

FINITE ELEMENT METHODS FOR THE DARCY-FORCHHEIMER PROBLEM COUPLED WITH THE CONVECTION-DIFFUSION-REACTION PROBLEM

TONI SAYAH¹, GEORGES SEMAAN^{1,*} AND FAOUZI TRIKI²

Abstract. In this article, we consider the convection-diffusion-reaction problem coupled the Darcy-Forchheimer problem by a non-linear external force depending on the concentration. We establish existence of a solution by using a Galerkin method and we prove uniqueness. We introduce and analyse a numerical scheme based on the finite element method. An optimal *a priori* error estimate is then derived for each numerical scheme. Numerical investigation are performed to confirm the theoretical accuracy of the discretization.

Mathematics Subject Classification. 35K05, 25B45, 74S05.

Received March 18, 2021. Accepted October 4, 2021.

1. INTRODUCTION

This work studies the convection-diffusion-reaction equation coupled with Darcy-Forchheimer problem. The system of equations is

$$(P) \begin{cases} \frac{\mu}{\rho} K^{-1} \mathbf{u} + \frac{\beta}{\rho} |\mathbf{u}| \mathbf{u} + \nabla p = \mathbf{f}(\cdot, C) & \text{in } \Omega, \\ \operatorname{div} \mathbf{u} = 0 & \text{in } \Omega, \\ -\alpha \Delta C + \mathbf{u} \cdot \nabla C + r_0 C = g & \text{in } \Omega, \\ \mathbf{u} \cdot \mathbf{n} = 0 & \text{on } \Gamma, \\ C = 0 & \text{on } \Gamma, \end{cases}$$

where $\Omega \subset \mathbb{R}^d$, $d = 2, 3$, is a bounded simply-connected open domain, having a Lipschitz-continuous boundary Γ with an outer unit normal \mathbf{n} . The unknowns are the velocity \mathbf{u} , the pressure p and the concentration C of the fluid. $|\cdot|$ denotes the Euclidean norm, $|\mathbf{u}|^2 = \mathbf{u} \cdot \mathbf{u}$. The parameters ρ , μ and β represent the density of the fluid, its viscosity and its dynamic viscosity, respectively. β is also referred as Forchheimer number when it is a scalar positive constant. The diffusion coefficient α and the parameter r_0 are positive constants. The function

Keywords and phrases. Darcy-Forchheimer problem, convection-diffusion-reaction equation, finite element method, *a priori* error estimates.

¹ Unité de recherche “Mathématiques et Modélisation”, CAR, Faculté des Sciences, Université Saint-Joseph de Beyrouth, BP 11-514 Riad El Solh, Beyrouth 1107 2050, Liban.

² Laboratoire Jean Kuntzmann, UMR CNRS 5224, Université Grenoble-Alpes, 700 Avenue Centrale, 38401 Saint-Martin-d’Hères, France.

*Corresponding author: faouzi.triki@univ-grenoble-alpes.fr

\mathbf{f} represents an external force that depends on the concentration C and the function g represents an external concentration source. K is the permeability tensor, assumed to be uniformly positive definite and bounded such that there exist two positive real numbers K_m and K_M such that

$$0 < K_m \leq \|K^{-1}\|_{L^\infty(\Omega)^{d \times d}} \leq K_M. \quad (1.1)$$

It should be noted that K_m should be smaller than the smallest eigenvalue of K^{-1} over Ω and K_M could be very large.

To simplify, a homogeneous Dirichlet boundary condition is prescribed on the concentration C , but the present analysis can be easily extended to a non-homogeneous boundary condition.

System (P) couples the Darcy-Forchheimer system with the convection-diffusion-reaction equation satisfied by the concentration of the fluid. The same system can also couple the Darcy-Forchheimer system with the heat equation satisfied by the temperature T of the fluid, it suffices to set $r_0 = 0$ and replace C by T .

Darcy's law (see [31] and [37] for instance for the theoretical derivation) describes the creeping flow of Newtonian fluids in porous media. It is simply the first equation of system (P) without the non-linear term $\frac{\beta}{\rho}|\mathbf{u}|\mathbf{u}$ and where the function \mathbf{f} may depend on the concentration C of the fluid. Forchheimer [19] showed experimentally that when the velocity is higher and the porosity is nonuniform, Darcy's law becomes inadequate. He proposed the Darcy-Forchheimer equation which is the first equation of the system (P) . A theoretical derivation of Forchheimer's law can be found in [29]. Multiple theoretical and numerical studies of the Darcy-Forchheimer system were performed and among others we mention [24, 26, 28, 32, 33]. Many numerical investigations are performed and show the importance of the Darcy-Forchheimer equation compared with Darcy equation (see for instance [32] and the references inside).

For the coupled problem of Darcy's law with the heat equation, we can refer to [6] where the coupled problem is treated using the spectral method. The authors in [4] and [14] considered the same stationary system but coupled with a nonlinear viscosity that depends on the temperature. In [15], the authors derived an optimal *a posteriori* error estimate for each of the numerical schemes proposed in [4]. We can also refer to [3] where the authors used a vertex-centred finite volume method to discretize the coupled system. Furthermore, for the time-dependent convection-diffusion-reaction equation coupled with Darcy's equation, we refer to [9, 10] where the authors established the corresponding *a priori* and *a posteriori* errors.

The coupling system (P) has many physical applications for the Darcy-Forchheimer mixed convection case [36]. In this case, the Darcy-Forchheimer system is coupled with the concentration C of the fluid with an external force \mathbf{f} . We mention that the work of [6] use the spectral method to treat a coupled system very close to (P) where the Darcy-Forchheimer equation is replaced by the Darcy's one. It turns out that the non-linear term appearing in the first equation of (P) makes the treatment of the coupled system more complex.

We first derive an equivalent variational formulation to (P) and we show the existence of a solution. The uniqueness can be reached under additional constraint on the concentration (see Condition (2.27)). Then, we discretize the system by using the finite element method and we show the existence and uniqueness of the corresponding solution. Later, we establish the *a priori* error estimate between the exact and numerical solutions under the condition of smallness of the concentration in the fluid. In order to compute the solution, we introduce an iterative scheme and we study the corresponding convergence. Finally, numerical investigations are performed to validate the theoretical results.

The outline of the paper is as follows:

- Section 2 is devoted to the continuous problem and the analysis of the corresponding variational formulation.
- In Section 3, we introduce the discrete problems, recall their main properties, study their *a priori* errors and derive optimal estimates.
- In Section 4, we introduce an iterative algorithm and prove its convergence.
- Numerical results validating the convergence analysis are presented in Section 5.

2. ANALYSIS OF THE MODEL

2.1. Notation

Let $\mathcal{D}(\Omega)$ be the space of functions having a compact support in Ω with continuous derivatives of all orders in Ω . Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d)$ be a d -uplet of non-negative integers, set $|\alpha| = \sum_{i=1}^d \alpha_i$, and define the partial derivative ∂^α by

$$\partial^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_d^{\alpha_d}}.$$

Then, for any positive integer m and number $p \geq 1$, we recall the classical Sobolev space [2, 30]

$$W^{m,p}(\Omega) = \{v \in L^p(\Omega); \forall |\alpha| \leq m, \partial^\alpha v \in L^p(\Omega)\}, \quad (2.1)$$

equipped with the seminorm

$$|v|_{W^{m,p}(\Omega)} = \left(\sum_{|\alpha|=m} \int_{\Omega} |\partial^\alpha v|^p d\mathbf{x} \right)^{\frac{1}{p}} \quad (2.2)$$

and the norm

$$\|v\|_{W^{m,p}(\Omega)} = \left(\sum_{0 \leq k \leq m} |v|_{W^{k,p}(\Omega)}^p \right)^{\frac{1}{p}}. \quad (2.3)$$

When $p = 2$, this space is the Hilbert space $H^m(\Omega)$.

The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but with the following modification for the norms in the non-Hilbert case. Let \mathbf{v} be a vector valued function; we set

$$\|\mathbf{v}\|_{L^p(\Omega)^d} = \left(\int_{\Omega} |\mathbf{v}|^p d\mathbf{x} \right)^{\frac{1}{p}}, \quad (2.4)$$

where $|\cdot|$ denotes the Euclidean vector norm.

For vanishing boundary values, we define

$$\begin{aligned} H_0^1(\Omega) &= \{v \in H^1(\Omega); v|_{\Gamma} = 0\}, \\ W_0^{1,q}(\Omega) &= \{v \in W^{1,q}(\Omega); v|_{\Gamma} = 0\}. \end{aligned} \quad (2.5)$$

We shall often use the following Sobolev embeddings: for any real number $p \geq 1$ when $d = 2$, or $1 \leq p \leq \frac{2d}{d-2}$ when $d \geq 3$, there exist constants S_p and S_p^0 such that

$$\forall v \in H^1(\Omega), \|v\|_{L^p(\Omega)} \leq S_p \|v\|_{H^1(\Omega)} \quad (2.6)$$

and

$$\forall v \in H_0^1(\Omega), \|v\|_{L^p(\Omega)} \leq S_p^0 |v|_{H^1(\Omega)}. \quad (2.7)$$

When $p = 2$, (2.7) reduces to Poincaré's inequality.

To deal with the Darcy-Forchheimer, we recall the space

$$L_0^2(\Omega) = \left\{ v \in L^2(\Omega); \int_{\Omega} v d\mathbf{x} = 0 \right\}. \quad (2.8)$$

2.2. Variational formulation

In this section, we introduce the variational formulation corresponding to the problem (P) . We assume that the volumic and boundary sources verify the following conditions:

Assumption 2.1. *We assume that \mathbf{f} and g verify:*

(1) *\mathbf{f} can be written as follows:*

$$\forall \mathbf{x} \in \Omega, \forall C \in \mathbb{R}, \quad \mathbf{f}(\mathbf{x}, C) = \mathbf{f}_0(\mathbf{x}) + \mathbf{f}_1(C), \quad (2.9)$$

where $\mathbf{f}_0 \in L^{\frac{3}{2}}(\Omega)^d$ and \mathbf{f}_1 is Lipschitz-continuous with constant $c_{\mathbf{f}_1}$ and satisfies the inequality

$$\forall \xi \in \mathbb{R}, |\mathbf{f}_1(\xi)| \leq c_{\mathbf{f}_1} |\xi|,$$

where $c_{\mathbf{f}_1}$ is a strictly positive constant.

(2) *$g \in L^2(\Omega)$.*

Remark 2.2. For the physical interpretation of the choice of the external force \mathbf{f} , we refer to [6, 7, 13, 20]. In fact, in [6] page 3, they considered and justified the choice of $\mathbf{f}(x, C) = \mathbf{f}_1(C)$ (with $\mathbf{f}_0 = \mathbf{0}$) with the corresponding properties. For the generalization, we added the function \mathbf{f}_0 to get (2.1).

It follows from the nonlinear term in the system (P) that the velocity \mathbf{u} and the test function \mathbf{v} must belong to $L^3(\Omega)^d$; then, the gradient of the pressure must belong to $L^{\frac{3}{2}}(\Omega)^d$. Furthermore, the concentration C must be in $H_0^1(\Omega)$. Thus, we introduce the spaces

$$X = L^3(\Omega)^d, \quad M = W^{1, \frac{3}{2}}(\Omega) \cap L_0^2(\Omega), \quad Y = H_0^1(\Omega).$$

Furthermore, we recall the following inf-sup condition between X and M [24],

$$\inf_{q \in M} \sup_{\mathbf{v} \in X} \frac{\int_{\Omega} \mathbf{v}(\mathbf{x}) \cdot \nabla q(\mathbf{x}) \, d\mathbf{x}}{\|\mathbf{v}\|_{L^3(\Omega)^d} \|\nabla q\|_{L^{\frac{3}{2}}(\Omega)}} = 1. \quad (2.10)$$

With these assumptions on the sources, we introduce the following variational formulation associated to problem (P) :

$$(V_a) \left\{ \begin{array}{l} \text{Find } (\mathbf{u}, p, C) \in X \times M \times Y \text{ such that:} \\ \forall \mathbf{v} \in X, \frac{\mu}{\rho} \int_{\Omega} (K^{-1} \mathbf{u}(\mathbf{x})) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}(\mathbf{x})| \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} + \int_{\Omega} \nabla p(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} \\ \quad = \int_{\Omega} \mathbf{f}(x, C(\mathbf{x})) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x}, \\ \forall q \in M, \int_{\Omega} \nabla q(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, d\mathbf{x} = 0, \\ \forall S \in Y, \alpha \int_{\Omega} \nabla C(\mathbf{x}) \cdot \nabla S(\mathbf{x}) \, d\mathbf{x} + \int_{\Omega} (\mathbf{u} \cdot \nabla C)(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x} + r_0 \int_{\Omega} C(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} g(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x}. \end{array} \right.$$

Equivalence between (P) and (V_a) in the sense of distribution follows readily from the validity of Green's formula:

$$\forall q \in M, \forall \mathbf{v} \in H, \int_{\Omega} \nabla q(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} = - \int_{\Omega} q(\mathbf{x}) \operatorname{div}(\mathbf{v}(\mathbf{x})) \, d\mathbf{x} + \langle q, \mathbf{v} \cdot \mathbf{n} \rangle_{\partial\Omega}$$

in the space

$$H = \left\{ \mathbf{v} \in L^3(\Omega)^d; \operatorname{div} \mathbf{v} \in L^{\frac{3d}{d+3}}(\Omega) \right\},$$

and the fact that

$$\begin{aligned} V &= \left\{ \mathbf{v} \in H; \mathbf{v} \cdot \mathbf{n}|_{\partial\Omega} = 0, \text{ and } \forall q \in M, \int_{\Omega} \nabla q \cdot \mathbf{v} d\mathbf{x} = 0. \right\} \\ &= \left\{ \mathbf{v} \in H; \mathbf{v} \cdot \mathbf{n}|_{\partial\Omega} = 0, \operatorname{div} \mathbf{v} = 0 \text{ in } \Omega \right\}, \end{aligned}$$

for further details, we refer to [24].

To study problem (V_a) , it is convenient to introduce the mapping $\mathbf{v} \rightarrow \mathcal{A}(\mathbf{v})$ defined by:

$$\begin{aligned} \mathcal{A} : L^3(\Omega)^d &\mapsto L^{\frac{3}{2}}(\Omega)^d \\ \mathbf{v} &\mapsto \mathcal{A}(\mathbf{v}) = \frac{\mu}{\rho} K^{-1} \mathbf{v} + \frac{\beta}{\rho} |\mathbf{v}| \mathbf{v}. \end{aligned}$$

We refer to [17, 24] for the following properties of \mathcal{A} .

Property 2.3. \mathcal{A} satisfies the following properties:

(1) \mathcal{A} maps $L^3(\Omega)^d$ into $L^{\frac{3}{2}}(\Omega)^d$ and we have for all $\mathbf{v} \in L^3(\Omega)^d$:

$$\|\mathcal{A}(\mathbf{v})\|_{L^{\frac{3}{2}}(\Omega)^d} \leq \frac{\mu}{\rho} \|K^{-1}\|_{\infty} \|\mathbf{v}\|_{L^{\frac{3}{2}}(\Omega)^d} + \frac{\beta}{\rho} \|\mathbf{v}\|_{L^3(\Omega)^d}^2.$$

(2) For all $(\mathbf{v}, \mathbf{w}) \in \mathbb{R}^d \times \mathbb{R}^d$, we have,

$$|\mathcal{A}(\mathbf{v}) - \mathcal{A}(\mathbf{w})| \leq \left(\frac{\mu}{\rho} \|K^{-1}\|_{\infty} + \frac{2\beta}{\rho} (|\mathbf{v}| + |\mathbf{w}|) \right) |\mathbf{v} - \mathbf{w}|. \quad (2.11)$$

(3) \mathcal{A} is monotone from $L^3(\Omega)^d$ into $L^{\frac{3}{2}}(\Omega)^d$, and we have for all $\mathbf{v}, \mathbf{w} \in L^3(\Omega)^d$,

$$\int_{\Omega} (\mathcal{A}(\mathbf{v}(\mathbf{x})) - \mathcal{A}(\mathbf{w}(\mathbf{x}))) \cdot (\mathbf{v}(\mathbf{x}) - \mathbf{w}(\mathbf{x})) d\mathbf{x} \geq \max(c_m \|\mathbf{v} - \mathbf{w}\|_{L^3(\Omega)^d}^3, \frac{\mu}{\rho} K_m \|\mathbf{v} - \mathbf{w}\|_{L^2(\Omega)^d}^2),$$

where c_m is a strictly positive constant.

(4) \mathcal{A} is coercive in $L^3(\Omega)^d$:

$$\lim_{\|\mathbf{u}\|_{L^3(\Omega)^d} \rightarrow \infty} \frac{\int_{\Omega} \mathcal{A}(\mathbf{u}) \cdot \mathbf{u} d\mathbf{x}}{\|\mathbf{u}\|_{L^3(\Omega)^d}} = +\infty.$$

(5) \mathcal{A} is hemicontinuous in $L^3(\Omega)^d$: for fixed $\mathbf{u}, \mathbf{v} \in L^3(\Omega)^d$, the mapping

$$t \rightarrow \int_{\Omega} \mathcal{A}(\mathbf{u} + t\mathbf{v}) \cdot \mathbf{v} d\mathbf{x}$$

is continuous from \mathbb{R} into \mathbb{R} .

