:
/ (.A(u) — A(uh)) vidx = / K (u—uy) - vpdx + g / |ul(u —up) - vpdx
Q Q

+ é / (Ju] = |ap)up - vpdx

(3.45)
,UKM
P |Q|1/3 [u—upllps (Q)d ||Vh||L3(Q)d
p
+ » o= unl g2 (ye [Vallaoya ( 1ullpaoye + [[anllpa ) )-
Applying (2.20) and (3.11), we get
ey
/Q (A(n) — A(up)) - v de < —= p M3 |Ju - | s qya Vallps oy +
3.46
25 ﬂ CfIS%Sg 2 ( )
? ; ||f0||Lg(Q)d + “a H9HL2(Q)d [u— uh||L3(Q)d ||Vh||L3(Q)d :
cfngSS %
We denote v = ( ||f0||L2 @) + TQ ||9|L2(Q)d> . By following the same steps of the previous part,
and the inf-sup condition (3.3), we get
P 1/3 4 ﬁ
Ga || V(rn(p) — <c 0|'/659 ( Q u— up ||13(Q)d
| V) — ) 3 = 5.1/ Mgt 2y ) @
+[IV(p - Th(p))lng(Q)d :
The following triangle inequality
IV ®=pa) Il 5 0u SV RP) =p0) 13 0 + 1V ER@) =2) 13 )0
allows us to get
IV =) Il 5 e S lC = Crlra + cop [0 = wn [[Ls@ye +esp | V) =p) 3 g0 (3.48)
where ) ) % 28 )
c1p, = —ck SIS, ¢ :<MMQI/3+>andcf =(=—+1). 3.49
1p ﬂ2f12|| =73 p|| Pl 3p (52 ) (3.49)

Hence relation (3.34) is proved.

(3) Next we estimate the error of the concentration in terms of the velocity error. We take the difference
between the third equations of systems (V;) and (Vg4), insert Sy, (C), and use the Green formula to get for
all S, € X,

a/ﬂ (Ru(C) - 1) - VShdx+ro/Q(Rh(C)—Ch> Sy dx =
a/ﬂV(Rh ) VShderro/sl(Rh(C)fC) Sp dx
—&—%/Q(uh V(R C))Shdx—%/ﬂ(uh-VSh) (Ra(€) - C) dx (3:30)
—&-%/ﬂ(uh—u VC’)Shdx—%/Q<(uh—u)-VSh)Cdx.
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The terms in the last two lines of the right-hand side are bounded by

||uh\|L3(Q)d<|C = Ru(O) o lI1Shll Loy + 1€ — Rh(C)||L6(Q)|5h|H1<Q)) 1)
3.51
ol = ull oy (IC w100 1Shl o) + 1€l @) [Shlan @ )-

Then the choice S, = Ry (C) — C},, the antisymmetric property of the transport term, the fact that uy, is
bounded in L3(Q)? as

2

s < (5015 I, gy +erS3ICha))
and Sobolev’s embedding yield

|Rn(C) = Chlai() < c1r|C = Biu(C)| 1 (o) + c2rllun — ul[2(q)e,

where

To 802 SO 1 1
clrz(u B2 2 (00 1 gy +enSHIC ) ) and car = oo (SEICTwrs@)+ | C e

(3.52)
By using the following triangle inequality:
|C — Ch|H1(Q) < |Rh(C) — C|H1(Q) + ‘Rh(C) — Ch|H1(Q)7
we get
|C = Chlmio) < (1+¢17)|C = Ra(O)|m1(0) + corllun — ul| p2(0)a. (3.53)

(4) Finally, by combining relations (3.41) and (3.53), and using relation (3.30), we obtain relation (3.31).

By using the properties of the operators Ry, Fp, and rp, we get the following result:

Theorem 3.7. Under the assumptions of Theorem 3.6 and if the solution (u,p,C) of problem (V,) satisfies
C € H2(Q), ue WH3(Q)? and p € H*(Q), then we have the following a priori error estimates:

|C = Chlar@)+ lu—up |lp2e + | V(P —pr) |, 5,,..< Cih (3.54)

L2(Q)'i—

and

|| u— uy ||L3(Q)d§ Cgh2/3, (355)

where Cy and Cy are strictly positive constants independent of h.

