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FINITE ELEMENT METHODS FOR THE DARCY-FORCHHEIMER PROBLEM
COUPLED WITH THE CONVECTION-DIFFUSION-REACTION PROBLEM

Toni Sayah1, Georges Semaan1,* and Faouzi Triki2

Abstract. In this article, we consider the convection-diffusion-reaction problem coupled the Darcy-
Forchheimer problem by a non-linear external force depending on the concentration. We establish
existence of a solution by using a Galerkin method and we prove uniqueness. We introduce and analyse
a numerical scheme based on the finite element method. An optimal a priori error estimate is then
derived for each numerical scheme. Numerical investigation are performed to confirm the theoretical
accuracy of the discretization.
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1. Introduction

This work studies the convection-diffusion-reaction equation coupled with Darcy-Forchheimer problem. The
system of equations is

(𝑃 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇

𝜌
𝐾−1u +

𝛽

𝜌
|u|u +∇𝑝 = f(., 𝐶) in Ω,

div u = 0 in Ω,

−𝛼𝛥𝐶 + u · ∇𝐶 + 𝑟0𝐶 = 𝑔 in Ω,

u · n = 0 on Γ,

𝐶 = 0 on Γ,

where Ω ⊂ IR𝑑, 𝑑 = 2, 3, is a bounded simply-connected open domain, having a Lipschitz-continuous boundary
Γ with an outer unit normal n. The unknowns are the velocity u, the pressure 𝑝 and the concentration 𝐶 of
the fluid. |.| denotes the Euclidean norm, |u|2 = u · u. The parameters 𝜌, 𝜇 and 𝛽 represent the density of the
fluid, its viscosity and its dynamic viscosity, respectively. 𝛽 is also referred as Forchheimer number when it is a
scalar positive constant. The diffusion coefficient 𝛼 and the parameter 𝑟0 are positive constants. The function

Keywords and phrases. Darcy-Forchheimer problem, convection-diffusion-reaction equation, finite element method, a priori error
estimates.
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f represents an external force that depends on the concentration 𝐶 and the function 𝑔 represents an external
concentration source. 𝐾 is the permeability tensor, assumed to be uniformly positive definite and bounded such
that there exist two positive real numbers 𝐾𝑚 and 𝐾𝑀 such that

0 < 𝐾𝑚 ≤
⃦⃦
𝐾−1

⃦⃦
𝐿∞(Ω)𝑑×𝑑 ≤ 𝐾𝑀 . (1.1)

It should be noted that 𝐾𝑚 should be smaller than the smallest eigenvalue of 𝐾−1 over Ω and 𝐾𝑀 could be
very large.

To simplify, a homogeneous Dirichlet boundary condition is prescribed on the concentration 𝐶, but the
present analysis can be easily extended to a non-homogeneous boundary condition.

System (𝑃 ) couples the Darcy-Forchheimer system with the convection-diffusion-reaction equation satisfied
by the the concentration of the fluid. The same system can also couple the Darcy-Forchheimer system with the
heat equation satisfied by the temperature 𝑇 of the fluid, it suffices to set 𝑟0 = 0 and replace 𝐶 by 𝑇 .

Darcy’s law (see [31] and [37] for instance for the theoretical derivation) describes the creeping flow of Newto-

nian fluids in porous media. It is simply the first equation of system (𝑃 ) without the non-linear term
𝛽

𝜌
|u|u and

where the function f may depend on the concentration 𝐶 of the fluid. Forchheimer [19] showed experimentally
that when the velocity is higher and the porosity is nonuniform, Darcy’s law becomes inadequate. He proposed
the Darcy-Forchheimer equation which is the first equation of the system (𝑃 ). A theoretical derivation of Forch-
heimer’s law can be found in [29]. Multiple theoretical and numerical studies of the Darcy-Forchheimer system
were performed and among others we mention [24, 26, 28, 32, 33]. Many numerical investigations are performed
and show the importance of the Darcy-Forchheimer equation compared with Darcy equation (see for instance
[32] and the references inside).

For the coupled problem of Darcy’s law with the heat equation, we can refer to [6] where the coupled problem
is treated using the spectral method. The authors in [4] and [14] considered the same stationary system but
coupled with a nonlinear viscosity that depends on the temperature. In [15], the authors derived an optimal
a posteriori error estimate for each of the numerical schemes proposed in [4]. We can also refer to [3] where
the authors used a vertex-centred finite volume method to discretize the coupled system. Furthermore, for the
time-dependent convection-diffusion-reaction equation coupled with Darcy’s equation, we refer to [9, 10] where
the authors established the corresponding a priori and a posteriori errors.

The coupling system (𝑃 ) has many physical applications for the Darcy-Forchheimer mixed convection case
[36]. In this case, the Darcy-Forchheimer system is coupled with the concentration 𝐶 of the fluid with an external
force f . We mention that the work of [6] use the spectral method to treat a coupled system very close to (𝑃 )
where the Darcy-Forchheimer equation is replaced by the Darcy’s one. It turns out that the non-linear term
appearing in the first equation of (𝑃 ) makes the treatment of the coupled system more complex.

We first derive an equivalent variational formulation to (𝑃 ) and we show the existence of a solution. The
uniqueness can be reached under additional constraint on the concentration (see Condition (2.27)). Then,
we discretize the system by using the finite element method and we show the existence and uniqueness of
the corresponding solution. Later, we establish the a priori error estimate between the exact and numerical
solutions under the condition of smallness of the concentration in the fluid. In order to compute the solution,
we introduce an iterative scheme and we study the corresponding convergence. Finally, numerical investigations
are performed to validate the theoretical results.

The outline of the paper is as follows:

– Section 2 is devoted to the continuous problem and the analysis of the corresponding variational formulation.
– In Section 3, we introduce the discrete problems, recall their main properties, study their a priori errors and

derive optimal estimates.
– In Section 4, we introduce an iterative algorithm and prove its convergence.
– Numerical results validating the convergence analysis are presented in Section 5.
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2. Analysis of the model

2.1. Notation

Let 𝒟(Ω) be the space of functions having a compact support in Ω with continuous derivatives of all orders
in Ω. Let 𝛼 = (𝛼1, 𝛼2, . . . 𝛼𝑑) be a 𝑑-uplet of non-negative integers, set |𝛼| =

∑︀𝑑
𝑖=1 𝛼𝑖, and define the partial

derivative 𝜕𝛼 by

𝜕𝛼 =
𝜕|𝛼|

𝜕𝑥𝛼1
1 𝜕𝑥𝛼2

2 . . . 𝜕𝑥𝛼𝑑

𝑑

.

Then, for any positive integer 𝑚 and number 𝑝 ≥ 1, we recall the classical Sobolev space [2, 30]

𝑊𝑚,𝑝
(︀
Ω
)︀

=
{︀
𝑣 ∈ 𝐿𝑝

(︀
Ω
)︀
; ∀ |𝛼| ≤ 𝑚, 𝜕𝛼𝑣 ∈ 𝐿𝑝

(︀
Ω
)︀}︀

, (2.1)

equipped with the seminorm

|𝑣|
𝑊 𝑚,𝑝

(︀
Ω
)︀ =

(︂ ∑︁
|𝛼|=𝑚

∫︁
Ω

|𝜕𝛼𝑣|𝑝 𝑑x
)︂ 1

𝑝

(2.2)

and the norm

‖𝑣‖
𝑊 𝑚,𝑝

(︀
Ω
)︀ =

(︂ ∑︁
0≤𝑘≤𝑚

|𝑣|𝑝
𝑊 𝑘,𝑝(Ω)

)︂ 1
𝑝

. (2.3)

When 𝑝 = 2, this space is the Hilbert space 𝐻𝑚(Ω).
The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but with

the following modification for the norms in the non-Hilbert case. Let v be a vector valued function; we set

‖v‖𝐿𝑝(Ω)𝑑 =
(︂∫︁

Ω

|v|𝑝 dx
)︂ 1

𝑝

, (2.4)

where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

𝐻1
0 (Ω) =

{︀
𝑣 ∈ 𝐻1(Ω); 𝑣|Γ = 0

}︀
,

𝑊 1,𝑞
0 (Ω) =

{︀
𝑣 ∈ 𝑊 1,𝑞(Ω); 𝑣|Γ = 0

}︀
.

(2.5)

We shall often use the following Sobolev embeddings: for any real number 𝑝 ≥ 1 when 𝑑 = 2, or 1 ≤ 𝑝 ≤ 2 𝑑
𝑑−2

when 𝑑 ≥ 3, there exist constants 𝑆𝑝 and 𝑆0
𝑝 such that

∀ 𝑣 ∈ 𝐻1(Ω), ‖𝑣‖𝐿𝑝(Ω) ≤ 𝑆𝑝‖𝑣‖𝐻1(Ω) (2.6)

and
∀ 𝑣 ∈ 𝐻1

0 (Ω), ‖𝑣‖𝐿𝑝(Ω) ≤ 𝑆0
𝑝 |𝑣|𝐻1(Ω). (2.7)

When 𝑝 = 2, (2.7) reduces to Poincaré’s inequality.
To deal with the Darcy-Forchheimer, we recall the space

𝐿2
0(Ω) =

{︂
𝑣 ∈ 𝐿2(Ω);

∫︁
Ω

𝑣 dx = 0
}︂

. (2.8)
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2.2. Variational formulation

In this section, we introduce the variational formulation corresponding to the problem (𝑃 ). We assume that
the volumic and boundary sources verify the following conditions:

Assumption 2.1. We assume that f and 𝑔 verify:

(1) f can be written as follows:

∀x ∈ Ω,∀𝐶 ∈ IR, f(x, 𝐶) = f0(x) + f1(𝐶), (2.9)

where f0 ∈ 𝐿
3
2 (Ω)𝑑 and f1 is Lipschitz-continuous with constant 𝑐f1 and satisfies the inequality

∀𝜉 ∈ IR, |f1(𝜉)| ≤ 𝑐f1 |𝜉|,

where 𝑐f1 is a strictly positive constant.
(2) 𝑔 ∈ 𝐿2(Ω).

Remark 2.2. For the physical interpretation of the choice of the external force f , we refer to [6,7,13,20]. In fact,
in [6] page 3, they considered and justified the choice of f(𝑥, 𝐶) = f1(𝐶) (with f0 = 0) with the corresponding
properties. For the generalization, we added the function f0 to get (2.1).

It follows from the nonlinear term in the system (𝑃 ) that the velocity u and the test function v must belong
to 𝐿3(Ω)𝑑; then, the gradient of the pressure must belong to 𝐿

3
2 (Ω)𝑑. Furthermore, the concentration 𝐶 must

be in 𝐻1
0 (Ω). Thus, we introduce the spaces

𝑋 = 𝐿3(Ω)𝑑, 𝑀 = 𝑊 1, 3
2 (Ω) ∩ 𝐿2

0(Ω), 𝑌 = 𝐻1
0 (Ω).

Furthermore, we recall the following inf-sup condition between 𝑋 and 𝑀 [24],

inf
𝑞∈𝑀

sup
v∈𝑋

∫︁
Ω

v(x) · ∇𝑞(x) dx

‖v‖𝐿3(Ω)𝑑 ‖∇𝑞‖
𝐿

3
2 (Ω)

= 1. (2.10)

With these assumptions on the sources, we introduce the following variational formulation associated to
problem (𝑃 ):

(𝑉𝑎)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, 𝑝, 𝐶) ∈ 𝑋 ×𝑀 × 𝑌 such that:

∀v ∈ 𝑋,
𝜇

𝜌

∫︁
Ω

(𝐾−1u(x)) · v(x) dx +
𝛽

𝜌

∫︁
Ω

|u(x)|u(x) · v(x) dx +
∫︁

Ω

∇𝑝(x) · v(x) dx

=
∫︁

Ω

f(𝑥, 𝐶(x)) · v(x) dx,

∀𝑞 ∈ 𝑀,

∫︁
Ω

∇𝑞(x) · u(x) dx = 0,

∀𝑆 ∈ 𝑌, 𝛼

∫︁
Ω

∇𝐶(x) · ∇𝑆(x) dx +
∫︁

Ω

(u · ∇𝐶)(x)𝑆(x) dx+𝑟0

∫︁
Ω

𝐶(x)𝑆(x) dx =
∫︁

Ω

𝑔(x)𝑆(x) dx.

Equivalence between (𝑃 ) and (𝑉𝑎) in the sense of distribution follows readily from the validity of Green’s
formula:

∀𝑞 ∈ 𝑀, ∀v ∈ 𝐻,

∫︁
Ω

∇𝑞(𝑥) · v(x)dx = −
∫︁

Ω

𝑞(x) div(v(x))dx +
⟨︀
𝑞,v.n

⟩︀
𝜕Ω
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in the space

𝐻 =
{︂
v ∈ 𝐿3(Ω)𝑑; div v ∈ 𝐿

3𝑑
𝑑+3 (Ω)

}︂
,

and the fact that

𝑉 =
{︂
v ∈ 𝐻; v.n|𝜕Ω = 0, and ∀𝑞 ∈ 𝑀,

∫︁
Ω

∇𝑞.vdx = 0.

}︂
=
{︂
v ∈ 𝐻; v.n|𝜕Ω = 0, div v = 0 in Ω

}︂
,

for further details, we refer to [24].
To study problem (𝑉𝑎), it is convenient to introduce the mapping v −→ 𝒜(v) defined by:

𝒜 : 𝐿3(Ω)𝑑 ↦→ 𝐿
3
2 (Ω)𝑑

v ↦→ 𝒜(v) =
𝜇

𝜌
𝐾−1v +

𝛽

𝜌
|v|v.

We refer to [17,24] for the following properties of 𝒜.

Property 2.3. 𝒜 satisfies the following properties:

(1) 𝒜 maps 𝐿3(Ω)𝑑 into 𝐿
3
2 (Ω)𝑑 and we have for all v ∈ 𝐿3(Ω)𝑑:

‖𝒜(v)‖
𝐿

3
2 (Ω)𝑑

≤ 𝜇

𝜌

⃦⃦
𝐾−1

⃦⃦
∞ ‖v‖𝐿

3
2 (Ω)𝑑

+
𝛽

𝜌
‖v‖2𝐿3(Ω)𝑑 .

(2) For all (v,w) ∈ R𝑑 × R𝑑, we have,

|𝒜(v)−𝒜(w)| ≤
(︂

𝜇

𝜌

⃦⃦
𝐾−1

⃦⃦
∞ +

2𝛽

𝜌
(|v|+ |w|)

)︂
|v −w|. (2.11)

(3) 𝒜 is monotone from 𝐿3(Ω)𝑑 into 𝐿
3
2 (Ω)𝑑, and we have for all v,w ∈ 𝐿3(Ω)𝑑,∫︁

Ω

(︂
𝒜(v(x))−𝒜(w(x))) · (v(x)−w(x)) dx ≥ max(𝑐𝑚 ‖v −w‖3𝐿3(Ω)𝑑 ,

𝜇

𝜌
𝐾𝑚 ‖v −w‖2𝐿2(Ω)𝑑

)︂
,

where 𝑐𝑚 is a strictly positive constant.
(4) 𝒜 is coercive in 𝐿3(Ω)𝑑:

lim
‖u‖

𝐿3(Ω)𝑑→∞

∫︁
Ω

𝒜(u) · u dx

‖u‖𝐿3(Ω)𝑑

= +∞.

(5) 𝒜 is hemicontinuous in 𝐿3(Ω)𝑑: for fixed u,v ∈ 𝐿3(Ω)𝑑, the mapping

𝑡 −→
∫︁

Ω

𝒜(u + 𝑡v) · v dx

is continuous from IR into IR.

Let us first show that for a given 𝐶 ∈ 𝑌 , the Darcy-Forchheimer problem (first two lines in (𝑉𝑎)) written as
following: find (u(𝐶), 𝑝(𝐶)) ∈ 𝑋 ×𝑀 such that⎧⎪⎪⎨⎪⎪⎩

∀v ∈ 𝑋,

∫︁
Ω

𝒜(u(𝐶)(𝑥)) · v(x) dx +
∫︁

Ω

∇𝑝(𝐶)(x) · v(x) dx =
∫︁

Ω

f(𝑥, 𝐶(x)) · v(x) dx,

∀𝑞 ∈ 𝑀,

∫︁
Ω

∇𝑞(x) · u(𝐶)(x) dx = 0,

(2.12)
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admits a unique solution (u, 𝑝) = (u(𝐶), 𝑝(𝐶)). Problem (2.12) is equivalent to the following: find (u(𝐶), 𝑝(𝐶)) ∈
𝑋 ×𝑀 , such that

∀v ∈ 𝑉,

∫︁
Ω

𝒜(u(𝐶)(𝑥)) · v(x) dx =
∫︁

Ω

f(𝑥, 𝐶(x)) · v(x) dx. (2.13)

Theorem 2.4. For each 𝐶 ∈ 𝐻1
0 (Ω), f(., 𝐶) ∈ 𝐿

3
2 (Ω)𝑑, the problem (2.12) has exactly one solution

(u(𝐶), 𝑝(𝐶)) ∈ 𝑋 ×𝑀 . Furthermore, (u, 𝑝) satisfies the a priori estimates:

‖u(𝐶)‖𝐿3(Ω)𝑑 ≤
(︂

𝜌

𝛽
‖f(., 𝐶)‖

𝐿
3
2 (Ω)𝑑

)︂ 1
2

,

‖∇𝑝(𝐶)‖
𝐿

3
2 (Ω)𝑑

≤ 𝜇

𝜌

⃦⃦
𝐾−1

⃦⃦
𝐿∞(Ω)𝑑×𝑑 ‖u(𝐶)‖

𝐿
3
2 (Ω)𝑑

+
𝛽

𝜌
‖u(𝐶)‖2𝐿3(Ω)𝑑 + ‖f(., 𝐶)‖

𝐿
3
2 (Ω)𝑑

.