Let us first show that for a given $C \in Y$, the Darcy-Forchheimer problem (first two lines in (V_a)) written as following: find $(\mathbf{u}(C), p(C)) \in X \times M$ such that

$$\left\{ \begin{array}{l} \forall \mathbf{v} \in X, \quad \int_{\Omega} \mathcal{A}(\mathbf{u}(C)(\mathbf{x})) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x} + \int_{\Omega} \nabla p(C)(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x} = \int_{\Omega} \mathbf{f}(x, C(\mathbf{x})) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x}, \\ \forall q \in M, \quad \int_{\Omega} \nabla q(\mathbf{x}) \cdot \mathbf{u}(C)(\mathbf{x}) d\mathbf{x} = 0, \end{array} \right. \quad (2.12)$$

admits a unique solution $(\mathbf{u}, p) = (\mathbf{u}(C), p(C))$. Problem (2.12) is equivalent to the following: find $(\mathbf{u}(C), p(C)) \in X \times M$, such that

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} \mathcal{A}(\mathbf{u}(C)(x)) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(x, C(\mathbf{x})) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x}. \quad (2.13)$$

Theorem 2.4. *For each $C \in H_0^1(\Omega)$, $\mathbf{f}(\cdot, C) \in L^{\frac{3}{2}}(\Omega)^d$, the problem (2.12) has exactly one solution $(\mathbf{u}(C), p(C)) \in X \times M$. Furthermore, (\mathbf{u}, p) satisfies the a priori estimates:*

$$\begin{aligned} \|\mathbf{u}(C)\|_{L^3(\Omega)^d} &\leq \left(\frac{\rho}{\beta} \|\mathbf{f}(\cdot, C)\|_{L^{\frac{3}{2}}(\Omega)^d} \right)^{\frac{1}{2}}, \\ \|\nabla p(C)\|_{L^{\frac{3}{2}}(\Omega)^d} &\leq \frac{\mu}{\rho} \|K^{-1}\|_{L^{\infty}(\Omega)^{d \times d}} \|\mathbf{u}(C)\|_{L^{\frac{3}{2}}(\Omega)^d} + \frac{\beta}{\rho} \|\mathbf{u}(C)\|_{L^3(\Omega)^d}^2 + \|\mathbf{f}(\cdot, C)\|_{L^{\frac{3}{2}}(\Omega)^d}. \end{aligned} \quad (2.14)$$

Proof. Let $C \in H_0^1(\Omega)$. Assumption 2.1 allows us to deduce that $\mathbf{f}(\cdot, C)$ lies in $L^{\frac{3}{2}}(\Omega)^d$. For the proof, we refer to [24] (see The. 3, p. 172). \square

Thus, problem (V_a) can be rewritten as a function of the single unknown C . Indeed, for a given C , let $(\mathbf{u}(C), p(C))$ be the solution of problem (2.12). Then, problem (V_a) is equivalent to the following reduced formulation: find $C \in Y$ such that

$$\forall S \in Y, \quad \alpha \int_{\Omega} \nabla C(\mathbf{x}) \cdot \nabla S(\mathbf{x}) \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}(C) \cdot \nabla C)(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x} + r_0 \int_{\Omega} C(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} g(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x}. \quad (2.15)$$

Before proving that problem (2.15) admits a solution, we will show the following intermediate lemma:

Lemma 2.5. *Under Assumption 2.1, let $(C_k)_{k \geq 1}$ be a sequence of functions in $L^2(\Omega)$ that converges strongly to C in $L^2(\Omega)$. Then, the sequence $(\mathbf{u}(C_k))_{k \geq 1}$ converges strongly to $\mathbf{u}(C)$ in X and the sequence $(p(C_k))_{k \geq 1}$ converges weakly to $p(C)$ in M .*

Proof. Assumption 2.1 allows us to deduce that the sequence $(\mathbf{f}(\cdot, C_k(\cdot)))_{k \geq 1}$ converges strongly to $\mathbf{f}(\cdot, C(\cdot))$ in $L^{\frac{3}{2}}(\Omega)^d$ and then bounded in $L^{\frac{3}{2}}(\Omega)^d$. Bounds (2.14) yield first the weak convergence (up to a subsequence) of $(\mathbf{u}(C_k), \nabla p(C_k))$ in $L^3(\Omega)^d \times L^{\frac{3}{2}}(\Omega)$ to some function $(\hat{\mathbf{u}}, \hat{\mathbf{h}})$. We will show that $(\hat{\mathbf{u}}, \hat{\mathbf{h}}) = (\mathbf{u}(C), \nabla p(C))$. Let us first show that $\hat{\mathbf{u}}$ is a solution of problem (2.13). We show first that $\hat{\mathbf{u}} \in V$. Indeed, the second equation of problem (2.13) satisfied by $\mathbf{u}(C_k)$, and the weak convergence of $\mathbf{u}(C_k)$ to $\hat{\mathbf{u}}$ led to the relation

$$\forall q \in M, \quad \int_{\Omega} \hat{\mathbf{u}}(\mathbf{x}) \cdot \nabla q(\mathbf{x}) = 0,$$

and then $\hat{\mathbf{u}} \in V$. Now, we show that $\hat{\mathbf{u}}$ satisfies problem (2.13). The monotonicity of \mathcal{A} gives

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} (\mathcal{A}(\mathbf{u}(C_k)) - \mathcal{A}(\mathbf{v}))(\mathbf{x}) \cdot (\mathbf{u}(C_k) - \mathbf{v})(\mathbf{x}) \, d\mathbf{x} \geq 0. \quad (2.16)$$

The last inequality combined with problem (2.13) satisfied by $\mathbf{u}(C_k)$ yields

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} \mathcal{A}(\mathbf{v}(\mathbf{x})) \cdot (\mathbf{u}(C_k) - \mathbf{v})(\mathbf{x}) \, d\mathbf{x} \leq \int_{\Omega} \mathbf{f}(C_k)(\mathbf{x}) \cdot (\mathbf{u}(C_k) - \mathbf{v})(\mathbf{x}) \, d\mathbf{x}. \quad (2.17)$$

We obtain by using the weak convergence of $\mathbf{u}(C_k)$ to $\hat{\mathbf{u}}$ and the strong convergence of $\mathbf{f}(\cdot, C_k)$ to $\mathbf{f}(\cdot, C)$, the following relation:

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} \mathcal{A}(\mathbf{v}(\mathbf{x})) \cdot (\hat{\mathbf{u}} - \mathbf{v})(\mathbf{x}) \, d\mathbf{x} \leq \int_{\Omega} \mathbf{f}(C)(\mathbf{x}) \cdot (\hat{\mathbf{u}} - \mathbf{v})(\mathbf{x}) \, d\mathbf{x}. \quad (2.18)$$

By virtue of hemicontinuity of \mathcal{A} , a classical argument then yields

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} \mathcal{A}(\hat{\mathbf{u}}(\mathbf{x})) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(C)(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x}. \quad (2.19)$$

Hence $\hat{\mathbf{u}}$ is a solution of (2.13), and thus $\hat{\mathbf{u}} = \mathbf{u}(C)$. Furthermore, problem (2.13) gives the relation

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} (\mathcal{A}(\mathbf{u}(C)(\mathbf{x})) - \mathcal{A}(\mathbf{u}(C_k)(\mathbf{x}))) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} (\mathbf{f}(x, C(\mathbf{x})) - \mathbf{f}(x, C_k(\mathbf{x}))) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x}$$

which allows us by taking $\mathbf{v} = \mathbf{u}(C_k) - \mathbf{u}(C)$, by using the monotonicity of \mathcal{A} in $L^3(\Omega)^d$, and the strong convergence of $\mathbf{f}(\cdot, C_k)$ to $\mathbf{f}(\cdot, C)$, to obtain the following convergence

$$\lim_{k \rightarrow \infty} \mathbf{u}(C_k) = \mathbf{u}(C) \text{ strongly in } L^3(\Omega)^d.$$

Finally, we have to treat the convergence of the pressure. Since $\mathbf{u}(C)$ is a solution of problem (2.12), we use the inf-sup condition (2.10) to deduce the existence of $p(C)$ such that $(\mathbf{u}(C), p(C))$ is the solution of problem (2.12).

We deduce from problem (2.12) that for all $\mathbf{v} \in X$

$$\begin{aligned} \int_{\Omega} (\nabla p(C) - \nabla p(C_k))(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} &= - \int_{\Omega} (\mathcal{A}(\mathbf{u}(C)(\mathbf{x})) - \mathcal{A}(\mathbf{u}(C_k)(\mathbf{x}))) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} \\ &\quad + \int_{\Omega} (\mathbf{f}(x, C(\mathbf{x})) - \mathbf{f}(x, C_k(\mathbf{x}))) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x}. \end{aligned}$$

The strong convergence of $\mathbf{u}(C_k)$ to $\mathbf{u}(C)$ in $L^3(\Omega)^d$, of $\mathbf{f}(\cdot, C_k)$ to $\mathbf{f}(\cdot, C)$ in $L^{\frac{3}{2}}(\Omega)^d$, and the weak convergence of $\nabla p(C_k)$ to $\hat{\mathbf{h}}$ in $L^{\frac{3}{2}}(\Omega)^d$, give

$$\forall \mathbf{v} \in X, \quad \int_{\Omega} (\nabla p(C) - \hat{\mathbf{h}})(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} = 0.$$

Thus $\hat{\mathbf{h}} = \nabla p(C)$ in $L^{\frac{3}{2}}(\Omega)^d$ which finishes the proof. Finally, uniqueness of the solution of (2.12) implies the convergence of the whole sequence. \square

The next theorem shows the existence of at least one solution to the problem (V_a) .

Theorem 2.6. *Under Assumption 2.1, problem (V_a) admits a solution in $X \times M \times Y$. Furthermore, each solution (\mathbf{u}, p, C) of (V_a) satisfies the following bounds:*

$$\begin{aligned} |C|_{1,\Omega} &\leq \frac{S_2^0}{\alpha} \|g\|_{L^2(\Omega)}, \\ \|\mathbf{u}\|_{L^3(\Omega)^d} &\leq \left(\frac{\rho}{\beta} (\|\mathbf{f}_0\|_{L^{\frac{3}{2}}(\Omega)^d} + c_{\mathbf{f}_1} S_{\frac{3}{2}}^0 |C|_{1,\Omega}) \right)^{\frac{1}{2}}, \\ \|\nabla p\|_{L^{\frac{3}{2}}(\Omega)^d} &\leq \frac{\mu}{\rho} \|K^{-1}\|_{L^{\infty}(\Omega)^{d \times d}} \|\mathbf{u}\|_{L^{\frac{3}{2}}(\Omega)^d} + \frac{\beta}{\rho} \|\mathbf{u}\|_{L^3(\Omega)^d}^2 + \frac{\rho}{\beta} \left(\|\mathbf{f}_0\|_{L^{\frac{3}{2}}(\Omega)^d} + c_{\mathbf{f}_1} S_{\frac{3}{2}}^0 |C|_{1,\Omega} \right). \end{aligned} \quad (2.20)$$

Proof. We propose to construct a solution of (V_a) by Galerkin's method. As $H_0^1(\Omega)$ is separable, it has a countable basis $(\theta_i)_{i \geq 1}$. Let Θ_m be the space spanned by the first m basis functions, $(\theta_i)_{1 \leq i \leq m}$. Problem (2.13) is discretized in Θ_m by the square system of nonlinear equations: find $C_m = \sum_{i=1}^m w_i \theta_i \in \Theta_m$ solution of: $\forall 1 \leq i \leq m$,

$$\alpha \int_{\Omega} \nabla C_m(\mathbf{x}) \cdot \nabla \theta_i(\mathbf{x}) \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}(C_m) \cdot \nabla C_m)(\mathbf{x}) \theta_i(\mathbf{x}) \, d\mathbf{x} + r_0 \int_{\Omega} C_m(\mathbf{x}) \theta_i(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} g(\mathbf{x}) \theta_i(\mathbf{x}) \, d\mathbf{x}, \quad (2.21)$$

where $(\mathbf{u}(C_m), p(C_m))$ solves (2.12) with $C = C_m$. Now, given $C_m \in \Theta_m$, we introduce the auxiliary problem: find $\Phi(C_m) \in \Theta_m$ such that, for all $S_m \in \Theta_m$, we have

$$\begin{aligned} (\nabla \Phi(C_m), \nabla S_m)_2 &= \alpha (\nabla C_m, \nabla S_m)_2 + \int_{\Omega} (\mathbf{u}(C_m) \cdot \nabla C_m)(\mathbf{x}) S_m(\mathbf{x}) \, d\mathbf{x} + r_0 \int_{\Omega} C_m(\mathbf{x}) S_m(\mathbf{x}) \, d\mathbf{x} \\ &\quad - \int_{\Omega} g(\mathbf{x}) S_m(\mathbf{x}) \, d\mathbf{x}. \end{aligned} \quad (2.22)$$

In fact, for each C_m , the left hand side of (2.22) is a bilinear map of the form $(\nabla \cdot, \nabla \cdot)$ and the right hand side is a linear map with respect to S_m . Relation (2.22) defines a continuous mapping from Θ_m into Θ_m , due to the fact that Θ_m is a finite dimension space and Lemma 2.5. By taking $S_m = C_m$, we get

$$\begin{aligned} (\nabla \Phi(C_m), \nabla C_m) &= \alpha |C_m|_{1,\Omega}^2 + r_0 \|C_m\|_{L^2(\Omega)}^2 - \int_{\Omega} g(\mathbf{x}) C_m(\mathbf{x}) \, d\mathbf{x} \\ &\geq |C_m|_{1,\Omega} \left(\alpha |C_m|_{1,\Omega} - S_2^0 \|g\|_{L^2(\Omega)} \right). \end{aligned}$$

In other words, we have

$$(\nabla \Phi(C_m), \nabla C_m) \geq 0$$

for all $C_m \in \Theta_m$ such that

$$|C_m|_{1,\Omega} = \frac{S_2^0}{\alpha} \|g\|_{L^2(\Omega)}.$$

Therefore, Brouwer's Fixed-Point Theorem implies immediately the existence of at least one solution to the problem (2.21).

Let C_m be a solution of problem (2.21), satisfying $\forall S_m \in \Theta_m$,

$$\alpha (\nabla C_m, \nabla S_m) + \int_{\Phi} (\mathbf{u}(C_m) \cdot \nabla C_m)(\mathbf{x}) S_m(\mathbf{x}) \, d\mathbf{x} + r_0 \int_{\Phi} C_m - S_m(\mathbf{x}) \, d\mathbf{x} = \int_{\Phi} g(\mathbf{x}) S_m(\mathbf{x}) \, d\mathbf{x}.$$

By taking $S_m = C_m$ in the last equation, we get immediately the bound

$$|C_m|_{1,\Omega} \leq \frac{S_2^0}{\alpha} \|g\|_{L^2(\Omega)}.$$

The last uniform bound implies that, up to a subsequence, $(C_m)_m$ converges weakly to a function C in $H_0^1(\Omega)$. Therefore, it converges strongly in $L^r(\Omega)$, for any $r < \frac{2d}{d-2}$, and it follows from Lemma 2.5 that $(\mathbf{u}(C_m), p(C_m))_m$ converges weakly to $(\mathbf{u}(C), p(C))$ in $X \times M$, and $(\mathbf{u}(C_m))_m$ converges strongly to $\mathbf{u}(C)$ in $L^3(\Omega)^d$. Now, we freeze the index i in (2.21), and let m tends to infinity. The weak convergence of $(C_m)_m$ to C in $H_0^1(\Omega)$, and the strong convergence of $(\mathbf{u}(C_m))_m$ to $\mathbf{u}(C)$ in $L^3(\Omega)^d$ allow us to deduce that C is a solution of the following problem: Find $C \in H_0^1(\Omega)$ such that

$$\alpha \int_{\Omega} \nabla C(\mathbf{x}) \cdot \nabla \theta_i(\mathbf{x}) \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}(C) \cdot \nabla C)(\mathbf{x}) \theta_i(\mathbf{x}) \, d\mathbf{x} + r_0 \int_{\Omega} C(\mathbf{x}) \theta_i(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} g(\mathbf{x}) \theta_i(\mathbf{x}) \, d\mathbf{x}. \quad (2.23)$$

From this system and the density of the basis in $H_0^1(\Omega)$, we infer that C is a solution of problem (2.15).

The first bound in (2.20) can be straightly obtained by taking $S = C$ in the last equation in (2.15). The first and second bounds in (2.20) can be deduced from the inequalities (2.14) and Assumption 2.1. \square

Theorem 2.7. *Assume that Ω is of class $C^{1,1}$. Let (\mathbf{u}, p, C) be a solution of problem (P). If $g \in L^{\infty}(\Omega)$, then the concentration C is in $L^{\infty}(\Omega)$ and satisfies the following bound:*

$$\|C\|_{L^{\infty}(\Omega)} \leq \frac{1}{r_0} \|g\|_{L^{\infty}(\Omega)}.$$

Proof. Let (\mathbf{u}, p, C) be a solution of problem (P) , then the velocity $\mathbf{u} \in V$. Using the fact that V is separable and that the space

$$V_\infty = \left\{ \Phi \in D(\Omega)^d; \operatorname{div} \Phi = 0 \right\}$$

is dense in V (see for instance [18], Lem. 10.8), there exists a sequence $(\mathbf{u}_N)_{N \in \mathbb{N}}$ in V_∞ which converges strongly to \mathbf{u} in $L^3(\Omega)^d$ when N tends to $+\infty$.

Now, for each $N \in \mathbb{N}$, let $C_N \in H_0^1(\Omega)$ the unique solution to the following problem:

$$\begin{cases} -\alpha \Delta C_N + \mathbf{u}_N \cdot \nabla C_N + r_0 C_N = g & \text{in } \Omega, \\ C_N = 0 & \text{on } \Gamma. \end{cases} \quad (2.24)$$

The elliptic regularity (see [21]) allows us to get that $C_N \in W^{2,p}(\Omega) \cap H_0^1(\Omega)$, for all $p \geq 1$.

Multiplying the first equation of (2.24) by C_N^{2p+1} and integrating by parts give,

$$\frac{\alpha(2p+1)}{2(p+1)^2} \int_{\Omega} |\nabla C_N^{p+1}(\mathbf{x})|^2 d\mathbf{x} + r_0 \int_{\Omega} C_N^{2p+2}(\mathbf{x}) d\mathbf{x} = \int_{\Omega} g(\mathbf{x}) C_N^{2p+1}(\mathbf{x}) d\mathbf{x}.$$

By remarking that the first term of the left hand side of the previous equation is non-negative and by applying Holder's inequality for the right-hand-side with the conjugate exponents $m = \frac{2p+2}{2p+1}$ and $n = 2p+2$, we get the following inequality:

$$\|C_N\|_{L^{2p+2}(\Omega)} \leq \frac{1}{r_0} \|g\|_{L^{2p+2}(\Omega)}. \quad (2.25)$$

The next step shows that C_N converges strongly to $C \in H_0^1(\Omega)$. In order to prove it, we start by subtracting the third equation of problem (P) from first equation of (2.24) to get, for all $S \in H_0^1(\Omega)$,

$$\alpha \int_{\Omega} \nabla(C - C_N) \cdot \nabla S d\mathbf{x} + r_0 \int_{\Omega} (C - C_N) S d\mathbf{x} = - \int_{\Omega} \mathbf{u} \cdot \nabla(C - C_N) S d\mathbf{x} - \int_{\Omega} (\mathbf{u} - \mathbf{u}_N) \cdot \nabla C_N S d\mathbf{x}.$$

By taking $S = C - C_N$ and using the antisymmetric property, the estimate (2.20) we obtain

$$|C - C_N|_{H^1(\Omega)} \leq \frac{S_6^0 S_2^0}{\alpha} \|\mathbf{u} - \mathbf{u}_N\|_{L^3(\Omega)^d} \|g\|_{L^2(\Omega)}$$

which gives the strong convergence of C_N to C in $H_0^1(\Omega)$.

