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A NEW ENTROPY-VARIABLE-BASED DISCRETIZATION METHOD FOR
MINIMUM ENTROPY MOMENT APPROXIMATIONS OF LINEAR KINETIC

EQUATIONS ⋆

Tobias Leibner* and Mario Ohlberger

Abstract. In this contribution we derive and analyze a new numerical method for kinetic equations
based on a variable transformation of the moment approximation. Classical minimum-entropy moment
closures are a class of reduced models for kinetic equations that conserve many of the fundamental
physical properties of solutions. However, their practical use is limited by their high computational
cost, as an optimization problem has to be solved for every cell in the space-time grid. In addition,
implementation of numerical solvers for these models is hampered by the fact that the optimization
problems are only well-defined if the moment vectors stay within the realizable set. For the same
reason, further reducing these models by, e.g., reduced-basis methods is not a simple task. Our new
method overcomes these disadvantages of classical approaches. The transformation is performed on the
semi-discretized level which makes them applicable to a wide range of kinetic schemes and replaces
the nonlinear optimization problems by inversion of the positive-definite Hessian matrix. As a result,
the new scheme gets rid of the realizability-related problems. Moreover, a discrete entropy law can be
enforced by modifying the time stepping scheme. Our numerical experiments demonstrate that our new
method is often several times faster than the standard optimization-based scheme.
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1. Introduction

Kinetic equations play an important role in many physical applications. One of the earliest and most promi-
nent examples is the Boltzmann equation which was derived by the Austrian physicist Ludwig Boltzmann in
1872 [9] and still forms the basis for the kinetic theory of rarefied gases. The Boltzmann equation or similar
kinetic equations proved to be applicable not only to classical gases but also to electron transport in solids and
plasmas, neutron transport in nuclear reactors, photon transport in superfluids and radiative transfer, among
others [13, 35, 39–41]. More recently, kinetic equations were also derived in the context of biological modelling,
e.g., for studying cell movement or wolf migration [10,27,30].

While analytic solutions can be derived in some special cases [22], usually kinetic equations have to be solved
numerically. Due to their high dimensionality, directly solving kinetic equations with standard discretizations

Keywords and phrases. Moment models, minimum entropy, kinetic transport equation, model order reduction, realizability.

⋆ Supplementary Online Material is only available in electronic form at https: // doi. org/ 10. 1051/ m2an/ 2021065/ olm .

Fachbereich Mathematik und Informatik, WWU Münster, Einsteinstrasse 62, 48149 Münster, Germany.
*Corresponding author: tobias.leibner@wwu.de; tobias.leibner@googlemail.com

c○ The authors. Published by EDP Sciences, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2021065
https://www.esaim-m2an.org
https://orcid.org/0000-0002-3455-0305
https://orcid.org/0000-0002-6260-3574
https://doi.org/10.1051/m2an/2021065/olm
mailto:tobias.leibner@wwu.de
mailto:tobias.leibner@googlemail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


2568 T. LEIBNER AND M. OHLBERGER

(e.g., finite difference methods) is often infeasible or restricted to very small grid sizes. For that reason, a
variety of specialized approximate methods have been developed, many of which belong to the class of moment
methods. Instead of computing the whole kinetic density function, moment approximations choose a set of
weight functions (usually polynomials up to some order) on the velocity space and only track the weighted
velocity averages (called moments) of the kinetic density with respect to these functions. This is usually done
by performing a Galerkin projection of the original kinetic equation to the linear span of the weight functions.
In general, the resulting moment equations are not closed and thus an ansatz for the velocity distribution has
to be made. Choosing a linear combination of the weight functions gives the widely used P𝑁 closure [39], where
𝑁 is the degree of the highest-order moments in the model. The P𝑁 closure results in linear equations, is
simple to implement and often gives reasonable results. However, it does not guarantee non-negativity of the
approximated kinetic density. This sometimes leads to physically meaningless solutions, as the P𝑁 solutions
can, e.g., contain negative values for the local particle density.

The so-called minimum-entropy moment models M𝑁 [18, 45] avoid these problems by choosing the ansatz
function such that it minimizes an entropy functional which usually models the (negative) physical entropy. The
resulting closed system of equations is hyperbolic and dissipates the chosen entropy [38]. However, numerically
solving the M𝑁 equations requires the solution of a non-linear optimization problem at every point on the space-
time grid. Although the optimization problems can be solved in parallel [2,29,34,52], the computational cost for
high moment orders still is prohibitively high in practical applications. Another drawback of the entropy-based
moment closures is that the optimization problem is solvable only for so-called realizable moment vectors, i.e.,
vectors that actually are moments of a positive density function. As explicit descriptions of the set of realizable
moment vectors are usually not available, discretizations (especially of higher order) often struggle to keep the
approximate solutions realizable [1, 14,46,53,57,61,65].