4. ITERATIVE ALGORITHM

In order to solve the discrete system, we propose in this section an iterative algorithm which converges to
the exact solution under additional conditions on the exact solution.
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The algorithm proceeds as follows: Let up € Xy, and Cy) € Y, the initial guesses. Having (u},C}) € X x Y},
at each iteration ¢, we compute (u?‘l,p?‘l, C’;LH) € X, x My, x Yy, such that

Vv, € Xp, 7/ (uit! —uj) - vipdx + £ / (K tajthy vy, dx + ﬁ/ luj [ulth vy dx
Q P Ja P Jo
+/ Vpﬁfl cvp dx = / £(C1) - vy dx,
Q Q
(Vani) Yqn, € My, / Van -uﬁfl dx =0, (4.1)
Q

) ) ) 1 ) )
VSh €Yy, / VO VS, dx + / (up - vCh S, dx + 3 / div(uj) C; ' Spdx
Q Q Q

+ro / Ot S, dx = / gSp, dx,
Q Q

where v is a real strictly positive parameter. Later on, the parameter v will be chosen to ensure the convergence
of algorithm (Vgp;). At each iteration ¢, having u}, and Cj}, the first two lines of (V,5;) computes (u;LJ“l,p;LJrl).

Next, we substitute uffl by its value in the third equation of (V,5;) to compute C’,ifl.

In the following, we study Scheme (V,;;), and we begin by proving the existence and uniqueness of the
corresponding solution.

Theorem 4.1. In addition to Assumption 2.1, we suppose that fy € L*(Q)4. For each (ui,Ci) € X, x Yy,
problem (Van;) admits a unique solution (u;"’l,p}fl,C,’fl) € Xy X My, xYy,. Moreover, we have the following
bound

41 S5
(3
Cit e < 22 gl aqey - (4.2)
Furthermore, if the initial value u?L satisfies the condition
2
Hu?lHL2(Q)d < Ll(fvg)> (43)
where
1 (53)” ’
11(6.9) = (Mol + o0 25 ol )

and if v satisfies the condition
320

> 5 CfLa(f, g, Li (£, 9)h Y2, (4.4)
27p
where
1
1 3p (52)? 2 | 3uK3, 32 6, a2\’
Ly(f,g,v) = NG (Mn( 1foll £2(qya + o l9ll L2y )™ + 20K, v+ 2pk,, Crh™v" ), (4.5)

then, the following inequalities hold
i 2
Huh+1HL2(Q)d < Ll(fag)v (46)
and

. 2 2
Hu2+1||i3(md < Ep (,Ufén + g)Ll(f,g). (4.7)
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Proof. To prove the existence and uniqueness of the solution of problem (V,;) which is a square finite dimension
linear system, it suffices to show the uniqueness which is readily checked for each (ui,Ct) € X, x Y. In fact,
let (u;+ 5 p}ff, C’;fll) and (u;f;, p2+21, C’;f;) be two solutions of problem (V,;). Denote wj = u}fll — u;f; and

& = p}j‘f — p?'; We deduce from the problem (Vg5;) that (wy, &) is the solution of the following problem

Yy, € Xy, 7/wh~vth+H/K_1wh~vhdx+§/|u§1|wh~vhdx+/V§h-vhdx:0,
Q P Ja P Ja Q

Yqn € My, / Vqp - wpdx = 0.
Q

Taking (vp,qn) = (Wg, &) and remarking that / [u ||[wp,|? dx is non negative, we obtain by using the
Q

properties of K1, the following bound

Ky,
(7 + Np) ||Wh||iz(9)d <0.

Thus, we deduce that wp = 0 (uﬁfll = u;le) and the discrete inf-sup condition (3.3) implies that &, = 0

(p;fll p;f !). This gives the uniqueness of the velocity and the pressure for each iteration i.