As C_N is uniformly bounded in $L^{2p+2}(\Omega)$, we can extract a subsequence still denoted by C_N such that C_N converges weakly in $L^{2p+2}(\Omega)$ to some function h satisfying (2.25). The strong convergence of C_N to C in $H^1(\Omega)$ and the uniqueness of the limit allows us to deduce that $h = C$ in $L^{\frac{2p+1}{2p+2}}(\Omega)$ and we get

$$\|C\|_{L^{2p+2}(\Omega)} \leq \frac{1}{r_0} \|g\|_{L^{2p+2}(\Omega)} \quad \forall p \geq 1. \quad (2.26)$$

Thus $h = C \in L^{2p+2}(\Omega)$ and finally, taking the limit in (2.26) as $p \rightarrow \infty$, we get the desired result. \square

Theorem 2.8. *Under Assumption 2.1, We suppose that the problem (V_a) admits a solution $(\mathbf{u}, p, C) \in X \times M \times Y$ such that*

$$\|C\|_{L^\infty(\Omega)} \leq \frac{\mu K_m \alpha}{\rho c_{\mathbf{f}_1} S_2^0}, \quad (2.27)$$

then, the solution of the problem (V_a) is unique.

Proof. Let (\mathbf{u}_1, p_1, C_1) and (\mathbf{u}_2, p_2, C_2) be two solutions of problem (V_a) , and let $\mathbf{u} = \mathbf{u}_1 - \mathbf{u}_2$, $p = p_1 - p_2$ and $C = C_1 - C_2$. Then, (\mathbf{u}, p, C) satisfies for all $(\mathbf{v}, S) \in X \times Y$,

$$\begin{aligned} \int_{\Omega} (\mathcal{A}(\mathbf{u}_1) - \mathcal{A}(\mathbf{u}_2))(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} &= \int_{\Omega} (\mathbf{f}(C_1) - \mathbf{f}(C_2))(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} - \int_{\Omega} \nabla(p_1 - p_2)(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x}, \\ \alpha \int_{\Omega} \nabla C(\mathbf{x}) \cdot \nabla S(\mathbf{x}) \, d\mathbf{x} + \int_{\Omega} (\mathbf{u} \cdot \nabla C_1 + \mathbf{u}_2 \cdot \nabla C)(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x} &+ r_0 \int_{\Omega} C(\mathbf{x}) S(\mathbf{x}) \, d\mathbf{x} = 0. \end{aligned} \quad (2.28)$$

By taking $S = C$ in the second equation of (2.28), we get by using the Green formula,

$$\alpha |C|_{1,\Omega}^2 + r_0 \|C\|_{L^2(\Omega)}^2 = \int_{\Omega} (\mathbf{u} \cdot \nabla C)(\mathbf{x}) C_1(\mathbf{x}) \, d\mathbf{x},$$

and then

$$\alpha |C|_{1,\Omega}^2 + r_0 \|C\|_{L^2(\Omega)}^2 \leq \|\mathbf{u}\|_{L^2(\Omega)^d} \|\nabla C\|_{L^2(\Omega)^d} \|C_1\|_{L^\infty(\Omega)}.$$

Finally, we get

$$|C|_{1,\Omega} \leq \frac{1}{\alpha} \|\mathbf{u}\|_{L^2(\Omega)^d} \|C_1\|_{L^\infty(\Omega)}. \quad (2.29)$$

Substituting \mathbf{v} by \mathbf{u} in the first equation of (2.28), we get

$$\int_{\Omega} (\mathcal{A}(\mathbf{u}_1) - \mathcal{A}(\mathbf{u}_2))(\mathbf{x}) \cdot (\mathbf{u}_1 - \mathbf{u}_2)(\mathbf{x}) \, d\mathbf{x} = \int_{\Omega} (\mathbf{f}(C_1) - \mathbf{f}(C_2))(\mathbf{x}) \cdot (\mathbf{u}_1 - \mathbf{u}_2)(\mathbf{x}) \, d\mathbf{x}.$$

By using the monotonicity of \mathcal{A} , Assumption 2.1, and the fact that \mathbf{f}_1 is $c_{\mathbf{f}_1}$ -Lipschitz, we obtain

$$\begin{aligned} \frac{\mu}{\rho} K_m \|\mathbf{u}\|_{L^2(\Omega)^d} &\leq \|\mathbf{f}_1(C_1) - \mathbf{f}_1(C_2)\|_{L^2(\Omega)^d} \\ &\leq c_{\mathbf{f}_1} S_2^0 |C|_{1,\Omega}. \end{aligned} \quad (2.30)$$

Thus, relations (2.29) and (2.30), give

$$\frac{\mu}{\rho} K_m \|\mathbf{u}\|_{L^2(\Omega)^d} \leq \frac{c_{\mathbf{f}_1} S_2^0}{\alpha} \|\mathbf{u}\|_{L^2(\Omega)^d} \|C_1\|_{L^\infty(\Omega)}.$$

Relation (2.27) allows us to deduce that $\|\mathbf{u}\|_{L^2(\Omega)} = 0$ and then $\mathbf{u}_1 = \mathbf{u}_2$. Relation (2.29) implies $C_1 = C_2$. Finally, the first equation of system (2.28) and the inf-sup condition provide $p_1 = p_2$, which yields the uniqueness of the solution. \square

Corollary 2.9. *Under Assumption 2.1 and Theorems 2.7 and 2.8, if the data g satisfies the following smallness condition*

$$\|g\|_{L^\infty(\Omega)} \leq \frac{r_0 \mu K_m \alpha}{\rho c_{\mathbf{f}_1} S_2^0},$$

then the solution (\mathbf{u}, p, C) of problem (P) is unique in $L^3(\Omega)^d \times W^{1,\frac{3}{2}}(\Omega) \cap L_0^2(\Omega) \times H_0^1(\Omega)$.

3. DISCRETIZATION

From now on, we assume that Ω is a polygon when $d = 2$ or polyhedron when $d = 3$, so it can be completely meshed. For the space discretization, we consider a regular (see Ciarlet [11]) family of triangulations $(\mathcal{T}_h)_h$ of Ω which is a set of closed non degenerate triangles for $d = 2$ or tetrahedra for $d = 3$, called elements, satisfying

- for each h , $\bar{\Omega}$ is the union of all elements of \mathcal{T}_h ;
- the intersection of two distinct elements of \mathcal{T}_h is either empty, a common vertex, or an entire common edge (or face when $d = 3$);
- the ratio of the diameter h_κ of an element $\kappa \in \mathcal{T}_h$ to the diameter ρ_κ of its inscribed circle when $d = 2$ or ball when $d = 3$ is bounded by a constant independent of h , that is, there exists a strictly positive constant σ independent of h such that,

$$\max_{\kappa \in \mathcal{T}_h} \frac{h_\kappa}{\rho_\kappa} \leq \sigma. \quad (3.1)$$

As usual, h denotes the maximal diameter of all elements of \mathcal{T}_h . To define the finite element functions, let r be a non-negative integer. For each κ in \mathcal{T}_h , we denote by $\mathbb{P}_r(\kappa)$ the space of restrictions to κ of polynomials in d variables and total degree at most r , with a similar notation on the faces or edges of κ . For every edge (when $d = 2$) or face (when $d = 3$) e of the mesh \mathcal{T}_h , we denote by h_e the diameter of e .

We shall use the following inverse inequality [15]: for any dimension d , there exists a constant C_I such that for any polynomial function v_h of degree r on K ,

$$\|v_h\|_{L^3(\kappa)} \leq C_I h_\kappa^{-\frac{d}{6}} \|v_h\|_{L^2(\kappa)}. \quad (3.2)$$

The constant C_I depends on the regularity parameter σ of (3.1), but for the sake of simplicity this is not indicated.

Let $X_h \subset X$, $M_h \subset M$, and $Y_h \subset Y$ be the discrete spaces corresponding to the velocity, the pressure and the concentration. We assume that X_h and M_h satisfy the following inf-sup condition:

$$\forall q_h \in M_h, \sup_{\mathbf{v}_h \in X_h} \frac{\int_{\Omega} \nabla q_h \cdot \mathbf{v}_h \, d\mathbf{x}}{\|\mathbf{v}_h\|_{X_h}} \geq \beta_2 \|q_h\|_{M_h}, \quad (3.3)$$

where β_2 is a strictly positive constant independent of h .

Problem (V_a) can be discretized as following: find $(\mathbf{u}_h, p_h, C_h) \in X_h \times M_h \times Y_h$ such that

$$(V_{ah})_u \left\{ \begin{array}{l} \forall \mathbf{v}_h \in X_h, \int_{\Omega} \mathcal{A}(\mathbf{u}_h) \cdot \mathbf{v}_h \, d\mathbf{x} + \int_{\Omega} \nabla p_h \cdot \mathbf{v}_h \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(C_h) \cdot \mathbf{v}_h \, d\mathbf{x}, \\ \forall q_h \in M_h, \int_{\Omega} \nabla q_h \cdot \mathbf{u}_h \, d\mathbf{x} = 0, \\ \forall S_h \in Y_h, \alpha \int_{\Omega} \nabla C_h \cdot \nabla S_h \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}_h \cdot \nabla C_h) S_h \, d\mathbf{x} + \frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{u}_h) C_h S_h \, d\mathbf{x} \\ \quad + r_0 \int_{\Omega} C_h S_h \, d\mathbf{x} = \int_{\Omega} g S_h \, d\mathbf{x}. \end{array} \right. \quad (3.4)$$

In the following, we will introduce the finite dimension spaces X_h , M_h and Y_h . Let κ be an element of \mathcal{T}_h with vertices a_i , $1 \leq i \leq d+1$, and corresponding barycentric coordinates λ_i . We denote by $b_\kappa \in \mathbb{P}_{d+1}(\kappa)$ the basic bubble function:

$$b_\kappa(\mathbf{x}) = \lambda_1(\mathbf{x}) \dots \lambda_{d+1}(\mathbf{x}). \quad (3.5)$$

We observe that $b_\kappa(\mathbf{x}) = 0$ on $\partial\kappa$ and that $b_\kappa(\mathbf{x}) > 0$ in the interior of κ .

We introduce the following discrete spaces:

$$\begin{aligned}
 X_h &= \left\{ \mathbf{v}_h \in (\mathcal{C}^0(\bar{\Omega}))^d; \forall \kappa \in \mathcal{T}_h, \mathbf{v}_h|_\kappa \in \mathcal{P}(\kappa)^d \right\}, \\
 M_h &= \left\{ q_h \in C^0(\bar{\Omega}); \forall \kappa \in \mathcal{T}_h, q_h|_\kappa \in \mathbb{P}_1(\kappa) \right\} \cap L_0^2(\Omega), \\
 Y_h &= \left\{ q_h \in C^0(\bar{\Omega}); \forall \kappa \in \mathcal{T}_h, q_h|_\kappa \in \mathbb{P}_1(\kappa) \right\} \cap H_0^1(\Omega), \\
 V_h &= \left\{ \mathbf{v}_h \in X_h; \forall q_h \in M_h, \int_{\Omega} \nabla q_h \cdot \mathbf{v}_h \, d\mathbf{x} = 0 \right\},
 \end{aligned} \tag{3.6}$$

where

$$\mathcal{P}(\kappa) = \mathbb{P}_1(\kappa) \oplus \text{Vect}\{b_\kappa\}.$$

In this case, for the inf-sup condition (3.3), we refer to [23].

We shall use the following results:

(1) For the concentration: there exists an approximation operator (when $d = 2$, see Bernardi and Girault [5] or Clément [12]; when $d = 2$ or $d = 3$, see Scott and Zhang [35]), R_h in $\mathcal{L}(W^{1,p}(\Omega); Y_h)$ such that for all κ in \mathcal{T}_h , $m = 0, 1$, $l = 0, 1$, and all $p \geq 1$,

$$\forall S \in W^{l+1,p}(\Omega), |S - R_h(S)|_{W^{m,p}(\kappa)} \leq c(p, m, l) h^{l+1-m} |S|_{W^{l+1,p}(\Delta_\kappa)}, \tag{3.7}$$

where Δ_κ is the macro element containing the values of S used in defining $R_h(S)$.

(2) For the velocity: we introduce a variant of R_h denoted by \mathcal{F}_h (see [4] and [22]) which is stable in $L^3(\Omega)^d$:

$$\forall \mathbf{v} \in L^3(\Omega)^d, \|\mathcal{F}_h(\mathbf{v})\|_{L^3(\kappa)^d} \leq C_s \|\mathbf{v}\|_{L^3(\Delta_\kappa)^d}, \tag{3.8}$$

such that $\mathcal{F}_h(\mathbf{v}) \in V_h$ when $\text{div } \mathbf{v} = 0$, and satisfies (3.7).

(3) For the pressure: as M_h contains all constants, an easy modification of R_h yields an operator $r_h \in \mathcal{L}(W^{1,p}(\Omega) \cap L_0^2(\Omega); M_h)$ (see for instance Abboud *et al.* [1]), satisfying (3.7). Indeed, r_h can be constructed as follows:

$$\forall q \in M, \quad r_h q = R_h q - \frac{1}{|\Omega|} \int_{\Omega} (R_h q)(\mathbf{x}) \, d\mathbf{x}.$$

Existence of a solution of (V_{ah}) is derived by duplicating the steps of the previous section concerning the existence of a solution of problem (V_a) . First (V_{ah}) is split as in the previous section, *i.e.*, find $C_h \in Y_h$ such that: $\forall S_h \in Y_h$,

$$\alpha \int_{\Omega} \nabla C_h \cdot \nabla S_h \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}_h(C_h) \cdot \nabla C_h) S_h \, d\mathbf{x} + \frac{1}{2} \int_{\Omega} \text{div}(\mathbf{u}_h(C_h)) C_h S_h \, d\mathbf{x} + r_0 \int_{\Omega} C_h S_h \, d\mathbf{x} = \int_{\Omega} g S_h \, d\mathbf{x}, \tag{3.9}$$

where $\mathbf{u}_h(C_h)$ is the velocity solution of: find $(\mathbf{u}_h(C_h), p_h(C_h)) \in X_h \times M_h$, such that

$$\begin{cases} \forall \mathbf{v}_h \in X_h, \quad \int_{\Omega} \mathcal{A}(\mathbf{u}_h(C_h)) \cdot \mathbf{v}_h \, d\mathbf{x} + \int_{\Omega} \nabla p_h(C_h) \cdot \mathbf{v}_h \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(., C_h) \cdot \mathbf{v}_h \, d\mathbf{x}, \\ \forall q_h \in M_h, \quad \int_{\Omega} \nabla q_h \cdot \mathbf{u}_h \, d\mathbf{x} = 0. \end{cases} \tag{3.10}$$

For each $C_h \in X_h$, an easy finite-dimensional variant of the argument of Theorem 2.4 allows one to prove that the scheme (3.10) has a unique solution $(\mathbf{u}_h(C_h), p_h(C_h)) \in X_h \times M_h$, and this solution satisfies the *a*

a priori estimates similar to (2.14):

$$\begin{aligned} \|\mathbf{u}_h(C_h)\|_{L^3(\Omega)^d} &\leq \left(\frac{\rho}{\beta} \|\mathbf{f}(\cdot, C_h)\|_{L^{\frac{3}{2}}(\Omega)^d} \right)^{\frac{1}{2}}, \\ \beta_2 \|\nabla p_h(C_h)\|_{L^{\frac{3}{2}}(\Omega)^d} &\leq \frac{\mu}{\rho} \|K^{-1}\|_{L^\infty(\Omega)^{d \times d}} \|\mathbf{u}_h(C_h)\|_{L^{\frac{3}{2}}(\Omega)^d} + \frac{\beta}{\rho} \|\mathbf{u}_h(C_h)\|_{L^3(\Omega)^d}^2 + \|\mathbf{f}(\cdot, C_h)\|_{L^{\frac{3}{2}}(\Omega)^d}. \end{aligned} \quad (3.11)$$

We address now the existence of at least one solution of the problem (3.9) written with the only variable C_h . For this purpose, we apply Brouwer's Fixed-Point Theorem. Indeed, we introduce the following map: for a given $C_h \in Y_h$, find $\Phi(C_h) \in Y_h$ such that: $\forall S_h \in Y_h$,

$$\begin{aligned} (\Phi(C_h), S_h) &= \alpha \int_{\Omega} \nabla C_h \cdot \nabla S_h \, dx + \int_{\Omega} (\mathbf{u}_h(C_h) \cdot \nabla C_h) S_h \, dx \\ &\quad + \frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{u}_h(C_h)) C_h S_h \, dx + r_0 \int_{\Omega} C_h S_h \, dx - \int_{\Omega} g S_h \, dx. \end{aligned}$$

This last relation defines a mapping from Y_h into itself, and we easily derive its continuity. By taking $S_h = C_h$, we get

$$\begin{aligned} (\nabla \Phi(C_h), \nabla C_h) &= \alpha |C_h|_{1,\Omega}^2 + r_0 \|C_h\|_{L^2(\Omega)}^2 - \int_{\Omega} g(x) C_h(x) \, dx, \\ &\geq |C_h|_{1,\Omega} (\alpha |C_h|_{1,\Omega} - S_2^0 \|g\|_{L^2(\Omega)}). \end{aligned}$$

In other words, we have

$$(\nabla \Phi(C_h), \nabla C_h) \geq 0,$$

for all $C_h \in Y_h$ such that

$$|C_h|_{1,\Omega} = \frac{S_2^0}{\alpha} \|g\|_{L^2(\Omega)}.$$

The Brouwer's Fixed-Point Theorem implies immediately the existence of at least one solution of the problem (3.9). Hence, problem (V_{ah}) admits at least one solution $(\mathbf{u}_h, p_h, C_h) \in X_h \times M_h \times Y_h$. Furthermore, by taking $S_h = C_h$ in the last equation of (V_{ah}) gives, in addition to inequality (3.11), the following bound:

$$|C_h|_{1,\Omega} \leq \frac{S_2^0}{\alpha} \|g\|_{L^2(\Omega)}. \quad (3.12)$$

Finally, uniqueness follows easily since C_h belongs to $L^\infty(\Omega)$. This is summed up in the following existence and uniqueness theorems.

Theorem 3.1. *Under Assumption 2.1, (V_{ah}) has at least a solution $(\mathbf{u}_h, p_h, C_h) \in X_h \times M_h \times Y_h$. Moreover, every solution of (V_{ah}) satisfies bounds similar to (2.20).*

Theorem 3.2. *We assume that the data \mathbf{f} and g satisfies assumption 2.1. Suppose that problem (V_{ah}) has a solution $(\mathbf{u}_h, p_h, C_h) \in X_h \times M_h \times Y_h$ such that*

$$\|C_h\|_{L^\infty(\Omega)} + S_6^0 |C_h|_{W^{1,3}(\Omega)} < \frac{2\alpha\mu K_m}{\rho c_{\mathbf{f}_1}^* S_2^0}. \quad (3.13)$$

Then problem (V_{ah}) has no other solution in $X_h \times M_h \times Y_h$.