(2.14)

Proof. Let 𝐶 ∈ 𝐻1
0 (𝛺). Assumption 2.1 allows us to deduce that f(, .𝐶) lies in 𝐿

3
2 (𝛺)𝑑. For the proof, we refer

to [24] (see The. 3, p. 172). �

Thus, problem (𝑉𝑎) can be rewritten as a function of the single unknown 𝐶. Indeed, for a given 𝐶, let
(u(𝐶), 𝑝(𝐶)) be the solution of problem (2.12). Then, problem (𝑉𝑎) is equivalent to the following reduced
formulation: find 𝐶 ∈ 𝑌 such that

∀𝑆 ∈ 𝑌, 𝛼

∫︁
Ω

∇𝐶(x) · ∇𝑆(x) dx +
∫︁

Ω

(u(𝐶) · ∇𝐶)(x)𝑆(x) dx + 𝑟0

∫︁
Ω

𝐶(x)𝑆(x)dx =
∫︁

Ω

𝑔(x)𝑆(x) dx. (2.15)

Before proving that problem (2.15) admits a solution, we will show the following intermediate lemma:

Lemma 2.5. Under Assumption 2.1, let (𝐶𝑘)𝑘≥1 be a sequence of functions in 𝐿2(Ω) that converges strongly
to 𝐶 in 𝐿2(Ω). Then, the sequence (u(𝐶𝑘))𝑘≥1 converges strongly to u(𝐶) in 𝑋 and the sequence (𝑝(𝐶𝑘))𝑘≥1

converges weakly to 𝑝(𝐶) in 𝑀 .

Proof. Assumption 2.1 allows us to deduce that the sequence (f(., 𝐶𝑘(.))𝑘≥1 converges strongly to f(., 𝐶(.)) in
𝐿

3
2 (Ω)𝑑 and then bounded in 𝐿

3
2 (Ω)𝑑. Bounds (2.14) yield first the weak convergence (up to a subsequence) of

(u(𝐶𝑘),∇𝑝(𝐶𝑘)) in 𝐿3(Ω)𝑑 × 𝐿
3
2 (Ω) to some function (û, ĥ). We will show that (û, ĥ) = (u(𝐶),∇𝑝(𝐶)). Let

us first show that û is a solution of problem (2.13). We show first that û ∈ 𝑉 . Indeed, the second equation of
problem (2.13) satisfied by u(𝐶𝑘), and the weak convergence of u(𝐶𝑘) to û led to the relation

∀𝑞 ∈ 𝑀,

∫︁
Ω

û(x) · ∇𝑞(x) = 0,

and then û ∈ 𝑉 . Now, we show that û satisfies problem (2.13). The monotonicity of 𝒜 gives

∀v ∈ 𝑉,

∫︁
𝛺

(𝒜(u(𝐶𝑘))−𝒜(v)) (x) · (u(𝐶𝑘)− v)(x) dx ≥ 0. (2.16)

The last inequality combined with problem (2.13) satisfied by u(𝐶𝑘) yields

∀v ∈ 𝑉,

∫︁
Ω

𝒜(v(x)) · (u(𝐶𝑘)− v)(x) dx ≤
∫︁

Ω

f(𝐶𝑘)(x) · (u(𝐶𝑘)− v)(x) dx. (2.17)

We obtain by using the weak convergence of u(𝐶𝑘) to û and the strong convergence of f(., 𝐶𝑘) to f(., 𝐶), the
following relation:

∀v ∈ 𝑉,

∫︁
Ω

𝒜(v(x)) · (û− v)(x) dx ≤
∫︁

Ω

f(𝐶)(x) · (û− v)(x) dx. (2.18)
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By virtue of hemicontinuity of 𝒜, a classical argument then yields

∀v ∈ 𝑉,

∫︁
Ω

𝒜(û(x)) · v(x) dx =
∫︁

Ω

f(𝐶)(x) · v(x) dx. (2.19)

Hence û is a solution of (2.13), and thus û = u(𝐶). Furthermore, problem (2.13) gives the relation

∀v ∈ 𝑉,

∫︁
Ω

(𝒜(u(𝐶)(𝑥))−𝒜(u(𝐶𝑘)(𝑥))) · v(x) dx =
∫︁

Ω

(f(𝑥, 𝐶(x))− f(𝑥, 𝐶𝑘(x))) · v(x) dx

which allows us by taking v = u(𝐶𝑘) − u(𝐶), by using the monotonicity of 𝒜 in 𝐿3(Ω)𝑑, and the strong
convergence of f(., 𝐶𝑘) to f(., 𝐶), to obtain the following convergence

lim
𝑘→∞

u(𝐶𝑘) = u(𝐶) strongly in 𝐿3(Ω)𝑑.

Finally, we have to treat the convergence of the pressure. Since u(𝐶) is a solution of problem (2.12), we use
the inf-sup condition (2.10) to deduce the existence of 𝑝(𝐶) such that (u(𝐶), 𝑝(𝐶)) is the solution of problem
(2.12).

We deduce from problem (2.12) that for all v ∈ 𝑋∫︁
Ω

(∇𝑝(𝐶)−∇𝑝(𝐶𝑘))(x) · v(x) dx = −
∫︁

Ω

(𝒜(u(𝐶)(𝑥))−𝒜(u(𝐶𝑘)(𝑥))) · v(x) dx

+
∫︁

Ω

(f(𝑥, 𝐶(x))− f(𝑥, 𝐶𝑘(x))) · v(x) dx.

The strong convergence of u(𝐶𝑘) to u(𝐶) in 𝐿3(Ω)𝑑, of f(., 𝐶𝑘) to f(., 𝐶) in 𝐿
3
2 (Ω)𝑑, and the weak convergence

of ∇𝑝(𝐶𝑘) to ĥ in 𝐿
3
2 (Ω)𝑑, give

∀v ∈ 𝑋,

∫︁
Ω

(∇𝑝(𝐶)− ĥ)(x) · v(x) dx = 0.

Thus ĥ = ∇𝑝(𝐶) in 𝐿
3
2 (𝛺)𝑑 which finishes the proof. Finally, uniqueness of the solution of (2.12) implies the

convergence of the whole sequence. �

The next theorem shows the existence of at least one solution to the problem (𝑉𝑎).

Theorem 2.6. Under Assumption 2.1, problem (𝑉𝑎) admits a solution in 𝑋 × 𝑀 × 𝑌 . Furthermore, each
solution (u, 𝑝, 𝐶) of (𝑉𝑎) satisfies the following bounds:

|𝐶|1,Ω ≤
𝑆0

2

𝛼
‖ 𝑔 ‖𝐿2(Ω),

‖u‖𝐿3(Ω)𝑑 ≤
(︂

𝜌

𝛽
(‖ f0 ‖

𝐿
3
2 (Ω)𝑑

+𝑐f1𝑆
0
3
2
|𝐶|1,Ω)

)︂ 1
2

,

‖∇𝑝‖
𝐿

3
2 (Ω)𝑑

≤ 𝜇

𝜌

⃦⃦
𝐾−1

⃦⃦
𝐿∞(Ω)𝑑×𝑑 ‖u‖𝐿

3
2 (Ω)𝑑

+
𝛽

𝜌
‖u‖2𝐿3(Ω)𝑑 +

𝜌

𝛽

(︁
‖ f0 ‖

𝐿
3
2 (Ω)𝑑

+𝑐f1𝑆
0
3
2
|𝐶|1,Ω

)︁
.

(2.20)

Proof. We propose to construct a solution of (𝑉𝑎) by Galerkin’s method. As 𝐻1
0 (Ω) is separable, it has a

countable basis (𝜃𝑖)𝑖≥1. Let Θ𝑚 be the space spanned by the first 𝑚 basis functions, (𝜃𝑖)1≤𝑖≤𝑚. Problem

(2.13) is discretized in Θ𝑚 by the square system of nonlinear equations: find 𝐶𝑚 =
𝑚∑︁

𝑖=1

𝑤𝑖𝜃𝑖 ∈ Θ𝑚 solution of:

∀1 ≤ 𝑖 ≤ 𝑚,

𝛼

∫︁
Ω

∇𝐶𝑚(x) · ∇𝜃𝑖(x)dx +
∫︁

Ω

(u(𝐶𝑚) · ∇𝐶𝑚)(x)𝜃𝑖(x)dx + 𝑟0

∫︁
Ω

𝐶𝑚(x)𝜃𝑖(x)dx =
∫︁

Ω

𝑔(x)𝜃𝑖(x) dx, (2.21)
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where (u(𝐶𝑚), 𝑝(𝐶𝑚)) solves (2.12) with 𝐶 = 𝐶𝑚. Now, given 𝐶𝑚 ∈ Θ𝑚, we introduce the auxiliary problem:
find Φ(𝐶𝑚) ∈ Θ𝑚 such that, for all 𝑆𝑚 ∈ Θ𝑚, we have(︀

∇Φ(𝐶𝑚),∇𝑆𝑚

)︀
2

= 𝛼
(︀
∇𝐶𝑚,∇𝑆𝑚

)︀
2

+
∫︁

Ω

(︀
u(𝐶𝑚) · ∇𝐶𝑚

)︀
(x)𝑆𝑚(x) dx + 𝑟0

∫︁
Ω

𝐶𝑚(x)𝑆𝑚(x) dx

−
∫︁

Ω

𝑔(x)𝑆𝑚(x) dx.

(2.22)

In fact, for each 𝐶𝑚, the left hand side of (2.22) is a bilinear map of the form (∇.,∇.) and the right hand
side is a linear map with respect to 𝑆𝑚. Relation (2.22) defines a continuous mapping from Θ𝑚 into Θ𝑚, due
to the fact that Θ𝑚 is a finite dimension space and Lemma 2.5. By taking 𝑆𝑚 = 𝐶𝑚, we get(︁

∇Φ(𝐶𝑚),∇𝐶𝑚

)︁
= 𝛼|𝐶𝑚|21,Ω + 𝑟0 ‖𝐶𝑚‖2𝐿2(Ω) −

∫︁
Ω

𝑔(x)𝐶𝑚(x) dx

≥ |𝐶𝑚|1,Ω

(︁
𝛼|𝐶𝑚|1,Ω − 𝑆0

2 ‖𝑔‖𝐿2(Ω)

)︁
.

In other words, we have (︁
∇Φ(𝐶𝑚),∇𝐶𝑚

)︁
≥ 0

for all 𝐶𝑚 ∈ Θ𝑚 such that

|𝐶𝑚|1,Ω =
𝑆0

2

𝛼
‖𝑔‖𝐿2(Ω) .

Therefore, Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution to the
problem (2.21).

Let 𝐶𝑚 be a solution of problem (2.21), satisfying ∀𝑆𝑚 ∈ Θ𝑚,

𝛼
(︁
∇𝐶𝑚,∇𝑆𝑚

)︁
+
∫︁

Φ

(︁
u(𝐶𝑚) · ∇𝐶𝑚

)︁
(x)𝑆𝑚(x) dx + 𝑟0

∫︁
Φ

𝐶𝑚 − 𝑆𝑚(x) dx =
∫︁

Φ

𝑔(x)𝑆𝑚(x) dx.

By taking 𝑆𝑚 = 𝐶𝑚 in the last equation, we get immediately the bound

|𝐶𝑚|1,Ω ≤
𝑆0

2

𝛼
‖ 𝑔 ‖𝐿2(Ω) .

The last uniform bound implies that, up to a subsequence, (𝐶𝑚)𝑚 converges weakly to a function 𝐶 in

𝐻1
0 (Ω). Therefore, it converges strongly in 𝐿𝑟(Ω), for any 𝑟 <

2𝑑

𝑑− 2
, and it follows from Lemma 2.5 that

(u(𝐶𝑚), 𝑝(𝐶𝑚))𝑚 converges weakly to (u(𝐶), 𝑝(𝐶)) in 𝑋 ×𝑀 , and (u(𝐶𝑚))𝑚 converges strongly to u(𝐶) in
𝐿3(Ω)𝑑. Now, we freeze the index 𝑖 in (2.21), and let 𝑚 tends to infinity. The weak convergence of (𝐶𝑚)𝑚 to 𝐶
in 𝐻1

0 (Ω), and the strong convergence of (u(𝐶𝑚))𝑚 to u(𝐶) in 𝐿3(Ω)𝑑 allow us to deduce that 𝐶 is a solution
of the following problem: Find 𝐶 ∈ 𝐻1

0 (Ω) such that

𝛼

∫︁
Ω

∇𝐶(x) · ∇𝜃𝑖(x)dx +
∫︁

Ω

(︀
u(𝐶) · ∇𝐶

)︀
(x)𝜃𝑖(x)dx + 𝑟0

∫︁
Ω

𝐶(x)𝜃𝑖(x)dx =
∫︁

Ω

𝑔(x)𝜃𝑖(x) dx. (2.23)

From this system and the density of the basis in 𝐻1
0 (Ω), we infer that 𝐶 is a solution of problem (2.15).

The first bound in (2.20) can be straightly obtained by taking 𝑆 = 𝐶 in the last equation in (2.15). The first
and second bounds in (2.20) can be deduced from the inequalities (2.14) and Assumption 2.1. �

Theorem 2.7. Assume that Ω is of class 𝐶1,1. Let (u, 𝑝, 𝐶) be a solution of problem (𝑃 ). If 𝑔 ∈ 𝐿∞(Ω), then
the concentration 𝐶 is in 𝐿∞(Ω) and satisfies the following bound:

‖𝐶‖𝐿∞(Ω) ≤
1
𝑟0
‖𝑔‖𝐿∞(Ω) .
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Proof. Let (u, 𝑝, 𝐶) be a solution of problem (𝑃 ), then the velocity u ∈ 𝑉 . Using the fact that 𝑉 is separable
and that the space

𝑉∞ =
{︂

Φ ∈ 𝐷(Ω)𝑑; div Φ = 0
}︂

is dense in 𝑉 (see for instance [18], Lem. 10.8), there exists a sequence (u𝑁 )𝑁∈N in 𝑉∞ which converges strongly
to u in 𝐿3(Ω)𝑑 when 𝑁 tends to +∞.

Now, for each 𝑁 ∈ N, let 𝐶𝑁 ∈ 𝐻1
0 (Ω) the unique solution to the following problem:{︃

−𝛼△𝐶𝑁 + u𝑁 · ∇𝐶𝑁 + 𝑟0𝐶𝑁 = 𝑔 in Ω,

𝐶𝑁 = 0 on Γ.
(2.24)

The elliptic regularity (see [21]) allows us to get that 𝐶𝑁 ∈ 𝑊 2,𝑝(Ω) ∩𝐻1
0 (Ω), for all 𝑝 ≥ 1.

Multiplying the first equation of (2.24) by 𝐶2𝑝+1
𝑁 and integrating by parts give,

𝛼(2𝑝 + 1)
2(𝑝 + 1)2

∫︁
Ω

|∇𝐶𝑝+1
𝑁 (x)|2 dx + 𝑟0

∫︁
Ω

𝐶2𝑝+2
𝑁 (x) dx =

∫︁
Ω

𝑔(x)𝐶2𝑝+1
𝑁 (x) dx.

By remarking that the first term of the left hand side of the previous equation is non-negative and by applying

Holder’s inequality for the right-hand-side with the conjugate exponents 𝑚 =
2𝑝 + 2
2𝑝 + 1

and 𝑛 = 2𝑝 + 2, we get

the following inequality:

‖𝐶𝑁‖𝐿2𝑝+2(Ω) ≤
1
𝑟0
‖𝑔‖𝐿2𝑝+2(Ω) . (2.25)

The next step shows that 𝐶𝑁 converges strongly to 𝐶 ∈ 𝐻1
0 (Ω). In order to prove it, we start by subtracting

the third equation of problem (𝑃 ) from first equation of (2.24) to get, for all 𝑆 ∈ 𝐻1
0 (Ω),

𝛼

∫︁
Ω

∇(𝐶 − 𝐶𝑁 ) · ∇𝑆 dx + 𝑟0

∫︁
Ω

(𝐶 − 𝐶𝑁 )𝑆 dx = −
∫︁

Ω

u · ∇(𝐶 − 𝐶𝑁 )𝑆 dx−
∫︁

Ω

(u− u𝑁 ) · ∇𝐶𝑁𝑆 dx.

By taking 𝑆 = 𝐶 − 𝐶𝑁 and using the antisymmetric property, the estimate (2.20) we obtain

|𝐶 − 𝐶𝑁 |𝐻1(Ω) ≤
𝑆0

6𝑆0
2

𝛼
‖u− u𝑁‖𝐿3(Ω)𝑑 ‖𝑔‖𝐿2(Ω)

which gives the strong convergence of 𝐶𝑁 to 𝐶 in 𝐻1
0 (Ω).