Let us now prove the uniqueness of the concentration. We denote by C’,ilJrl = C;fll — C;j'gl. Then, the third
equation of problem (Vz;) gives: find OZ+1 €Y}, such that for all S;, €Y},

) . ) 1 )
a/ VCitt. Vs, dx+/(u;f1-vc,§+1)sh dx+§/ div(u Z+1)C’Z+1Shdx+ro/ CitlS,dx =0, (4.8)
Q Q Q Q

where (u Hl,pﬁfl) is the unique solution of the first two equations of problem (V,;). By taking S, = C”Jrl nd

using the antisymmetric property we get the uniqueness of the concentration.

The bound (4.2) can be deduced immediately by taking Sj, = C'Z+1 in the third equation of problem (Vp;),
and by using the Cauchy-Schwartz inequality.

To prove the bound (4.6), we need first to estimate the error ||u

value uj,. Taking the first equation of problem (V) with v, = u}fl — u}, yields

141 1 : .
uz”LQ(Q)d in terms of the previous

.2 . . . .
v Hqu UZHLz(Q)dJrH/ K~ 1u;L+1 (uﬁl ;L)dx—i_é/ |u2|u2+1 (uj, - h)dx = / £( Ch Hl —uy,)dx.
P Ja P Jo
By inserting ufz in the second and third terms of the last equation, we get,

w1 g+ /K (i~ uj) - (! ) dx ot 2 /\ g — w1 dx

(4.9)
Q P Ja
Using the properties of K1, the Cauchy-Schwartz inequality and relation (3.2) give the following
i+1 i PECn i i|2 < |If(ci i+l i
| AR A o @ T [y, — uhHL2(Q)d < [|£( h)HLz(Q)d [y, =] . ()¢ 110
/LKM /8 i1 . ( . )

Cin—/? HuhHLZ(Q)d [y,

+T [y, — u§l||L2(Q)d Hum‘L2(Q)d + 0 u;lHLZ(Q)d '
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1 K, . . .
We apply the relation ab < 2—(12 + %b2 with ¢ = MT to each term on the right-hand side of the previous
2 14

inequality, and we obtain

i i MK i i 3uK?
V" = by + 5 0 = il e < 57 K 1@ 2@y + gy 1001z e )
332 14 .
+ 21K Crh™ HuhHL2(Q)d
Therefore, Assumption 2.1 and Relation (4.2) allow us to get
HuH_l uﬁl”LQ(Q)d <L (f7ga uz‘}iz(ﬂ)d)v (4'12)

where

1
L[ 3p (59)° L ST iy TR A
L2(f,9a’/):\7ﬁ (Mn<”f0”L2(Q)d +CflT||g||L2(Q) + QPKmV+2MPKmOIh v - (413)

Then, we are now in position to show relation (4.6). We consider the first equation of problem (Vgp;) with

vy, = uzﬂ and we obtain

,Y/( i+1 uh) H—l dX—I— K 1 z+1 H—l dX—F* Huz—i-1HL3(Q)d
(4.14)

/fCh ”ldx—&—ﬁ/ |1f+1 i )i P dx.

1
Using the properties of K1, the Cauchy-Shwartz inequality and the relations ab < 2—a2 + %bQ and a?b <
5

1( 3b3 +25%a ) wih € = Pl and § = <%>2/3, we get
1) p 4p
i Y i u m | B ili
A PP AR oy > 0 ey 5 Pl AR/ s
4.15
< Hf C H + 1650 h 3d/2 ||uz+1 —u ||
= QMK h) 1l L2(q)d I hilL2(Q)4
We denote by
X y 165 _ 2
Ci( Hu;lHL2(Q)d) -9 Cgh 2Ly (f.9, u;lHL2(Q)d)
and we get by using (4.12) that
i v 168 i i
Cl( HuhHLQ(Q)d> < 9 27p Clh s/ H - uhHLZ(Q)d
Therefore, we obtain the following bound:
Y i v i P
5 i ey HuhHLzm o+ Cr(f[uhl oy ) b = Wil e + =5, [l 0 72 e -,
4.16
i 2p
+ o H +1HL3(Q)d < m[/l(fvg)'