Proof. We consider two solutions $(\mathbf{u}_{h,1}, p_{h,1}, C_{h,1})$ and $(\mathbf{u}_{h,2}, p_{h,2}, C_{h,2})$ of problem (V_{ah}) and we denote by $\mathbf{u}_h = \mathbf{u}_{h,1} - \mathbf{u}_{h,2}$, $p_h = p_{h,1} - p_{h,2}$ and $C_h = C_{h,1} - C_{h,2}$. By following the same steps of the proof of Theorem 2.8, \mathbf{u}_h satisfies the analogue of (2.30),

$$\frac{\mu}{\rho} K_m \|\mathbf{u}_h\|_{L^2(\Omega)^d} \leq c_{\mathbf{f}_1} S_2^0 |C_h|_{1,\Omega}. \quad (3.14)$$

The treatment of the concentration is slightly different. By using the Green's formula, the difference of the equations satisfied by the concentrations reads with $S_h = T_h$,

$$\alpha |C_h|_{1,\Omega}^2 \leq \frac{1}{2} \left| \int_{\Omega} (\mathbf{u}_h \cdot \nabla C_h) C_{h,1} dx - \int_{\Omega} (\mathbf{u}_h \cdot \nabla C_{h,1}) C_h dx \right|. \quad (3.15)$$

Therefore, using Hölder's inequality, we obtain

$$|C_h|_{1,\Omega} \leq \frac{\|\mathbf{u}_h\|_{L^2(\Omega)^d}}{2\alpha} (\|C_{h,1}\|_{L^\infty(\Omega)} + S_6^0 |C_{h,1}|_{W^{1,3}(\Omega)}). \quad (3.16)$$

Thus, inequalities (3.14) and (3.16) give,

$$\frac{\mu}{\rho} K_m \|\mathbf{u}_h\|_{L^2(\Omega)^d} \leq \frac{c_{\mathbf{f}_1} S_2^0 \|\mathbf{u}_h\|_{L^2(\Omega)^d}}{2\alpha} (\|C_{h,1}\|_{L^\infty(\Omega)} + S_6^0 |C_{h,1}|_{W^{1,3}(\Omega)}). \quad (3.17)$$

Condition (3.13) allows us to deduce that $\|\mathbf{u}_h\|_{L^2(\Omega)^d} = 0$ and hence $\mathbf{u}_{h,1} = \mathbf{u}_{h,2}$. Inequality (3.16) gives $C_{h,1} = C_{h,2}$. Finally, the inf-sup condition provides $p_{h,1} = p_{h,2}$. \square

Now, we address the convergence of the subsequence of the numerical solution to the exact one.

Bounds (3.12) and (3.11), and the compactness of the embedding of $H^1(\Omega)$ into $L^p(\Omega)$ (($p \geq 1$ if $d = 2$, $1 \leq p < 6$ if $d = 3$), allow us to get the following lemma:

Lemma 3.3. *Let \mathbf{f} and g satisfy Assumption 2.1 and let (\mathbf{u}_h, p_h, C_h) be any solution of the discrete problem (V_{ah}) . We can extract a subsequence, still denoted (\mathbf{u}_h, p_h, C_h) verifying*

$$\begin{aligned} \lim_{h \rightarrow 0} C_h &= \bar{C} && \text{weakly in } H_0^1(\Omega), \\ \lim_{h \rightarrow 0} C_h &= \bar{C} && \text{strongly in } L^p(\Omega), \quad (p \geq 1 \text{ if } d = 2, 1 \leq p < 6 \text{ if } d = 3), \\ \lim_{h \rightarrow 0} \mathbf{u}_h &= \bar{\mathbf{u}} && \text{weakly in } L^3(\Omega), \\ \lim_{h \rightarrow 0} \nabla p_h &= \bar{\mathbf{h}} && \text{weakly in } L^{\frac{3}{2}}(\Omega)^d, \end{aligned} \quad (3.18)$$

where $\bar{\mathbf{u}} \in L^3(\Omega)^d$, $\bar{\mathbf{h}} \in L^{\frac{3}{2}}(\Omega)^d$ and $\bar{C} \in H_0^1(\Omega)$.

Proposition 3.4. *Let (\mathbf{u}_h, p_h, C_h) be any solution of the discrete problem (V_{ah}) . Under assumption of Lemma 3.3, we have $\bar{\mathbf{h}} = \nabla \bar{p}$, where $(\bar{\mathbf{u}}, \bar{p})$ solves the first two equations of (V_a) with $C = \bar{C}$. Furthermore, we have the following strong convergence:*

$$\lim_{h \rightarrow 0} \mathbf{u}_h = \bar{\mathbf{u}} \quad \text{strongly in } L^3(\Omega)^d. \quad (3.19)$$

Proof. First, we shall show that $\bar{\mathbf{u}}$ is a solution of the problem (2.12) for $C = \bar{C}$.

The monotonicity of \mathcal{A} gives

$$\forall \mathbf{v}_h \in V_h, \quad \int_{\Omega} (\mathcal{A}(\mathbf{u}_h) - \mathcal{A}(\mathbf{v}_h)) \cdot (\mathbf{u}_h - \mathbf{v}_h) dx \geq 0. \quad (3.20)$$

As \mathbf{u}_h is a solution of problem (V_{ah}) , we get

$$\forall \mathbf{v}_h \in V_h, \quad \int_{\Omega} \mathcal{A}(\mathbf{u}_h) \cdot (\mathbf{u}_h - \mathbf{v}_h) \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(., C_h) \cdot (\mathbf{u}_h - \mathbf{v}_h) \, d\mathbf{x}. \quad (3.21)$$

Therefore,

$$\forall \mathbf{v}_h \in V_h, \quad \int_{\Omega} \mathcal{A}(\mathbf{v}_h) \cdot (\mathbf{u}_h - \mathbf{v}_h) \, d\mathbf{x} \leq \int_{\Omega} \mathbf{f}(., C_h) \cdot (\mathbf{u}_h - \mathbf{v}_h) \, d\mathbf{x}. \quad (3.22)$$

We now choose $\mathbf{v}_h = \mathcal{F}_h(\mathbf{v})$ where \mathbf{v} is an arbitrary element of V . The strong convergence of $\mathcal{F}_h(\mathbf{v})$ to \mathbf{v} in $L^3(\Omega)^d$ and (2.11) allow us to get

$$\mathcal{A}(\mathcal{F}_h(\mathbf{v})) \xrightarrow[h \rightarrow 0]{} \mathcal{A}(\mathbf{v}) \text{ strongly in } L^{\frac{3}{2}}(\Omega)^d. \quad (3.23)$$

Furthermore, since $\mathbf{u}_h - \mathcal{F}_h(\mathbf{v})$ converges weakly to $\bar{\mathbf{u}} - \mathbf{v}$ in $L^3(\Omega)^d$ and $\mathbf{f}(., C_h)$ converges strongly to $\mathbf{f}(., \bar{C})$ in $L^{\frac{3}{2}}(\Omega)^d$, we get by passing to the limit in (3.22),

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} \mathcal{A}(\mathbf{v}) \cdot (\bar{\mathbf{u}} - \mathbf{v}) \, d\mathbf{x} \leq \int_{\Omega} \mathbf{f}(., \bar{C}) \cdot (\bar{\mathbf{u}} - \mathbf{v}) \, d\mathbf{x}. \quad (3.24)$$

In particular, for $\mathbf{v} = \bar{\mathbf{u}} + t\mathbf{w}$, where $t \in \mathbb{R}$ and $\mathbf{w} \in V$, we get

$$\forall t \in \mathbb{R}, \quad t \left(\int_{\Omega} \mathcal{A}(\bar{\mathbf{u}} + t\mathbf{w}) \cdot \mathbf{w} \, d\mathbf{x} \right) \geq t \left(\int_{\Omega} \mathbf{f}(\bar{C}) \cdot \mathbf{w} \, d\mathbf{x} \right).$$

By taking $t > 0$ (resp. $t < 0$), simplifying by t , tending t to 0 and using the hemicontinuity of \mathcal{A} , we get:

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} \mathcal{A}(\bar{\mathbf{u}}) \cdot \mathbf{v} \, d\mathbf{x} \geq \int_{\Omega} \mathbf{f}(\bar{C}) \cdot \mathbf{v} \, d\mathbf{x} \quad \left(\text{resp. } \int_{\Omega} \mathcal{A}(\bar{\mathbf{u}}) \cdot \mathbf{v} \, d\mathbf{x} \leq \int_{\Omega} \mathbf{f}(\bar{C}) \cdot \mathbf{v} \, d\mathbf{x} \right),$$

We obtain finally:

$$\forall \mathbf{v} \in V, \quad \int_{\Omega} \mathcal{A}(\bar{\mathbf{u}}) \cdot \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(\bar{C}) \cdot \mathbf{v} \, d\mathbf{x}. \quad (3.25)$$

Hence $\bar{\mathbf{u}}$ is the solution of (2.12), and we construct by using the inf-sup condition (2.10) the corresponding pressure \bar{p} .

The next step consists to show that \mathbf{u}_h converges strongly to $\bar{\mathbf{u}}$ in $L^3(\Omega)^d$. In order to prove it, we start by taking $\mathbf{v} = \mathbf{v}_h$ in (2.12) and subtracting from (3.10), we have

$$\begin{aligned} \forall \mathbf{v}_h \in V_h, \quad \int_{\Omega} (\mathcal{A}(\mathbf{u}_h) - \mathcal{A}(\bar{\mathbf{u}})) \cdot \mathbf{v}_h \, d\mathbf{x} &= \int_{\Omega} (\mathbf{f}(., C_h) - \mathbf{f}(., \bar{C})) \cdot \mathbf{v}_h \, d\mathbf{x} + \int_{\Omega} \nabla(\bar{p} - p_h) \cdot \mathbf{v}_h \, d\mathbf{x} \\ &= \int_{\Omega} (\mathbf{f}(., C_h) - \mathbf{f}(., \bar{C})) \cdot \mathbf{v}_h \, d\mathbf{x} + \int_{\Omega} \nabla \bar{p} \cdot \mathbf{v}_h \, d\mathbf{x}. \end{aligned} \quad (3.26)$$

By inserting $\mathcal{A}(\mathcal{F}_h(\bar{\mathbf{u}}))$ and taking $\mathbf{v}_h = \mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})$, we get

$$\begin{aligned} \int_{\Omega} (\mathcal{A}(\mathbf{u}_h) - \mathcal{A}(\mathcal{F}_h(\bar{\mathbf{u}}))) \cdot (\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})) \, d\mathbf{x} &= - \int_{\Omega} (\mathcal{A}(\mathcal{F}_h(\bar{\mathbf{u}})) - \mathcal{A}(\bar{\mathbf{u}})) \cdot (\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})) \, d\mathbf{x} \\ &\quad + \int_{\Omega} \nabla \bar{p} \cdot (\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})) \, d\mathbf{x} \\ &\quad + \int_{\Omega} (\mathbf{f}(., C_h) - \mathbf{f}(., \bar{C})) \cdot (\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})) \, d\mathbf{x}. \end{aligned} \quad (3.27)$$

The monotonicity of \mathcal{A} allows us to obtain,

$$\begin{aligned} c_m \|\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})\|_{L^3(\Omega)^d}^3 &\leq \left| \int_{\Omega} (\mathcal{A}(\mathcal{F}_h(\bar{\mathbf{u}})) - \mathcal{A}(\bar{\mathbf{u}})) \cdot (\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})) \, d\mathbf{x} \right| \\ &\quad + \left| \int_{\Omega} \nabla \bar{p} \cdot (\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})) \, d\mathbf{x} \right| + \left| \int_{\Omega} (\mathbf{f}(\cdot, C_h) - \mathbf{f}(\cdot, \bar{C})) \cdot (\mathbf{u}_h - \mathcal{F}_h(\bar{\mathbf{u}})) \, d\mathbf{x} \right|. \end{aligned} \quad (3.28)$$

We pass to the limit in the previous equation. We deduce from the strong convergence of $\mathcal{A}(\mathcal{F}_h(\bar{\mathbf{u}}))$ to $\mathcal{A}(\bar{\mathbf{u}})$ and of $\mathbf{f}(\cdot, C_h)$ to $\mathbf{f}(\cdot, \bar{C})$ that the first and last terms of the right-hand-side of the previous inequality tend to 0. Furthermore, the weak convergence of \mathbf{u}_h to $\bar{\mathbf{u}}$, and the strong convergence of $\mathcal{F}_h(\bar{\mathbf{u}})$ to $\bar{\mathbf{u}}$ imply the convergence of the second term of the right hand side of the previous inequality to 0. Thus, \mathbf{u}_h converges strongly to $\bar{\mathbf{u}}$ in $L^3(\Omega)^d$.

To finish the proof, it remains to show that $\bar{\mathbf{h}} = \nabla \bar{p}$, which can be easily obtained by passing to the limit in (3.26), and by using the strong convergence of \mathbf{u}_h to $\bar{\mathbf{u}}$ in $L^3(\Omega)^d$, and the uniqueness of the weak limit. \square

Theorem 3.5. *Let \mathbf{f} and g satisfy Assumption 2.1, the limit $(\bar{\mathbf{u}}, \bar{p}, \bar{C})$ defined in Proposition 3.4 is a solution of problem (V_a) .*

Proof. We have proved in Proposition 3.4 that $(\bar{\mathbf{u}}, \bar{p}, \bar{C})$ solves the first two equations of problem (V_a) . It remains to show that $(\bar{\mathbf{u}}, \bar{C})$ solves the third equation of problem (V_a) . We consider the third equation of problem (V_{ah}) . By taking $S_h = R_h S$ for a regular $S \in D(\Omega)$ (taking into account the density of $D(\Omega)$ in $H_0^1(\Omega)$), we can show easily the convergence of the linear terms except the non-linear ones which can be written as:

$$\int_{\Omega} (\mathbf{u}_h \cdot \nabla C_h) S_h \, d\mathbf{x} + \frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{u}_h) C_h S_h \, d\mathbf{x} = \frac{1}{2} \int_{\Omega} (\mathbf{u}_h \cdot \nabla C_h) S_h \, d\mathbf{x} - \frac{1}{2} \int_{\Omega} (\mathbf{u}_h \cdot \nabla S_h) C_h \, d\mathbf{x}. \quad (3.29)$$

The strong convergence of S_h to S in $H_0^1(\Omega)$, and in $L^6(\Omega)$, the strong convergence of \mathbf{u}_h to $\bar{\mathbf{u}}$ in $L^3(\Omega)^d$, and the weak convergence of C_h to \bar{C} in $H_0^1(\Omega)$ lead to the convergence of (3.29). \square

After showing the convergence of the discrete solution (\mathbf{u}_h, p_h, C_h) of problem (V_{ah}) to a solution $(\bar{\mathbf{u}}, \bar{p}, \bar{C})$ of problem (V_a) , we next derive the corresponding *a priori* error estimate.

Theorem 3.6. *Under Assumption 2.1, let (\mathbf{u}_h, p_h, C_h) be a solution of problem (V_{ah}) , and (\mathbf{u}, p, C) be a solution of problem (V_{ah}) . If (\mathbf{u}, p, C) are such that $C \in W^{1,3}(\Omega) \cap L^\infty(\Omega)$, $\mathbf{u} \in L^\infty(\Omega)^d$ and $p \in H^1(\Omega)$, and satisfies the following condition:*

$$S_6^0 |C|_{W^{1,3}(\Omega)} + \|C\|_{L^\infty(\Omega)} \leq \frac{\alpha \mu K_m}{2\sqrt{2\rho} C_{\mathbf{f}_1} S_2^0}, \quad (3.30)$$

then, we have the following *a priori* error estimates:

$$\begin{aligned} |C - C_h|_{H^1(\Omega)} &\leq \frac{1}{1 - c_{2r} \sqrt{c_{2u}}} \left((1 + c_{1r}) |C - R_h(C)|_{H^1(\Omega)} + c_{2r} \sqrt{c_{1u}} \|\nabla(r_h(p) - p)\|_{L^2(\Omega)^d} \right. \\ &\quad \left. + c_{2r} \sqrt{c_{3u}} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^3(\Omega)^d}^{\frac{3}{2}} + c_{2r} \sqrt{c_{4u}} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d} \right), \end{aligned} \quad (3.31)$$

$$\begin{aligned} \|\mathbf{u} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 &\leq c_{1u} \|\nabla(p - r_h(p))\|_{L^2(\Omega)^d}^2 + c_{2u} |C - C_h|_{H^1(\Omega)}^2 + c_{3u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^3(\Omega)^d}^3 \\ &\quad + c_{4u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^2, \end{aligned} \quad (3.32)$$

$$\begin{aligned} \|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} &\leq c'_{1u} \|\nabla(p - r_h(p))\|_{L^2(\Omega)^d}^{2/3} + c'_{2u} |C - C_h|_{H^1(\Omega)}^{2/3} + c'_{3u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^3(\Omega)^d} \\ &\quad + c'_{4u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^{2/3}, \end{aligned} \quad (3.33)$$

and

$$\| \nabla(p - p_h) \|_{L^{\frac{3}{2}}(\Omega)^d} \leq c_{1p} |C - C_h|_{1,\Omega} + c_{2p} \| \mathbf{u} - \mathbf{u}_h \|_{L^3(\Omega)^d} + c_{3p} \| \nabla(r_h(p) - p) \|_{L^{\frac{3}{2}}(\Omega)^d}, \quad (3.34)$$

where c_{1r}, c_{2r} are constants given in relation (3.52), $c_{1u}, c_{2u}, c_{3u}, c_{4u}$ are given in relation (3.42), $c'_{1u}, c'_{2u}, c'_{3u}, c'_{4u}$ are given in relation (3.42), and c_{1p}, c_{2p}, c_{3p} are given in relation (3.49).

Proof. We shall proof the result by proceeding by steps.