As 𝐶𝑁 is uniformly bounded in 𝐿2𝑝+2(Ω), we can extract a subsequence still denoted by 𝐶𝑁 such that 𝐶𝑁

converges weakly in 𝐿2𝑝+2(Ω) to some function ℎ satisfying (2.25). The strong convergence of 𝐶𝑁 to 𝐶 in 𝐻1(Ω)
and the uniqueness of the limit allows us to deduce that ℎ = 𝐶 in 𝐿

2𝑝+1
2𝑝+2 (Ω) and we get

‖𝐶‖𝐿2𝑝+2(Ω) ≤
1
𝑟0
‖𝑔‖𝐿2𝑝+2(Ω) ∀𝑝 ≥ 1. (2.26)

Thus ℎ = 𝐶 ∈ 𝐿2𝑝+2(Ω) and finally, taking the limit in (2.26) as 𝑝 →∞, we get the desired result. �

Theorem 2.8. Under Assumption 2.1, We suppose that the problem (𝑉𝑎) admits a solution (u, 𝑝, 𝐶) ∈ 𝑋 ×
𝑀 × 𝑌 such that

‖𝐶‖𝐿∞(Ω) ≤
𝜇𝐾𝑚𝛼

𝜌𝑐f1𝑆
0
2

, (2.27)

then, the solution of the problem (𝑉𝑎) is unique.
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Proof. Let (u1, 𝑝1, 𝐶1) and (u2, 𝑝2, 𝐶2) be two solutions of problem (𝑉𝑎), and let u = u1 − u2, 𝑝 = 𝑝1 − 𝑝2 and
𝐶 = 𝐶1 − 𝐶2. Then, (u, 𝑝, 𝐶) satisfies for all (v, 𝑆) ∈ 𝑋 × 𝑌 ,∫︁

Ω

(︀
𝒜(u1)−𝒜(u2)

)︀
(x) · v(x) dx =

∫︁
Ω

(︀
f(𝐶1)− f(𝐶2)

)︀
(x) · v(x) dx−

∫︁
Ω

∇(𝑝1 − 𝑝2)(x) · v(x)dx,

𝛼

∫︁
Ω

∇𝐶(x) · ∇𝑆(x) dx +
∫︁

Ω

(︀
u · ∇𝐶1 + u2 · ∇𝐶

)︀
(x)𝑆(x) dx + 𝑟0

∫︁
Ω

𝐶(x)𝑆(x) dx = 0.

(2.28)

By taking 𝑆 = 𝐶 in the second equation of (2.28), we get by using the Green formula,

𝛼|𝐶|21,Ω + 𝑟0 ‖ 𝐶 ‖2𝐿2(Ω)=
∫︁

Ω

(u · ∇𝐶)(x)𝐶1(x) dx,

and then
𝛼|𝐶|21,Ω + 𝑟0 ‖ 𝐶 ‖2𝐿2(Ω)≤‖ u ‖𝐿2(Ω)𝑑‖ ∇𝐶 ‖𝐿2(Ω)𝑑 ||𝐶1||𝐿∞(Ω).

Finally, we get

|𝐶|1,Ω ≤
1
𝛼
‖ u ‖𝐿2(Ω)𝑑‖ 𝐶1 ‖𝐿∞(Ω) . (2.29)

Substituting v by u in the first equation of (2.28), we get∫︁
Ω

(︀
𝒜(u1)−𝒜(u2)

)︀
(x) · (u1 − u2)(x) dx =

∫︁
Ω

(︀
f(𝐶1)− f(𝐶2)

)︀
(x) · (u1 − u2)(x) dx.

By using the monotonicity of 𝒜, Assumption 2.1, and the fact that f1 is 𝑐f1-Lipschitz, we obtain

𝜇

𝜌
𝐾𝑚 ‖ u ‖𝐿2(Ω)𝑑 ≤ ‖ f1(𝐶1)− f1(𝐶2) ‖𝐿2(Ω)𝑑

≤ 𝑐f1𝑆
0
2 |𝐶|1,Ω.

(2.30)

Thus, relations (2.29) and (2.30), give

𝜇

𝜌
𝐾𝑚 ‖ u ‖𝐿2(Ω)𝑑≤ 𝑐f1

𝛼
𝑆0

2 ‖ u ‖𝐿2(Ω)𝑑‖ 𝐶1 ‖𝐿∞(Ω) .

Relation (2.27) allows us to deduce that ‖ u ‖𝐿2(Ω)= 0 and then u1 = u2. Relation (2.29) implies 𝐶1 = 𝐶2.
Finally, the first equation of system (2.28) and the inf-sup condition provide 𝑝1 = 𝑝2, which yields the uniqueness
of the solution. �

Corollary 2.9. Under Assumption 2.1 and Theorems 2.7 and 2.8, if the data 𝑔 satisfies the following smallness
condition

‖𝑔‖𝐿∞(Ω) ≤
𝑟0𝜇𝐾𝑚𝛼

𝜌𝑐f1𝑆
0
2

,

then the solution (u, 𝑝, 𝐶) of problem (𝑃 ) is unique in 𝐿3(Ω)𝑑 ×𝑊 1, 3
2 (Ω) ∩ 𝐿2

0(Ω)×𝐻1
0 (Ω).

3. Discretization

From now on, we assume that Ω is a polygon when 𝑑 = 2 or polyhedron when 𝑑 = 3, so it can be completely
meshed. For the space discretization, we consider a regular (see Ciarlet [11]) family of triangulations (𝒯ℎ)ℎ

of Ω which is a set of closed non degenerate triangles for 𝑑 = 2 or tetrahedra for 𝑑 = 3, called elements,
satisfying
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– for each ℎ, Ω̄ is the union of all elements of 𝒯ℎ;
– the intersection of two distinct elements of 𝒯ℎ is either empty, a common vertex, or an entire common edge

(or face when 𝑑 = 3);
– the ratio of the diameter ℎ𝜅 of an element 𝜅 ∈ 𝒯ℎ to the diameter 𝜌𝜅 of its inscribed circle when 𝑑 = 2 or

ball when 𝑑 = 3 is bounded by a constant independent of ℎ, that is, there exists a strictly positive constant
𝜎 independent of ℎ such that,

max
𝜅∈𝒯ℎ

ℎ𝜅

𝜌𝜅
≤ 𝜎. (3.1)

As usual, ℎ denotes the maximal diameter of all elements of 𝒯ℎ. To define the finite element functions, let 𝑟
be a non-negative integer. For each 𝜅 in 𝒯ℎ, we denote by P𝑟(𝜅) the space of restrictions to 𝜅 of polynomials in
𝑑 variables and total degree at most 𝑟, with a similar notation on the faces or edges of 𝜅. For every edge (when
𝑑 = 2) or face (when 𝑑 = 3) 𝑒 of the mesh 𝒯ℎ, we denote by ℎ𝑒 the diameter of 𝑒.

We shall use the following inverse inequality [15]: for any dimension 𝑑, there exists a constant 𝐶𝐼 such that
for any polynomial function 𝑣ℎ of degree 𝑟 on 𝐾,

‖𝑣ℎ‖𝐿3(𝜅) ≤ 𝐶𝐼ℎ
− 𝑑

6
𝜅 ‖𝑣ℎ‖𝐿2(𝜅). (3.2)

The constant 𝐶𝐼 depends on the regularity parameter 𝜎 of (3.1), but for the sake of simplicity this is not
indicated.

Let 𝑋ℎ ⊂ 𝑋, 𝑀ℎ ⊂ 𝑀 , and 𝑌ℎ ⊂ 𝑌 be the discrete spaces corresponding to the velocity, the pressure and
the concentration. We assume that 𝑋ℎ and 𝑀ℎ satisfy the following inf-sup condition:

∀ 𝑞ℎ ∈ 𝑀ℎ, sup
vℎ∈𝑋ℎ

∫︁
Ω

∇𝑞ℎ · vℎ dx

‖vℎ‖𝑋ℎ

≥ 𝛽2‖𝑞ℎ‖𝑀ℎ
, (3.3)

where 𝛽2 is a strictly positive constant independent of ℎ.
Problem (𝑉𝑎) can be discretized as following: find (uℎ, 𝑝ℎ, 𝐶ℎ) ∈ 𝑋ℎ ×𝑀ℎ × 𝑌ℎ such that

(𝑉𝑎ℎ)𝑢

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀vℎ ∈ 𝑋ℎ,

∫︁
Ω

𝒜(uℎ) · vℎdx +
∫︁

Ω

∇𝑝ℎ · vℎ dx =
∫︁

Ω

f(𝐶ℎ) · vℎ dx,

∀𝑞ℎ ∈ 𝑀ℎ,

∫︁
Ω

∇𝑞ℎ · uℎ dx = 0,

∀𝑆ℎ ∈ 𝑌ℎ, 𝛼

∫︁
Ω

∇𝐶ℎ · ∇𝑆ℎ dx +
∫︁

Ω

(uℎ · ∇𝐶ℎ)𝑆ℎ dx +
1
2

∫︁
Ω

div(uℎ) 𝐶ℎ𝑆ℎdx

+𝑟0

∫︁
Ω

𝐶ℎ𝑆ℎ dx =
∫︁

Ω

𝑔𝑆ℎ dx.

(3.4)

In the following, we will introduce the finite dimension spaces 𝑋ℎ, 𝑀ℎ and 𝑌ℎ. Let 𝜅 be an element of 𝒯ℎ

with vertices 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑑 + 1, and corresponding barycentric coordinates 𝜆𝑖. We denote by 𝑏𝜅 ∈ P𝑑+1(𝜅) the
basic bubble function:

𝑏𝜅(x) = 𝜆1(x)...𝜆𝑑+1(x). (3.5)

We observe that 𝑏𝜅(x) = 0 on 𝜕𝜅 and that 𝑏𝜅(x) > 0 in the interior of 𝜅.
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We introduce the following discrete spaces:

𝑋ℎ =
{︂
vℎ ∈ (𝒞0(Ω̄))𝑑; ∀𝜅 ∈ 𝒯ℎ, vℎ|𝜅 ∈ 𝒫(𝜅)𝑑

}︂
,

𝑀ℎ =
{︂

𝑞ℎ ∈ 𝐶0(Ω̄); ∀𝜅 ∈ 𝒯ℎ, 𝑞ℎ|𝜅 ∈ IP1(𝜅)
}︂
∩ 𝐿2

0(Ω),

𝑌ℎ =
{︂

𝑞ℎ ∈ 𝐶0(Ω̄); ∀𝜅 ∈ 𝒯ℎ, 𝑞ℎ|𝜅 ∈ IP1(𝜅)
}︂
∩𝐻1

0 (Ω),

𝑉ℎ =
{︂
vℎ ∈ 𝑋ℎ;∀𝑞ℎ ∈ 𝑀ℎ,

∫︁
Ω

∇𝑞ℎ · vℎ dx = 0
}︂

,

(3.6)

where
𝒫(𝜅) = P1(𝜅)⊕Vect{𝑏𝜅}.

In this case, for the inf-sup condition (3.3), we refer to [23].
We shall use the following results:

(1) For the concentration: there exists an approximation operator (when 𝑑 = 2, see Bernardi and Girault [5]
or Clément [12]; when 𝑑 = 2 or 𝑑 = 3, see Scott and Zhang [35]), 𝑅ℎ in ℒ(𝑊 1,𝑝(Ω); 𝑌ℎ) such that for all 𝜅
in 𝒯ℎ, 𝑚 = 0, 1, 𝑙 = 0, 1, and all 𝑝 ≥ 1,

∀𝑆 ∈ 𝑊 𝑙+1,𝑝(Ω), |𝑆 −𝑅ℎ(𝑆)|𝑊 𝑚,𝑝(𝜅) ≤ 𝑐(𝑝, 𝑚, 𝑙) ℎ𝑙+1−𝑚|𝑆|𝑊 𝑙+1,𝑝(Δ𝜅), (3.7)

where ∆𝜅 is the macro element containing the values of 𝑆 used in defining 𝑅ℎ(𝑆).
(2) For the velocity: we introduce a variant of 𝑅ℎ denoted by ℱℎ (see [4] and [22]) which is stable in 𝐿3(Ω)𝑑:

∀v ∈ 𝐿3(Ω)𝑑, ||ℱℎ(v)||𝐿3(𝜅)𝑑 ≤ 𝐶𝑠||v||𝐿3(Δ𝜅)𝑑 , (3.8)

such that ℱℎ(v) ∈ 𝑉ℎ when div v = 0, and satisfies (3.7).
(3) For the pressure: as 𝑀ℎ contains all constants, an easy modification of 𝑅ℎ yields an operator 𝑟ℎ ∈

ℒ(𝑊 1,𝑝(Ω)∩𝐿2
0(Ω); 𝑀ℎ) (see for instance Abboud et al. [1]), satisfying (3.7). Indeed, 𝑟ℎ can be constructed

as follows:

∀𝑞 ∈ 𝑀, 𝑟ℎ𝑞 = 𝑅ℎ𝑞 − 1
|Ω|

∫︁
Ω

(𝑅ℎ𝑞)(x)dx.

Existence of a solution of (𝑉𝑎ℎ) is derived by duplicating the steps of the previous section concerning the
existence of a solution of problem (𝑉𝑎). First (𝑉𝑎ℎ) is split as in the previous section, i.e., find 𝐶ℎ ∈ 𝑌ℎ such
that: ∀𝑆ℎ ∈ 𝑌ℎ,

𝛼

∫︁
Ω

∇𝐶ℎ · ∇𝑆ℎ dx +
∫︁

Ω

(uℎ(𝐶ℎ) · ∇𝐶ℎ)𝑆ℎ dx +
1
2

∫︁
Ω

div(uℎ(𝐶ℎ)) 𝐶ℎ𝑆ℎdx + 𝑟0

∫︁
Ω

𝐶ℎ𝑆ℎ dx =
∫︁

Ω

𝑔𝑆ℎ dx, (3.9)

where uℎ(𝐶ℎ) is the velocity solution of: find (uℎ(𝐶ℎ), 𝑝ℎ(𝐶ℎ)) ∈ 𝑋ℎ ×𝑀ℎ, such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀vℎ ∈ 𝑋ℎ,

∫︁
Ω

𝒜(uℎ(𝐶ℎ)) · vℎdx +
∫︁

Ω

∇𝑝ℎ(𝐶ℎ) · vℎ dx =
∫︁

Ω

f(., 𝐶ℎ) · vℎ dx,

∀𝑞ℎ ∈ 𝑀ℎ,

∫︁
Ω

∇𝑞ℎ · uℎ dx = 0.
(3.10)

For each 𝐶ℎ ∈ 𝑋ℎ, an easy finite-dimensional variant of the argument of Theorem 2.4 allows one to prove
that the scheme (3.10) has a unique solution (uℎ(𝐶ℎ), 𝑝ℎ(𝐶ℎ)) ∈ 𝑋ℎ × 𝑀ℎ, and this solution satisfies the a



DARCY-FORCHHEIMER PROBLEM COUPLED WITH CDR EQUATION 2655

priori estimates similar to (2.14):

‖uℎ(𝐶ℎ)‖𝐿3(Ω)𝑑 ≤
(︂

𝜌

𝛽
‖f(., 𝐶ℎ)‖

𝐿
3
2 (Ω)𝑑

)︂ 1
2

,

𝛽2 ‖∇𝑝ℎ(𝐶ℎ)‖
𝐿

3
2 (Ω)𝑑

≤ 𝜇

𝜌

⃦⃦
𝐾−1

⃦⃦
𝐿∞(Ω)𝑑×𝑑 ‖uℎ(𝐶ℎ)‖

𝐿
3
2 (Ω)𝑑

+
𝛽

𝜌
‖uℎ(𝐶ℎ)‖2𝐿3(Ω)𝑑 + ‖f(., 𝐶ℎ)‖

𝐿
3
2 (Ω)𝑑

.

(3.11)

We address now the existence of at least one solution of the problem (3.9) written with the only variable
𝐶ℎ. For this purpose, we apply Brouwer’s Fixed-Point Theorem. Indeed, we introduce the following map: for a
given 𝐶ℎ ∈ 𝑌ℎ, find Φ(𝐶ℎ) ∈ 𝑌ℎ such that: ∀𝑆ℎ ∈ 𝑌ℎ,

(Φ(𝐶ℎ), 𝑆ℎ) = 𝛼

∫︁
Ω

∇𝐶ℎ · ∇𝑆ℎ dx +
∫︁

Ω

(uℎ(𝐶ℎ) · ∇𝐶ℎ)𝑆ℎ dx

+
1
2

∫︁
Ω

div(uℎ(𝐶ℎ)) 𝐶ℎ𝑆ℎdx + 𝑟0

∫︁
Ω

𝐶ℎ𝑆ℎ dx−
∫︁

Ω

𝑔𝑆ℎ dx.

