A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2567-2608

In this contribution we derive and analyze a new numerical method for kinetic equations based on a variable transformation of the moment approximation. Classical minimum-entropy moment closures are a class of reduced models for kinetic equations that conserve many of the fundamental physical properties of solutions. However, their practical use is limited by their high computational cost, as an optimization problem has to be solved for every cell in the space-time grid. In addition, implementation of numerical solvers for these models is hampered by the fact that the optimization problems are only well-defined if the moment vectors stay within the realizable set. For the same reason, further reducing these models by, e.g., reduced-basis methods is not a simple task. Our new method overcomes these disadvantages of classical approaches. The transformation is performed on the semi-discretized level which makes them applicable to a wide range of kinetic schemes and replaces the nonlinear optimization problems by inversion of the positive-definite Hessian matrix. As a result, the new scheme gets rid of the realizability-related problems. Moreover, a discrete entropy law can be enforced by modifying the time stepping scheme. Our numerical experiments demonstrate that our new method is often several times faster than the standard optimization-based scheme.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

DOI : 10.1051/m2an/2021065
Classification : 35L40, 35F61, 65M08, 65M70, 82C70
Keywords: Moment models, minimum entropy, kinetic transport equation, model order reduction, realizability
@article{M2AN_2021__55_6_2567_0,
     author = {Leibner, Tobias and Ohlberger, Mario},
     title = {A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2567--2608},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021065},
     mrnumber = {4338789},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021065/}
}
TY  - JOUR
AU  - Leibner, Tobias
AU  - Ohlberger, Mario
TI  - A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2567
EP  - 2608
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021065/
DO  - 10.1051/m2an/2021065
LA  - en
ID  - M2AN_2021__55_6_2567_0
ER  - 
%0 Journal Article
%A Leibner, Tobias
%A Ohlberger, Mario
%T A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2567-2608
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021065/
%R 10.1051/m2an/2021065
%G en
%F M2AN_2021__55_6_2567_0
Leibner, Tobias; Ohlberger, Mario. A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2567-2608. doi: 10.1051/m2an/2021065

[1] G. Alldredge and F. Schneider, A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension. J. Comput. Phys. 295 (2015) 665–684. | MR | DOI

[2] G. W. Alldredge, C. D. Hauck and A. L. Tits, High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem. SIAM J. Sci. Comput. 34 (2012) B361–B391. | MR | Zbl | DOI

[3] G. W. Alldredge, C. D. Hauck, D. P. O’Leary and A. L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations. J. Comput. Phys. 258 (2014) 489–508. | MR | DOI

[4] G. W. Alldredge, M. Frank and C. D. Hauck, A regularized entropy-based moment method for kinetic equations. SIAM J. Appl. Math. 79 (2019) 1627–1653. | MR | DOI

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. Mckenney and D. Sorensen, LAPACK Users’ Guide, 3rd edition. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999). | Zbl | DOI

[6] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82 (2008) 121–138. | MR | Zbl | DOI

[7] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82 (2008) 103–119. | MR | Zbl | DOI

[8] P. Bogacki and L. F. Shampine, A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2 (1989) 321–325. | MR | Zbl | DOI

[9] L. Boltzmann, Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften. Mathematische-Naturwissenschaftliche Klasse 66 (1872) 275–370. | JFM

[10] R. Borsche, A. Klar and F. Schneider, Kinetic and moment models for cell motion in fiber structures. In: Vol. 2 of Active Particles. Model. Simul. Sci. Eng. Technol. Birkhäuser/Springer, Cham (2019) 1–38. | MR

[11] T. A. Brunner and J. P. Holloway, Two-dimensional time dependent riemann solvers for neutron transport. J. Comput. Phys. 210 (2005) 386–399. | MR | Zbl | DOI

[12] S. R. Buss and J. P. Fillmore, Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graphics 20 (2001) 95–126. | DOI

[13] C. Cercignani, The Boltzmann Equation and its Applications. Vol. 67 of Applied Mathematical Sciences. Springer, New York, New York, NY (1988). | MR | Zbl

[14] P. Chidyagwai, M. Frank, F. Schneider and B. Seibold, A comparative study of limiting strategies in discontinuous Galerkin schemes for the M 1 model of radiation transport. J. Comput. Appl. Math. 342 (2018) 399–418. | MR | DOI