A partial remedy for the high computational cost of the minimum entropy models could be additional model
reduction, for example via reduced basis methods [47]. These methods generate a reduced description of the
(discretized) equations first and then use this reduced model to perform the actual computations. In some
cases, e.g., if a given kinetic equation has to be solved many times for different parameters, this reduces overall
computation time by several orders of magnitude. Generating the reduced model is usually done by constructing
a low-dimensional linear subspace from solution trajectories and then projecting the problem to this subspace.
This has been successfully done for the P𝑁 models [31]. In the context of minimum-entropy moment models,
however, this procedure is problematic as it does not preserve realizability, which may render the reduced model
useless as it does not admit a solution.

Checking realizability is much easier when using piecewise linear bases instead of the standard polynomial
basis on the whole velocity space [19, 20, 49, 59, 60, 62, 63]. In addition, the computational cost is significantly
lower for these models. However, solving the optimization problems is still costly compared to linear models
and maintaining realizability still requires additional limiters [63].

Another approach to fix the realizability issues is to introduce a regularization of the optimization problem [4].
The regularized problem admits a solution also for moments vectors that are not realizable and maintains most
of the desirable properties of the original problem, at the cost of an additional approximation error (which,
however, can be controlled by the regularization parameter). However, this approach still requires the solution
of the (regularized) minimum entropy problem in each cell of the space-time grid.

In this paper, we will present a new discretization scheme for the minimum-entropy moment equations based
on a transformation of the semi-discretized equations to entropy variables. The new scheme replaces the non-
linear optimization problems by matrix inversions and inherently guarantees realizability. As a consequence, it
avoids many of the problems described above. In addition, the new scheme is often significantly faster than the
untransformed scheme and shows improved parallel scaling. Moreover, a discrete entropy law can be enforced
for the new scheme by using a relaxed Runge–Kutta method. On the downside, adaptive timestepping is strictly
needed for the transformed scheme. Moreover, numerically singular Hessian matrices will result in a failure of
the scheme if no additional regularization is employed. However, we did not encounter such a situation during
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our extensive numerical experiments (despite the fact that the untransformed reference scheme had to use
regularization in several of the tests).

This paper is organized as follows. First, in Section 2 we shortly recall the necessary background on minimum
entropy moment models. In Section 3, the new scheme is presented and analysed. In Section 4, we give an outline
of our implementation which is then used for the extensive numerical investigations in Section 5.

2. Minimum-entropy moment models

2.1. Kinetic transport equation

We consider the linear transport equation

𝜕𝑡𝜓 + Ω · ∇x𝜓 + 𝜎𝑎𝜓 = 𝜎𝑠 𝒞(𝜓) +𝑄, (2.1a)

which describes the density of particles with speed Ω ∈ 𝒮2 at position x ∈ 𝑋 ⊆ R3 and time 𝑡 ∈ 𝑇 = [0, 𝑡end]
under the events of scattering (proportional to 𝜎𝑠(𝑡,x) ≥ 0), absorption (proportional to 𝜎𝑎(𝑡,x) ≥ 0) and
emission (proportional to 𝑄(𝑡,x,Ω) ≥ 0). The equation is supplemented with initial condition and Dirichlet
boundary conditions:

𝜓(0,x,Ω) = 𝜓𝑡=0(x,Ω) for x ∈ 𝑋,Ω ∈ 𝒮2, (2.1b)
𝜓(𝑡,x,Ω) = 𝜓𝑏(𝑡,x,Ω) for 𝑡 ∈ 𝑇,x ∈ 𝜕𝑋,n ·Ω < 0, (2.1c)

where 𝜓𝑡=0 and 𝜓𝑏 are given functions and n is the outward unit normal vector in x ∈ 𝜕𝑋. For simplicity, we
will consider isotropic scattering

𝒞(𝜓)(𝑡,x,Ω) =
1
|𝒮2|

∫︁
𝒮2

𝜓
(︁
𝑡,x, Ω̃

)︁
dΩ̃− 𝜓(𝑡,x,Ω), (2.2)

isotropic time-independent source 𝑄(𝑡,x,Ω) = 𝑄(x) and time-independent scattering 𝜎𝑠(𝑡,x) = 𝜎𝑠(x) and
absorption 𝜎𝑎(𝑡,x) = 𝜎𝑎(x).

Parameterizing Ω in spherical coordinates we obtain

Ω =
(︁√︀

1− 𝜇2 cos(𝜙),
√︀

1− 𝜇2 sin(𝜙), 𝜇
)︁𝑇

=: (Ω𝑥,Ω𝑦,Ω𝑧)
𝑇
, (2.3)

where 𝜙 ∈ [0, 2𝜋] is the azimuthal and 𝜇 ∈ [−1, 1] the cosine of the polar angle.
As a one-dimensional simplification, we will also consider the models in slab geometry, which is a projection

of the sphere onto the 𝑧-axis [64]. The transport equation under consideration then has the form

𝜕𝑡𝜓 + 𝜇𝜕𝑧𝜓 + 𝜎𝑎𝜓 = 𝜎𝑠 𝒞(𝜓) +𝑄, 𝑡 ∈ 𝑇, 𝑧 ∈ 𝑋,𝜇 ∈ [−1, 1]. (2.4)

2.2. The moment approximation

In the following, 𝑉 will always denote the angular domain, i.e., 𝑉 = [−1, 1] in slab geometry and 𝑉 = 𝒮2 in
the three-dimensional case, and Ω will denote the corresponding angular variable. Moreover, we will use angle
brackets to denote integration over 𝑉 , i.e.,

⟨𝑓⟩ :=
∫︁
𝑉

𝑓(Ω) dΩ for all 𝑓 ∈ 𝐿1(𝑉 ).