This last relation defines a mapping from 𝑌ℎ into itself, and we easily derive its continuity. By taking 𝑆ℎ = 𝐶ℎ,
we get

(∇Φ(𝐶ℎ),∇𝐶ℎ) = 𝛼|𝐶ℎ|21,Ω + 𝑟0 ‖𝐶ℎ‖2𝐿2(Ω) −
∫︁

Ω

𝑔(x)𝐶ℎ(x) dx,

≥ |𝐶ℎ|1,Ω(𝛼|𝐶ℎ|1,Ω − 𝑆0
2 ‖𝑔‖𝐿2(Ω)).

In other words, we have
(∇Φ(𝐶ℎ),∇𝐶ℎ) ≥ 0,

for all 𝐶ℎ ∈ 𝑌ℎ such that

|𝐶ℎ|1,Ω =
𝑆0

2

𝛼
‖𝑔‖𝐿2(Ω) .

The Brouwer’s Fixed-Point Theorem implies immediately the existence of at least one solution of the problem
(3.9). Hence, problem (𝑉𝑎ℎ) admits at least one solution (uℎ, 𝑝ℎ, 𝐶ℎ) ∈ 𝑋ℎ ×𝑀ℎ × 𝑌ℎ. Furthermore, by taking
𝑆ℎ = 𝐶ℎ in the last equation of (𝑉𝑎ℎ) gives, in addition to inequality (3.11), the following bound:

|𝐶ℎ|1,Ω ≤
𝑆0

2

𝛼
‖ 𝑔 ‖𝐿2(Ω) . (3.12)

Finally, uniqueness follows easily since 𝐶ℎ belongs to 𝐿∞(Ω). This is summed up in the following existence
and uniqueness theorems.

Theorem 3.1. Under Assumption 2.1, (𝑉𝑎ℎ) has at least a solution (uℎ, 𝑝ℎ, 𝐶ℎ) ∈ 𝑋ℎ ×𝑀ℎ × 𝑌ℎ. Moreover,
every solution of (𝑉𝑎ℎ) satisfies bounds similar to (2.20).

Theorem 3.2. We assume that the data f and 𝑔 satisfies assumption 2.1. Suppose that problem (𝑉𝑎ℎ) has a
solution (uℎ, 𝑝ℎ, 𝐶ℎ) ∈ 𝑋ℎ ×𝑀ℎ × 𝑌ℎ such that

‖𝐶ℎ‖𝐿∞(Ω) + 𝑆0
6 |𝐶ℎ|𝑊 1,3(Ω) <

2𝛼𝜇𝐾𝑚

𝜌𝑐*f1𝑆
0
2

. (3.13)

Then problem (𝑉𝑎ℎ) has no other solution in 𝑋ℎ ×𝑀ℎ × 𝑌ℎ.
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Proof. We consider two solutions (uℎ,1, 𝑝ℎ,1, 𝐶ℎ,1) and (uℎ,2, 𝑝ℎ,2, 𝐶ℎ,2) of problem (𝑉𝑎ℎ) and we denote by
uℎ = uℎ,1 − uℎ,2, 𝑝ℎ = 𝑝ℎ,1 − 𝑝ℎ,2 and 𝐶ℎ = 𝐶ℎ,1 − 𝐶ℎ,2. By following the same steps of the proof of Theorem
2.8, uℎ satisfies the analogue of (2.30),

𝜇

𝜌
𝐾𝑚 ‖uℎ‖𝐿2(Ω)3 ≤ 𝑐f1𝑆

0
2 |𝐶ℎ|1,Ω. (3.14)

The treatment of the concentration is slightly different. By using the Green’s formula, the difference of the
equations satisfied by the concentrations reads with 𝑆ℎ = 𝑇ℎ,

𝛼|𝐶ℎ|21,Ω ≤
1
2

⃒⃒⃒⃒∫︁
Ω

(uℎ · ∇𝐶ℎ)𝐶ℎ,1 𝑑𝑥−
∫︁

Ω

(uℎ · ∇𝐶ℎ,1)𝐶ℎ 𝑑𝑥

⃒⃒⃒⃒
. (3.15)

Therefore, using Hölder’s inequality, we obtain

|𝐶ℎ|1,Ω ≤
‖uℎ‖𝐿2(Ω)𝑑

2𝛼
(‖𝐶ℎ,1‖𝐿∞(Ω) + 𝑆0

6 |𝐶ℎ,1|𝑊 1,3(Ω)). (3.16)

Thus, inequalities (3.14) and (3.16) give,

𝜇

𝜌
𝐾𝑚 ‖uℎ‖𝐿2(Ω)𝑑 ≤

𝑐f1𝑆
0
2 ‖uℎ‖𝐿2(Ω)𝑑

2𝛼
(‖𝐶ℎ,1‖𝐿∞(Ω) + 𝑆0

6 |𝐶ℎ,1|𝑊 1,3(Ω)). (3.17)

Condition (3.13) allows us to deduce that ‖uℎ‖𝐿2(Ω)𝑑 = 0 and hence uℎ,1 = uℎ,2. Inequality (3.16) gives
𝐶ℎ,1 = 𝐶ℎ,2. Finally, the inf-sup condition provides 𝑝ℎ,1 = 𝑝ℎ2 . �

Now, we address the convergence of the subsequence of the numerical solution to the exact one.
Bounds (3.12) and (3.11), and the compactness of the embedding of 𝐻1(Ω) into 𝐿𝑝(Ω) ((𝑝 ≥ 1 if 𝑑 = 2, 1 ≤

𝑝 < 6 if 𝑑 = 3), allow us to get the following lemma:

Lemma 3.3. Let f and 𝑔 satisfy Assumption 2.1 and let (uℎ, 𝑝ℎ, 𝐶ℎ) be any solution of the discrete problem
(𝑉𝑎ℎ). We can extract a subsequence, still denoted (uℎ, 𝑝ℎ, 𝐶ℎ) verifying

lim
ℎ→0

𝐶ℎ = 𝐶 weakly in 𝐻1
0 (Ω),

lim
ℎ→0

𝐶ℎ = 𝐶 strongly in 𝐿𝑝(Ω), (𝑝 ≥ 1 if 𝑑 = 2, 1 ≤ 𝑝 < 6 if 𝑑 = 3),

lim
ℎ→0

uℎ = ū weakly in 𝐿3(Ω),

lim
ℎ→0

∇𝑝ℎ = h̄ weakly in 𝐿
3
2 (Ω)𝑑,

(3.18)

where ū ∈ 𝐿3(Ω)𝑑, h̄ ∈ 𝐿
3
2 (Ω)𝑑 and 𝐶 ∈ 𝐻1

0 (Ω).

Proposition 3.4. Let (uℎ, 𝑝ℎ, 𝐶ℎ) be any solution of the discrete problem (𝑉𝑎ℎ). Under assumption of Lemma
3.3, we have h̄ = ∇𝑝, where (ū, 𝑝) solves the first two equations of (𝑉𝑎) with 𝐶 = 𝐶. Furthermore, we have the
following strong convergence:

lim
ℎ→0

uℎ = ū strongly in 𝐿3(Ω)𝑑. (3.19)

Proof. First, we shall show that ū is a solution of the problem (2.12) for 𝐶 = 𝐶.
The monotonicity of 𝒜 gives

∀vℎ ∈ 𝑉ℎ,

∫︁
Ω

(𝒜(uℎ)−𝒜(vℎ)) · (uℎ − vℎ) dx ≥ 0. (3.20)
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As uℎ is a solution of problem (𝑉𝑎ℎ), we get

∀vℎ ∈ 𝑉ℎ,

∫︁
Ω

𝒜(uℎ) · (uℎ − vℎ) dx =
∫︁

Ω

f(., 𝐶ℎ) · (uℎ − vℎ) dx. (3.21)

Therefore,

∀vℎ ∈ 𝑉ℎ,

∫︁
Ω

𝒜(vℎ) · (uℎ − vℎ) dx ≤
∫︁

Ω

f(., 𝐶ℎ) · (uℎ − vℎ) dx. (3.22)

We now choose vℎ = ℱℎ(v) where v is an arbitrary element of 𝑉 . The strong convergence of ℱℎ(v) to v in
𝐿3(Ω)𝑑 and (2.11) allow us to get

𝒜(ℱℎ(v)) −→
ℎ→0

𝒜(v) strongly in 𝐿
3
2 (Ω)𝑑. (3.23)

Furthermore, since uℎ−ℱℎ(v) converges weakly to ū−v in 𝐿3(Ω)𝑑 and f(., 𝐶ℎ) converges strongly to f(., 𝐶)
in 𝐿

3
2 (Ω)𝑑, we get by passing to the limit in (3.22),

∀v ∈ 𝑉,

∫︁
Ω

𝒜(v) · (ū− v) dx ≤
∫︁

Ω

f(., 𝐶) · (ū− v) dx. (3.24)

In particular, for v = ū + 𝑡w, where 𝑡 ∈ R and w ∈ 𝑉 , we get

∀𝑡 ∈ R, 𝑡

(︂∫︁
Ω

𝒜(ū + 𝑡w) ·w dx
)︂
≥ 𝑡

(︂∫︁
Ω

f(𝐶) ·w dx
)︂

.

By taking 𝑡 > 0 (resp. 𝑡 < 0), simplifying by 𝑡, tending 𝑡 to 0 and using the hemicontinuity of 𝒜, we get:

∀v ∈ 𝑉,

∫︁
Ω

𝒜(ū) · v dx ≥
∫︁

Ω

f(., 𝐶) · v dx
(︂

resp.

∫︁
Ω

𝒜(ū) · v dx ≤
∫︁

Ω

f(., 𝐶) · v dx
)︂

,

We obtain finally:

∀v ∈ 𝑉,

∫︁
Ω

𝒜(ū) · v dx =
∫︁

Ω

f(., 𝐶) · v dx. (3.25)

Hence ū is the solution of (2.12), and we construct by using the inf-sup condition (2.10) the corresponding
pressure 𝑝.

The next step consists to show that uℎ converges strongly to ū in 𝐿3(Ω)𝑑. In order to prove it, we start by
taking v = vℎ in (2.12) and subtracting from (3.10), we have

∀vℎ ∈ 𝑉ℎ,

∫︁
Ω

(𝒜(uℎ)−𝒜(ū)) · vℎ dx =
∫︁

Ω

(f(., 𝐶ℎ)− f(., 𝐶)) · vℎ 𝑑𝑥 +
∫︁

Ω

∇(𝑝− 𝑝ℎ) · vℎ dx

=
∫︁

Ω

(f(., 𝐶ℎ)− f(., 𝐶)) · vℎ dx +
∫︁

Ω

∇𝑝 · vℎ dx.

(3.26)

By inserting 𝒜(ℱℎ(ū)) and taking vℎ = uℎ −ℱℎ(ū), we get∫︁
Ω

(𝒜(uℎ)−𝒜(ℱℎ(ū))) · (uℎ −ℱℎ(ū)) dx = −
∫︀
Ω

(𝒜(ℱℎ(ū))−𝒜(ū)) · (uℎ −ℱℎ(ū)) dx

+
∫︀

Ω
∇𝑝 · (uℎ −ℱℎ(ū)) dx

+
∫︀

Ω
(f(., 𝐶ℎ)− f(., 𝐶)) · (uℎ −ℱℎ(ū)) dx.

(3.27)
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The monotonicity of 𝒜 allows us to obtain,

𝑐𝑚 ‖uℎ −ℱℎ(ū)‖3𝐿3(Ω)𝑑 ≤
⃒⃒⃒ ∫︁

Ω

(𝒜(ℱℎ(ū))−𝒜(ū)) · (uℎ −ℱℎ(ū)) dx
⃒⃒⃒

+
⃒⃒⃒ ∫︁

Ω

∇𝑝 · (uℎ −ℱℎ(ū)) dx
⃒⃒⃒

+
⃒⃒⃒ ∫︁

Ω

(f(., 𝐶ℎ)− f(., 𝐶)) · (uℎ −ℱℎ(ū)) dx
⃒⃒⃒
.

(3.28)

We pass to the limit in the previous equation. We deduce from the strong convergence of 𝒜(ℱℎ(ū)) to 𝒜(ū)
and of f(., 𝐶ℎ) to f(., 𝐶) that the first and last terms of the right-hand-side of the previous inequality tend to 0.
Furthermore, the weak convergence of uℎ to ū, and the strong convergence of ℱℎ(ū) to ū imply the convergence
of the second term of the right hand side of the previous inequality to 0. Thus, uℎ converges strongly to ū in
𝐿3(Ω)𝑑.

To finish the proof, it remains to show that h̄ = ∇𝑝, which can be easily obtained by passing to the limit in
(3.26), and by using the strong convergence of uℎ to ū in 𝐿3(Ω)𝑑, and the uniqueness of the weak limit.

�

Theorem 3.5. Let f and 𝑔 satisfy Assumption 2.1, the limit (ū, 𝑝, 𝐶) defined in Proposition 3.4 is a solution
of problem (𝑉𝑎).

Proof. We have proved in Proposition 3.4 that (ū, 𝑝, 𝐶) solves the first two equations of problem (𝑉𝑎). It remains
to show that (ū, 𝐶) solves the third equation of problem (𝑉𝑎). We consider the third equation of problem (𝑉𝑎ℎ).
By taking 𝑆ℎ = 𝑅ℎ𝑆 for a regular 𝑆 ∈ 𝐷(Ω) (taking into account the density of 𝐷(Ω) in 𝐻1

0 (Ω)), we can show
easily the convergence of the linear terms except the non-linear ones which can be written as:∫︁

Ω

(uℎ · ∇𝐶ℎ)𝑆ℎ dx +
1
2

∫︁
Ω

div(uℎ) 𝐶ℎ𝑆ℎdx =
1
2

∫︁
Ω

(uℎ · ∇𝐶ℎ)𝑆ℎ dx− 1
2

∫︁
Ω

(uℎ · ∇𝑆ℎ)𝐶ℎ dx. (3.29)

The strong convergence of 𝑆ℎ to 𝑆 in 𝐻1
0 (Ω), and in 𝐿6(Ω), the strong convergence of uℎ to ū in 𝐿3(Ω)𝑑,

and the weak convergence of 𝐶ℎ to 𝐶 in 𝐻1
0 (Ω) lead to the convergence of (3.29). �

After showing the convergence of the discrete solution (uℎ, 𝑝ℎ, 𝐶ℎ) of problem (𝑉𝑎ℎ) to a solution (ū, 𝑝, 𝐶) of
problem (𝑉𝑎), we next derive the corresponding a priori error estimate.

Theorem 3.6. Under Assumption 2.1, let (uℎ, 𝑝ℎ, 𝐶ℎ) be a solution of problem (𝑉𝑎ℎ), and (u, 𝑝, 𝐶) be a solution
of problem (𝑉𝑎ℎ). If (u, 𝑝, 𝐶) are such that 𝐶 ∈ 𝑊 1,3(Ω) ∩ 𝐿∞(Ω), u ∈ 𝐿∞(Ω)𝑑 and 𝑝 ∈ 𝐻1(Ω), and satisfies
the following condition:

𝑆0
6 |𝐶|𝑊 1,3(Ω)+ ‖ 𝐶 ‖𝐿∞(Ω)≤

𝛼𝜇𝐾𝑚

2
√

2𝜌𝐶f1𝑆
0
2

, (3.30)

then, we have the following a priori error estimates:

|𝐶 − 𝐶ℎ|𝐻1(Ω) ≤ 1
1−𝑐2𝑟

√
𝑐2𝑢

(︂
(1 + 𝑐1𝑟)|𝐶 −𝑅ℎ(𝐶)|𝐻1(Ω) + 𝑐2𝑟

√
𝑐1𝑢 ‖∇(𝑟ℎ(𝑝)− 𝑝)‖𝐿2(Ω)𝑑

+𝑐2𝑟
√

𝑐3𝑢‖ ℱℎ(u)− u ‖
3
2
𝐿3(Ω)𝑑 + 𝑐2𝑟

√
𝑐4𝑢‖ ℱℎ(u)− u ‖𝐿2(Ω)𝑑

)︂
,

(3.31)

‖ u− uℎ ‖2𝐿2(Ω)𝑑≤ 𝑐1𝑢 ‖∇(𝑝− 𝑟ℎ(𝑝))‖2𝐿2(Ω)𝑑 + 𝑐2𝑢|𝐶 − 𝐶ℎ|2𝐻1(Ω) + 𝑐3𝑢‖ ℱℎ(u)− u ‖3𝐿3(Ω)𝑑

+ 𝑐4𝑢‖ ℱℎ(u)− u) ‖2𝐿2(Ω)𝑑 ,
(3.32)

‖ u− uℎ ‖𝐿3(Ω)𝑑≤ 𝑐′1𝑢 ‖∇(𝑝− 𝑟ℎ(𝑝)‖2/3

𝐿2(Ω)𝑑 + 𝑐′2𝑢|𝐶 − 𝐶ℎ|2/3
𝐻1(Ω) + 𝑐′3𝑢‖ ℱℎ(u)− u ‖𝐿3(Ω)𝑑

+ 𝑐′4𝑢 ‖ ℱℎ(u)− u) ‖2/3

𝐿2(Ω)𝑑 ,
(3.33)
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and

‖ ∇(𝑝− 𝑝ℎ) ‖
𝐿

3
2 (Ω)𝑑

≤ 𝑐1𝑝|𝐶 − 𝐶ℎ|1,Ω + 𝑐2𝑝 ‖ u− uℎ ‖𝐿3(Ω)𝑑 +𝑐3𝑝 ‖ ∇(𝑟ℎ(𝑝)− 𝑝) ‖
𝐿

3
2 (Ω)𝑑

, (3.34)

where 𝑐1𝑟, 𝑐2𝑟 are constants given in relation (3.52), 𝑐1𝑢, 𝑐2𝑢, 𝑐3𝑢, 𝑐4𝑢 are given in relation (3.42), 𝑐′1𝑢, 𝑐′2𝑢,
𝑐′3𝑢, 𝑐′4𝑢 are given in relation (3.42), and 𝑐1𝑝, 𝑐2𝑝, 𝑐3𝑝 are given in relation (3.49).