We now prove estimate (4.6) by induction on ¢ > 1 under some condition on . Starting with relation (4.3),
we suppose that we have

W32 00 < La(E,9)- (4.17)

We have two situations:
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”1 ||L2(Q)d < Hu};HL,}(Q)d, which immediately leads to

HuH_l HLZ(Q)d < Ll(fa g)'
- Hu”lHLQ(Q)d > Hu’}iLHLZ(Q)d' By using the induction condition (4.17), taking

1643

L5 220032 Ly (£, Ly (F, g))
2 27p
" ﬁ (4.18)
—3d/2
> 5 C,h 12 Ls(f, o)
we get C’l( ||u§1||L2(Q)d) > 0, and deduce from relation (4.16) that
i+1
HU. HLZ(Q)d < Ll(fa g)'
Then relation (4.6) holds. The bound (4.7) is a simple consequence of (4.16) and (4.6). O

The next theorem shows the convergence of the solution (u},pi,C}) of problem (Vi) to the solution of
problem (Vgp).

Theorem 4.2. In addition to Assumption 2.1, we assume that the concentration solution of the problem (V)

satisfies
Ko

Se1C w. Cll ooy € . 4.19
61Clwra@) + 10| poe () < 2pct, 89 (4.19)
Under the assumptions of Theorem 4.1, and if v satisfies the condition
2003, _4
y>—=h"% 4.20
e (4.20)

where Co = gC?(Ll(f,g))l/z and if

6/(6—d)
1 1C Lo ()
h < Clw.s —_— , 4.21
—(gc,cl (' o + g ) (21

where Cy is the constant in (3.54), then the solution (ui,p,Ci) of problem (Vuu;) converges in L*(2)? x
L?(Q) x HY(Q) to the solution of problem (V).

Proof. We start by subtracting the third equation of problem (V,;;) from the one of problem (V,;) to get

a/V(Ch—C;+1)~vshdx+/
Q

uy - VOhSh dx — /
Q

i+1 VCH-lSth—FTo/(Ch—O’il""l)Sth
Q

4.22

1 i vil 1 . ( )

= 5 divu, ™ C;7 S dx — 3 div u, Cy Sy, dx.
Q Q

Inserting V), in the last term of the left-hand side and C}, in the first term of the right-hand side of the
previous relation lead to

a/ V(ch—c;‘jl)-vshdx+r0/(ch—c;'jl)shdx—/ LV (O — O) Sy dx
@ @ @ (4.23)

1 . 4 . 1 ,
= 5/ div u;fl(C,zLH — Ch)Spdx + / (uﬁfl —uy) - VCLS, dx + 5/ div(u}fl —uy,)CR Sy dx.
Q Q

Q
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Finally, by inserting VC' in the second term of right-hand side and using the Green’s formula and the
antisymmetric property, we get

a/ V(Cy —C;Y VS, dx+r0/(C’h —Cyt)Sy, dx
Q Q

1 1
= 3 / (uZ'H —uyp) - V(C), — C)Sh dx + B /( ;L-H —uy,) - VCS), dx (4.24)
Q Q
1 1 ;
~3 / (it —up,) - VS,(Cy, — C)dx — 3 / (Wt —uy) - VS, O dx.
Q Q

By taking S, = Cy — C;L‘H, we obtain

o] Ch = i e < S5 [u" = un| s g4 [Ch = Clia

Se 1 . (4.25)
Huer uhHL2(Q)d Clws) + ) IC e ) [y, — uhHL2(Q)d
Finally, we get by using relation (3.2):
. 1€ Lo (2
G = Cy 10 < 2Ch=|C — Ch|1Q+|C‘W13(Q)+57) |u ZH*uhHLz(Q)w (4.26)
6
“Furthermore, by taking the difference between the first equations of problems (Vo) and (Vopi) with vj, =
u;;rl —uy, we get
I = wn gy = 5 k= o + 5 i = + | E T P dx
h L2(Q)4 h h L2(Q) h L2(Q) h
+ " (Jup| = [ Nupt - (upt —up)dx + P’ (JujtHagtt — |uh\uh) (uptt —up)dx (4.27)
Q Q

= /Q (F(Cp) — £(Cn)) - (ujFh —uy) dx.