Due to the high-dimensionality, directly discretizing and solving (2.1) via standard numerical schemes is usually
not viable. We will thus consider moment approximations of (2.1). These models transfer the kinetic equation
to a coupled system of PDEs for weighted velocity averages (moments) of the solution.
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Definition 2.1. The vector of functions b : 𝑉 → R𝑛 consisting of 𝑛 linearly-independent basis functions 𝑏𝑙 ∈
𝐿1(𝑉 ), 𝑙 ∈ {0, . . . 𝑛− 1}, is called a moment basis. The moments ub,𝜓 = (𝑢0, . . . , 𝑢𝑛−1)𝑇 ∈ R𝑛 with respect to
the basis b of a given density function 𝜓 ∈ 𝐿1(𝑉 ) are then defined by

ub,𝜓 := ⟨b𝜓⟩, (2.5)

where the integration is performed component-wise. Furthermore, the vector uiso
b := ⟨b⟩ is called the isotropic

moment.

Definition 2.2. The quantity 𝜌𝜓 := ⟨𝜓⟩ ∈ R is called the local particle density of the function 𝜓. If we assume
that there exists a vector 𝛼1

b ∈ R𝑛 such that

𝛼1
b · b ≡ 1, (2.6)

we have
𝛼1

b · ub,𝜓 =
⟨︀
𝛼1

b · b𝜓
⟩︀

= ⟨𝜓⟩ = 𝜌𝜓 .

Hence, we define the local particle density of the moment vector u ∈ R𝑛 with respect to the basis b as

𝜌b(u) := 𝛼1
b · u. (2.7)

Remark 2.3. The vector 𝛼1
b exists for all bases regarded in this paper (see Sect. 2.4).

In the following, if basis b or density function 𝜓 are clear from the context, we will usually omit the corre-
sponding subscripts.

Equations for the moments u can be obtained by multiplying (2.1) with b and integrating over 𝑉 , yielding

⟨b𝜕𝑡𝜓⟩+ ⟨b(Ω · ∇x𝜓)⟩+ 𝜎𝑎⟨b𝜓⟩ = 𝜎𝑠⟨b 𝒞(𝜓)⟩+ ⟨b𝑄⟩.

Collecting known terms, and interchanging integration and differentiation where possible, the moment system
has the form

𝜕𝑡u + ⟨b(Ω · ∇x𝜓)⟩+ 𝜎𝑎u = 𝜎𝑠⟨b 𝒞(𝜓)⟩+ ⟨b𝑄⟩. (2.8)

For isotropic collision operator (2.2), the scattering term becomes

⟨b 𝒞(𝜓)⟩ =
⟨
b
(︂
⟨𝜓⟩
|𝑉 |

− 𝜓

)︂⟩
=
⟨𝜓⟩
|𝑉 |

⟨b⟩ − u =
𝛼1

b · u
|𝑉 |

⟨b⟩ − u =
(︀
Giso

b − I
)︀
u (2.9)

where I ∈ R𝑛×𝑛 is the unit matrix and

Giso
b =

1
|𝑉 |

⟨b⟩
(︀
𝛼1

b

)︀𝑇 ∈ R𝑛×𝑛 (2.10)

is the matrix mapping the moment vector u to the isotropic moment vector with the same density

Giso
b u = uiso

b · 𝜌b(u)
|𝑉 |

·

Consequently, for isotropic scattering, equation (2.8) simplifies to

𝜕𝑡u + ⟨b(Ω · ∇x𝜓)⟩ =
(︀
𝜎𝑠Giso

b − 𝜎𝑡I
)︀
u + ⟨b𝑄⟩ (2.11)

where 𝜎𝑡 = 𝜎𝑎 + 𝜎𝑠 is the total cross section.
However, even in the isotropic case, the transport term ⟨b(Ω · ∇x𝜓)⟩ usually cannot be given explicitly in

terms of u. For non-isotropic scattering operator, the same applies to the scattering term. Therefore, additional
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assumptions have to be made to close the unknown terms. A common approach is to replace 𝜓 in (2.11) by a
moment-dependent ansatz 𝜓u,b, resulting in a closed system of non-linear equations for u:

𝜕𝑡u +
𝑑∑︁
𝑘=1

𝜕𝑥𝑘
f𝑘(u) = s(x,u), (2.12)

where
f𝑘(u) =

⟨
Ω𝑘b𝜓u,b

⟩
(2.13)

and
s(x,u) =

(︀
𝜎𝑠Giso

b − 𝜎𝑡I
)︀
u + ⟨b𝑄⟩. (2.14)

Remark 2.4. We will always assume that the ansatz exactly reproduces the moments, i.e.,
⟨
b𝜓u,b

⟩
= u. Note

that this may not be fulfilled by regularized moment approximations as regarded, e.g., in [4].