Proof. We shall proof the result by proceeding by steps.

(1) Let us estimate the velocity error in terms of the temperature error. By taking the difference between the
first equations of (𝑉 ) and (𝑉ℎ,1) and testing with v = vℎ ∈ 𝑉ℎ, we obtain∫︁

Ω

(︀
𝒜(u)−𝒜(uℎ)

)︀
· vℎ dx =

∫︁
Ω

(︀
f1(𝐶)− f1(𝐶ℎ)

)︀
· vℎ dx−

∫︁
Ω

∇(𝑝− 𝑟ℎ(𝑝)) · vℎ dx. (3.35)

Then, by inserting ℱℎ(u) and testing with vℎ = ℱℎ(u)− uℎ that belongs indeed to 𝑉ℎ, we easily derive∫︁
Ω

(︀
𝒜(ℱℎ(u)

)︀
−𝒜(uℎ)) · vℎdx =

∫︁
Ω

(︀
f1(𝐶)− f1(𝐶ℎ)

)︀
· vℎ dx +

∫︁
Ω

(︀
𝒜(ℱℎ(u)

)︀
−𝒜(u)) · vℎdx

−
∫︁

Ω

∇(𝑝− 𝑟ℎ(𝑝)) · vℎ dx.

(3.36)

Let us bound the second term in the right hand side of (3.36). We have∫︁
Ω

(︀
𝒜(ℱℎ(u)

)︀
−𝒜(u)) · vℎdx =

𝜇

𝜌

∫︁
Ω

𝐾−1(ℱℎ(u)− u) · vℎ dx +
𝛽

𝜌

∫︁
Ω

(|ℱℎ(u)| − |u|)(ℱℎ(u)− u) · vℎ dx

+
𝛽

𝜌

∫︁
Ω

|u|(ℱℎ(u)− u) · vℎ dx +
𝛽

𝜌

∫︁
Ω

(|ℱℎ(u)| − |u|)u · vℎ dx.

(3.37)
Then,⃒⃒⃒ ∫︁

Ω

(︀
𝒜(ℱℎ(u)

)︀
−𝒜(u)) · vℎdx

⃒⃒⃒
≤ 𝜇𝐾𝑀

𝜌
‖ ℱℎ(u)− u) ‖𝐿2(Ω)𝑑‖ vℎ ‖𝐿2(Ω)𝑑

+
𝛽

𝜌
‖ ℱℎ(u)− u ‖2𝐿3(Ω)𝑑‖ vℎ ‖𝐿3(Ω)𝑑 +

2𝛽

𝜌
‖ u ‖𝐿∞(Ω)𝑑‖ ℱℎ(u)− u ‖𝐿2(Ω)𝑑‖ vℎ ‖𝐿2(Ω)𝑑 .

(3.38)

Thus, the monotonicity of 𝒜 and the fact that f1 is 𝑐f1 -Lipschitz with values in IR𝑑 allow us to obtain,

𝑐𝑠

2
‖ ℱℎ(u)− uℎ ‖3𝐿3(Ω)𝑑 +

𝜇𝐾𝑚

2𝜌
‖ ℱℎ(u)− uℎ ‖2𝐿2(Ω)𝑑 ≤‖ ∇(𝑟ℎ(𝑝)− 𝑝) ‖𝐿2(Ω)𝑑‖ vℎ ‖𝐿2(Ω)𝑑

+𝑐f1𝑆
0
2 |𝐶 − 𝐶ℎ|𝐻1(Ω) ‖ vℎ ‖𝐿2(Ω)𝑑 +

𝜇𝐾𝑀

𝜌
‖ ℱℎ(u)− u) ‖𝐿2(Ω)𝑑‖ vℎ ‖𝐿2(Ω)𝑑

+
𝛽

𝜌
‖ ℱℎ(u)− u ‖2𝐿3(Ω)𝑑‖ vℎ ‖𝐿3(Ω)𝑑 +

2𝛽

𝜌
‖ u ‖𝐿∞(Ω)𝑑‖ ℱℎ(u)− u ‖𝐿2(Ω)𝑑‖ vℎ ‖𝐿2(Ω)𝑑 .

(3.39)

To treat the last inequality, we bound all the terms of the right hand side containing 𝑏 = ‖ vℎ ‖𝐿2(Ω)𝑑

using the formula

𝑎𝑏 ≤ 1
2𝜀

𝑎2 +
𝜀

2
𝑏2, with 𝜀 =

𝜇𝐾𝑚

8𝜌
,

and, the term containing 𝑏 =‖ vℎ ‖𝐿3(Ω)𝑑 , using the formula

𝑎2𝑏 ≤ 1
3

(︁
2𝛿

3
2 𝑎3 +

(︁1
𝛿

)︁3

𝑏3
)︁
, with 𝛿 =

(︁ 4
3𝑐𝑠

)︁1/3

.
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Then, we infer the following bound:

𝑐𝑠

4
‖ ℱℎ(u)− uℎ ‖3𝐿3(Ω)𝑑 +

𝜇𝐾𝑚

4𝜌
‖ ℱℎ(u)− uℎ ‖2𝐿2(Ω)𝑑≤

4𝜌

𝜇𝐾𝑚
‖ ∇(𝑟ℎ(𝑝)− 𝑝) ‖2𝐿2(Ω)𝑑

+
4𝜌

𝜇𝐾𝑚
(𝑐f1𝑆

0
2)2|𝐶 − 𝐶ℎ|2𝐻1(Ω) +

4𝜇𝐾2
𝑀

𝜌𝐾𝑚
‖ ℱℎ(u)− u) ‖2𝐿2(Ω)𝑑

+
4𝛽

3
2

3𝜌
3
2
√

3𝑐𝑠

‖ ℱℎ(u)− u ‖3𝐿3(Ω)𝑑 +
16𝛽2

𝜇𝜌𝐾𝑚
‖ u ‖2𝐿∞(Ω)𝑑‖ ℱℎ(u)− u ‖2𝐿2(Ω)𝑑 .

(3.40)

By using the following triangle inequality

1
2
‖ u− uℎ ‖2𝐿2(Ω)𝑑≤‖ ℱℎ(u)− uℎ ‖2𝐿2(Ω)𝑑 + ‖ ℱℎ(u)− u ‖2𝐿2(Ω)𝑑 ,

we get

‖ u− uℎ ‖2𝐿2(Ω)𝑑 ≤ 𝑐1𝑢 ‖∇(𝑟ℎ(𝑝)− 𝑝)‖2𝐿2(Ω)𝑑 + 𝑐2𝑢|𝐶 − 𝐶ℎ|2𝐻1(Ω)

+𝑐3𝑢 ‖ ℱℎ(u)− u ‖3𝐿3(Ω)𝑑 +𝑐4𝑢 ‖ ℱℎ(u)− u) ‖2𝐿2(Ω)𝑑 ,
(3.41)

where

𝑐1𝑢 =
32𝜌2

𝜇2𝐾2
𝑚

, 𝑐2𝑢 = 𝑐1𝑢(𝑐f1𝑆
0
2)2, 𝑐3𝑢 =

32𝛽
3
2

3𝜇𝐾𝑚

√
3𝑐𝑠𝜌

and 𝑐4𝑢 =
32𝐾2

𝑀

𝐾2
𝑚

+
128𝛽2

𝜇2𝐾2
𝑚

‖u‖2𝐿∞(Ω)𝑑 + 2. (3.42)

Furthermore, relation (3.40) gives

‖ ℱℎ(u)− uℎ ‖3𝐿3(Ω)𝑑≤
𝜇𝐾𝑚

2𝜌𝑐𝑠

(︀
𝑐1𝑢 ‖∇(𝑟ℎ(𝑝)− 𝑝)‖2𝐿2(Ω)𝑑 + 𝑐2𝑢|𝐶 − 𝐶ℎ|2𝐻1(Ω) + 𝑐3𝑢 ‖ ℱℎ(u)− u ‖3𝐿3(Ω)𝑑

+ 𝑐4𝑢 ‖𝐹ℎ(u)− u‖2𝐿2(Ω)𝑑

)︀
.

Thus, a triangle inequality allows us to get

‖ u− uℎ ‖𝐿3(Ω)𝑑≤ 𝑐′1𝑢 ‖∇(𝑟ℎ(𝑝)− 𝑝)‖2/3

𝐿2(Ω)𝑑 + 𝑐′2𝑢|𝐶 − 𝐶ℎ|2/3
𝐻1(Ω) + 𝑐′3𝑢 ‖ ℱℎ(u)− u ‖𝐿3(Ω)𝑑

+ 𝑐′4𝑢 ‖ ℱℎ(u)− u) ‖2/3

𝐿2(Ω)𝑑 ,

where

𝑐′𝑢 = 3

√︃
𝜇𝐾𝑚

2𝜌𝑐𝑠
, 𝑐′1𝑢 = 𝑐′𝑢

3
√

𝑐1𝑢, 𝑐′2𝑢 = 𝑐′𝑢
3
√

𝑐2𝑢, 𝑐′3𝑢 = 𝑐′𝑢(1 + 3
√

𝑐3𝑢) and 𝑐′4𝑢 = 𝑐′𝑢
3
√

𝑐4𝑢. (3.43)

Hence relations (3.32) and (3.33) are proved
(2) The proof of the error estimate for the pressure follows the same lines of the previous step. By taking

the difference between the first equations of (𝑉𝑎) and (𝑉𝑎ℎ), inserting 𝑟ℎ(𝑝) and testing with vℎ ∈ 𝑋ℎ, we
obtain ∫︁

Ω

∇
(︀
𝑟ℎ(𝑝)− 𝑝ℎ

)︀
· vℎdx =

∫︁
Ω

(︀
f1(𝐶)− f1(𝐶ℎ)

)︀
· vℎ dx−

∫︁
Ω

(︀
𝒜(u)−𝒜(uℎ)

)︀
· vℎ dx

−
∫︁

Ω

∇
(︀
𝑝− 𝑟ℎ(𝑝)

)︀
· vℎ dx.

(3.44)
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In order to estimate the second term in the right hand side of (3.44), we will proceed as follows:∫︁
Ω

(︀
𝒜(u)−𝒜(uℎ)

)︀
· vℎdx =

𝜇

𝜌

∫︁
Ω

𝐾−1(u− uℎ) · vℎdx +
𝛽

𝜌

∫︁
Ω

|u|(u− uℎ) · vℎdx

+
𝛽

𝜌

∫︁
Ω

(|u| − |uℎ|)uℎ · vℎdx

≤ 𝜇𝐾𝑀

𝜌
|Ω|1/3 ‖u− uℎ‖𝐿3(Ω)𝑑 ‖vℎ‖𝐿3(Ω)𝑑

+
𝛽

𝜌
‖u− uℎ‖𝐿3(Ω)𝑑 ‖vℎ‖𝐿3(Ω)𝑑

(︁
‖u‖𝐿3(Ω)𝑑 + ‖uℎ‖𝐿3(Ω)𝑑

)︁
.

(3.45)

Applying (2.20) and (3.11), we get∫︁
Ω

(︀
𝒜(u)−𝒜(uℎ)

)︀
· vℎ 𝑑𝑥 ≤ 𝜇𝐾𝑀

𝜌
|Ω|1/3 ‖u− uℎ‖𝐿3(Ω)𝑑 ‖vℎ‖𝐿3(Ω)𝑑 +

2𝛽

𝜌

(︂
𝛽

𝜌
‖f0‖

𝐿
3
2 (Ω)𝑑

+
𝑐f1𝑆

0
3
2
𝑆0

2

𝛼
‖𝑔‖𝐿2(Ω)𝑑

)︂ 1
2

‖u− uℎ‖𝐿3(Ω)𝑑 ‖vℎ‖𝐿3(Ω)𝑑 .

(3.46)

We denote 𝛾 =
(︂

𝛽

𝜌
‖f0‖

𝐿
3
2 (Ω)𝑑

+
𝑐f1𝑆

0
3
2
𝑆0

2

𝛼
‖𝑔‖𝐿2(Ω)𝑑

)︂ 1
2

. By following the same steps of the previous part,

and the inf-sup condition (3.3), we get

𝛽2 ‖ ∇(𝑟ℎ(𝑝)− 𝑝ℎ) ‖
𝐿

3
2 (Ω)𝑑

≤ 𝑐*f1 |Ω|
1/6𝑆0

2 |𝐶 − 𝐶ℎ|1,Ω +
(︂

𝜇𝐾𝑀

𝜌
|Ω|1/3 +

2𝛽

𝜌
𝛾

)︂
‖ u− uℎ ‖𝐿3(Ω)𝑑

+ ‖∇(𝑝− 𝑟ℎ(𝑝))‖
𝐿

3
2 (Ω)𝑑

.
(3.47)

The following triangle inequality

‖ ∇(𝑝− 𝑝ℎ) ‖
𝐿

3
2 (Ω)𝑑

≤‖ ∇(𝑟ℎ(𝑝)− 𝑝ℎ) ‖
𝐿

3
2 (Ω)𝑑

+ ‖ ∇(𝑟ℎ(𝑝)− 𝑝) ‖
𝐿

3
2 (Ω)𝑑

allows us to get

‖ ∇(𝑝− 𝑝ℎ) ‖
𝐿

3
2 (Ω)𝑑

≤ 𝑐1𝑝|𝐶 − 𝐶ℎ|1,Ω + 𝑐2𝑝 ‖ u− uℎ ‖𝐿3(Ω)𝑑 +𝑐3𝑝 ‖ ∇(𝑟ℎ(𝑝)− 𝑝) ‖
𝐿

3
2 (Ω)𝑑

, (3.48)

where

𝑐1𝑝 =
1
𝛽2

𝑐*f1𝑆
0
2 |Ω|1/6, 𝑐2𝑝 =

1
𝛽2

(︂
𝜇𝐾𝑀

𝜌
|Ω|1/3 +

2𝛽

𝜌
𝛾

)︂
and 𝑐3𝑝 = (

1
𝛽2

+ 1). (3.49)

Hence relation (3.34) is proved.
(3) Next we estimate the error of the concentration in terms of the velocity error. We take the difference

between the third equations of systems (𝑉𝑎) and (𝑉𝑎ℎ), insert 𝑆ℎ(𝐶), and use the Green formula to get for
all 𝑆ℎ ∈ 𝑋ℎ

𝛼

∫︁
Ω

∇
(︁
𝑅ℎ(𝐶)− 𝐶ℎ

)︁
· ∇𝑆ℎ dx + 𝑟0

∫︁
Ω

(︁
𝑅ℎ(𝐶)− 𝐶ℎ

)︁
𝑆ℎ dx =

𝛼

∫︁
Ω

∇
(︁
𝑅ℎ(𝐶)− 𝐶

)︁
· ∇𝑆ℎ dx + 𝑟0

∫︁
Ω

(︁
𝑅ℎ(𝐶)− 𝐶

)︁
𝑆ℎ dx

+
1
2

∫︁
Ω

(︁
uℎ · ∇(𝑅ℎ(𝐶)− 𝐶)

)︁
𝑆ℎ dx− 1

2

∫︁
Ω

(︁
uℎ · ∇𝑆ℎ

)︁(︁
𝑅ℎ(𝐶)− 𝐶

)︁
dx

+
1
2

∫︁
Ω

(︁
(uℎ − u) · ∇𝐶

)︁
𝑆ℎ dx− 1

2

∫︁
Ω

(︁
(uℎ − u) · ∇𝑆ℎ

)︁
𝐶 dx.

(3.50)
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The terms in the last two lines of the right-hand side are bounded by

‖uℎ‖𝐿3(Ω)𝑑

(︁
|𝐶 −𝑅ℎ(𝐶)|𝐻1(Ω)‖𝑆ℎ‖𝐿6(Ω) + ‖𝐶 −𝑅ℎ(𝐶)‖𝐿6(Ω)|𝑆ℎ|𝐻1(Ω)

)︁
+ ‖uℎ − u‖𝐿2(Ω)𝑑

(︁
|𝐶|𝑊 1,3(Ω)‖𝑆ℎ‖𝐿6(Ω) + ‖𝐶‖𝐿∞(Ω)|𝑆ℎ|𝐻1(Ω)

)︁
.