By using the monotonicity property of the operator A we obtain,

K .
2 i - 2l - B2 it — | 0

2
uhHL?(Q)d - Huh uhHLZ(Q at g uh”mm)d

< gc?’f‘“z ™ = wil] gy [1h ] 2y [Tk = Wnl| 2gye + eraS21CH = Crlra [h™ = wnl| 2 g

= gcﬁh_d/Q(Ll(ﬂg )1/2 [E uH‘LZ(sz)d [, — uhHLz(Q)d + 0,531Ch = Culua [[u™ = uhHLZ(ﬂ)d

(4.28)
We denote by Cy = gC}O’ (Ll(f,g))1/2, and we use the relation ab < 2—1€a2 + %bQ with e = %7 we get
2 2 Y % NKm i 2
Hu i uhHLQ(Q)d - Huh uhHLZ(Q)d +35 Hu ! uhHL2(Q)d [y, uhHLQ(Q)d
(4.29)
pC3

<
= K,

pe g uzuim)ﬁp(jjl)ch Chlto.
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2 2
We choose l > ;;2 h~%, and we denote by C5 = % - :%h*d > 0 to conclude that
(3 ’7 1 /’LKm 7 2
5 ||u i uh||L2(Q)d - Huh uhHL2(Q)d +Cs [l uhHLZ(Q)d [y, uhHL2(Q)d
4.30
< (cflsQ) |C —-C |2 ( )
— MK h h 1,9’
Combining (4.30) with (4.26) and using a priori estimate (3.54), we get
Y i 2 Yl 2 i i MKm i 2
Hu ! uhHL2(Q)d 3 [, — uhHLZ(Q)d +Cs [|ug - uhHL2(Q)d [ uhHLZ(Q)d
4.31)
5959\ 2 _ ; (
< Mf;m (Cf12; 6) [20101h(6 d)/6 4 |Clwrs0) + ||C\|LOC(Q)} |uj, — uh”iZ(Q)'i .
Finally, Assumptions (4.19) and (4.21) allow us to get
Y .UKm in2
(325 ) (i = g = =l ) o i =
(4.32)

L <0

2
uh||L2(Q)d
We deduce that, for all i > 1, we have (if Hu}l — uhHLz(Q)d #0)
i+1 i

[y, — uh”mm)d < [Juj, - uhHL2(Q)d )
and then we deduce the convergence of the sequence (uj™" — uy) in L2(Q)?, and then the convergence of the
sequence u} in L2(Q)%. By taking the limit of (4.32), we get that u, ™! converges to uy, in L?(Q)?%. Relation
(4.26) allows us to deduce that C;"' converges to Cj, in HE ().

Next, we study the convergence of the pressure, taking the difference between the first equations of systems
(Van) and (Vap;), we obtain for all v, € X}, the equation

/V(p2+1—ph)~vhdx:/ (f(Ch)—f(Cﬁ))~vhdx—7/( o)) v dx
Q Q Q
B/K_l(Uh_u;j_l) -vth—F%/ (\uh|—|u2|)uh.vhdx
Q

We get by using the inverse inequality (3.2) the following:

‘/V ’H—ph Vth‘

o IvallLe@)a
< ¢, 89|Ch — Cj 1 o m—m EEDT
[[Vh|lLs ) [[Vh|lLs )
P pE Vil L2 (@)
(o, = 0 e e+ B2 — ey ) o
||VhHL3(Q

p -4 i i
2 ConFhun = bl ey (IPonllzs e + bl lzocre)



DARCY-FORCHHEIMER PROBLEM COUPLED WITH CDR EQUATION 2669

For a given mesh, owning the inf-sup condition (3.3), and using the strong convergence of uj, to uy, in L?(Q)4,
and of C} to C, in H(Q), we deduce the strong convergence of Vp! to Vpy, in L%(Q) Furthermore, the fact
that pi and pj, are in the discrete space of IP; finite elements M, C LZ(Q2) which is defined in (3.6), allows us
to deduce the strong convergence of p to p, in L*(9). O

Remark 4.3. If h is not small enough, we can replace the conditions (4.19) and (4.21) in Theorem 4.2 by the
following condition:

2
Cll7 oo K
|| HL (Q) < J22297

2C;C1(diam(€2)) =70 + |Clyrace) + S0 1
6 P

p (cflsgsg)Q
wK, 2c0

In fact, this condition can be used in the relation (4.31) in the proof of the previous theorem.