(1) Let us estimate the velocity error in terms of the temperature error. By taking the difference between the first equations of (V) and $(V_{h,1})$ and testing with $\mathbf{v} = \mathbf{v}_h \in V_h$, we obtain

$$\int_{\Omega} (\mathcal{A}(\mathbf{u}) - \mathcal{A}(\mathbf{u}_h)) \cdot \mathbf{v}_h \, d\mathbf{x} = \int_{\Omega} (\mathbf{f}_1(C) - \mathbf{f}_1(C_h)) \cdot \mathbf{v}_h \, d\mathbf{x} - \int_{\Omega} \nabla(p - r_h(p)) \cdot \mathbf{v}_h \, d\mathbf{x}. \quad (3.35)$$

Then, by inserting $\mathcal{F}_h(\mathbf{u})$ and testing with $\mathbf{v}_h = \mathcal{F}_h(\mathbf{u}) - \mathbf{u}_h$ that belongs indeed to V_h , we easily derive

$$\begin{aligned} \int_{\Omega} (\mathcal{A}(\mathcal{F}_h(\mathbf{u})) - \mathcal{A}(\mathbf{u}_h)) \cdot \mathbf{v}_h \, d\mathbf{x} &= \int_{\Omega} (\mathbf{f}_1(C) - \mathbf{f}_1(C_h)) \cdot \mathbf{v}_h \, d\mathbf{x} + \int_{\Omega} (\mathcal{A}(\mathcal{F}_h(\mathbf{u})) - \mathcal{A}(\mathbf{u})) \cdot \mathbf{v}_h \, d\mathbf{x} \\ &\quad - \int_{\Omega} \nabla(p - r_h(p)) \cdot \mathbf{v}_h \, d\mathbf{x}. \end{aligned} \quad (3.36)$$

Let us bound the second term in the right hand side of (3.36). We have

$$\begin{aligned} \int_{\Omega} (\mathcal{A}(\mathcal{F}_h(\mathbf{u})) - \mathcal{A}(\mathbf{u})) \cdot \mathbf{v}_h \, d\mathbf{x} &= \frac{\mu}{\rho} \int_{\Omega} K^{-1}(\mathcal{F}_h(\mathbf{u}) - \mathbf{u}) \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} (|\mathcal{F}_h(\mathbf{u})| - |\mathbf{u}|)(\mathcal{F}_h(\mathbf{u}) - \mathbf{u}) \cdot \mathbf{v}_h \, d\mathbf{x} \\ &\quad + \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}|(\mathcal{F}_h(\mathbf{u}) - \mathbf{u}) \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} (|\mathcal{F}_h(\mathbf{u})| - |\mathbf{u}|)\mathbf{u} \cdot \mathbf{v}_h \, d\mathbf{x}. \end{aligned} \quad (3.37)$$

Then,

$$\begin{aligned} \left| \int_{\Omega} (\mathcal{A}(\mathcal{F}_h(\mathbf{u})) - \mathcal{A}(\mathbf{u})) \cdot \mathbf{v}_h \, d\mathbf{x} \right| &\leq \frac{\mu K_M}{\rho} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u} \|_{L^2(\Omega)^d} \| \mathbf{v}_h \|_{L^2(\Omega)^d} \\ &\quad + \frac{\beta}{\rho} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u} \|_{L^3(\Omega)^d}^2 \| \mathbf{v}_h \|_{L^3(\Omega)^d} + \frac{2\beta}{\rho} \| \mathbf{u} \|_{L^{\infty}(\Omega)^d} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u} \|_{L^2(\Omega)^d} \| \mathbf{v}_h \|_{L^2(\Omega)^d}. \end{aligned} \quad (3.38)$$

Thus, the monotonicity of \mathcal{A} and the fact that \mathbf{f}_1 is $c_{\mathbf{f}_1}$ -Lipschitz with values in \mathbb{R}^d allow us to obtain,

$$\begin{aligned} \frac{c_s}{2} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u}_h \|_{L^3(\Omega)^d}^3 + \frac{\mu K_m}{2\rho} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u}_h \|_{L^2(\Omega)^d}^2 &\leq \| \nabla(r_h(p) - p) \|_{L^2(\Omega)^d} \| \mathbf{v}_h \|_{L^2(\Omega)^d} \\ &\quad + c_{\mathbf{f}_1} S_2^0 |C - C_h|_{H^1(\Omega)} \| \mathbf{v}_h \|_{L^2(\Omega)^d} + \frac{\mu K_M}{\rho} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u} \|_{L^2(\Omega)^d} \| \mathbf{v}_h \|_{L^2(\Omega)^d} \\ &\quad + \frac{\beta}{\rho} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u} \|_{L^3(\Omega)^d}^2 \| \mathbf{v}_h \|_{L^3(\Omega)^d} + \frac{2\beta}{\rho} \| \mathbf{u} \|_{L^{\infty}(\Omega)^d} \| \mathcal{F}_h(\mathbf{u}) - \mathbf{u} \|_{L^2(\Omega)^d} \| \mathbf{v}_h \|_{L^2(\Omega)^d}. \end{aligned} \quad (3.39)$$

To treat the last inequality, we bound all the terms of the right hand side containing $b = \| \mathbf{v}_h \|_{L^2(\Omega)^d}$ using the formula

$$ab \leq \frac{1}{2\varepsilon} a^2 + \frac{\varepsilon}{2} b^2, \quad \text{with } \varepsilon = \frac{\mu K_m}{8\rho},$$

and, the term containing $b = \| \mathbf{v}_h \|_{L^3(\Omega)^d}$, using the formula

$$a^2 b \leq \frac{1}{3} \left(2\delta^{\frac{3}{2}} a^3 + \left(\frac{1}{\delta} \right)^3 b^3 \right), \quad \text{with } \delta = \left(\frac{4}{3c_s} \right)^{1/3}.$$

Then, we infer the following bound:

$$\begin{aligned}
& \frac{c_s}{4} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}_h\|_{L^3(\Omega)^d}^3 + \frac{\mu K_m}{4\rho} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \leq \frac{4\rho}{\mu K_m} \|\nabla(r_h(p) - p)\|_{L^2(\Omega)^d}^2 \\
& + \frac{4\rho}{\mu K_m} (c_{\mathbf{f}_1} S_2^0)^2 |C - C_h|_{H^1(\Omega)}^2 + \frac{4\mu K_M^2}{\rho K_m} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^2 \\
& + \frac{4\beta^{\frac{3}{2}}}{3\rho^{\frac{3}{2}}\sqrt{3c_s}} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^3(\Omega)^d}^3 + \frac{16\beta^2}{\mu\rho K_m} \|\mathbf{u}\|_{L^\infty(\Omega)^d}^2 \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^2.
\end{aligned} \tag{3.40}$$

By using the following triangle inequality

$$\frac{1}{2} \|\mathbf{u} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \leq \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 + \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^2,$$

we get

$$\begin{aligned}
\|\mathbf{u} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 & \leq c_{1u} \|\nabla(r_h(p) - p)\|_{L^2(\Omega)^d}^2 + c_{2u} |C - C_h|_{H^1(\Omega)}^2 \\
& + c_{3u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^3(\Omega)^d}^3 + c_{4u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^2,
\end{aligned} \tag{3.41}$$

where

$$c_{1u} = \frac{32\rho^2}{\mu^2 K_m^2}, \quad c_{2u} = c_{1u} (c_{\mathbf{f}_1} S_2^0)^2, \quad c_{3u} = \frac{32\beta^{\frac{3}{2}}}{3\mu K_m \sqrt{3c_s} \rho} \text{ and } c_{4u} = \frac{32K_M^2}{K_m^2} + \frac{128\beta^2}{\mu^2 K_m^2} \|\mathbf{u}\|_{L^\infty(\Omega)^d}^2 + 2. \tag{3.42}$$

Furthermore, relation (3.40) gives

$$\begin{aligned}
\|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}_h\|_{L^3(\Omega)^d}^3 & \leq \frac{\mu K_m}{2\rho c_s} (c_{1u} \|\nabla(r_h(p) - p)\|_{L^2(\Omega)^d}^2 + c_{2u} |C - C_h|_{H^1(\Omega)}^2 + c_{3u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^3(\Omega)^d}^3 \\
& + c_{4u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^2).
\end{aligned}$$

Thus, a triangle inequality allows us to get

$$\begin{aligned}
\|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} & \leq c'_{1u} \|\nabla(r_h(p) - p)\|_{L^2(\Omega)^d}^{2/3} + c'_{2u} |C - C_h|_{H^1(\Omega)}^{2/3} + c'_{3u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^3(\Omega)^d} \\
& + c'_{4u} \|\mathcal{F}_h(\mathbf{u}) - \mathbf{u}\|_{L^2(\Omega)^d}^{2/3},
\end{aligned}$$

where

$$c'_u = \sqrt[3]{\frac{\mu K_m}{2\rho c_s}}, \quad c'_{1u} = c'_u \sqrt[3]{c_{1u}}, \quad c'_{2u} = c'_u \sqrt[3]{c_{2u}}, \quad c'_{3u} = c'_u (1 + \sqrt[3]{c_{3u}}) \text{ and } c'_{4u} = c'_u \sqrt[3]{c_{4u}}. \tag{3.43}$$

Hence relations (3.32) and (3.33) are proved

(2) The proof of the error estimate for the pressure follows the same lines of the previous step. By taking the difference between the first equations of (V_a) and (V_{ah}) , inserting $r_h(p)$ and testing with $\mathbf{v}_h \in X_h$, we obtain

$$\begin{aligned}
\int_{\Omega} \nabla(r_h(p) - p_h) \cdot \mathbf{v}_h \, d\mathbf{x} & = \int_{\Omega} (\mathbf{f}_1(C) - \mathbf{f}_1(C_h)) \cdot \mathbf{v}_h \, d\mathbf{x} - \int_{\Omega} (\mathcal{A}(\mathbf{u}) - \mathcal{A}(\mathbf{u}_h)) \cdot \mathbf{v}_h \, d\mathbf{x} \\
& - \int_{\Omega} \nabla(p - r_h(p)) \cdot \mathbf{v}_h \, d\mathbf{x}.
\end{aligned} \tag{3.44}$$

In order to estimate the second term in the right hand side of (3.44), we will proceed as follows:

$$\begin{aligned}
\int_{\Omega} (\mathcal{A}(\mathbf{u}) - \mathcal{A}(\mathbf{u}_h)) \cdot \mathbf{v}_h \, d\mathbf{x} &= \frac{\mu}{\rho} \int_{\Omega} K^{-1}(\mathbf{u} - \mathbf{u}_h) \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}|(\mathbf{u} - \mathbf{u}_h) \cdot \mathbf{v}_h \, d\mathbf{x} \\
&\quad + \frac{\beta}{\rho} \int_{\Omega} (|\mathbf{u}| - |\mathbf{u}_h|) \mathbf{u}_h \cdot \mathbf{v}_h \, d\mathbf{x} \\
&\leq \frac{\mu K_M}{\rho} |\Omega|^{1/3} \|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} \|\mathbf{v}_h\|_{L^3(\Omega)^d} \\
&\quad + \frac{\beta}{\rho} \|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} \|\mathbf{v}_h\|_{L^3(\Omega)^d} \left(\|\mathbf{u}\|_{L^3(\Omega)^d} + \|\mathbf{u}_h\|_{L^3(\Omega)^d} \right).
\end{aligned} \tag{3.45}$$

Applying (2.20) and (3.11), we get

$$\begin{aligned}
\int_{\Omega} (\mathcal{A}(\mathbf{u}) - \mathcal{A}(\mathbf{u}_h)) \cdot \mathbf{v}_h \, dx &\leq \frac{\mu K_M}{\rho} |\Omega|^{1/3} \|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} \|\mathbf{v}_h\|_{L^3(\Omega)^d} + \\
&\quad \frac{2\beta}{\rho} \left(\frac{\beta}{\rho} \|\mathbf{f}_0\|_{L^{\frac{3}{2}}(\Omega)^d} + \frac{c_{\mathbf{f}_1} S_3^0 S_2^0}{\alpha} \|g\|_{L^2(\Omega)^d} \right)^{\frac{1}{2}} \|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} \|\mathbf{v}_h\|_{L^3(\Omega)^d}.
\end{aligned} \tag{3.46}$$

We denote $\gamma = \left(\frac{\beta}{\rho} \|\mathbf{f}_0\|_{L^{\frac{3}{2}}(\Omega)^d} + \frac{c_{\mathbf{f}_1} S_3^0 S_2^0}{\alpha} \|g\|_{L^2(\Omega)^d} \right)^{\frac{1}{2}}$. By following the same steps of the previous part, and the inf-sup condition (3.3), we get

$$\begin{aligned}
\beta_2 \|\nabla(r_h(p) - p_h)\|_{L^{\frac{3}{2}}(\Omega)^d} &\leq c_{\mathbf{f}_1}^* |\Omega|^{1/6} S_2^0 |C - C_h|_{1,\Omega} + \left(\frac{\mu K_M}{\rho} |\Omega|^{1/3} + \frac{2\beta}{\rho} \gamma \right) \|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} \\
&\quad + \|\nabla(p - r_h(p))\|_{L^{\frac{3}{2}}(\Omega)^d}.
\end{aligned} \tag{3.47}$$

The following triangle inequality

$$\|\nabla(p - p_h)\|_{L^{\frac{3}{2}}(\Omega)^d} \leq \|\nabla(r_h(p) - p_h)\|_{L^{\frac{3}{2}}(\Omega)^d} + \|\nabla(r_h(p) - p)\|_{L^{\frac{3}{2}}(\Omega)^d}$$

allows us to get

$$\|\nabla(p - p_h)\|_{L^{\frac{3}{2}}(\Omega)^d} \leq c_{1p} |C - C_h|_{1,\Omega} + c_{2p} \|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} + c_{3p} \|\nabla(r_h(p) - p)\|_{L^{\frac{3}{2}}(\Omega)^d}, \tag{3.48}$$

where

$$c_{1p} = \frac{1}{\beta_2} c_{\mathbf{f}_1}^* S_2^0 |\Omega|^{1/6}, \quad c_{2p} = \frac{1}{\beta_2} \left(\frac{\mu K_M}{\rho} |\Omega|^{1/3} + \frac{2\beta}{\rho} \gamma \right) \text{ and } c_{3p} = \left(\frac{1}{\beta_2} + 1 \right). \tag{3.49}$$

Hence relation (3.34) is proved.

(3) Next we estimate the error of the concentration in terms of the velocity error. We take the difference between the third equations of systems (V_a) and (V_{ah}) , insert $S_h(C)$, and use the Green formula to get for all $S_h \in X_h$

$$\begin{aligned}
\alpha \int_{\Omega} \nabla(R_h(C) - C_h) \cdot \nabla S_h \, d\mathbf{x} + r_0 \int_{\Omega} (R_h(C) - C_h) S_h \, d\mathbf{x} &= \\
\alpha \int_{\Omega} \nabla(R_h(C) - C) \cdot \nabla S_h \, d\mathbf{x} + r_0 \int_{\Omega} (R_h(C) - C) S_h \, d\mathbf{x} & \\
+ \frac{1}{2} \int_{\Omega} (\mathbf{u}_h \cdot \nabla(R_h(C) - C)) S_h \, d\mathbf{x} - \frac{1}{2} \int_{\Omega} (\mathbf{u}_h \cdot \nabla S_h) (R_h(C) - C) \, d\mathbf{x} & \\
+ \frac{1}{2} \int_{\Omega} ((\mathbf{u}_h - \mathbf{u}) \cdot \nabla C) S_h \, d\mathbf{x} - \frac{1}{2} \int_{\Omega} ((\mathbf{u}_h - \mathbf{u}) \cdot \nabla S_h) C \, d\mathbf{x}.
\end{aligned} \tag{3.50}$$

The terms in the last two lines of the right-hand side are bounded by

$$\begin{aligned} & \|\mathbf{u}_h\|_{L^3(\Omega)^d} \left(|C - R_h(C)|_{H^1(\Omega)} \|S_h\|_{L^6(\Omega)} + \|C - R_h(C)\|_{L^6(\Omega)} |S_h|_{H^1(\Omega)} \right) \\ & + \|\mathbf{u}_h - \mathbf{u}\|_{L^2(\Omega)^d} \left(|C|_{W^{1,3}(\Omega)} \|S_h\|_{L^6(\Omega)} + \|C\|_{L^\infty(\Omega)} |S_h|_{H^1(\Omega)} \right). \end{aligned} \quad (3.51)$$

Then the choice $S_h = R_h(C) - C_h$, the antisymmetric property of the transport term, the fact that \mathbf{u}_h is bounded in $L^3(\Omega)^d$ as

$$\|\mathbf{u}_h\|_{L^3(\Omega)^d} \leq \left(\frac{\rho}{\beta} (\|\mathbf{f}_0\|_{L^{\frac{3}{2}}(\Omega)^d} + c_{\mathbf{f}_1} S_{\frac{3}{2}}^0 |C|_{1,\Omega}) \right)^{\frac{1}{2}},$$

and Sobolev's embedding yield

$$|R_h(C) - C_h|_{H^1(\Omega)} \leq c_{1r} |C - R_h(C)|_{H^1(\Omega)} + c_{2r} \|\mathbf{u}_h - \mathbf{u}\|_{L^2(\Omega)^d},$$

where

$$c_{1r} = \left(1 + \frac{r_0(S_2^0)^2}{\alpha} + \frac{S_6^0}{\alpha} \left(\frac{\rho}{\beta} (\|\mathbf{f}_0\|_{L^{\frac{3}{2}}(\Omega)^d} + c_{\mathbf{f}_1} S_{\frac{3}{2}}^0 |C|_{1,\Omega}) \right)^{\frac{1}{2}} \right) \text{ and } c_{2r} = \frac{1}{2\alpha} \left(S_6^0 |C|_{W^{1,3}(\Omega)} + \|C\|_{L^\infty(\Omega)} \right). \quad (3.52)$$

By using the following triangle inequality:

$$|C - C_h|_{H^1(\Omega)} \leq |R_h(C) - C|_{H^1(\Omega)} + |R_h(C) - C_h|_{H^1(\Omega)},$$

we get

$$|C - C_h|_{H^1(\Omega)} \leq (1 + c_{1r}) |C - R_h(C)|_{H^1(\Omega)} + c_{2r} \|\mathbf{u}_h - \mathbf{u}\|_{L^2(\Omega)^d}. \quad (3.53)$$

(4) Finally, by combining relations (3.41) and (3.53), and using relation (3.30), we obtain relation (3.31). \square

By using the properties of the operators R_h , \mathcal{F}_h and r_h , we get the following result:

Theorem 3.7. *Under the assumptions of Theorem 3.6 and if the solution (\mathbf{u}, p, C) of problem (V_a) satisfies $C \in H^2(\Omega)$, $\mathbf{u} \in W^{1,3}(\Omega)^d$ and $p \in H^2(\Omega)$, then we have the following a priori error estimates:*

$$|C - C_h|_{H^1(\Omega)} + \|\mathbf{u} - \mathbf{u}_h\|_{L^2(\Omega)^d} + \|\nabla(p - p_h)\|_{L^{\frac{3}{2}}(\Omega)^d} \leq C_1 h \quad (3.54)$$

and

$$\|\mathbf{u} - \mathbf{u}_h\|_{L^3(\Omega)^d} \leq C_2 h^{2/3}, \quad (3.55)$$

where C_1 and C_2 are strictly positive constants independent of h .

4. ITERATIVE ALGORITHM

In order to solve the discrete system, we propose in this section an iterative algorithm which converges to the exact solution under additional conditions on the exact solution.