(3.51)

Then the choice 𝑆ℎ = 𝑅ℎ(𝐶) − 𝐶ℎ, the antisymmetric property of the transport term, the fact that uℎ is
bounded in 𝐿3(Ω)𝑑 as

‖uℎ‖𝐿3(Ω)𝑑 ≤
(︂

𝜌

𝛽
(‖ f0 ‖

𝐿
3
2 (Ω)𝑑

+𝑐f1𝑆
0
3
2
|𝐶|1,Ω)

)︂ 1
2

,

and Sobolev’s embedding yield

|𝑅ℎ(𝐶)− 𝐶ℎ|𝐻1(Ω) ≤ 𝑐1𝑟|𝐶 −𝑅ℎ(𝐶)|𝐻1(Ω) + 𝑐2𝑟‖uℎ − u‖𝐿2(Ω)𝑑 ,

where

𝑐1𝑟 =
(︂

1 +
𝑟0(𝑆0

2)2

𝛼
+

𝑆0
6

𝛼

(︀ 𝜌

𝛽
(‖ f0 ‖

𝐿
3
2 (Ω)𝑑

+𝑐f1𝑆
0
3
2
|𝐶|1,Ω))

1
2

)︂
and 𝑐2𝑟 =

1
2𝛼

(︂
𝑆0

6 |𝐶|𝑊 1,3(Ω)+ ‖ 𝐶 ‖𝐿∞(Ω)

)︂
.

(3.52)
By using the following triangle inequality:

|𝐶 − 𝐶ℎ|𝐻1(Ω) ≤ |𝑅ℎ(𝐶)− 𝐶|𝐻1(Ω) + |𝑅ℎ(𝐶)− 𝐶ℎ|𝐻1(Ω),

we get
|𝐶 − 𝐶ℎ|𝐻1(Ω) ≤ (1 + 𝑐1𝑟)|𝐶 −𝑅ℎ(𝐶)|𝐻1(Ω) + 𝑐2𝑟‖uℎ − u‖𝐿2(Ω)𝑑 . (3.53)

(4) Finally, by combining relations (3.41) and (3.53), and using relation (3.30), we obtain relation (3.31).

�

By using the properties of the operators 𝑅ℎ, ℱℎ and 𝑟ℎ, we get the following result:

Theorem 3.7. Under the assumptions of Theorem 3.6 and if the solution (u, 𝑝, 𝐶) of problem (𝑉𝑎) satisfies
𝐶 ∈ 𝐻2(Ω), u ∈ 𝑊 1,3(Ω)𝑑 and 𝑝 ∈ 𝐻2(Ω), then we have the following a priori error estimates:

|𝐶 − 𝐶ℎ|𝐻1(Ω)+ ‖ u− uℎ ‖𝐿2(Ω)𝑑 + ‖ ∇(𝑝− 𝑝ℎ) ‖
𝐿

3
2 (Ω)𝑑

≤ 𝐶1ℎ (3.54)

and
‖ u− uℎ ‖𝐿3(Ω)𝑑≤ 𝐶2ℎ

2/3, (3.55)

where 𝐶1 and 𝐶2 are strictly positive constants independent of ℎ.

4. Iterative algorithm

In order to solve the discrete system, we propose in this section an iterative algorithm which converges to
the exact solution under additional conditions on the exact solution.
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The algorithm proceeds as follows: Let uℎ
0 ∈ 𝑋ℎ and 𝐶0

ℎ ∈ 𝑌0 the initial guesses. Having (u𝑖
ℎ, 𝐶𝑖

ℎ) ∈ 𝑋ℎ × 𝑌ℎ

at each iteration 𝑖, we compute (u𝑖+1
ℎ , 𝑝𝑖+1

ℎ , 𝐶𝑖+1
ℎ ) ∈ 𝑋ℎ ×𝑀ℎ × 𝑌ℎ, such that

(𝑉𝑎ℎ𝑖)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀vℎ ∈ 𝑋ℎ, 𝛾

∫︁
Ω

(u𝑖+1
ℎ − u𝑖

ℎ) · vℎdx +
𝜇

𝜌

∫︁
Ω

(𝐾−1u𝑖+1
ℎ ) · vℎ dx +

𝛽

𝜌

∫︁
Ω

|u𝑖
ℎ|u𝑖+1

ℎ · vℎ dx

+
∫︁

Ω

∇𝑝𝑖+1
ℎ · vℎ dx =

∫︁
Ω

f(𝐶𝑖
ℎ) · vℎ dx,

∀𝑞ℎ ∈ 𝑀ℎ,

∫︁
Ω

∇𝑞ℎ · u𝑖+1
ℎ dx = 0,

∀𝑆ℎ ∈ 𝑌ℎ, 𝛼

∫︁
Ω

∇𝐶𝑖+1
ℎ · ∇𝑆ℎ dx +

∫︁
Ω

(u𝑖+1
ℎ · ∇𝐶𝑖+1

ℎ )𝑆ℎ dx +
1
2

∫︁
Ω

div(u𝑖+1
ℎ ) 𝐶𝑖+1

ℎ 𝑆ℎdx

+𝑟0

∫︁
Ω

𝐶𝑖+1
ℎ 𝑆ℎ dx =

∫︁
Ω

𝑔𝑆ℎ dx,

(4.1)

where 𝛾 is a real strictly positive parameter. Later on, the parameter 𝛾 will be chosen to ensure the convergence
of algorithm (𝑉𝑎ℎ𝑖). At each iteration 𝑖, having u𝑖

ℎ and 𝐶𝑖
ℎ, the first two lines of (𝑉𝑎ℎ𝑖) computes (u𝑖+1

ℎ , 𝑝𝑖+1
ℎ ).

Next, we substitute u𝑖+1
ℎ by its value in the third equation of (𝑉𝑎ℎ𝑖) to compute 𝐶𝑖+1

ℎ .

In the following, we study Scheme (𝑉𝑎ℎ𝑖), and we begin by proving the existence and uniqueness of the
corresponding solution.

Theorem 4.1. In addition to Assumption 2.1, we suppose that f0 ∈ 𝐿2(Ω)𝑑. For each (u𝑖
ℎ, 𝐶𝑖

ℎ) ∈ 𝑋ℎ × 𝑌ℎ,
problem (𝑉𝑎ℎ𝑖) admits a unique solution (u𝑖+1

ℎ , 𝑝𝑖+1
ℎ , 𝐶𝑖+1

ℎ ) ∈ 𝑋ℎ ×𝑀ℎ × 𝑌ℎ. Moreover, we have the following
bound

|𝐶𝑖+1
ℎ |1,Ω ≤

𝑆0
2

𝛼
‖𝑔‖𝐿2(Ω) . (4.2)

Furthermore, if the initial value u0
ℎ satisfies the condition⃦⃦

u0
ℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤ 𝐿1(f , 𝑔), (4.3)

where

𝐿1(f , 𝑔) =
1
4

(︂
‖f0‖𝐿2(Ω)𝑑 + 𝑐f1

(𝑆0
2)2

𝛼
‖𝑔‖𝐿2(Ω)

)︂2

,

and if 𝛾 satisfies the condition

𝛾 >
32𝛽

27𝜌
𝐶9

𝐼 𝐿2(f , 𝑔, 𝐿1(f , 𝑔))ℎ−3𝑑/2, (4.4)

where

𝐿2(f , 𝑔, 𝜈) =
1
√

𝛾

(︂
3𝜌

2𝜇𝐾𝑚

(︀
‖f0‖𝐿2(Ω)𝑑 + 𝑐f1

(𝑆0
2)2

𝛼
‖𝑔‖𝐿2(Ω)

)︀2 +
3𝜇𝐾2

𝑀

2𝜌𝐾𝑚
𝜈 +

3𝛽2

2𝜇𝜌𝐾𝑚
𝐶6

𝐼 ℎ−𝑑𝜈2

)︂ 1
2

, (4.5)

then, the following inequalities hold ⃦⃦
u𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤ 𝐿1(f , 𝑔), (4.6)

and ⃦⃦
u𝑖+1

ℎ

⃦⃦3

𝐿3(Ω)𝑑 ≤
2𝜌

𝛽

(︂
2𝜌

𝜇𝐾𝑚
+

𝛾

2

)︂
𝐿1(f , 𝑔). (4.7)
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Proof. To prove the existence and uniqueness of the solution of problem (𝑉𝑎ℎ𝑖) which is a square finite dimension
linear system, it suffices to show the uniqueness which is readily checked for each (u𝑖

ℎ, 𝐶𝑖
ℎ) ∈ 𝑋ℎ × 𝑌ℎ. In fact,

let (u𝑖+1
ℎ,1 , 𝑝𝑖+1

ℎ,1 , 𝐶𝑖+1
ℎ,1 ) and (u𝑖+1

ℎ,2 , 𝑝𝑖+1
ℎ,2 , 𝐶𝑖+1

ℎ,2 ) be two solutions of problem (𝑉𝑎ℎ𝑖). Denote wℎ = u𝑖+1
ℎ,1 − u𝑖+1

ℎ,2 and
𝜉ℎ = 𝑝𝑖+1

ℎ,1 − 𝑝𝑖+1
ℎ,2 . We deduce from the problem (𝑉𝑎ℎ𝑖) that (wℎ, 𝜉ℎ) is the solution of the following problem

⎧⎪⎪⎨⎪⎪⎩
∀𝑣ℎ ∈ 𝑋ℎ, 𝛾

∫︁
Ω

wℎ · vℎ dx +
𝜇

𝜌

∫︁
Ω

𝐾−1wℎ · vℎ dx +
𝛽

𝜌

∫︁
Ω

|u𝑖
ℎ|wℎ · vℎ dx +

∫︁
Ω

∇𝜉ℎ · vℎ dx = 0,

∀𝑞ℎ ∈ 𝑀ℎ,

∫︁
Ω

∇𝑞ℎ ·wℎ dx = 0.

Taking (vℎ, 𝑞ℎ) = (wℎ, 𝜉ℎ) and remarking that
∫︁

Ω

|u𝑖
ℎ||wℎ|2 dx is non negative, we obtain by using the

properties of 𝐾−1, the following bound (︂
𝛾 +

𝜇𝐾𝑚

𝜌

)︂
‖wℎ‖2𝐿2(Ω)𝑑 ≤ 0.

Thus, we deduce that wℎ = 0 (u𝑖+1
ℎ,1 = u𝑖+1

ℎ,2 ) and the discrete inf-sup condition (3.3) implies that 𝜉ℎ = 0
(𝑝𝑖+1

ℎ,1 = 𝑝𝑖+1
ℎ,2 ). This gives the uniqueness of the velocity and the pressure for each iteration 𝑖.

Let us now prove the uniqueness of the concentration. We denote by 𝐶𝑖+1
ℎ = 𝐶𝑖+1

ℎ,1 − 𝐶𝑖+1
ℎ,2 . Then, the third

equation of problem (𝑉𝑎ℎ𝑖) gives: find 𝐶𝑖+1
ℎ ∈ 𝑌ℎ such that for all 𝑆ℎ ∈ 𝑌ℎ

𝛼

∫︁
Ω

∇𝐶𝑖+1
ℎ · ∇𝑆ℎ dx +

∫︁
Ω

(u𝑖+1
ℎ · ∇𝐶𝑖+1

ℎ )𝑆ℎ dx +
1
2

∫︁
Ω

div(u𝑖+1
ℎ ) 𝐶𝑖+1

ℎ 𝑆ℎdx + 𝑟0

∫︁
Ω

𝐶𝑖+1
ℎ 𝑆ℎ dx = 0, (4.8)

where (u𝑖+1
ℎ , 𝑝𝑖+1

ℎ ) is the unique solution of the first two equations of problem (𝑉𝑎ℎ𝑖). By taking 𝑆ℎ = 𝐶𝑖+1
ℎ and

using the antisymmetric property we get the uniqueness of the concentration.
The bound (4.2) can be deduced immediately by taking 𝑆ℎ = 𝐶𝑖+1

ℎ in the third equation of problem (𝑉𝑎ℎ𝑖),
and by using the Cauchy-Schwartz inequality.

To prove the bound (4.6), we need first to estimate the error
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑 in terms of the previous

value u𝑖
ℎ. Taking the first equation of problem (𝑉𝑎ℎ𝑖) with vℎ = u𝑖+1

ℎ − u𝑖
ℎ yields

𝛾
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇

𝜌

∫︁
Ω

𝐾−1u𝑖+1
ℎ ·(u𝑖+1

ℎ −u𝑖
ℎ)dx+

𝛽

𝜌

∫︁
Ω

|u𝑖
ℎ|u𝑖+1

ℎ ·(u𝑖+1
ℎ −u𝑖

ℎ)dx =
∫︁

Ω

f(𝐶𝑖
ℎ) ·(u𝑖+1

ℎ −u𝑖
ℎ)dx.

By inserting u𝑖
ℎ in the second and third terms of the last equation, we get,

𝛾
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇

𝜌

∫︁
Ω

𝐾−1(u𝑖+1
ℎ − u𝑖

ℎ) · (u𝑖+1
ℎ − u𝑖

ℎ) dx +
𝛽

𝜌

∫︁
Ω

|u𝑖
ℎ||u𝑖+1

ℎ − u𝑖
ℎ|2 dx

=
∫︁

Ω

f(𝐶𝑖
ℎ) · (u𝑖+1

ℎ − u𝑖
ℎ) dx− 𝜇

𝜌

∫︁
Ω

𝐾−1u𝑖
ℎ · (u𝑖+1

ℎ − u𝑖
ℎ) dx− 𝛽

𝜌

∫︁
Ω

|u𝑖
ℎ|u𝑖

ℎ · (u𝑖+1
ℎ − u𝑖

ℎ) dx.

(4.9)

Using the properties of 𝐾−1, the Cauchy-Schwartz inequality and relation (3.2) give the following

𝛾
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

𝜌

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤
⃦⃦
f(𝐶𝑖

ℎ)
⃦⃦

𝐿2(Ω)𝑑

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑

+
𝜇𝐾𝑀

𝜌

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑

⃦⃦
u𝑖

ℎ

⃦⃦
𝐿2(Ω)𝑑 +

𝛽

𝜌
𝐶3

𝐼 ℎ−𝑑/2
⃦⃦
u𝑖

ℎ

⃦⃦2

𝐿2(Ω)𝑑

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑 .

(4.10)
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We apply the relation 𝑎𝑏 ≤ 1
2𝜀

𝑎2 +
𝜀

2
𝑏2 with 𝜀 =

𝜇𝐾𝑚

3𝜌
to each term on the right-hand side of the previous

inequality, and we obtain

𝛾
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

2𝜌

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤
3𝜌

2𝜇𝐾𝑚

⃦⃦
f(𝐶𝑖

ℎ)
⃦⃦2

𝐿2(Ω)𝑑 +
3𝜇𝐾2

𝑀

2𝐾𝑚𝜌

⃦⃦
u𝑖

ℎ

⃦⃦2

𝐿2(Ω)𝑑

+
3𝛽2

2𝜌𝜇𝐾𝑚
𝐶6

𝐼 ℎ−𝑑
⃦⃦
u𝑖

ℎ

⃦⃦4

𝐿2(Ω)𝑑 .

(4.11)

Therefore, Assumption 2.1 and Relation (4.2) allow us to get⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑 ≤ 𝐿2

(︁
f , 𝑔,

⃦⃦
u𝑖

ℎ

⃦⃦2

𝐿2(Ω)𝑑

)︁
, (4.12)

where

𝐿2(f , 𝑔, 𝜈) =
1
√

𝛾

(︃
3𝜌

2𝜇𝐾𝑚

(︂
‖f0‖𝐿2(Ω)𝑑 + 𝑐f1

(𝑆0
2)2

𝛼
‖𝑔‖𝐿2(Ω)

)︂2

+
3𝜇𝐾2

𝑀

2𝜌𝐾𝑚
𝜈 +

3𝛽2

2𝜇𝜌𝐾𝑚
𝐶6

𝐼 ℎ−𝑑𝜈2

)︃ 1
2

. (4.13)

Then, we are now in position to show relation (4.6). We consider the first equation of problem (𝑉𝑎ℎ𝑖) with
vℎ = u𝑖+1

ℎ , and we obtain

𝛾

∫︁
Ω

(u𝑖+1
ℎ − u𝑖

ℎ) · u𝑖+1
ℎ dx +

𝜇

𝜌

∫︁
Ω

𝐾−1u𝑖+1
ℎ · u𝑖+1

ℎ dx +
𝛽

𝜌

⃦⃦
u𝑖+1

ℎ

⃦⃦3

𝐿3(Ω)𝑑

=
∫︁

Ω

f(𝐶𝑖
ℎ) · u𝑖+1

ℎ dx +
𝛽

𝜌

∫︁
Ω

(|u𝑖+1
ℎ | − |u𝑖

ℎ|)|u𝑖+1
ℎ |2 dx.

(4.14)

Using the properties of 𝐾−1, the Cauchy-Shwartz inequality and the relations 𝑎𝑏 ≤ 1
2𝜀

𝑎2 +
𝜀

2
𝑏2 and 𝑎2𝑏 ≤

1
3

(︁ 1
𝛿3

𝑏3 + 2𝛿
3
2 𝑎3
)︁

wih 𝜀 =
𝜇𝐾𝑚

𝜌
and 𝛿 =

(︁3𝛽

4𝜌

)︁2/3

, we get

𝛾

2

⃦⃦
u𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)𝑑 −
𝛾

2

⃦⃦
u𝑖

ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝛾

2

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

2𝜌

⃦⃦
u𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝛽

2𝜌

⃦⃦
u𝑖+1

ℎ

⃦⃦3

𝐿3(Ω)𝑑

≤ 𝜌

2𝜇𝐾𝑚

⃦⃦
f(𝐶𝑖

ℎ)
⃦⃦2

𝐿2(Ω)𝑑 +
16𝛽

27𝜌
𝐶9

𝐼 ℎ−3𝑑/2
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦3

𝐿2(Ω)𝑑 .