It remains to specify the basis functions and the ansatz density 𝜓u,b. In the following, we will often omit the
b-dependency of the ansatz function and only write 𝜓u if the basis is clear from the context.

2.3. Minimum-entropy closure

For the minimum entropy closure [21, 38, 44, 45], we choose a strictly convex and twice continuously differ-
entiable entropy density function 𝜂 : 𝐷 ⊂ R → R and demand that the ansatz function minimizes the entropy
functional

ℋ(𝜓) = ⟨𝜂(𝜓)⟩ (2.15)

under the moment constraints
⟨b𝜓⟩ = u. (2.16)

Here, the minimum is simply taken over all functions 𝜓 = 𝜓(Ω) such that ℋ(𝜓) is well-defined, i.e.,

𝜓u = 𝜓u,b,𝜂 = argmin
{𝜓 | Range(𝜓)⊂𝐷, 𝜂(𝜓)∈𝐿1(𝑉 ), ⟨b𝜓⟩=u}

⟨𝜂(𝜓)⟩. (2.17)

This problem, which must be solved over the space-time mesh, is typically solved through its strictly convex
finite-dimensional dual,

𝛼b,𝜂(u) := argmin
𝛼̃∈R𝑛

⟨𝜂*(b · 𝛼̃)⟩ − u · 𝛼̃, (2.18)

where 𝜂* is the Legendre dual of 𝜂. The first-order necessary conditions for the multipliers 𝛼b,𝜂(u) show that
the solution to (2.17), if it exists, has the form

𝜓u,b,𝜂 = 𝜂′*(b ·𝛼b,𝜂(u)), (2.19)

where 𝜂′* is the derivative of 𝜂*.
As in [29,38,59], for sake of simplicity, we focus on Maxwell–Boltzmann entropy

𝜂(𝜓) = 𝜓 log(𝜓)− 𝜓, (2.20)

which is used for non-interacting, classical particles as in an ideal gas. Thus, 𝐷 = (0,∞) and (2.17) becomes

𝜓u = argmin
{𝜓 |𝜓∈𝐿1

+(𝑉 ), ⟨b𝜓⟩=u}
⟨𝜂(𝜓)⟩, (2.21)

where
𝐿1

+ :=
{︀
𝜓 ∈ 𝐿1(𝑉 )

⃒⃒
𝜓 > 0 almost everywhere

}︀
(2.22)

is the space of positive integrable functions. Further, we have 𝜂*(𝑝) = 𝜂′*(𝑝) = 𝜂′′* (𝑝) = exp(𝑝) and thus the
minimum entropy ansatz (2.19) becomes 𝜓u = exp(b ·𝛼b,𝜂(u)).
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Remark 2.5. In principle, the new scheme described in Section 3 could be used in the same way with other
physically relevant entropies, e.g., the Bose–Einstein entropy

𝜂BE(𝜓) = 𝜓 log(𝜓)− (1 + 𝜓) log(1 + 𝜓).

In this case, the ansatz distribution is given by

𝜓u = (𝜂BE)′*(𝛼BE(u) · b) =
exp(𝛼BE(u) · b)

1− exp(𝛼BE(u) · b)

with 𝛼BE = 𝛼b,𝜂BE
. To ensure positivity, we thus have to keep the multipliers 𝛼BE in the basis-dependent set

{𝛼 ∈ R𝑛 |𝛼 · b < 0},

i.e., other than in the Maxwell–Boltzmann case, we again have to deal with realizability (compare Sect. 2.5),
also in the transformed scheme. Depending on the basis, this might significantly complicate the implementation.

Using the entropy-based closure, the moment system (2.12) is hyperbolic and dissipates the chosen entropy [58]
(for 𝜎𝑎 = 𝑄 = 0)

𝜕𝑡ℋ
(︁
𝜓u

)︁
+
𝑑−1∑︁
𝑘=0

𝜕𝑥𝑘

⟨
Ω𝑘𝜂

(︁
𝜓u

)︁⟩
≤ 0, (2.23)

i.e., ℋ
(︁
𝜓u

)︁
=
⟨
𝜂
(︁
𝜓u

)︁⟩
= ⟨𝜂 ∘ 𝜂′*(𝛼(u) · b)⟩ and

⟨
Ω𝜂
(︁
𝜓u

)︁⟩
= ⟨Ω 𝜂 ∘ 𝜂′*(𝛼(u) · b)⟩ form an entropy–entropy

flux pair in the sense of hyperbolic systems.

2.4. Basis functions

We will consider three options for the basis functions b: the full moment basis f𝑁 , the hat function basis h𝑛
and the partial moment basis p𝑛.

2.4.1. Full moment basis

The full moment basis f𝑁 is the standard choice and consists of polynomials of up to order 𝑁 , resulting
in 𝑛 = 𝑁 + 1 and 𝑛 = (𝑁 + 1)2 basis functions in one and three dimensions, respectively. We will use Leg-
endre polynomials in slab geometry and real spherical harmonics in the full three-dimensional setting. In one
dimension, the isotropic moment is uiso

f𝑁
= ⟨f𝑁 ⟩ = (2, 0, 0, . . . , 0)𝑇 and the multiplier 𝛼1

f𝑁
can be chosen as

𝛼1
f𝑁

= (1, 0, 0, . . . , 0)𝑇 . In three dimensions, we have uiso
f𝑁

= (
√

4𝜋, 0, 0, . . . , 0)
𝑇

= 𝛼1
f𝑁

.