[15] S. Conde, I. Fekete and J. N. Shadid, Embedded error estimation and adaptive step-size control for optimal explicit strong stability preserving Runge-Kutta methods. (2018). | arXiv

[16] R. E. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment problems. Houston J. Math. 17 (1991) 603–635. | MR | Zbl

[17] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980) 19–26. | MR | Zbl | DOI

[18] B. Dubroca and J.-L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation. C. R. Acad. Sci. Paris Ser. I 329 (1999) 915–920. | MR | Zbl

[19] B. Dubroca and A. Klar, Half-moment closure for radiative transfer equations. J. Comput. Phys. 180 (2002) 584–596. | Zbl | DOI

[20] M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer. J. Comput. Phys. 218 (2006) 1–18. | MR | Zbl | DOI

[21] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. USA 68 (1971) 1686–1688. | MR | Zbl | DOI

[22] B. D. Ganapol, R. S. Baker, J. A. Dahl and R. E. Alcouffe, Homogeneous infinite media time-dependent analytical benchmarks. Tech. Rep. LA-UR-01-1854. Los Alamos National Laboratory (2001).

[23] C. K. Garrett and C. D. Hauck, A comparison of moment closures for linear kinetic transport equations: the line source benchmark. Transp. Theory Stat. Phys. 42 (2013) 203–235. | Zbl | DOI

[24] M. B. Giles, Collected matrix derivative results for forward and reverse mode algorithmic differentiation. In: C. H. Bischof, H. M. Bücker, P. Hovland, U. Naumann and J. Utke (Eds). Advances in Automatic Differentiation. Springer, Berlin Heidelberg, Berlin, Heidelberg (2008) 35–44. | Zbl | DOI

[25] S. Gottlieb, On High Order Strong Stability Preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25 (2005) 105–128. | MR | Zbl

[26] G. Guennebaud, B. Jacob, et al., Eigen v3 (2010). https://eigen.tuxfamily.org.

[27] K. P. Hadeler, Reaction transport systems in biological modelling. In: Mathematics Inspired by Biology, edited by V. Capasso. Lecture Notes in Mathematics. Springer Berlin Heidelberg (1999). | MR | Zbl | DOI

[28] E. Hairer, G. Wanner and S. P. Nørsett, Springer Series in Computational Mathematics, 2nd revised edition. Springer-Verlag Berlin Heidelberg (1993). | Zbl

[29] C. D. Hauck, High-order entropy-based closures for linear transport in slab geometry. Commun. Math. Sci. 9 (2010) 187–205. | MR | Zbl | DOI

[30] T. Hillen and K. J. Painter, Transport and anisotropic diffusion models for movement in oriented habitats. In: Dispersal, Individual Movement and Spatial Ecology, edited by M. A. Lewis, P. K. Maini and S. V. Petrovskii. Vol. 2071 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). 177–222. | MR | DOI

[31] C. Himpe, T. Leibner and S. Rave, Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40 (2018) A3267–A3292. | MR | DOI

[32] Intel, Threading building blocks (2020). https://software.intel.com/en-us/tbb.

[33] M. Junk, Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10 (2000) 1001–1025. | MR | Zbl | DOI

[34] C. Kristopher Garrett, C. Hauck and J. Hill, Optimization and large scale computation of an entropy-based moment closure. J. Comput. Phys. 302 (2015) 573–590. | MR | DOI

[35] K. Lanckau and C. Cercignani, The Boltzmann equation and its applications. ZAMM – J. Appl. Math. Mech./Z. Ang. Math. Mech. 69 (1989) 423.

[36] T. Langer, A. Belyaev and H.-P. Seidel, Spherical barycentric coordinates. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing (2006)) pp. 81–88.

[37] T. Leibner and M. Ohlberger, Replication data for: a new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations (2021). | DOI | MR

[38] C. D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021–1065. | MR | Zbl | DOI

[39] E. E. Lewis and W. F. Miller, Jr, Computational Methods in Neutron Transport. John Wiley and Sons, New York (1984).

[40] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations. Springer-Verlag, Vienna (1990). | MR | Zbl | DOI

[41] D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics. Dover (1999). | MR | Zbl

[42] R. Milk, F. Schindler and T. Leibner, Dune-xt (2017). http://github.com/dune-community/dune-xt-super.