The algorithm proceeds as follows: Let $\mathbf{u}_0^h \in X_h$ and $C_h^0 \in Y_0$ the initial guesses. Having $(\mathbf{u}_h^i, C_h^i) \in X_h \times Y_h$ at each iteration i , we compute $(\mathbf{u}_h^{i+1}, p_h^{i+1}, C_h^{i+1}) \in X_h \times M_h \times Y_h$, such that

$$(V_{ahi}) \left\{ \begin{array}{l} \forall \mathbf{v}_h \in X_h, \quad \gamma \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\mu}{\rho} \int_{\Omega} (K^{-1} \mathbf{u}_h^{i+1}) \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}_h^i| \mathbf{u}_h^{i+1} \cdot \mathbf{v}_h \, d\mathbf{x} \\ \quad + \int_{\Omega} \nabla p_h^{i+1} \cdot \mathbf{v}_h \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(C_h^i) \cdot \mathbf{v}_h \, d\mathbf{x}, \\ \forall q_h \in M_h, \quad \int_{\Omega} \nabla q_h \cdot \mathbf{u}_h^{i+1} \, d\mathbf{x} = 0, \\ \forall S_h \in Y_h, \quad \alpha \int_{\Omega} \nabla C_h^{i+1} \cdot \nabla S_h \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}_h^{i+1} \cdot \nabla C_h^{i+1}) S_h \, d\mathbf{x} + \frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{u}_h^{i+1}) C_h^{i+1} S_h \, d\mathbf{x} \\ \quad + r_0 \int_{\Omega} C_h^{i+1} S_h \, d\mathbf{x} = \int_{\Omega} g S_h \, d\mathbf{x}, \end{array} \right. \quad (4.1)$$

where γ is a real strictly positive parameter. Later on, the parameter γ will be chosen to ensure the convergence of algorithm (V_{ahi}) . At each iteration i , having \mathbf{u}_h^i and C_h^i , the first two lines of (V_{ahi}) computes $(\mathbf{u}_h^{i+1}, p_h^{i+1})$. Next, we substitute \mathbf{u}_h^{i+1} by its value in the third equation of (V_{ahi}) to compute C_h^{i+1} .

In the following, we study Scheme (V_{ahi}) , and we begin by proving the existence and uniqueness of the corresponding solution.

Theorem 4.1. *In addition to Assumption 2.1, we suppose that $\mathbf{f}_0 \in L^2(\Omega)^d$. For each $(\mathbf{u}_h^i, C_h^i) \in X_h \times Y_h$, problem (V_{ahi}) admits a unique solution $(\mathbf{u}_h^{i+1}, p_h^{i+1}, C_h^{i+1}) \in X_h \times M_h \times Y_h$. Moreover, we have the following bound*

$$|C_h^{i+1}|_{1,\Omega} \leq \frac{S_2^0}{\alpha} \|g\|_{L^2(\Omega)}. \quad (4.2)$$

Furthermore, if the initial value \mathbf{u}_h^0 satisfies the condition

$$\|\mathbf{u}_h^0\|_{L^2(\Omega)^d}^2 \leq L_1(\mathbf{f}, g), \quad (4.3)$$

where

$$L_1(\mathbf{f}, g) = \frac{1}{4} \left(\|\mathbf{f}_0\|_{L^2(\Omega)^d} + c_{\mathbf{f}_1} \frac{(S_2^0)^2}{\alpha} \|g\|_{L^2(\Omega)} \right)^2,$$

and if γ satisfies the condition

$$\gamma > \frac{32\beta}{27\rho} C_I^9 L_2(\mathbf{f}, g, L_1(\mathbf{f}, g)) h^{-3d/2}, \quad (4.4)$$

where

$$L_2(\mathbf{f}, g, \nu) = \frac{1}{\sqrt{\gamma}} \left(\frac{3\rho}{2\mu K_m} \left(\|\mathbf{f}_0\|_{L^2(\Omega)^d} + c_{\mathbf{f}_1} \frac{(S_2^0)^2}{\alpha} \|g\|_{L^2(\Omega)} \right)^2 + \frac{3\mu K_M^2}{2\rho K_m} \nu + \frac{3\beta^2}{2\mu\rho K_m} C_I^6 h^{-d} \nu^2 \right)^{\frac{1}{2}}, \quad (4.5)$$

then, the following inequalities hold

$$\|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d}^2 \leq L_1(\mathbf{f}, g), \quad (4.6)$$

and

$$\|\mathbf{u}_h^{i+1}\|_{L^3(\Omega)^d}^3 \leq \frac{2\rho}{\beta} \left(\frac{2\rho}{\mu K_m} + \frac{\gamma}{2} \right) L_1(\mathbf{f}, g). \quad (4.7)$$

Proof. To prove the existence and uniqueness of the solution of problem (V_{ahi}) which is a square finite dimension linear system, it suffices to show the uniqueness which is readily checked for each $(\mathbf{u}_h^i, C_h^i) \in X_h \times Y_h$. In fact, let $(\mathbf{u}_{h,1}^{i+1}, p_{h,1}^{i+1}, C_{h,1}^{i+1})$ and $(\mathbf{u}_{h,2}^{i+1}, p_{h,2}^{i+1}, C_{h,2}^{i+1})$ be two solutions of problem (V_{ahi}) . Denote $\mathbf{w}_h = \mathbf{u}_{h,1}^{i+1} - \mathbf{u}_{h,2}^{i+1}$ and $\xi_h = p_{h,1}^{i+1} - p_{h,2}^{i+1}$. We deduce from the problem (V_{ahi}) that (\mathbf{w}_h, ξ_h) is the solution of the following problem

$$\begin{cases} \forall v_h \in X_h, \quad \gamma \int_{\Omega} \mathbf{w}_h \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\mu}{\rho} \int_{\Omega} K^{-1} \mathbf{w}_h \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}_h^i| \mathbf{w}_h \cdot \mathbf{v}_h \, d\mathbf{x} + \int_{\Omega} \nabla \xi_h \cdot \mathbf{v}_h \, d\mathbf{x} = 0, \\ \forall q_h \in M_h, \quad \int_{\Omega} \nabla q_h \cdot \mathbf{w}_h \, d\mathbf{x} = 0. \end{cases}$$

Taking $(\mathbf{v}_h, q_h) = (\mathbf{w}_h, \xi_h)$ and remarking that $\int_{\Omega} |\mathbf{u}_h^i| |\mathbf{w}_h|^2 \, d\mathbf{x}$ is non negative, we obtain by using the properties of K^{-1} , the following bound

$$\left(\gamma + \frac{\mu K_m}{\rho} \right) \|\mathbf{w}_h\|_{L^2(\Omega)^d}^2 \leq 0.$$

Thus, we deduce that $\mathbf{w}_h = 0$ ($\mathbf{u}_{h,1}^{i+1} = \mathbf{u}_{h,2}^{i+1}$) and the discrete inf-sup condition (3.3) implies that $\xi_h = 0$ ($p_{h,1}^{i+1} = p_{h,2}^{i+1}$). This gives the uniqueness of the velocity and the pressure for each iteration i .

Let us now prove the uniqueness of the concentration. We denote by $C_h^{i+1} = C_{h,1}^{i+1} - C_{h,2}^{i+1}$. Then, the third equation of problem (V_{ahi}) gives: find $C_h^{i+1} \in Y_h$ such that for all $S_h \in Y_h$

$$\alpha \int_{\Omega} \nabla C_h^{i+1} \cdot \nabla S_h \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}_h^{i+1} \cdot \nabla C_h^{i+1}) S_h \, d\mathbf{x} + \frac{1}{2} \int_{\Omega} \operatorname{div}(\mathbf{u}_h^{i+1}) C_h^{i+1} S_h \, d\mathbf{x} + r_0 \int_{\Omega} C_h^{i+1} S_h \, d\mathbf{x} = 0, \quad (4.8)$$

where $(\mathbf{u}_h^{i+1}, p_h^{i+1})$ is the unique solution of the first two equations of problem (V_{ahi}) . By taking $S_h = C_h^{i+1}$ and using the antisymmetric property we get the uniqueness of the concentration.

The bound (4.2) can be deduced immediately by taking $S_h = C_h^{i+1}$ in the third equation of problem (V_{ahi}) , and by using the Cauchy-Schwartz inequality.

To prove the bound (4.6), we need first to estimate the error $\|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}$ in terms of the previous value \mathbf{u}_h^i . Taking the first equation of problem (V_{ahi}) with $\mathbf{v}_h = \mathbf{u}_h^{i+1} - \mathbf{u}_h^i$ yields

$$\gamma \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu}{\rho} \int_{\Omega} K^{-1} \mathbf{u}_h^{i+1} \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}_h^i| \mathbf{u}_h^{i+1} \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \, d\mathbf{x} = \int_{\Omega} \mathbf{f}(C_h^i) \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \, d\mathbf{x}.$$

By inserting \mathbf{u}_h^i in the second and third terms of the last equation, we get,

$$\begin{aligned} & \gamma \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu}{\rho} \int_{\Omega} K^{-1} (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}_h^i| \mathbf{u}_h^{i+1} - \mathbf{u}_h^i \, d\mathbf{x} \\ &= \int_{\Omega} \mathbf{f}(C_h^i) \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \, d\mathbf{x} - \frac{\mu}{\rho} \int_{\Omega} K^{-1} \mathbf{u}_h^i \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \, d\mathbf{x} - \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}_h^i| \mathbf{u}_h^i \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \, d\mathbf{x}. \end{aligned} \quad (4.9)$$

Using the properties of K^{-1} , the Cauchy-Schwartz inequality and relation (3.2) give the following

$$\begin{aligned} & \gamma \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 \leq \|\mathbf{f}(C_h^i)\|_{L^2(\Omega)^d} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d} \\ &+ \frac{\mu K_M}{\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d} \|\mathbf{u}_h^i\|_{L^2(\Omega)^d} + \frac{\beta}{\rho} C_I^3 h^{-d/2} \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}. \end{aligned} \quad (4.10)$$

We apply the relation $ab \leq \frac{1}{2\varepsilon}a^2 + \frac{\varepsilon}{2}b^2$ with $\varepsilon = \frac{\mu K_m}{3\rho}$ to each term on the right-hand side of the previous inequality, and we obtain

$$\begin{aligned} \gamma \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{2\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 &\leq \frac{3\rho}{2\mu K_m} \|\mathbf{f}(C_h^i)\|_{L^2(\Omega)^d}^2 + \frac{3\mu K_m^2}{2K_m \rho} \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 \\ &\quad + \frac{3\beta^2}{2\rho \mu K_m} C_I^6 h^{-d} \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^4. \end{aligned} \quad (4.11)$$

Therefore, Assumption 2.1 and Relation (4.2) allow us to get

$$\|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d} \leq L_2(\mathbf{f}, g, \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2), \quad (4.12)$$

where

$$L_2(\mathbf{f}, g, \nu) = \frac{1}{\sqrt{\gamma}} \left(\frac{3\rho}{2\mu K_m} \left(\|\mathbf{f}_0\|_{L^2(\Omega)^d} + c_{\mathbf{f}_1} \frac{(S_2^0)^2}{\alpha} \|g\|_{L^2(\Omega)} \right)^2 + \frac{3\mu K_m^2}{2\rho K_m} \nu + \frac{3\beta^2}{2\mu \rho K_m} C_I^6 h^{-d} \nu^2 \right)^{\frac{1}{2}}. \quad (4.13)$$

Then, we are now in position to show relation (4.6). We consider the first equation of problem (V_{ahi}) with $\mathbf{v}_h = \mathbf{u}_h^{i+1}$, and we obtain

$$\begin{aligned} &\gamma \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \cdot \mathbf{u}_h^{i+1} \, d\mathbf{x} + \frac{\mu}{\rho} \int_{\Omega} K^{-1} \mathbf{u}_h^{i+1} \cdot \mathbf{u}_h^{i+1} \, d\mathbf{x} + \frac{\beta}{\rho} \|\mathbf{u}_h^{i+1}\|_{L^3(\Omega)^d}^3 \\ &= \int_{\Omega} \mathbf{f}(C_h^i) \cdot \mathbf{u}_h^{i+1} \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} (|\mathbf{u}_h^{i+1}| - |\mathbf{u}_h^i|) |\mathbf{u}_h^{i+1}|^2 \, d\mathbf{x}. \end{aligned} \quad (4.14)$$

Using the properties of K^{-1} , the Cauchy-Schwartz inequality and the relations $ab \leq \frac{1}{2\varepsilon}a^2 + \frac{\varepsilon}{2}b^2$ and $a^2b \leq \frac{1}{3} \left(\frac{1}{\delta^3} b^3 + 2\delta^{\frac{3}{2}} a^3 \right)$ with $\varepsilon = \frac{\mu K_m}{\rho}$ and $\delta = \left(\frac{3\beta}{4\rho} \right)^{2/3}$, we get

$$\begin{aligned} &\frac{\gamma}{2} \|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d}^2 - \frac{\gamma}{2} \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{2\rho} \|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d}^2 + \frac{\beta}{2\rho} \|\mathbf{u}_h^{i+1}\|_{L^3(\Omega)^d}^3 \\ &\leq \frac{\rho}{2\mu K_m} \|\mathbf{f}(C_h^i)\|_{L^2(\Omega)^d}^2 + \frac{16\beta}{27\rho} C_I^9 h^{-3d/2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^3. \end{aligned} \quad (4.15)$$

We denote by

$$C_1(\|\mathbf{u}_h^i\|_{L^2(\Omega)^d}) = \frac{\gamma}{2} - \frac{16\beta}{27\rho} C_I^9 h^{-3d/2} L_2(\mathbf{f}, g, \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2)$$

and we get by using (4.12) that

$$C_1(\|\mathbf{u}_h^i\|_{L^2(\Omega)^d}) \leq \frac{\gamma}{2} - \frac{16\beta}{27\rho} C_I^9 h^{-3d/2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}.$$

Therefore, we obtain the following bound:

$$\begin{aligned} &\frac{\gamma}{2} \|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d}^2 - \frac{\gamma}{2} \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + C_1(\|\mathbf{u}_h^i\|_{L^2(\Omega)^d}) \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{2\rho} \|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d}^2 \\ &\quad + \frac{\beta}{2\rho} \|\mathbf{u}_h^{i+1}\|_{L^3(\Omega)^d}^3 \leq \frac{2\rho}{\mu K_m} L_1(\mathbf{f}, g). \end{aligned} \quad (4.16)$$

We now prove estimate (4.6) by induction on $i \geq 1$ under some condition on γ . Starting with relation (4.3), we suppose that we have

$$\|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 \leq L_1(\mathbf{f}, g). \quad (4.17)$$

We have two situations:

– $\|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d} \leq \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}$, which immediately leads to

$$\|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d}^2 \leq L_1(\mathbf{f}, g).$$

– $\|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d} \geq \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}$. By using the induction condition (4.17), taking

$$\begin{aligned} \frac{\gamma}{2} &> \frac{16\beta}{27\rho} C_I^9 h^{-3d/2} L_2(\mathbf{f}, L_1(\mathbf{f}, g)) \\ &> \frac{16\beta}{27\rho} C_I^9 h^{-3d/2} L_2(\mathbf{f}, \|\mathbf{u}_h^i\|_{L^2(\Omega)^d}^2), \end{aligned} \quad (4.18)$$

we get $C_1(\|\mathbf{u}_h^i\|_{L^2(\Omega)^d}) > 0$, and deduce from relation (4.16) that

$$\|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d}^2 \leq L_1(\mathbf{f}, g).$$

Then relation (4.6) holds. The bound (4.7) is a simple consequence of (4.16) and (4.6). \square

The next theorem shows the convergence of the solution $(\mathbf{u}_h^i, p_h^i, C_h^i)$ of problem (V_{ahi}) to the solution of problem (V_{ah}) .

Theorem 4.2. *In addition to Assumption 2.1, we assume that the concentration solution of the problem (V_a) satisfies*

$$S_6^0 |C|_{W^{1,3}(\Omega)} + \|C\|_{L^\infty(\Omega)} \leq \frac{\mu K_m \alpha}{2\rho c_{\mathbf{f}_1} S_2^0}. \quad (4.19)$$

Under the assumptions of Theorem 4.1, and if γ satisfies the condition

$$\gamma > \frac{2\rho C_2^2}{\mu K_m} h^{-d}, \quad (4.20)$$

where $C_2 = \frac{\beta}{\rho} C_I^3 (L_1(\mathbf{f}, g))^{1/2}$ and if

$$h \leq \left(\frac{1}{2C_I C_1} \left(|C|_{W^{1,3}(\Omega)} + \frac{\|C\|_{L^\infty(\Omega)}}{S_6^0} \right) \right)^{6/(6-d)}, \quad (4.21)$$

where C_1 is the constant in (3.54), then the solution $(\mathbf{u}_h^i, p_h^i, C_h^i)$ of problem (V_{ahi}) converges in $L^2(\Omega)^d \times L^2(\Omega) \times H^1(\Omega)$ to the solution of problem (V_{ah}) .

Proof. We start by subtracting the third equation of problem (V_{ahi}) from the one of problem (V_{ah}) to get

$$\begin{aligned} \alpha \int_{\Omega} \nabla(C_h - C_h^{i+1}) \cdot \nabla S_h \, d\mathbf{x} + \int_{\Omega} \mathbf{u}_h \cdot \nabla C_h S_h \, d\mathbf{x} - \int_{\Omega} \mathbf{u}_h^{i+1} \cdot \nabla C_h^{i+1} S_h \, d\mathbf{x} + r_0 \int_{\Omega} (C_h - C_h^{i+1}) S_h \, d\mathbf{x} \\ = \frac{1}{2} \int_{\Omega} \operatorname{div} \mathbf{u}_h^{i+1} C_h^{i+1} S_h \, d\mathbf{x} - \frac{1}{2} \int_{\Omega} \operatorname{div} \mathbf{u}_h C_h S_h \, d\mathbf{x}. \end{aligned} \quad (4.22)$$

Inserting ∇C_h in the last term of the left-hand side and C_h in the first term of the right-hand side of the previous relation lead to

$$\begin{aligned} \alpha \int_{\Omega} \nabla(C_h - C_h^{i+1}) \cdot \nabla S_h \, d\mathbf{x} + r_0 \int_{\Omega} (C_h - C_h^{i+1}) S_h \, d\mathbf{x} - \int_{\Omega} \mathbf{u}_h^{i+1} \cdot \nabla(C_h^{i+1} - C_h) S_h \, d\mathbf{x} \\ = \frac{1}{2} \int_{\Omega} \operatorname{div} \mathbf{u}_h^{i+1} (C_h^{i+1} - C_h) S_h \, d\mathbf{x} + \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \cdot \nabla C_h S_h \, d\mathbf{x} + \frac{1}{2} \int_{\Omega} \operatorname{div} (\mathbf{u}_h^{i+1} - \mathbf{u}_h) C_h S_h \, d\mathbf{x}. \end{aligned} \quad (4.23)$$

Finally, by inserting ∇C in the second term of right-hand side and using the Green's formula and the antisymmetric property, we get

$$\begin{aligned} & \alpha \int_{\Omega} \nabla(C_h - C_h^{i+1}) \cdot \nabla S_h \, d\mathbf{x} + r_0 \int_{\Omega} (C_h - C_h^{i+1}) S_h \, d\mathbf{x} \\ &= \frac{1}{2} \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \cdot \nabla(C_h - C) S_h \, d\mathbf{x} + \frac{1}{2} \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \cdot \nabla C S_h \, d\mathbf{x} \\ & \quad - \frac{1}{2} \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \cdot \nabla S_h (C_h - C) \, d\mathbf{x} - \frac{1}{2} \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \cdot \nabla S_h C \, d\mathbf{x}. \end{aligned} \quad (4.24)$$