Definition 2.6. The minimum-entropy moment models using the f𝑁 will be called M𝑁 models, where 𝑁 is
the maximal polynomial order of the basis functions.

2.4.2. First-order finite-element bases

Models using the full moment basis show optimal (spectral) convergence for smooth problems. For non-
smooth problems, however, instead of increasing the polynomial order 𝑁 , it might be better to keep 𝑁 fixed
and regard piecewise polynomials on increasingly refined partitions of the domain. We will here restrict ourselves
to piecewise linear bases (𝑁 = 1) which avoid many of the performance and realizability problems of the classical
polynomial models [59, 63]. In the following, we will shortly state the definitions of the first-order bases. For a
more detailed introduction see [59].

To define the first-order bases, we choose a partition 𝒫 dividing the velocity domain 𝑉 into intervals (slab
geometry) or spherical triangles (three dimensions). Let 𝑛𝑣 and 𝑛𝑒 be the number of nodes (vertices) and
elements (intervals or spherical triangles) of this partition, respectively.

The first basis of interest, the hat function basis h𝑛, consists of 𝑛 = 𝑛𝑣 continuous basis functions ℎ𝑙 which,
similar to the linear basis typically used in the continuous finite element method, fulfill the partition of unity
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property, i.e.,
∑︀𝑛−1
𝑙=0 ℎ𝑙 ≡ 1, and the Lagrange property, i.e., each basis function evaluates to 1 at one node of

the partition and to 0 at all other nodes.
The partial moment basis p𝑛, on the other hand, is defined in analogy to the discontinuous finite element

method and consists of the 𝑛 = 2𝑛𝑒 or 𝑛 = 4𝑛𝑒 (in one and three dimensions, respectively) basis functions for
the space of piecewise linear functions on 𝒫 that may be discontinuous between elements of the partition.

More precisely, in slab geometry, we will always choose the partition 𝒫 as the equidistant partition of 𝑉 =
[−1, 1] into 𝑘 intervals 𝐼𝑖 = [𝜇𝑖, 𝜇𝑖+1] given by the set of 𝑘+ 1 angular “grid” points −1 = 𝜇0 < 𝜇1 = −1 + 2

𝑘 <
· · · < 𝜇𝑘−1 = −1 + (𝑘 − 1) · 2

𝑘 < 𝜇𝑘 = 1. Given this partition, the continuous piecewise linear basis functions
h𝑛 = (ℎ0, . . . , ℎ𝑛−1)𝑇 (hat functions) are defined as

ℎ𝑙(𝜇) = 1𝐼𝑙−1

𝜇− 𝜇𝑙−1

𝜇𝑙 − 𝜇𝑙−1
+ 1𝐼𝑙

𝜇− 𝜇𝑙+1

𝜇𝑙 − 𝜇𝑙+1
, (2.24)

where 1𝐼𝑖(𝜇) is the indicator function on the interval 𝐼𝑖 (with 𝐼−1 ≡ 𝐼𝑘 ≡ 0) and 𝑛 = 𝑘 + 1 is the number of
basis functions. The isotropic moment is uiso

h𝑛
=
(︀

1
𝑘 ,

2
𝑘 , . . . ,

2
𝑘 ,

1
𝑘

)︀𝑇 and we have 𝛼1
h𝑛

= (1, . . . , 1)𝑇 due to the
partition of unity property.

The partial moment basis in slab geometry is given by p𝑛 = (𝑝0, . . . , 𝑝𝑛−1) =
(︁
p𝑇𝐼0 , . . . ,p

𝑇
𝐼𝑘−1

)︁𝑇
with

p𝐼𝑖(𝜇) =

{︃
(1, 𝜇)𝑇 if 𝜇 ∈ int(𝐼𝑖),
(0, 0)𝑇 if 𝜇 ∈ [−1, 1] ∖ 𝐼𝑖.

Here, 𝑛 = 2𝑘 is again the number of basis functions and int(𝐼𝑖) is the interior of 𝐼𝑖. The isotropic moment is
uiso

p𝑛
= 1

2

(︀
1
𝑘 , 𝜇

2
1 − 𝜇2

0,
1
𝑘 , 𝜇

2
2 − 𝜇2

1, . . .
)︀𝑇 and 𝛼1

p𝑛
= (1, 0, 1, 0, . . .)𝑇 .

In three dimensions, the triangulation 𝒫 will be obtained by dyadic refinement of the octants of the sphere 𝑉 =
𝒮2, i.e., the coarsest triangulation contains the eight spherical triangles obtained by projecting the octahedron
with vertices {(±1, 0, 0)𝑇 , (0,±1, 0)𝑇 , (0, 0,±1)𝑇 } to the sphere and finer partitions are obtained by iteratively
subdividing each spherical triangle into four new ones, adding vertices at the midpoints of the triangle edges.
After 𝑟 refinements, we thus obtain 𝑛𝑣(𝑟) = 4𝑟+1 + 2 vertices and 𝑛𝑒(𝑟) = 2 · 4𝑟+1 spherical triangles.