Remark 4.4. The convergence of the iterative solution (uf,pi,C?) of problem (V,p;) to the exact solution
(u,p,C) of problem (V,) is a simple consequence of Theorems 3.6 and 4.2. In fact, Conditions (4.4) and (4.20)
satisfied by 7 to ensure the convergence of the iterative solution (i, pi, C}) to the discrete solution (uy, pp, Ch)
lead us to consider v as a function of h (y(h)) and satisfying these two relations. Thanks to the triangle
inequality, we have:

[(w,p, C) = (uf,, P}, Ci)llxxarxy < [I(w,p,C) = (an, pr, Ch)llx sarxy
+1(an, o, Cn) — (W, P, O x xnrxy
Under the assumptions of Theorem 4.2 with v(h) satisfying conditions (4.4) and (4.20), (u}, p},, C}) converges

to (up,pn, Cpr) in Xp X My, x Yy, and, there exists an integer ig(h) depending on h such that for all ¢ > ig(h)
we have

[(an, pr. Cr) — (f,, ph, Ci) |l x xarxy < [|(w,p, C) — (Wn, phy Ch)l x xarxy -

Consequently, for all i > ig(h), we get
||(uvp7 C) - (uzapﬁmc}iy,)HXxMXY é 2||(u7p7 C) - (uhvphvch)HXXMXlﬂ

Thus, we obtain the convergence of the iterative solution to the exact one.

5. NUMERICAL RESULTS

In this section, we present numerical experiments corresponding to our coupled problem for d = 2. These
simulations have been performed using the code FreeFem++ due to Hecht and Pironneau (see [25]).

We will show in this section numerical investigations corresponding to problems (V,;;) by using for the
convergence the stopping criterion Err;, < & where ¢ is a given tolerance considered in this work equal to 107
and Erry, is defined by

g = o + 95" = Bl g g0 + IO — Chlio

[uy e )2 + || Vpp™ +1C 10

Err; =
||L% (Q)Q

The initial guesses u) and C} are considered in one of these two situations:

(1) CP =0 and uf) =0.
(2) CY =0 and u) =u?, are calculated by using Darcy’s problem which corresponds to 3 =~ = 0.
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TABLE 1. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each -y associated
to Example (5.1) with algorithm (V,p;) for u) = 0. (8 = 20, £ = 20).

¥ 0.001 .01 1 1 10 100 1000
Nbr 4078 4009 3432 1440 234 29 115
Err  0.068 0.068 0.068 0.068 0.068 0.068 0.068

We will see later that the second case where u% is the solution of Darcy’s problem improve the convergence
of the algorithms.

We also consider the errors
I}, = ullz2@)2 + IV} =Pl 3 ). +1Ch = Clig

+[Cl1,0

(

Err = ,

Hu||L2(Q)2 + ||Vp||L%(Q)2
and )
[a;, —ul[Ls )2

ErrLL3 =
|[ul |L3(Q)2

which describe the rate of the a priori error estimation for a large values of the iteration index 1.

5.1. First numerical test: analytical solution

In this section, we will show numerical results corresponding to the problem where we know the exact solution.
Let Q =0, 1[>C IR? where each edge is divided into N equal segments so that € is divided into N2 equal squares
and finally into 2N? equal triangles. For simplicity, we take u = p = 1.

We consider the following exact solution with a parameter ¢:

p(x,y) = cos(mz) cos(my),
u(z,y) = &(—sin(rx) cos(my), cos(mz) sin(my))?, (5.1)
Cla,y) =2*(x - 1)%°(y — 1)%,

where divu = 0in Q, u-n = 0 and C = 0 on 99Q. Furthermore, we take f;(C) = (4C, 3sin(C)). Thus, we
compute f and g by using their expressions in problem (P).