By taking $S_h = C_h - C_h^{i+1}$, we obtain

$$\begin{aligned} \alpha |C_h - C_h^{i+1}|_{1,\Omega} &\leq S_6^0 \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^3(\Omega)^d} |C_h - C|_{1,\Omega} \\ & \quad + \frac{S_6^0}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d} |C|_{W^{1,3}(\Omega)} + \frac{1}{2} \|C\|_{L^\infty(\Omega)} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}. \end{aligned} \quad (4.25)$$

Finally, we get by using relation (3.2):

$$|C_h - C_h^{i+1}|_{1,\Omega} \leq \frac{S_6^0}{2\alpha} \left[2C_I h^{-d/6} |C - C_h|_{1,\Omega} + |C|_{W^{1,3}(\Omega)} + \frac{\|C\|_{L^\infty(\Omega)}}{S_6^0} \right] \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}. \quad (4.26)$$

Furthermore, by taking the difference between the first equations of problems (V_{ah}) and (V_{ahi}) with $\mathbf{v}_h = \mathbf{u}_h^{i+1} - \mathbf{u}_h$, we get

$$\begin{aligned} & \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 - \frac{\gamma}{2} \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 + \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 + \frac{\mu}{\rho} \int_{\Omega} K^{-1} |\mathbf{u}_h^{i+1} - \mathbf{u}_h|^2 \, d\mathbf{x} \\ & \quad + \frac{\beta}{\rho} \int_{\Omega} (|\mathbf{u}_h^i| - |\mathbf{u}_h^{i+1}|) \mathbf{u}_h^{i+1} \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} (|\mathbf{u}_h^{i+1}| \mathbf{u}_h^{i+1} - |\mathbf{u}_h| \mathbf{u}_h) \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \, d\mathbf{x} \\ & \quad = \int_{\Omega} (\mathbf{f}(C_h^i) - \mathbf{f}(C_h)) \cdot (\mathbf{u}_h^{i+1} - \mathbf{u}_h) \, d\mathbf{x}. \end{aligned} \quad (4.27)$$

By using the monotonicity property of the operator \mathcal{A} we obtain,

$$\begin{aligned} & \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 - \frac{\gamma}{2} \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 + \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \\ & \leq \frac{\beta}{\rho} C_I^3 h^{-d/2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d} \|\mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d} + c_{\mathbf{f}_1} S_2^0 |C_h^i - C_h|_{1,\Omega} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d} \\ & \leq \frac{\beta}{\rho} C_I^3 h^{-d/2} (L_1(\mathbf{f}, g))^{1/2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d} + c_{\mathbf{f}_1} S_2^0 |C_h^i - C_h|_{1,\Omega} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}. \end{aligned} \quad (4.28)$$

We denote by $C_2 = \frac{\beta}{\rho} C_I^3 (L_1(\mathbf{f}, g))^{1/2}$, and we use the relation $ab \leq \frac{1}{2\varepsilon} a^2 + \frac{\varepsilon}{2} b^2$ with $\varepsilon = \frac{\mu K_m}{2\rho}$, we get

$$\begin{aligned} & \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 - \frac{\gamma}{2} \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 + \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{2\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \\ & \leq \frac{\rho C_2^2}{\mu K_m} h^{-d} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\rho (c_{\mathbf{f}_1} S_2^0)^2}{\mu K_m} |C_h^i - C_h|_{1,\Omega}^2. \end{aligned} \quad (4.29)$$

We choose $\frac{\gamma}{2} > \frac{\rho C_2^2}{\mu K_m} h^{-d}$, and we denote by $C_3 = \frac{\gamma}{2} - \frac{\rho C_2^2}{\mu K_m} h^{-d} > 0$ to conclude that

$$\begin{aligned} & \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 - \frac{\gamma}{2} \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 + C_3 \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{2\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \\ & \leq \frac{\rho(c_{\mathbf{f}_1} S_2^0)^2}{\mu K_m} |C_h^i - C_h|_{1,\Omega}^2. \end{aligned} \quad (4.30)$$

Combining (4.30) with (4.26) and using *a priori* estimate (3.54), we get

$$\begin{aligned} & \frac{\gamma}{2} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 - \frac{\gamma}{2} \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 + C_3 \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 + \frac{\mu K_m}{2\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \\ & \leq \frac{\rho}{\mu K_m} \left(\frac{c_{\mathbf{f}_1} S_2^0 S_6^0}{2\alpha} \right)^2 \left[2C_I C_1 h^{(6-d)/6} + |C|_{W^{1,3}(\Omega)} + \|C\|_{L^\infty(\Omega)} \right]^2 \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d}^2. \end{aligned} \quad (4.31)$$

Finally, Assumptions (4.19) and (4.21) allow us to get

$$\begin{aligned} & \left(\frac{\gamma}{2} + \frac{\mu K_m}{4\rho} \right) \left(\|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 - \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \right) + C_3 \|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^2(\Omega)^d}^2 \\ & + \frac{\mu K_m}{4\rho} \|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d}^2 \leq 0. \end{aligned} \quad (4.32)$$

We deduce that, for all $i \geq 1$, we have (if $\|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d} \neq 0$)

$$\|\mathbf{u}_h^{i+1} - \mathbf{u}_h\|_{L^2(\Omega)^d} < \|\mathbf{u}_h^i - \mathbf{u}_h\|_{L^2(\Omega)^d},$$

and then we deduce the convergence of the sequence $(\mathbf{u}_h^{i+1} - \mathbf{u}_h)$ in $L^2(\Omega)^d$, and then the convergence of the sequence \mathbf{u}_h^i in $L^2(\Omega)^d$. By taking the limit of (4.32), we get that \mathbf{u}_h^{i+1} converges to \mathbf{u}_h in $L^2(\Omega)^d$. Relation (4.26) allows us to deduce that C_h^{i+1} converges to C_h in $H_0^1(\Omega)$.

Next, we study the convergence of the pressure, taking the difference between the first equations of systems (V_{ah}) and (V_{ahi}) , we obtain for all $\mathbf{v}_h \in X_h$ the equation

$$\begin{aligned} \int_{\Omega} \nabla(p_h^{i+1} - p_h) \cdot \mathbf{v}_h \, d\mathbf{x} &= \int_{\Omega} (\mathbf{f}(C_h) - \mathbf{f}(C_h^i)) \cdot \mathbf{v}_h \, d\mathbf{x} - \gamma \int_{\Omega} (\mathbf{u}_h^{i+1} - \mathbf{u}_h^i) \cdot \mathbf{v}_h \, d\mathbf{x} \\ &+ \frac{\mu}{\rho} \int_{\Omega} K^{-1}(\mathbf{u}_h - \mathbf{u}_h^{i+1}) \cdot \mathbf{v}_h \, d\mathbf{x} + \frac{\beta}{\rho} \int_{\Omega} (|\mathbf{u}_h| - |\mathbf{u}_h^i|) \mathbf{u}_h \cdot \mathbf{v}_h \, d\mathbf{x} \\ &+ \frac{\beta}{\rho} \int_{\Omega} |\mathbf{u}_h^i| (\mathbf{u}_h - \mathbf{u}_h^{i+1}) \cdot \mathbf{v}_h \, d\mathbf{x}. \end{aligned}$$

We get by using the inverse inequality (3.2) the following:

$$\begin{aligned} & \left| \int_{\Omega} \nabla(p_h^{i+1} - p_h) \cdot \mathbf{v}_h \, d\mathbf{x} \right| \\ & \leq c_{\mathbf{f}_1} S_2^0 |C_h - C_h^i|_{1,\Omega} \frac{\|\mathbf{v}_h\|_{L^2(\Omega)^d}}{\|\mathbf{v}_h\|_{L^3(\Omega)^d}} \\ & + \left(\gamma \|\mathbf{u}_h^i - \mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d} + \frac{\mu K_m}{\rho} \|\mathbf{u}_h - \mathbf{u}_h^{i+1}\|_{L^2(\Omega)^d} \right) \frac{\|\mathbf{v}_h\|_{L^2(\Omega)^d}}{\|\mathbf{v}_h\|_{L^3(\Omega)^d}} \\ & + \frac{\beta}{\rho} C_I h^{-\frac{d}{6}} \|\mathbf{u}_h - \mathbf{u}_h^i\|_{L^2(\Omega)^d} \left(\|\mathbf{u}_h\|_{L^3(\Omega)^d} + \|\mathbf{u}_h^i\|_{L^3(\Omega)^d} \right). \end{aligned}$$

For a given mesh, owning the inf-sup condition (3.3), and using the strong convergence of \mathbf{u}_h^i to \mathbf{u}_h in $L^2(\Omega)^d$, and of C_h^i to C_h in $H_0^1(\Omega)$, we deduce the strong convergence of ∇p_h^i to ∇p_h in $L^{\frac{3}{2}}(\Omega)$. Furthermore, the fact that p_h^i and p_h are in the discrete space of \mathbb{P}_1 finite elements $M_h \subset L_0^2(\Omega)$ which is defined in (3.6), allows us to deduce the strong convergence of p_h^i to p_h in $L^2(\Omega)$. \square

Remark 4.3. If h is not small enough, we can replace the conditions (4.19) and (4.21) in Theorem 4.2 by the following condition:

$$\frac{\rho}{\mu K_m} \left(\frac{c_{\mathbf{f}_1} S_2^0 S_6^0}{2\alpha} \right)^2 \left[2C_I C_1 (\text{diam}(\Omega))^{(6-d)/6} + |C|_{W^{1,3}(\Omega)} + \frac{\|C\|_{L^\infty(\Omega)}}{S_6^0} \right]^2 < \frac{\mu K_m}{4\rho}.$$

In fact, this condition can be used in the relation (4.31) in the proof of the previous theorem.

Remark 4.4. The convergence of the iterative solution $(\mathbf{u}_h^i, p_h^i, C_h^i)$ of problem (V_{ahi}) to the exact solution (\mathbf{u}, p, C) of problem (V_a) is a simple consequence of Theorems 3.6 and 4.2. In fact, Conditions (4.4) and (4.20) satisfied by γ to ensure the convergence of the iterative solution $(\mathbf{u}_h^i, p_h^i, C_h^i)$ to the discrete solution (\mathbf{u}_h, p_h, C_h) lead us to consider γ as a function of h ($\gamma(h)$) and satisfying these two relations. Thanks to the triangle inequality, we have:

$$\begin{aligned} \|(\mathbf{u}, p, C) - (\mathbf{u}_h^i, p_h^i, C_h^i)\|_{X \times M \times Y} &\leq \|(\mathbf{u}, p, C) - (\mathbf{u}_h, p_h, C_h)\|_{X \times M \times Y} \\ &\quad + \|(\mathbf{u}_h, p_h, C_h) - (\mathbf{u}_h^i, p_h^i, C_h^i)\|_{X \times M \times Y}. \end{aligned}$$

Under the assumptions of Theorem 4.2 with $\gamma(h)$ satisfying conditions (4.4) and (4.20), $(\mathbf{u}_h^i, p_h^i, C_h^i)$ converges to (\mathbf{u}_h, p_h, C_h) in $X_h \times M_h \times Y_h$, and, there exists an integer $i_0(h)$ depending on h such that for all $i \geq i_0(h)$ we have

$$\|(\mathbf{u}_h, p_h, C_h) - (\mathbf{u}_h^i, p_h^i, C_h^i)\|_{X \times M \times Y} \leq \|(\mathbf{u}, p, C) - (\mathbf{u}_h, p_h, C_h)\|_{X \times M \times Y}.$$

Consequently, for all $i \geq i_0(h)$, we get

$$\|(\mathbf{u}, p, C) - (\mathbf{u}_h^i, p_h^i, C_h^i)\|_{X \times M \times Y} \leq 2 \|(\mathbf{u}, p, C) - (\mathbf{u}_h, p_h, C_h)\|_{X \times M \times Y}.$$

Thus, we obtain the convergence of the iterative solution to the exact one.

5. NUMERICAL RESULTS

In this section, we present numerical experiments corresponding to our coupled problem for $d = 2$. These simulations have been performed using the code FreeFem++ due to Hecht and Pironneau (see [25]).

We will show in this section numerical investigations corresponding to problems (V_{ahi}) by using for the convergence the stopping criterion $\text{Err}_L \leq \varepsilon$ where ε is a given tolerance considered in this work equal to 10^{-5} and Err_L is defined by

$$\text{Err}_L = \frac{\|\mathbf{u}_h^{i+1} - \mathbf{u}_h^i\|_{L^3(\Omega)^2} + \|\nabla(p_h^{i+1} - p_h^i)\|_{L^{\frac{3}{2}}(\Omega)^2} + |C_h^{i+1} - C_h^i|_{1,\Omega}}{\|\mathbf{u}_h^{i+1}\|_{L^3(\Omega)^2} + \|\nabla p_h^{i+1}\|_{L^{\frac{3}{2}}(\Omega)^2} + |C_h^{i+1}|_{1,\Omega}}.$$

The initial guesses \mathbf{u}_h^0 and C_h^0 are considered in one of these two situations:

- (1) $C_h^0 = 0$ and $\mathbf{u}_h^0 = \mathbf{0}$.
- (2) $C_h^0 = 0$ and $\mathbf{u}_h^0 = \mathbf{u}_{hd}^0$ are calculated by using Darcy's problem which corresponds to $\beta = \gamma = 0$.

TABLE 1. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each γ associated to Example (5.1) with algorithm (V_{ahi}) for $\mathbf{u}_h^0 = \mathbf{0}$. ($\beta = 20$, $\xi = 20$).

γ	0.001	.01	.1	1	10	100	1000
Nbr	4078	4009	3432	1440	234	29	115
Err	0.068	0.068	0.068	0.068	0.068	0.068	0.068

We will see later that the second case where \mathbf{u}_h^0 is the solution of Darcy's problem improve the convergence of the algorithms.

We also consider the errors

$$\text{Err} = \frac{\|\mathbf{u}_h^i - \mathbf{u}\|_{L^2(\Omega)^2} + \|\nabla(p_h^i - p)\|_{L^{\frac{3}{2}}(\Omega)^2} + |C_h^i - C|_{1,\Omega}}{\|\mathbf{u}\|_{L^2(\Omega)^2} + \|\nabla p\|_{L^{\frac{3}{2}}(\Omega)^2} + |C|_{1,\Omega}},$$

and

$$\text{ErrL3} = \frac{\|\mathbf{u}_h^i - \mathbf{u}\|_{L^3(\Omega)^2}}{\|\mathbf{u}\|_{L^3(\Omega)^2}},$$

which describe the rate of the *a priori* error estimation for a large values of the iteration index i .

5.1. First numerical test: analytical solution

In this section, we will show numerical results corresponding to the problem where we know the exact solution. Let $\Omega = [0, 1]^2 \subset \mathbb{R}^2$ where each edge is divided into N equal segments so that Ω is divided into N^2 equal squares and finally into $2N^2$ equal triangles. For simplicity, we take $\mu = \rho = 1$.

We consider the following exact solution with a parameter ξ :

$$\begin{cases} p(x, y) = \cos(\pi x) \cos(\pi y), \\ \mathbf{u}(x, y) = \xi(-\sin(\pi x) \cos(\pi y), \cos(\pi x) \sin(\pi y))^T, \\ C(x, y) = x^2(x-1)^2 y^2(y-1)^2, \end{cases} \quad (5.1)$$

where $\operatorname{div} \mathbf{u} = 0$ in Ω , $\mathbf{u} \cdot \mathbf{n} = 0$ and $C = 0$ on $\partial\Omega$. Furthermore, we take $\mathbf{f}_1(C) = (4C, 3\sin(C))$. Thus, we compute \mathbf{f} and g by using their expressions in problem (P) .

5.1.1. Case where $K = I$

In this part, we take $K = I$. To study the dependency of the convergence with the parameter γ , we consider $N = 60$, $\beta = 20$, $\xi = 20$, $\alpha = r_0 = 1$, and for each γ , we stop the algorithm (V_{ahi}) when the error $\text{Err}_L < 1e^{-5}$. Tables 1 shows the error (Err) and the number of iterations (Nbr) for $\mathbf{u}_h^0 = \mathbf{0}$ and $C_h^0 = 0$, while Table 2 shows similar results for $\mathbf{u}_0 = \mathbf{u}_{hd}^0$ and $C_h^0 = 0$. These two tables describe the convergence of algorithm (V_{ahi}) with respect to γ . We remark that the number of iterations is relatively small when γ is large. In both cases, the best convergence is obtained for $\gamma = 100$. The main advantage is for the case where $\mathbf{u}_h^0 = \mathbf{u}_{hd}^0$ are computed with Darcy's problem is that the number of iterations (Nbr) is less than the one obtained with the case $\mathbf{u}_h^0 = \mathbf{0}$.

For further studies, we consider $\beta = 10$, $\xi = 20$, $\gamma = 100$ and the initial guesses $\mathbf{u}_h^0 = \mathbf{u}_{hd}^0$ and $C_h^0 = 0$. Tables 3 and 4 show the obtained rate of convergence which seems in agreement with the theoretical findings. We notice that the theoretical rate of convergence of the velocity in norm $L^2(\Omega)^2$, the pressure in norm $W^{1, \frac{3}{2}}(\Omega)$ and the concentration in norm $H_0^1(\Omega)$ are equal to 1; the rate of convergence of the velocity in norm $L^3(\Omega)^3$ is 2/3.

TABLE 2. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each γ associated to Example (5.1) with algorithm (V_{ahi}) for $\mathbf{u}_h^0 = \mathbf{u}_{hd}^0$ ($\beta = 20$, $\xi = 20$).

γ	0.001	.01	.1	1	10	100	1000
Nbr	2027	1993	1710	714	110	18	76
Err	0.068	0.068	0.068	0.068	0.068	0.068	0.068

TABLE 3. Rate of convergence of the velocity in norms $L^2(\Omega)^2$ and $L^3(\Omega)^3$. Example (5.1) with algorithm (V_{ahi}) ($\beta = 20$, $\xi = 20$).

h	$\log_{10}(\ \mathbf{u} - \mathbf{u}_h\ _{L^2} / \ \mathbf{u}\ _{L^2})$	Rate	$\log_{10}(\ \mathbf{u} - \mathbf{u}_h\ _{L^3} / \ \mathbf{u}\ _{L^3})$	Rate
1/120	-4.2812		-4.1598	
1/140	-4.4047	1.84	-4.2431	1.23
1/160	-4.5111	1.83	-4.3154	1.24
1/180	-4.6029	1.79	-4.3711	1.09
1/200	-4.6830	1.74	-4.4183	1.03

TABLE 4. Rate of convergence of the pressure in norm $W^{1,\frac{3}{2}}(\Omega)$ and the concentration in norm $H_0^1(\Omega)$. Example (5.1) with algorithm (V_{ahi}) ($\beta = 20$, $\xi = 20$).

h	$\log_{10}(\ p - p_h\ _{W^{1,\frac{3}{2}}})$	Rate	$\log_{10}(\ C - C_h\ _{H_0^1})$	Rate
1/120	-1.8902		-1.7090	
1/140	-1.9611	1.05	-1.7759	0.99
1/160	-2.0215	1.04	-1.8339	1.00
1/180	-2.0742	1.03	-1.8851	1.00
1/200	-2.1210	1.02	-1.9300	0.98

TABLE 5. Error (Err) (in logarithmic scale) and number of iterations (Nbr) for each γ associated to Example (5.1) with algorithm (V_{ahi}) for $\mathbf{u}_h^0 = \mathbf{u}_{hd}^0$. ($\beta = 20$, $\xi = 20$).