To get a three-dimensional equivalent of the continuous hat function basis (2.24), we consider basis functions
defined using spherical barycentric coordinates [12,36,51]. On each spherical triangle

>
𝐾 ∈ 𝒫 all elements of h𝑛

are defined to be zero except for the three basis functions associated with the vertices of
>
𝐾. Denoting these

vertices as Ω1,Ω2,Ω3 ∈ 𝒮2, the values of the corresponding basis functions ℎ1, ℎ2, ℎ3 are defined by requiring
that

ℎ𝑙(Ω𝑚) = 𝛿𝑙𝑚 (Lagrange property)

for 𝑙,𝑚 ∈ {1, 2, 3}, and that, for every point Ω ∈
>
𝐾,

ℎ1(Ω) + ℎ2(Ω) + ℎ3(Ω) = 1 (partition of unity)

and
Ω ∈

>
𝐾 is the Riemannian center of mass with weights ℎ𝑙(Ω) and nodes Ω𝑙.

As in one dimension, the resulting basis functions are non-negative. Due to the partition of unity property we
again have 𝛼1

h𝑛
= (1, . . . , 1)𝑇 .

The three-dimensional discontinuous partial moment basis p𝑛 is chosen analogously to the one-dimensional
case as

p𝑛 =
(︂(︁

p>
𝐾0

)︁𝑇
, . . . ,

(︁
p>
𝐾𝑛𝑒−1

)︁𝑇)︂𝑇
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with

p>
𝐾

(Ω) =

⎧⎨⎩(1,Ω𝑥,Ω𝑦,Ω𝑧)
𝑇 if Ω ∈ int

(︁>
𝐾
)︁
,

(0, 0)𝑇 if Ω ∈ 𝒮2 ∖
>
𝐾,

for any spherical triangle
>
𝐾 ∈ 𝒫 =

{︁>
𝐾𝑖 | 𝑖 = 0, . . . , 𝑛𝑒 − 1

}︁
. Here, int

(︁>
𝐾
)︁

is the interior of
>
𝐾. The unit

multiplier is given by 𝛼1
p𝑛

= (1, 0, 0, 0, 1, 0, 0, 0, . . .)𝑇 .

Definition 2.7. The minimum-entropy moment models using the h𝑛 and p𝑛 basis will be called HFM𝑛 and
PMM𝑛 models, respectively, where 𝑛 is the number of moments (or equivalently, the number of basis functions,
i.e., the length of the vectors of functions h𝑛 and p𝑛).

2.5. Realizability

Since the dual problem (2.18) is strictly convex, a solution exists if and only if the first-order necessary
conditions (compare (2.19)) are fulfilled, i.e., (2.17) is solvable for moment vectors in the ansatz set

𝒜b,𝜂 := {⟨b𝜂′*(𝛼 · b)⟩ |𝛼 ∈ R𝑛}. (2.25)

For Maxwell–Boltzmann entropy, it can be shown [33,59] that this set is equal to the positively realizable set

ℛ+
b :=

{︀
u ∈ R𝑛 | ∃𝜓 ∈ 𝐿1

+(𝑉 ) such that u = ⟨b𝜓⟩
}︀

(2.26)

and that the map 𝛼b,𝜂 : ℛ+
b → R𝑛 given by (2.18) is a diffeomorphism with inverse map

ub,𝜂 : R𝑛 → ℛ+
b , ub,𝜂(𝛼) := ⟨b𝜂′*(𝛼 · b)⟩. (2.27)

Vectors u ∈ ℛ+
b will be called realizable. Similar to the ansatz function, we will often omit one or all of the

subscripts of u and 𝛼 if the corresponding dependencies are clear from the context. Motivated by the mapping
(2.27), in the following, we will also refer to the multipliers 𝛼 as the entropy variables (or transformed variables)
and to the realizable moments u as standard or original variables.

The realizable set is a convex cone that, depending on the choice of basis b, may have a complicated structure.
For example, a moment vector u is realizable with respect to the full-moment basis f𝑁 if some (u-dependent)
Hankel matrices are positive definite [16]. This criterion is hard to test in practice, especially for large polynomial
order𝑁 . As a consequence, given a moment vector u ∈ R𝑛, it can be very difficult to check whether u is realizable
and even more difficult to compute a projection to the realizable set. This is a major problem for numerical
solvers which have to ensure that the approximate solutions stay realizable during the whole solution process
since otherwise the minimum entropy optimization problems are ill-posed.