5.1.1. Case where K =1

In this part, we take K = I. To study the dependency of the convergence with the parameter v, we consider
N =60, 8 =20, £ =20, a =ry =1, and for each ~y, we stop the algorithm (V,;) when the error Err; < le~>.
Tables 1 shows the error (Err) and the number of iterations (Nbr) for u) = 0 and C} = 0, while Table 2 shows
similar results for ug = u?Ld and C? = 0. These two tables describe the convergence of algorithm (Vani) with
respect to 7. We remark that the number of iterations is relatively small when + is large. In both cases, the best
convergence is obtained for v = 100. The main advantage is for the case where u) = uj, are computed with
Darcy’s problem is that the number of iterations (Nbr) is less than the one obtained with the case uf) = 0.

For further studies, we consider 3 = 10, £ = 20, v = 100 and the initial guesses uy = u?, and C} = 0.
Tables 3 and 4 show the obtained rate of convergence which seems in agreement with the theoretical findings.
We notice that the theoretical rate of convergence of the velocity in norm L2(2)2, the pressure in norm W2 (Q)
and the concentration in norm H}(2) are equal to 1; the rate of convergence of the velocity in norm L3(Q)? is
2/3.
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TABLE 2. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each -y associated
to Example (5.1) with algorithm (V,p;) for u) =u?, (8 = 20, £ = 20).

ol 0.001 .01 1 1 10 100 1000

Nbr 2027 1993 1710 714 110 18 76
Err 0.068 0.068 0.068 0.068 0.068 0.068 0.068

TABLE 3. Rate of convergence of the velocity in norms L?(2)? and L3(Q)3. Example (5.1) with
algorithm (V,p) (8 = 20, £ = 20).

h logyo(llu—un ez /|ull2) Rate logyo(llu—unllzs/[[ullrs) Rate
1/120 —4.2812 —4.1598
1/140 —4.4047 1.84 —4.2431 1.23
1/160 —4.5111 1.83 ~4.3154 1.24
1/180 —4.6029 1.79 —4.37111 1.09
1/200 —4.6830 1.74 —4.4183 1.03

TABLE 4. Rate of convergence of the pressure in norm whs (Q) and the concentration in norm
H} (). Example (5.1) with algorithm (V,;;) (8 = 20, £ = 20).

h dogig(llp=pnll,13) Rate log([IC—Chllyy) Rate

1/120 —1.8902 —1.7090

1/140 —1.9611 1.05 —1.7759 0.99
1/160 —2.0215 1.04 —1.8339 1.00
1/180 —2.0742 1.03 —1.8851 1.00
1/200 —2.1210 1.02 —1.9300 0.98

TABLE 5. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each v associated
to Example (5.1) with algorithm (Vp,) for u) = u?,. (8 = 20, £ = 20).

0 1 1 10 100 1000

Nbr 518 346 84 13 45
Err  0.068 0.068 0.068 0.068 0.068

5.1.2. Case where K # 1
In this part, we take K such that K~ is equal to:

Kl 3+ sin(nz)sin(my)  22y?
-\ 2?%y? 3 + sin(mx) sin(nwy) )

We follow the same numerical tests performed above and we consider N = 60, § = 20, £ =20, a = rgp = 1.
Based on the previous test case, we will perform here numerical simulations with u) = u?, and C} = 0. Table
5 describes the convergence of algorithm (V,;;) with respect to 7. In this case, the best convergence is also
obtained for v = 100.
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TABLE 6. Rate of convergence of the velocity in norms L?(Q2)? and L3(Q)3. Example (5.1) with
algorithm (Vgp,). (8 = 20, £ = 20).

h logyo(llu—un 2 /|[ullr2) Rate logyo(|[u—unlzs/[[ullzs) Rate
1/120 ~4.2927 —4.2127
1/140 —4.4245 1.96 —4.3432 1.94
1/160 —4.5379 1.95 —4.4539 1.90
1/180 —4.6368 1.93 —4.5480 1.84
1/200 —4.7242 1.90 —4.6274 1.73