[43] R. Milk, F. Schindler and T. Leibner, Extending dune: the dune-xt modules. Arch. Numer. Softw. 5 (2017) 193–216.

[44] G. Minerbo, Ment: a maximum entropy algorithm for reconstructing a source from projection data. Comput. Graphics Image Process. 10 (1979) 48–68. | DOI

[45] G. N. Minerbo, Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Trans. 20 (1978) 541–545. | DOI

[46] E. Olbrant, C. D. Hauck and M. Frank, A realizability-preserving discontinuous Galerkin method for the M 1 model of radiative transfer. J. Comput. Phys. 231 (2012) 5612–5639. | MR | Zbl | DOI

[47] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods For Partial Differential Equations. Vol. 92 of Unitext. An Introduction, La Matematica per il 3+2. Springer, Cham (2016). | MR | Zbl

[48] H. Ranocha, M. Sayyari, L. Dalcin, M. Parsani and D. I. Ketcheson, Relaxation Runge-Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. SIAM J. Sci. Comput. 42 (2020) A612–A638. | MR | DOI

[49] J. Ritter, A. Klar and F. Schneider, Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions. J. Comput. Appl. Math. 306 (2016) 300–315. | MR | DOI

[50] R. T. Rockafellar, Convex Analysis. Princeton University Press (1970). | MR | Zbl | DOI

[51] R. M. Rustamov, Barycentric coordinates on surfaces. Eurographics Symp. Geom. Process. 29 (2010) 1507–1516.

[52] R. P. Schaerer, P. Bansal and M. Torrilhon, Efficient algorithms and implementations of entropy-based moment closures for rarefied gases. J. Comput. Phys. 340 (2017) 138–159. | MR | Zbl | DOI

[53] C. Schär and P. K. Smolarkiewicz, A synchronous and iterative flux-correction formalism for coupled transport equations. J. Comput. Phys. 128 (1996) 101–120. | MR | Zbl | DOI

[54] F. Schindler, dune-gdt (2017). http://github.com/dune-community/dune-gdt.

[55] F. Schneider, First-order quarter- and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions: Code (2016). DOI: . | DOI

[56] F. Schneider, Implicit-explicit, realizability-preserving first-order scheme for moment models with lipschitz-continuous source terms. Preprint (2016). | arXiv

[57] F. Schneider, Kershaw closures for linear transport equations in slab geometry II: high-order realizability-preserving discontinuous-Galerkin schemes. J. Comput. Phys. 322 (2016) 920–935. | MR | Zbl | DOI

[58] F. Schneider, Moment Models in Radiation Transport Equations. Verlag Dr. Hut (2016).

[59] F. Schneider and T. Leibner, First-order continuous- and discontinuous-galerkin moment models for a linear kinetic equation: model derivation and realizability theory. J. Comput. Phys. 416 (2020) 109547. | MR | Zbl | DOI

[60] F. Schneider, G. W. Alldredge, M. Frank and A. Klar, Higher order mixed-moment approximations for the Fokker-Planck equation in one space dimension. SIAM J. Appl. Math. 74 (2014) 1087–1114. | MR | Zbl | DOI

[61] F. Schneider, G. W. Alldredge and J. Kall, A realizability-preserving high-order kinetic scheme using weno reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinet. Relat. Models 9 (2016) 193. | MR | Zbl | DOI

[62] F. Schneider, A. Roth and J. Kall, First-order quarter- and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinet. Relat. Models 10 (2017) 1127–1161. | MR | Zbl | DOI

[63] F. Schneider and T. Leibner, First-order continuous- and discontinuous-galerkin moment models for a linear kinetic equation: realizability-preserving splitting scheme and numerical analysis. Preprint (2019). | arXiv | Zbl

[64] B. Seibold and M. Frank, StaRMAP – a second order staggered grid method for spherical harmonics moment equations of radiative transfer. ACM Trans. Math. Softw. 41 (2014) 1–28. | MR | Zbl | DOI

[65] X. Zhang and C. W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229 (2010) 8918–8934. | MR | Zbl | DOI

Cité par Sources :

Supplementary Online Material is only available in electronic form at https://doi.org/10.1051/m2an/2021065/olm.