In contrast, the realizability conditions for the piecewise linear bases are quite simple [59]. In particular, a
moment vector is realizable with respect to h𝑛 if and only if all its entries are positive [58,59]:

ℛ+
h𝑛

:= {u ∈ R𝑛 |𝑢𝑖 > 0 for all 𝑖 ∈ {0, . . . , 𝑛− 1}}. (2.28)

In this case, distinguishing realizable from non-realizable vectors is easy. Still, as we will see in the next section,
also for the piecewise linear bases we have to take some extra measures (in particular, restrict the time step size)
to ensure that the numerical solutions are always realizable. Moreover, for higher-order numerical schemes or
reduced order-models, maintaining realizability at all times (without introducing large errors) is still challenging,
also for the hat function models.

Remark 2.8. Realizability is further complicated by the fact that we usually cannot solve the velocity integrals
analytically and have to approximate them by a numerical quadrature 𝒬. For the full moments, this can have a
severe impact on the realizable set [1,2], i.e., the numerically realizable set ℛ𝒬b obtained by replacing the integral
in (2.26) by its quadrature approximation significantly differs from the realizable set ℛ+

b . In the following, for
notational simplicity, we will neglect the quadrature-related complications and assume that the integrals are
evaluated exactly.
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2.6. Standard finite volume discretization

We consider two discretization schemes for the moment equations (2.12), a standard finite volume scheme
presented in this section and a new scheme based on the identification (2.27) between realizable set and R𝑁
(see Sect. 3). For simplicity, we will restrict ourselves to first-order schemes.

The reference scheme is a standard first-order finite volume scheme. Let 𝒢 = {𝑇𝑖 | 𝑖 ∈ 𝐼𝒢 = {0, . . . , 𝑛x − 1}}
be a numerical grid for the spatial domain 𝑋 with 𝑛x elements such that

𝑋 =
⋃︁
𝑖

𝑇𝑖

and define

u𝑖(𝑡) =
1
|𝑇𝑖|

∫︁
𝑇𝑖

u(𝑡,x) dx.

Integrating (2.12) over a grid cell 𝑇𝑖 and dividing by |𝑇𝑖| gives

𝜕𝑡u𝑖 +
1
|𝑇𝑖|

∫︁
𝑇𝑖

𝑑−1∑︁
𝑘=0

𝜕𝑥𝑘
f𝑘(u)dx =

1
|𝑇𝑖|

∫︁
𝑇𝑖

s(x,u).

Using the midpoint rule to approximate the source term

1
|𝑇𝑖|

∫︁
𝑇𝑖

s(x,u) dx = s(x𝑖,u𝑖) +𝒪(∆𝑥2),

where x𝑖 is the centre of grid cell 𝑇𝑖, we arrive at

𝜕𝑡u𝑖 +
1
|𝑇𝑖|

∫︁
𝑇𝑖

𝑑−1∑︁
𝑘=0

𝜕𝑥𝑘
f𝑘(u)dx = s(x𝑖,u𝑖).

By applying the divergence theorem, we obtain

𝜕𝑡u𝑖 +
1
|𝑇𝑖|

∑︁
𝑗∈𝒩 (𝑖)

∫︁
𝑆𝑖𝑗

F(u)n𝑖𝑗 = s(x𝑖,u𝑖),

where 𝒩 (𝑖) is the set of all indices of neighbors of 𝑇𝑖, 𝑆𝑖𝑗 = 𝑇𝑖 ∩𝑇𝑗 is the interface between grid cells 𝑇𝑖 and 𝑇𝑗 ,
n𝑖𝑗 is the unit outer normal of 𝑇𝑖 on 𝑆𝑖𝑗 and the flux matrix is given as F(u) = (f0(u), . . . , f𝑑−1(u)) ∈ R𝑛×𝑑.

Replacing the flux term by a numerical flux g𝑖𝑗 on 𝑆𝑖𝑗 , we get the semidiscrete form

𝜕𝑡u𝑖 +
1
|𝑇𝑖|

∑︁
𝑗

g𝑖𝑗(u𝑖,u𝑗) = s(u𝑖). (2.29)

In principle, we could use any numerical flux for hyperbolic equations, e.g., the Lax–Friedrichs flux. We will,
however, use a numerical flux which is specifically designed for the equations under consideration. Define the
two half integrals

⟨·⟩+,n =
∫︁

𝑉 +,n

· dΩ and ⟨·⟩−,n =
∫︁

𝑉 −,n

· dΩ,

where
𝑉 +,n = {Ω ∈ 𝑉 |Ω · n > 0}, 𝑉 −,n = {Ω ∈ 𝑉 |Ω · n < 0}.
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In the following, we will omit the normal vector if it is clear from the context and write, e.g., ⟨·⟩+ instead of
⟨·⟩+,n in these cases. The kinetic flux is defined as [20,23,29,61]

g𝑘𝑖𝑛𝑖𝑗 (u𝑖,u𝑗) =
(︂⟨

(Ω · n𝑖𝑗)𝜓u𝑖b
⟩

+,n𝑖𝑗

+
⟨

(Ω · n𝑖𝑗)𝜓u𝑗b
⟩
−,n𝑖𝑗

)︂
|𝑆𝑖𝑗 |. (2.30)

Using the kinetic flux, the semidiscrete form (2.29) becomes

𝜕𝑡u𝑖 +
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜓u𝑖

b
⟩

+
+
⟨

(Ω · n𝑖𝑗)𝜓u𝑗
b
⟩
−

)︂
= s(x𝑖,u𝑖). (2.31)