(4.15)

We denote by

𝐶1

(︀ ⃦⃦
u𝑖

ℎ

⃦⃦
𝐿2(Ω)𝑑

)︀
=

𝛾

2
− 16𝛽

27𝜌
𝐶9

𝐼 ℎ−3𝑑/2𝐿2

(︀
f , 𝑔,

⃦⃦
u𝑖

ℎ

⃦⃦2

𝐿2(Ω)𝑑

)︀
and we get by using (4.12) that

𝐶1

(︀ ⃦⃦
u𝑖

ℎ

⃦⃦
𝐿2(Ω)𝑑

)︀
≤ 𝛾

2
− 16𝛽

27𝜌
𝐶9

𝐼 ℎ−3𝑑/2
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑 .

Therefore, we obtain the following bound:

𝛾

2

⃦⃦
u𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)𝑑 −
𝛾

2

⃦⃦
u𝑖

ℎ

⃦⃦2

𝐿2(Ω)𝑑 + 𝐶1

(︀ ⃦⃦
u𝑖

ℎ

⃦⃦
𝐿2(Ω)𝑑

)︀ ⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

2𝜌

⃦⃦
u𝑖+1

ℎ

⃦⃦2

𝐿2(Ω)𝑑

+
𝛽

2𝜌

⃦⃦
u𝑖+1

ℎ

⃦⃦3

𝐿3(Ω)𝑑 ≤
2𝜌

𝜇𝐾𝑚
𝐿1(f , 𝑔).

(4.16)

We now prove estimate (4.6) by induction on 𝑖 ≥ 1 under some condition on 𝛾. Starting with relation (4.3),
we suppose that we have ⃦⃦

u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤ 𝐿1(f , 𝑔). (4.17)

We have two situations:



2666 T. SAYAH ET AL.

–
⃦⃦
u𝑖+1

ℎ

⃦⃦
𝐿2(Ω)𝑑 ≤

⃦⃦
u𝑖

ℎ

⃦⃦
𝐿2(Ω)𝑑 , which immediately leads to⃦⃦

u𝑖+1
ℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤ 𝐿1(f , 𝑔).

–
⃦⃦
u𝑖+1

ℎ

⃦⃦
𝐿2(Ω)𝑑 ≥

⃦⃦
u𝑖

ℎ

⃦⃦
𝐿2(Ω)𝑑 . By using the induction condition (4.17), taking

𝛾

2
>

16𝛽

27𝜌
𝐶9

𝐼 ℎ−3𝑑/2𝐿2

(︀
f , 𝐿1(f , 𝑔)

)︀
>

16𝛽

27𝜌
𝐶9

𝐼 ℎ−3𝑑/2𝐿2

(︀
f ,
⃦⃦
u𝑖

ℎ

⃦⃦2

𝐿2(Ω)𝑑

)︀
,

(4.18)

we get 𝐶1

(︀ ⃦⃦
u𝑖

ℎ

⃦⃦
𝐿2(Ω)𝑑

)︀
> 0, and deduce from relation (4.16) that⃦⃦

u𝑖+1
ℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤ 𝐿1(f , 𝑔).

Then relation (4.6) holds. The bound (4.7) is a simple consequence of (4.16) and (4.6). �

The next theorem shows the convergence of the solution (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ) of problem (𝑉𝑎ℎ𝑖) to the solution of

problem (𝑉𝑎ℎ).

Theorem 4.2. In addition to Assumption 2.1, we assume that the concentration solution of the problem (𝑉𝑎)
satisfies

𝑆0
6 |𝐶|𝑊 1,3(Ω) + ‖𝐶‖𝐿∞(Ω) ≤

𝜇𝐾𝑚𝛼

2𝜌𝑐f1𝑆
0
2

. (4.19)

Under the assumptions of Theorem 4.1, and if 𝛾 satisfies the condition

𝛾 >
2𝜌𝐶2

2

𝜇𝐾𝑚
ℎ−𝑑, (4.20)

where 𝐶2 =
𝛽

𝜌
𝐶3

𝐼 (𝐿1(f , 𝑔))1/2 and if

ℎ ≤

(︃
1

2𝐶𝐼𝐶1

(︂
|𝐶|𝑊 1,3(Ω) +

‖𝐶‖𝐿∞(Ω)

𝑆0
6

)︂)︃6/(6−𝑑)

, (4.21)

where 𝐶1 is the constant in (3.54), then the solution (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ) of problem (𝑉𝑎ℎ𝑖) converges in 𝐿2(Ω)𝑑 ×

𝐿2(Ω)×𝐻1(Ω) to the solution of problem (𝑉𝑎ℎ).

Proof. We start by subtracting the third equation of problem (𝑉𝑎ℎ𝑖) from the one of problem (𝑉𝑎ℎ) to get

𝛼

∫︁
Ω

∇(𝐶ℎ − 𝐶𝑖+1
ℎ ) · ∇𝑆ℎ dx +

∫︁
Ω

uℎ · ∇𝐶ℎ𝑆ℎ dx−
∫︁

Ω

u𝑖+1
ℎ · ∇𝐶𝑖+1

ℎ 𝑆ℎ dx + 𝑟0

∫︁
Ω

(𝐶ℎ − 𝐶𝑖+1
ℎ )𝑆ℎ dx

=
1
2

∫︁
Ω

div u𝑖+1
ℎ 𝐶𝑖+1

ℎ 𝑆ℎ dx− 1
2

∫︁
Ω

div uℎ𝐶ℎ𝑆ℎ dx.

(4.22)

Inserting ∇𝐶ℎ in the last term of the left-hand side and 𝐶ℎ in the first term of the right-hand side of the
previous relation lead to

𝛼

∫︁
Ω

∇(𝐶ℎ − 𝐶𝑖+1
ℎ ) · ∇𝑆ℎ dx + 𝑟0

∫︁
Ω

(𝐶ℎ − 𝐶𝑖+1
ℎ )𝑆ℎ dx−

∫︁
Ω

u𝑖+1
ℎ · ∇(𝐶𝑖+1

ℎ − 𝐶ℎ)𝑆ℎ dx

=
1
2

∫︁
Ω

div u𝑖+1
ℎ (𝐶𝑖+1

ℎ − 𝐶ℎ)𝑆ℎ dx +
∫︁

Ω

(u𝑖+1
ℎ − uℎ) · ∇𝐶ℎ𝑆ℎ dx +

1
2

∫︁
Ω

div(u𝑖+1
ℎ − uℎ)𝐶ℎ𝑆ℎ dx.

(4.23)
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Finally, by inserting ∇𝐶 in the second term of right-hand side and using the Green’s formula and the
antisymmetric property, we get

𝛼

∫︁
Ω

∇(𝐶ℎ − 𝐶𝑖+1
ℎ ) · ∇𝑆ℎ dx + 𝑟0

∫︁
Ω

(𝐶ℎ − 𝐶𝑖+1
ℎ )𝑆ℎ dx

=
1
2

∫︁
Ω

(u𝑖+1
ℎ − uℎ) · ∇(𝐶ℎ − 𝐶)𝑆ℎ dx +

1
2

∫︁
Ω

(u𝑖+1
ℎ − uℎ) · ∇𝐶𝑆ℎ dx

− 1
2

∫︁
Ω

(u𝑖+1
ℎ − uℎ) · ∇𝑆ℎ(𝐶ℎ − 𝐶) dx− 1

2

∫︁
Ω

(u𝑖+1
ℎ − uℎ) · ∇𝑆ℎ𝐶 dx.

(4.24)

By taking 𝑆ℎ = 𝐶ℎ − 𝐶𝑖+1
ℎ , we obtain

𝛼|𝐶ℎ − 𝐶𝑖+1
ℎ |1,Ω ≤ 𝑆0

6

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿3(Ω)𝑑 |𝐶ℎ − 𝐶|1,Ω

+
𝑆0

6

2

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 |𝐶|𝑊 1,3(Ω) +

1
2
‖𝐶‖𝐿∞(Ω)

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 .

(4.25)

Finally, we get by using relation (3.2):

|𝐶ℎ − 𝐶𝑖+1
ℎ |1,Ω ≤

𝑆0
6

2𝛼

[︃
2𝐶𝐼ℎ

−𝑑/6|𝐶 − 𝐶ℎ|1,Ω + |𝐶|𝑊 1,3(Ω) +
‖𝐶‖𝐿∞(Ω)

𝑆0
6

]︃ ⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 . (4.26)

Furthermore, by taking the difference between the first equations of problems (𝑉𝑎ℎ) and (𝑉𝑎ℎ𝑖) with vℎ =
u𝑖+1

ℎ − uℎ, we get

𝛾

2

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 −
𝛾

2

⃦⃦
u𝑖

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝛾

2

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇

𝜌

∫︁
Ω

𝐾−1|u𝑖+1
ℎ − uℎ|2 dx

+
𝛽

𝜌

∫︁
Ω

(︀
|u𝑖

ℎ| − |u𝑖+1
ℎ |

)︀
u𝑖+1

ℎ ·
(︀
u𝑖+1

ℎ − uℎ

)︀
dx +

𝛽

𝜌

∫︁
Ω

(︀
|u𝑖+1

ℎ |u𝑖+1
ℎ − |uℎ|uℎ

)︀
·
(︀
u𝑖+1

ℎ − uℎ

)︀
dx

=
∫︁

Ω

(︀
f(𝐶𝑖

ℎ)− f(𝐶ℎ)
)︀
·
(︀
u𝑖+1

ℎ − uℎ

)︀
dx.

(4.27)

By using the monotonicity property of the operator 𝒜 we obtain,

𝛾

2

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 −
𝛾

2

⃦⃦
u𝑖

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝛾

2

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

𝜌

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑

≤ 𝛽

𝜌
𝐶3

𝐼 ℎ−𝑑/2
⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑

⃦⃦
u𝑖+1

ℎ

⃦⃦
𝐿2(Ω)𝑑

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 + 𝑐f1𝑆

0
2 |𝐶𝑖

ℎ − 𝐶ℎ|1,Ω

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑

≤ 𝛽

𝜌
𝐶3

𝐼 ℎ−𝑑/2
(︀
𝐿1(f , 𝑔)

)︀1/2 ⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦
𝐿2(Ω)𝑑

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 + 𝑐f1𝑆

0
2 |𝐶𝑖

ℎ − 𝐶ℎ|1,Ω

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 .

(4.28)

We denote by 𝐶2 =
𝛽

𝜌
𝐶3

𝐼

(︀
𝐿1(f , 𝑔)

)︀1/2, and we use the relation 𝑎𝑏 ≤ 1
2𝜀

𝑎2 +
𝜀

2
𝑏2 with 𝜀 =

𝜇𝐾𝑚

2𝜌
, we get

𝛾

2

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 −
𝛾

2

⃦⃦
u𝑖

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝛾

2

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

2𝜌

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑

≤ 𝜌𝐶2
2

𝜇𝐾𝑚
ℎ−𝑑

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜌(𝑐f1𝑆

0
2)2

𝜇𝐾𝑚
|𝐶𝑖

ℎ − 𝐶ℎ|21,Ω.

(4.29)
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We choose
𝛾

2
>

𝜌𝐶2
2

𝜇𝐾𝑚
ℎ−𝑑, and we denote by 𝐶3 =

𝛾

2
− 𝜌𝐶2

2

𝜇𝐾𝑚
ℎ−𝑑 > 0 to conclude that

𝛾

2

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 −
𝛾

2

⃦⃦
u𝑖

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 + 𝐶3

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

2𝜌

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑

≤ 𝜌(𝑐f1𝑆
0
2)2

𝜇𝐾𝑚
|𝐶𝑖

ℎ − 𝐶ℎ|21,Ω.

(4.30)

Combining (4.30) with (4.26) and using a priori estimate (3.54), we get

𝛾

2

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 −
𝛾

2

⃦⃦
u𝑖

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 + 𝐶3

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑 +
𝜇𝐾𝑚

2𝜌

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑

≤ 𝜌

𝜇𝐾𝑚

(︁𝑐f1𝑆
0
2𝑆0

6

2𝛼

)︁2 [︁
2𝐶𝐼𝐶1ℎ

(6−𝑑)/6 + |𝐶|𝑊 1,3(Ω) + ‖𝐶‖𝐿∞(Ω)

]︁2 ⃦⃦
u𝑖

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 .

(4.31)

Finally, Assumptions (4.19) and (4.21) allow us to get(︂
𝛾

2
+

𝜇𝐾𝑚

4𝜌

)︂(︂ ⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 −
⃦⃦
u𝑖

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑

)︂
+ 𝐶3

⃦⃦
u𝑖+1

ℎ − u𝑖
ℎ

⃦⃦2

𝐿2(Ω)𝑑

+
𝜇𝐾𝑚

4𝜌

⃦⃦
u𝑖+1

ℎ − uℎ

⃦⃦2

𝐿2(Ω)𝑑 ≤ 0.

(4.32)

We deduce that, for all 𝑖 ≥ 1, we have (if
⃦⃦
u𝑖

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 ̸= 0)⃦⃦

u𝑖+1
ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 <

⃦⃦
u𝑖

ℎ − uℎ

⃦⃦
𝐿2(Ω)𝑑 ,

and then we deduce the convergence of the sequence (u𝑖+1
ℎ − uℎ) in 𝐿2(Ω)𝑑, and then the convergence of the

sequence u𝑖
ℎ in 𝐿2(Ω)𝑑. By taking the limit of (4.32), we get that u𝑖+1

ℎ converges to uℎ in 𝐿2(Ω)𝑑. Relation
(4.26) allows us to deduce that 𝐶𝑖+1

ℎ converges to 𝐶ℎ in 𝐻1
0 (Ω).

Next, we study the convergence of the pressure, taking the difference between the first equations of systems
(𝑉𝑎ℎ) and (𝑉𝑎ℎ𝑖), we obtain for all vℎ ∈ 𝑋ℎ the equation∫︁

Ω

∇
(︀
𝑝𝑖+1

ℎ − 𝑝ℎ

)︀
· vℎ dx =

∫︁
Ω

(︀
f(𝐶ℎ)− f(𝐶𝑖

ℎ)
)︀
· vℎdx− 𝛾

∫︁
Ω

(︀
u𝑖+1

ℎ − u𝑖
ℎ

)︀
· vℎ dx

+
𝜇

𝜌

∫︁
Ω

𝐾−1
(︀
uℎ − u𝑖+1

ℎ

)︀
· vℎ dx +

𝛽

𝜌

∫︁
Ω

(︀
|uℎ| − |u𝑖

ℎ|
)︀
uℎ · vℎ dx

+
𝛽

𝜌

∫︁
Ω

|u𝑖
ℎ|
(︀
uℎ − u𝑖+1

ℎ

)︀
· vℎ dx.

We get by using the inverse inequality (3.2) the following:⃒⃒⃒ ∫︁
Ω

∇(𝑝𝑖+1
ℎ − 𝑝ℎ) · vℎ dx

⃒⃒⃒
||vℎ||𝐿3(Ω)𝑑

≤ 𝑐f1𝑆
0
2 |𝐶ℎ − 𝐶𝑖

ℎ|1,Ω

||vℎ||𝐿2(Ω)𝑑

||vℎ||𝐿3(Ω)𝑑

+
(︁
𝛾||u𝑖

ℎ − u𝑖+1
ℎ ||𝐿2(Ω)𝑑 +

𝜇𝐾𝑀

𝜌
||uℎ − u𝑖+1

ℎ ||𝐿2(Ω)𝑑

)︁ ||vℎ||𝐿2(Ω)𝑑

||vℎ||𝐿3(Ω)𝑑

+
𝛽

𝜌
𝐶𝐼ℎ

− 𝑑
6 ||uℎ − u𝑖

ℎ||𝐿2(Ω)𝑑

(︁
||uℎ||𝐿3(Ω)𝑑 + ||u𝑖

ℎ||𝐿3(Ω)𝑑

)︁
.
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For a given mesh, owning the inf-sup condition (3.3), and using the strong convergence of u𝑖
ℎ to uℎ in 𝐿2(Ω)𝑑,

and of 𝐶𝑖
ℎ to 𝐶ℎ in 𝐻1

0 (Ω), we deduce the strong convergence of ∇𝑝𝑖
ℎ to ∇𝑝ℎ in 𝐿

3
2 (Ω). Furthermore, the fact

that 𝑝𝑖
ℎ and 𝑝ℎ are in the discrete space of IP1 finite elements 𝑀ℎ ⊂ 𝐿2

0(Ω) which is defined in (3.6), allows us
to deduce the strong convergence of 𝑝𝑖

ℎ to 𝑝ℎ in 𝐿2(Ω). �

Remark 4.3. If ℎ is not small enough, we can replace the conditions (4.19) and (4.21) in Theorem 4.2 by the
following condition:

𝜌

𝜇𝐾𝑚

(︁𝑐f1𝑆
0
2𝑆0

6

2𝛼

)︁2
[︃

2𝐶𝐼𝐶1(diam(Ω))(6−𝑑)/6 + |𝐶|𝑊 1,3(Ω) +
‖𝐶‖𝐿∞(Ω)

𝑆0
6

]︃2

<
𝜇𝐾𝑚

4𝜌
.