γ	.1	1	10	100	1000
Nbr	518	346	84	13	45
Err	0.068	0.068	0.068	0.068	0.068

5.1.2. Case where $K \neq I$

In this part, we take K such that K^{-1} is equal to:

$$K^1 = \begin{pmatrix} 3 + \sin(\pi x) \sin(\pi y) & x^2 y^2 \\ x^2 y^2 & 3 + \sin(\pi x) \sin(\pi y) \end{pmatrix}.$$

We follow the same numerical tests performed above and we consider $N = 60$, $\beta = 20$, $\xi = 20$, $\alpha = r_0 = 1$. Based on the previous test case, we will perform here numerical simulations with $\mathbf{u}_h^0 = \mathbf{u}_{hd}^0$ and $C_h^0 = 0$. Table 5 describes the convergence of algorithm (V_{ahi}) with respect to γ . In this case, the best convergence is also obtained for $\gamma = 100$.

TABLE 6. Rate of convergence of the velocity in norms $L^2(\Omega)^2$ and $L^3(\Omega)^3$. Example (5.1) with algorithm (V_{ahi}) . ($\beta = 20$, $\xi = 20$).

h	$\log_{10}(\ \mathbf{u} - \mathbf{u}_h \ _{L^2} / \ \mathbf{u} \ _{L^2})$	Rate	$\log_{10}(\ \mathbf{u} - \mathbf{u}_h \ _{L^3} / \ \mathbf{u} \ _{L^3})$	Rate
1/120	-4.2927		-4.2127	
1/140	-4.4245	1.96	-4.3432	1.94
1/160	-4.5379	1.95	-4.4539	1.90
1/180	-4.6368	1.93	-4.5480	1.84
1/200	-4.7242	1.90	-4.6274	1.73

TABLE 7. Rate of convergence of the pressure in norm $W^{1,\frac{3}{2}}(\Omega)$ and the concentration in norm $H_0^1(\Omega)$. Example (5.1) with algorithm (V_{ahi}) . ($\beta = 20$, $\xi = 20$).

h	$\log_{10}(\ p - p_h \ _{W^{1,\frac{3}{2}}})$	Rate	$\log_{10}(\ C - C_h \ _{H_0^1})$	Rate
1/120	-1.8902		-1.7090	
1/140	-1.9612	1.05	-1.7759	0.99
1/160	-2.0216	1.04	-1.8339	1.00
1/180	-2.0743	1.03	-1.8851	1.00
1/200	-2.1211	1.02	-1.9308	0.99

Let us now study the rate of convergence of the errors. we consider $\beta = 10$, $\xi = 20$, $\gamma = 100$ and the initial guesses $\mathbf{u}_h^0 = \mathbf{u}_{hd}^0$ and $C_h^0 = 0$. Tables 6 and 7 show that the numerical rate of convergence seems in agreement with the theoretical findings.

5.2. Comparison between Darcy and Darcy-Forchheimer

In this section, we treat numerical test (taken from [32]) showing the difference between Darcy and Darcy-Forchheimer systems. We take $N = 60$, $\gamma = 10$,

$$\mathbf{f}_0(x, y) = (100(1-x)^2(1-y)^2, 0)^T, \quad g(x, y) = 10x^2y^2,$$

$$\nu = \rho = 1, \alpha = r_0 = 1, K = I \text{ and } \mathbf{f}_1 = \mathbf{0}.$$

In the following, we will compare the numerical velocity, pressure and concentration corresponding to Darcy-Forchheimer Problem (for $\beta = 10$) and Darcy Problem (for $\beta = 0$). Figures 1–6 show that there are differences between the distributions and values of the numerical velocities, pressures and concentration. The biggest difference between the Darcy and the Darcy-Forchheimer is in the values of the velocity (which was expected).

5.3. Second numerical test: Driven cavity

The driven cavity is a standard benchmark for testing the performance of algorithms in fluid problems. It is treated in several works (see [8, 16, 27, 34]). In this section, we show numerical simulation corresponding to the Lid Driven Cavity in order to study the dependency of the convergence with respect to γ and the data.

Let $\Omega = [0, 1]^2$, $K = I$, $\mu = 1$, $r_0 = 0$, $\beta = 20$, $\mathbf{f}_0 = \mathbf{0}$, $\mathbf{f}_1(C) = (10C, 10C)$, and $g = 0$. We complete the Darcy-Forchheimer equations with the boundary conditions $\mathbf{u} \cdot \mathbf{n} = \mathbf{0}$ on $\partial\Omega$, and the concentration equation with the boundary condition $C = \eta$ (η is a parameter) on $\Gamma_1 = [0, 1] \times \{1\}$ (top of Ω), and $C = 0$ on $\partial\Omega \setminus \Gamma_1$. In this section, the initial guesses of algorithm (V_{ahi}) are $C_h^0 = 1$ and $\mathbf{u}_h^0 = \mathbf{u}_{hg}^0$.

We begin first by testing the convergence of the algorithm with respect of γ for a given $\eta = 20$. We consider $N = 20$ and we test the algorithm for multiple values of γ . We consider that the algorithm does not converge

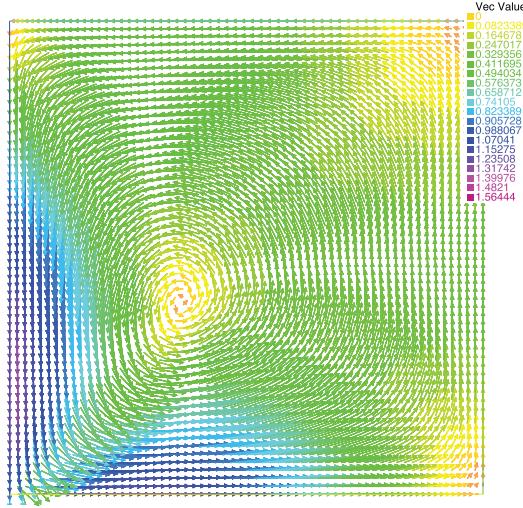


FIGURE 1. Numerical Darcy-Forchheimer velocity ($\beta = 10$).

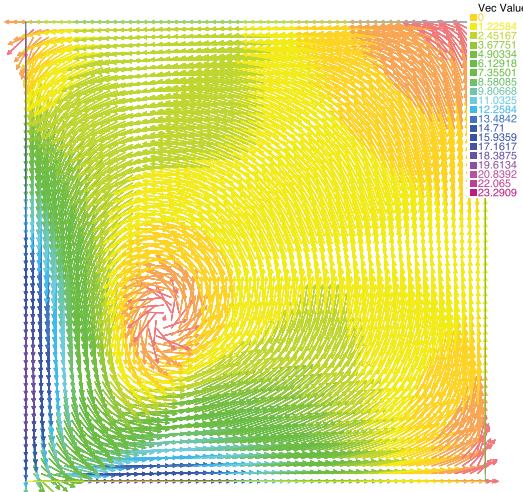


FIGURE 2. Numerical Darcy velocity.

if the condition $\text{Err}_L < 1e^{-5}$ is not reached after 5000 iterations. Table 8 shows for $\eta = 20$, the dependency of the convergence of the algorithm with respect to γ and the better convergence corresponds to the value $\gamma = 10$. This result shows clearly that the convergence depends on γ as announced in relation (4.20) of Theorem 4.2.

Figures 7–9 show the velocity, pressure, and concentration in Ω for $\gamma = 10$ and $\eta = 20$.

Let us now test the convergence with respect to η for $\gamma = 10$. Table 9 shows the dependency of the convergence of the algorithm with respect to η (*i.e.* with respect to the concentration C). This result shows clearly that the convergence depends on the concentration as announced in relation (4.19) of Theorem 4.2.

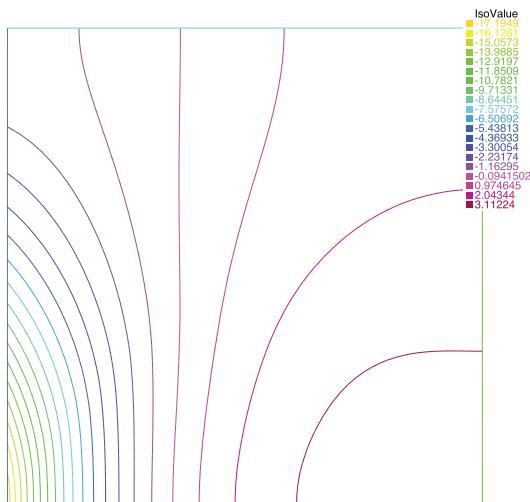
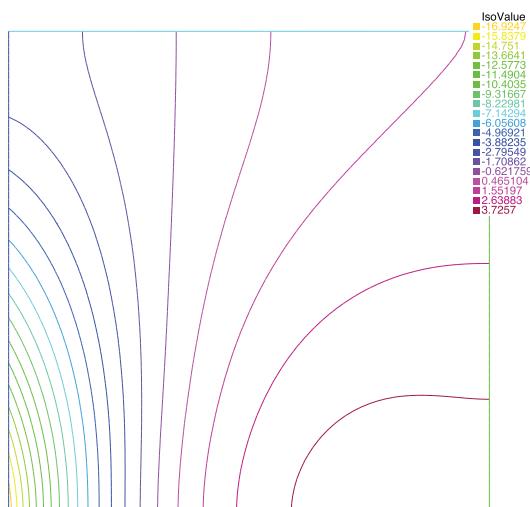
FIGURE 3. Numerical Darcy-Forchheimer pressure ($\beta = 10$).

FIGURE 4. Numerical Darcy pressure.



FIGURE 5. Numerical Darcy-Forchheimer concentration ($\beta = 10$).

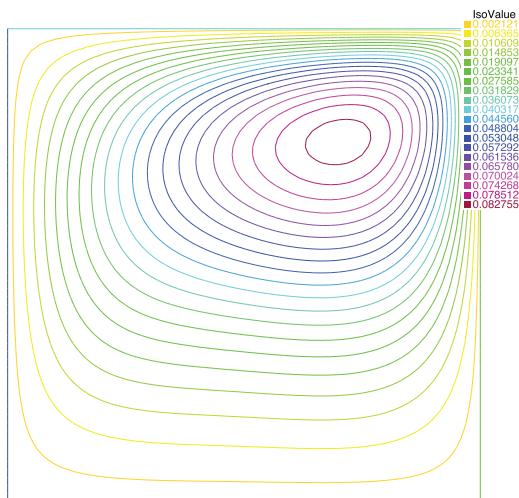


FIGURE 6. Numerical Darcy concentration.

TABLE 8. Test of the convergence for the driven cavity with respect to γ for $\eta = 20$.

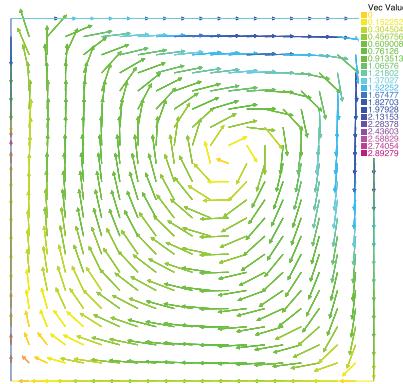
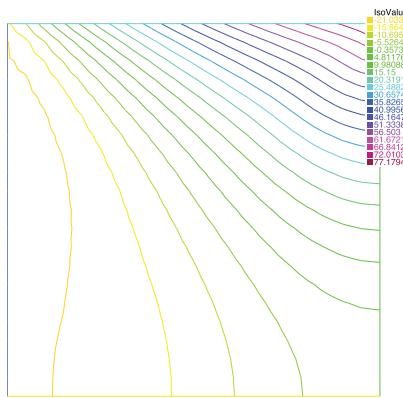
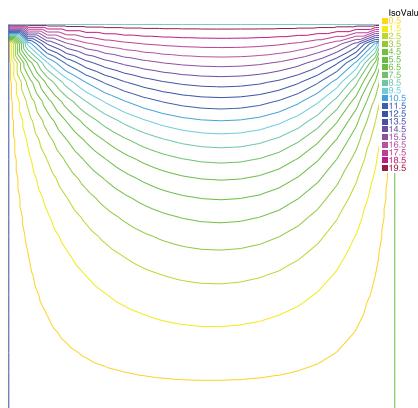
FIGURE 7. Numerical velocity (Driven cavity), $\gamma = 10, \eta = 20$.FIGURE 8. Numerical pressure (Driven cavity), $\gamma = 10, \eta = 20$.FIGURE 9. Numerical concentration (Driven cavity), $\gamma = 10, \eta = 20$.

TABLE 9. Test of the convergence for the driven cavity with respect to η for $\gamma = 10$.

η	1	20	100	150	170	175	180	200
Nbr	24	27	77	235	728	1493	—	—
conv/div	conv	conv	conv	conv	cov	conv	div	div

REFERENCES

- [1] H. Abboud, V. Girault and T. Sayah, A second order accuracy in time for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme. *Numer. Math.* **114** (2009) 189–231.
- [2] J.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
- [3] B. Amaziane, M. Bourgeois and M. El Fatini, Adaptive mesh refinement for a finite volume method for flow and transport of radionuclides in heterogeneous porous media. *Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles* **69** (2014) 687–699.
- [4] C. Bernardi, S. Dib, V. Girault, F. Hecht, F. Murat and T. Sayah, Finite element method for Darcy's problem coupled with the heat equation. *Numer. Math.* **139** (2018) 315–348.
- [5] C. Bernardi and V. Girault, A local regularisation operation for triangular and quadrilateral finite elements. *SIAM J. Numer. Anal.* **35** (1998) 1893–1916.
- [6] C. Bernardi, S. Maarouf and D. Yakoub, Spectral discretization of Darcy's equations coupled with the heat equation. *IMA J. Numer. Anal.* **36** (2015) 1193–1216.
- [7] C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis. *ESAIM:M2AN* **29** (1995) 871–921.
- [8] O.R. Burggraf, Analytical and numerical studies of the structure of steady separated flows. *J. Fluid Mech.* **24** (1996) 113–151.
- [9] N. Chalhoub, P. Omnes, T. Sayah and R. El Zahlaniyeh, Full discretization of time dependent convection-diffusion-reaction equation coupled with the Darcy system. *Calcolo* **57** (2020) 4.
- [10] N. Chalhoub, P. Omnes, T. Sayah and R. El Zahlaniyeh, A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system. *Calcolo* (submitted).
- [11] P.G. Ciarlet, Basic error estimates for elliptic problems, in *Handbook of Numerical Analysis*, volume II of *Finite Element Methods (Part 1)*. North-Holland, Amsterdam (1991) 17–351.
- [12] P. Clément, Approximation by finite element functions using local regularization. *RAIRO Anal. Numér.* **9** (1975) 77–84.
- [13] J. Deteix, A. Jendoubi and D. Yakoubi, A coupled prediction scheme for solving the Navier-Stokes and convection-diffusion equations. *SIAM J. Numer. Anal.* **52** (2014) 2415–2439.
- [14] D. Dib, S. Dib and T. Sayah, New numerical studies for Darcy's problem coupled with the heat equation. *Comput. Appl. Math.* **39** (2020) 1.
- [15] S. Dib, V. Girault, F. Hecht and T. Sayah, A posteriori error estimates for Darcy's problem coupled with the heat equation. *ESAIM: M2AN* **53** (2019) 2121–2159.
- [16] E. Erturk, T.C. Corke, and C. Gokcol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. *Int. J. Numer. Methods Fluids* **48** (2005) 747–774.
- [17] P. Fabrie, Regularity of the solution of Darcy-Forchheimer's equation. *Nonlinear Anal. Theory Methods* **13** (1989) 1025–1045.
- [18] E. Feireisl and A. Novotny, Singular limits in thermodynamics of viscous fluids. *Adv. Math. Fluid Mech.* Birkhäuser, Basel (2009).
- [19] P. Forchheimer, Wasserbewegung durch Boden. *Z. Ver. Deutsh. Ing.* **45** (1901) 1782–1788.
- [20] M. Gaultier and M. Lezaun, Équations de Navier-Stokes couplées à des équations de la chaleur: Résolution par une méthode de point fixe en dimension infinie. *Ann. Sci. Math. Québec* **13** (1989) 1–17.
- [21] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Vol. 224 of *Classics in Mathematics*. Springer, Berlin (2001).
- [22] V. Girault and J.L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes problem. *ESAIM: M2AN* **35** (2001) 945–980.
- [23] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, in *Theory and Algorithms, SCM 5*. Springer, Berlin (1986).
- [24] V. Girault and M.F. Wheeler, Numerical discretization of a Darcy-Forchheimer model. *Numer. Math.* **110** (2008) 161–198.
- [25] F. Hecht, development in FreeFem++. *J. Numer. Math.* **20** (2012) 251–266.
- [26] J.S Jose, H. Lopez and B. Molina, Comparison between different numerical discretizations for a Darcy-Forchheimer model. *Electron. Trans. Numer. Anal.* **34** (2009) 187–203.
- [27] M. Kawaguti, Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity. *J. Phys. Soc. Jpn* **16** (1961) 2307–2315.
- [28] H. Lopez, B. Molina and J.J. Salas, An analysis of a mixed finite element method for a Darcy-Forchheimer model. *Math. Comput. Model.* **57** (2013) 2325–2338.

- [29] H. Ma and D. Ruth, On the derivation of the Forchheimer equation by means of the averaging theorem. *Transp. Porous Media* **7** (1992) 255–264.
- [30] J. Nečas, *Les Méthodes directes en théorie des équations elliptiques*. Masson, Paris (1967).
- [31] S.P. Neuman, Theoretical derivation of Darcy's law. *Acta Mech.* **25** (1977) 153–170.
- [32] H. Pan and H. Rui, Mixed element method for two-dimensional Darcy-Forchheimer model. *J. Sci. Comput.* **52** (2012) 563–587.
- [33] T. Sayah, Convergence analysis of numerical schemes for the Darcy-Forchheimer problem. *Mediterr. J. Math.* (2021) (submitted).
- [34] R. Schreiber and H.B. Keller Driven cavity flows by efficient numerical techniques. *J. Comput. Phys.* **49** (1983) 310–333.
- [35] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. *Math. Comp.* **54** (1990) 483–493.
- [36] A.V. Shenoy, Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. *Transp. Porous Med.* **11** (1993) 219–241.
- [37] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy's law. *Transp. Porous Med.* **1** (1986) 3–25.

Subscribe to Open (S2O)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: <https://www.edpsciences.org/en/math-s2o-programme>