TABLE 7. Rate of convergence of the pressure in norm W12 (©) and the concentration in norm
H(Q). Example (5.1) with algorithm (V,p;). (8 = 20, £ = 20).

h 108;10( | p—opn | 1.3 ) Rate lOgm( | C—Ch HH(} ) Rate

1474

1/120 —1.8902 —1.7090

1/140 —1.9612 1.05 —1.7759 0.99
1/160 —2.0216 1.04 —1.8339 1.00
1/180 —2.0743 1.03 —1.8851 1.00
1/200 —2.1211 1.02 —1.9308 0.99

Let us now study the rate of convergence of the errors. we consider 8 = 10, £ = 20, v = 100 and the initial
guesses u) = u?; and CP = 0. Tables 6 and 7 show that the numerical rate of convergence seems in agreement

with the theoretical findings.

5.2. Comparison between Darcy and Darcy-Forchheimer

In this section, we treat numerical test (taken from [32]) showing the difference between Darcy and Darcy-
Forchheimer systems. We take N = 60, v = 10,

fo(z,y) = (100(1 — 2)%(1 — )%, 007, g(z,y) = 1022y,
v=p=1l,a=rg=1, K=1and f; =0.

In the following, we will compare the numerical velocity, pressure and concentration corresponding to Darcy-
Forchheimer Problem (for 8 = 10) and Darcy Problem (for § = 0). Figures 1-6 show that there are differences
between the distributions and values of the numerical velocities, pressures and concentration. The biggest
difference between the Darcy and the Darcy-Forchheimer is in the values of the velocity (which was expected).

5.3. Second numerical test: Driven cavity

The driven cavity is a standard benchmark for testing the performance of algorithms in fluid problems. It is
treated in several works (see [8,16,27,34]). In this section, we show numerical simulation corresponding to the
Lid Driven Cavity in order to study the dependency of the convergence with respect to v and the data.

Let Q =]0,12, K =1, u= 1,179 =0, 8 = 20, fy = 0, £;(C) = (10C,10C), and g = 0. We complete the
Darcy-Forchheimer equations with the boundary conditions u.n = 0 on 912, and the concentration equation
with the boundary condition C =7 (7 is a parameter) on I'y = [0, 1] x {1} (top of Q), and C = 0 on IN\I';. In
this section, the initial guesses of algorithm (V,;) are Cj) = 1 and uf = uf -

We begin first by testing the convergence of the algorithm with respect of « for a given n = 20. We consider
N = 20 and we test the algorithm for multiple values of . We consider that the algorithm does not converge
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FIGURE 1. Numerical Darcy-Forchheimer velocity (6 = 10).

Vec Value

FI1GURE 2. Numerical Darcy velocity.

if the condition Erry, < le™® is not reached after 5000 iterations. Table 8 shows for 7 = 20, the dependency of
the convergence of the algorithm with respect to 7 and the better convergence corresponds to the value v = 10.
This result shows clearly that the convergence depends on v as announced in relation (4.20) of Theorem 4.2.

Figures 7-9 show the velocity, pressure, and concentration in  for v = 10 and n = 20.
Let us now test the convergence with respect to n for v = 10. Table 9 shows the dependency of the convergence

of the algorithm with respect to ) (i.e. with respect to the concentration C'). This result shows clearly that the
convergence depends on the concentration as announced in relation (4.19) of Theorem 4.2.
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FIGURE 3. Numerical Darcy-Forchheimer pressure (5 = 10).
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FIGURE 4. Numerical Darcy pressure.
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FIGURE 5. Numerical Darcy-Forchheimer concentration (8 = 10).

TABLE 8. Test of the convergence for the driven cavity with respect to v for n = 20.
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FIGURE 6. Numerical Darcy concentration.
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FIGURE 9. Numerical concentration (Driven cavity), v = 10,7 = 20.
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TABLE 9. Test of the convergence for the driven cavity with respect to n for v = 10.

n 1 20 100 150 170 175 180 200
Nbr 24 27 7 235 728 1493 - -
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