In fact, this condition can be used in the relation (4.31) in the proof of the previous theorem.

Remark 4.4. The convergence of the iterative solution (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ) of problem (𝑉𝑎ℎ𝑖) to the exact solution

(u, 𝑝, 𝐶) of problem (𝑉𝑎) is a simple consequence of Theorems 3.6 and 4.2. In fact, Conditions (4.4) and (4.20)
satisfied by 𝛾 to ensure the convergence of the iterative solution (u𝑖

ℎ, 𝑝𝑖
ℎ, 𝐶𝑖

ℎ) to the discrete solution (uℎ, 𝑝ℎ, 𝐶ℎ)
lead us to consider 𝛾 as a function of ℎ (𝛾(ℎ)) and satisfying these two relations. Thanks to the triangle
inequality, we have:

||(u, 𝑝, 𝐶)− (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ)||𝑋×𝑀×𝑌 ≤ ||(u, 𝑝, 𝐶)− (uℎ, 𝑝ℎ, 𝐶ℎ)||𝑋×𝑀×𝑌

+ ||(uℎ, 𝑝ℎ, 𝐶ℎ)− (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ)||𝑋×𝑀×𝑌 .

Under the assumptions of Theorem 4.2 with 𝛾(ℎ) satisfying conditions (4.4) and (4.20), (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ) converges

to (uℎ, 𝑝ℎ, 𝐶ℎ) in 𝑋ℎ ×𝑀ℎ × 𝑌ℎ, and, there exists an integer 𝑖0(ℎ) depending on ℎ such that for all 𝑖 ≥ 𝑖0(ℎ)
we have

||(uℎ, 𝑝ℎ, 𝐶ℎ)− (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ)||𝑋×𝑀×𝑌 ≤ ||(u, 𝑝, 𝐶)− (uℎ, 𝑝ℎ, 𝐶ℎ)||𝑋×𝑀×𝑌 .

Consequently, for all 𝑖 ≥ 𝑖0(ℎ), we get

||(u, 𝑝, 𝐶)− (u𝑖
ℎ, 𝑝𝑖

ℎ, 𝐶𝑖
ℎ)||𝑋×𝑀×𝑌 ≤ 2||(u, 𝑝, 𝐶)− (uℎ, 𝑝ℎ, 𝐶ℎ)||𝑋×𝑀×𝑌 .

Thus, we obtain the convergence of the iterative solution to the exact one.

5. Numerical results

In this section, we present numerical experiments corresponding to our coupled problem for 𝑑 = 2. These
simulations have been performed using the code FreeFem++ due to Hecht and Pironneau (see [25]).

We will show in this section numerical investigations corresponding to problems (𝑉𝑎ℎ𝑖) by using for the
convergence the stopping criterion Err𝐿 ≤ 𝜀 where 𝜀 is a given tolerance considered in this work equal to 10−5

and Err𝐿 is defined by

Err𝐿 =
||u𝑖+1

ℎ − u𝑖
ℎ||𝐿3(Ω)2 + ||∇(𝑝𝑖+1

ℎ − 𝑝𝑖
ℎ)||

𝐿
3
2 (Ω)2

+ |𝐶𝑖+1
ℎ − 𝐶𝑖

ℎ|1,Ω

||u𝑖+1
ℎ ||𝐿3(Ω)2 + ||∇𝑝𝑖+1

ℎ ||
𝐿

3
2 (Ω)2

+ |𝐶𝑖+1
ℎ |1,Ω

.

The initial guesses u0
ℎ and 𝐶0

ℎ are considered in one of these two situations:

(1) 𝐶0
ℎ = 0 and u0

ℎ = 0.
(2) 𝐶0

ℎ = 0 and u0
ℎ = u0

ℎ𝑑 are calculated by using Darcy’s problem which corresponds to 𝛽 = 𝛾 = 0.
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Table 1. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each 𝛾 associated
to Example (5.1) with algorithm (𝑉𝑎ℎ𝑖) for u0

ℎ = 0. (𝛽 = 20, 𝜉 = 20).

𝛾 0.001 .01 .1 1 10 100 1000
Nbr 4078 4009 3432 1440 234 29 115
Err 0.068 0.068 0.068 0.068 0.068 0.068 0.068

We will see later that the second case where u0
ℎ is the solution of Darcy’s problem improve the convergence

of the algorithms.
We also consider the errors

Err =
||u𝑖

ℎ − u||𝐿2(Ω)2 + ||∇(𝑝𝑖
ℎ − 𝑝)||

𝐿
3
2 (Ω)2

+ |𝐶𝑖
ℎ − 𝐶|1,Ω

||u||𝐿2(Ω)2 + ||∇𝑝||
𝐿

3
2 (Ω)2

+ |𝐶|1,Ω
,

and

ErrL3 =
||u𝑖

ℎ − u||𝐿3(Ω)2

||u||𝐿3(Ω)2
,

which describe the rate of the a priori error estimation for a large values of the iteration index 𝑖.

5.1. First numerical test: analytical solution

In this section, we will show numerical results corresponding to the problem where we know the exact solution.
Let Ω =]0, 1[2⊂ IR2 where each edge is divided into 𝑁 equal segments so that Ω is divided into 𝑁2 equal squares
and finally into 2𝑁2 equal triangles. For simplicity, we take 𝜇 = 𝜌 = 1.

We consider the following exact solution with a parameter 𝜉:⎧⎪⎪⎨⎪⎪⎩
𝑝(𝑥, 𝑦) = cos(𝜋𝑥) cos(𝜋𝑦),

u(𝑥, 𝑦) = 𝜉(− sin(𝜋𝑥) cos(𝜋𝑦), cos(𝜋𝑥) sin(𝜋𝑦))𝑇 ,

𝐶(𝑥, 𝑦) = 𝑥2(𝑥− 1)2𝑦2(𝑦 − 1)2,

(5.1)

where div u = 0 in Ω, u · n = 0 and 𝐶 = 0 on 𝜕Ω. Furthermore, we take f1(𝐶) = (4𝐶, 3 sin(𝐶)). Thus, we
compute f and 𝑔 by using their expressions in problem (𝑃 ).

5.1.1. Case where 𝐾 = 𝐼

In this part, we take 𝐾 = 𝐼. To study the dependency of the convergence with the parameter 𝛾, we consider
𝑁 = 60, 𝛽 = 20, 𝜉 = 20, 𝛼 = 𝑟0 = 1, and for each 𝛾, we stop the algorithm (𝑉𝑎ℎ𝑖) when the error Err𝐿 < 1𝑒−5.
Tables 1 shows the error (Err) and the number of iterations (Nbr) for u0

ℎ = 0 and 𝐶0
ℎ = 0, while Table 2 shows

similar results for u0 = u0
ℎ𝑑 and 𝐶0

ℎ = 0. These two tables describe the convergence of algorithm (𝑉𝑎ℎ𝑖) with
respect to 𝛾. We remark that the number of iterations is relatively small when 𝛾 is large. In both cases, the best
convergence is obtained for 𝛾 = 100. The main advantage is for the case where u0

ℎ = u0
ℎ𝑑 are computed with

Darcy’s problem is that the number of iterations (Nbr) is less than the one obtained with the case u0
ℎ = 0.

For further studies, we consider 𝛽 = 10, 𝜉 = 20, 𝛾 = 100 and the initial guesses u0
ℎ = u0

ℎ𝑑 and 𝐶0
ℎ = 0.

Tables 3 and 4 show the obtained rate of convergence which seems in agreement with the theoretical findings.
We notice that the theoretical rate of convergence of the velocity in norm 𝐿2(Ω)2, the pressure in norm 𝑊 1, 3

2 (Ω)
and the concentration in norm 𝐻1

0 (Ω) are equal to 1; the rate of convergence of the velocity in norm 𝐿3(Ω)3 is
2/3.
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Table 2. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each 𝛾 associated
to Example (5.1) with algorithm (𝑉𝑎ℎ𝑖) for u0

ℎ = u0
ℎ𝑑 (𝛽 = 20, 𝜉 = 20).

𝛾 0.001 .01 .1 1 10 100 1000

Nbr 2027 1993 1710 714 110 18 76
Err 0.068 0.068 0.068 0.068 0.068 0.068 0.068

Table 3. Rate of convergence of the velocity in norms 𝐿2(Ω)2 and 𝐿3(Ω)3. Example (5.1) with
algorithm (𝑉𝑎ℎ𝑖) (𝛽 = 20, 𝜉 = 20).

ℎ log10

(︀
‖ u− uℎ ‖𝐿2 / ‖ u ‖𝐿2

)︀
Rate log10

(︀
‖ u− uℎ ‖𝐿3 / ‖ u ‖𝐿3

)︀
Rate

1/120 −4.2812 −4.1598
1/140 −4.4047 1.84 −4.2431 1.23
1/160 −4.5111 1.83 −4.3154 1.24
1/180 −4.6029 1.79 −4.3711 1.09
1/200 −4.6830 1.74 −4.4183 1.03

Table 4. Rate of convergence of the pressure in norm 𝑊 1, 3
2 (Ω) and the concentration in norm

𝐻1
0 (Ω). Example (5.1) with algorithm (𝑉𝑎ℎ𝑖) (𝛽 = 20, 𝜉 = 20).

ℎ log10

(︀
‖ 𝑝− 𝑝ℎ ‖

𝑊
1, 3

2

)︀
Rate log10

(︀
‖ 𝐶 − 𝐶ℎ ‖𝐻1

0

)︀
Rate

1/120 −1.8902 −1.7090
1/140 −1.9611 1.05 −1.7759 0.99
1/160 −2.0215 1.04 −1.8339 1.00
1/180 −2.0742 1.03 −1.8851 1.00
1/200 −2.1210 1.02 −1.9300 0.98

Table 5. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each 𝛾 associated
to Example (5.1) with algorithm (𝑉𝑎ℎ𝑖) for u0

ℎ = u0
ℎ𝑑. (𝛽 = 20, 𝜉 = 20).

𝛾 .1 1 10 100 1000

Nbr 518 346 84 13 45
Err 0.068 0.068 0.068 0.068 0.068

5.1.2. Case where 𝐾 ̸= 𝐼

In this part, we take 𝐾 such that 𝐾−1 is equal to:

𝐾1 =
(︂

3 + sin(𝜋𝑥) sin(𝜋𝑦) 𝑥2𝑦2

𝑥2𝑦2 3 + sin(𝜋𝑥) sin(𝜋𝑦)

)︂
.

We follow the same numerical tests performed above and we consider 𝑁 = 60, 𝛽 = 20, 𝜉 = 20, 𝛼 = 𝑟0 = 1.
Based on the previous test case, we will perform here numerical simulations with u0

ℎ = u0
ℎ𝑑 and 𝐶0

ℎ = 0. Table
5 describes the convergence of algorithm (𝑉𝑎ℎ𝑖) with respect to 𝛾. In this case, the best convergence is also
obtained for 𝛾 = 100.
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Table 6. Rate of convergence of the velocity in norms 𝐿2(Ω)2 and 𝐿3(Ω)3. Example (5.1) with
algorithm (𝑉𝑎ℎ𝑖). (𝛽 = 20, 𝜉 = 20).

ℎ log10

(︀
‖ u− uℎ ‖𝐿2 / ‖ u ‖𝐿2

)︀
Rate log10

(︀
‖ u− uℎ ‖𝐿3 / ‖ u ‖𝐿3

)︀
Rate

1/120 −4.2927 −4.2127
1/140 −4.4245 1.96 −4.3432 1.94
1/160 −4.5379 1.95 −4.4539 1.90
1/180 −4.6368 1.93 −4.5480 1.84
1/200 −4.7242 1.90 −4.6274 1.73

Table 7. Rate of convergence of the pressure in norm 𝑊 1, 3
2 (Ω) and the concentration in norm

𝐻1
0 (Ω). Example (5.1) with algorithm (𝑉𝑎ℎ𝑖). (𝛽 = 20, 𝜉 = 20).

ℎ log10

(︀
‖ 𝑝− 𝑝ℎ ‖

𝑊
1, 3

2

)︀
Rate log10

(︀
‖ 𝐶 − 𝐶ℎ ‖𝐻1

0

)︀
Rate

1/120 −1.8902 −1.7090
1/140 −1.9612 1.05 −1.7759 0.99
1/160 −2.0216 1.04 −1.8339 1.00
1/180 −2.0743 1.03 −1.8851 1.00
1/200 −2.1211 1.02 −1.9308 0.99

Let us now study the rate of convergence of the errors. we consider 𝛽 = 10, 𝜉 = 20, 𝛾 = 100 and the initial
guesses u0

ℎ = u0
ℎ𝑑 and 𝐶0

ℎ = 0. Tables 6 and 7 show that the numerical rate of convergence seems in agreement
with the theoretical findings.

5.2. Comparison between Darcy and Darcy-Forchheimer

In this section, we treat numerical test (taken from [32]) showing the difference between Darcy and Darcy-
Forchheimer systems. We take 𝑁 = 60, 𝛾 = 10,

f0(𝑥, 𝑦) = (100(1− 𝑥)2(1− 𝑦)2, 0)𝑇 , 𝑔(𝑥, 𝑦) = 10𝑥2𝑦2,

𝜈 = 𝜌 = 1, 𝛼 = 𝑟0 = 1, 𝐾 = 𝐼 and f1 = 0.

In the following, we will compare the numerical velocity, pressure and concentration corresponding to Darcy-
Forchheimer Problem (for 𝛽 = 10) and Darcy Problem (for 𝛽 = 0). Figures 1–6 show that there are differences
between the distributions and values of the numerical velocities, pressures and concentration. The biggest
difference between the Darcy and the Darcy-Forchheimer is in the values of the velocity (which was expected).

5.3. Second numerical test: Driven cavity

The driven cavity is a standard benchmark for testing the performance of algorithms in fluid problems. It is
treated in several works (see [8, 16, 27, 34]). In this section, we show numerical simulation corresponding to the
Lid Driven Cavity in order to study the dependency of the convergence with respect to 𝛾 and the data.

Let Ω =]0, 1[2, 𝐾 = 𝐼, 𝜇 = 1, 𝑟0 = 0, 𝛽 = 20, f0 = 0, f1(𝐶) = (10𝐶, 10𝐶), and 𝑔 = 0. We complete the
Darcy-Forchheimer equations with the boundary conditions u.n = 0 on 𝜕Ω, and the concentration equation
with the boundary condition 𝐶 = 𝜂 (𝜂 is a parameter) on Γ1 = [0, 1]×{1} (top of Ω), and 𝐶 = 0 on 𝜕Ω∖Γ1. In
this section, the initial guesses of algorithm (𝑉𝑎ℎ𝑖) are 𝐶0

ℎ = 1 and u0
ℎ = u0

ℎ𝑔.
We begin first by testing the convergence of the algorithm with respect of 𝛾 for a given 𝜂 = 20. We consider

𝑁 = 20 and we test the algorithm for multiple values of 𝛾. We consider that the algorithm does not converge
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Figure 1. Numerical Darcy-Forchheimer velocity (𝛽 = 10).

Figure 2. Numerical Darcy velocity.

if the condition Err𝐿 < 1𝑒−5 is not reached after 5000 iterations. Table 8 shows for 𝜂 = 20, the dependency of
the convergence of the algorithm with respect to 𝛾 and the better convergence corresponds to the value 𝛾 = 10.
This result shows clearly that the convergence depends on 𝛾 as announced in relation (4.20) of Theorem 4.2.

Figures 7–9 show the velocity, pressure, and concentration in Ω for 𝛾 = 10 and 𝜂 = 20.
Let us now test the convergence with respect to 𝜂 for 𝛾 = 10. Table 9 shows the dependency of the convergence

of the algorithm with respect to 𝜂 (i.e. with respect to the concentration 𝐶). This result shows clearly that the
convergence depends on the concentration as announced in relation (4.19) of Theorem 4.2.
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Figure 3. Numerical Darcy-Forchheimer pressure (𝛽 = 10).

Figure 4. Numerical Darcy pressure.
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Figure 5. Numerical Darcy-Forchheimer concentration (𝛽 = 10).

Figure 6. Numerical Darcy concentration.

Table 8. Test of the convergence for the driven cavity with respect to 𝛾 for 𝜂 = 20.

𝛾 .001 .01 .1 .5 .55 .6 .7 .8 1 10 100 1000

Nbr – – – – 2440 1463 732 504 313 27 49 283
cov/div div div div div conv conv conv conv conv conv conv conv
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Figure 7. Numerical velocity (Driven cavity), 𝛾 = 10, 𝜂 = 20.

Figure 8. Numerical pressure (Driven cavity), 𝛾 = 10, 𝜂 = 20.

Figure 9. Numerical concentration (Driven cavity), 𝛾 = 10, 𝜂 = 20.
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Table 9. Test of the convergence for the driven cavity with respect to 𝜂 for 𝛾 = 10.

𝜂 1 20 100 150 170 175 180 200

Nbr 24 27 77 235 728 1493 – –
conv/div conv conv conv conv cov conv div div
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de point fixe en dimension infinie. Ann. Sci. Math. Québec 13 (1989) 1–17.
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