We will then use an explicit one-step scheme for the time discretization. For example, an explicit Euler dis-
cretization gives the fully discrete form

u𝜅+1
𝑖 = u𝜅𝑖 −∆𝑡

⎛⎝ ∑︁
𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜓u𝜅

𝑖
b
⟩

+
+
⟨

(Ω · n𝑖𝑗)𝜓u𝜅
𝑗
b
⟩
−

)︂
− s(x𝑖,u𝜅𝑖 )

⎞⎠
= u𝜅𝑖 −∆𝑡u↑𝑖

(︀
u𝜅0 ,u

𝜅
1 , . . . ,u

𝜅
𝑛x−1

)︀
,

(2.32)

where u𝜅𝑖 is the approximation of u𝑖 at time step 𝜅 and we defined

u↑𝑖
(︀
u𝜅0 ,u

𝜅
1 , . . . ,u

𝜅
𝑛x−1

)︀
:=

∑︁
𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜓u𝜅

𝑖
b
⟩

+
+
⟨

(Ω · n𝑖𝑗)𝜓u𝜅
𝑗
b
⟩
−

)︂
− s(x𝑖,u𝜅𝑖 ). (2.33)

The scheme (2.32) requires the solution of the minimization problem (2.21) in every time step on each grid cell.
The initial values thus have to be realizable and we have to limit the time step ∆𝑡 to ensure that the scheme
yields realizable moments.

Theorem 2.9. The numerical scheme (2.32) using a structured cubic grid with equally-sized grid cells with
edge length ∆𝑥 is realizability-preserving under the CFL-like condition

∆𝑡 <
1

𝜎max
𝑡 +

√
𝑑

Δ𝑥

(2.34)

where 𝜎max
𝑡 = max

x∈𝑋
𝜎𝑡(x).

Proof. We will generalize the proof of Corollary 3.17 from [58] to several dimensions. Let u𝜅𝑖 be realizable.
By (2.31), (2.14) and the definition of Giso

b (compare (2.9)), we have

u𝜅+1
𝑖 =

⟨
b

⎛⎝𝜓u𝜅
𝑖
−∆𝑡

⎛⎝ ∑︁
𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︁
(Ω · n𝑖𝑗)+𝜓u𝜅

𝑖
+ (Ω · n𝑖𝑗)−𝜓u𝜅

𝑗

)︁
− 𝜎𝑠
|𝑉 |

⟨
𝜓u𝜅

𝑖

⟩
−𝑄+ 𝜎𝑡𝜓u𝜅

𝑖

⎞⎠⎞⎠⟩
=:
⟨︀
b𝜓𝜅+1

𝑖

⟩︀
,

where (Ω · n𝑖𝑗)+ = max(Ω · n𝑖𝑗 , 0) and (Ω · n𝑖𝑗)− = min(Ω · n𝑖𝑗 , 0). We have to show that 𝜓𝜅+1
𝑖 is positive for

all Ω ∈ 𝑉 under the time step restriction (2.34). Neglecting non-negative terms (remember that 𝜎𝑠, 𝜎𝑡 and 𝑄
are assumed to be non-negative), we arrive at

𝜓𝜅+1
𝑖 ≥

⎛⎝1−∆𝑡

⎛⎝𝜎𝑡 +
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(Ω · n𝑖𝑗)+
⎞⎠⎞⎠𝜓u𝜅

𝑖
. (2.35)
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For our uniform equidistant grid, we have |𝑆𝑖𝑗 |
|𝑇𝑖| = 1

Δ𝑥 for all (𝑖, 𝑗) and∑︁
𝑗∈𝒩 (𝑖)

(Ω · n𝑖𝑗)+ = ‖Ω‖1 ≤
√
𝑑‖Ω‖2 ≤

√
𝑑,

where we used that ‖Ω‖2 ≤ 1 for all Ω ∈ 𝑉 holds true both for 𝑉 = [−1, 1] and for 𝑉 = 𝒮2. Consequently,
equation (2.35) becomes

𝜓𝜅+1
𝑖 ≥

(︃
1−∆𝑡

(︃
𝜎𝑡 +

√
𝑑

∆𝑥

)︃)︃
𝜓u𝜅

𝑖
,

which is positive if (2.34) holds. �

The time step restriction due to the cross-section 𝜎𝑡 can be avoided, e.g., by using implicit-explicit methods
where the source term is treated implicitly [55–57, 63]. As in [63], we will use a second-order Strang splitting
scheme for the split system

𝜕𝑡u𝑖 = − 1
|𝑇𝑖|

∑︁
𝑗∈𝒩 (𝑖)

g𝑘𝑖𝑛𝑖𝑗 (u𝑖,u𝑗), (2.36a)

𝜕𝑡u𝑖 = s(x,u𝑖), (2.36b)

i.e., in each time step from 𝑡 to 𝑡 + ∆𝑡 we first solve the (linear) source system (2.36b) analytically (see
Sect. 4) up to the time 𝑡 + Δ𝑡

2 , then we use the result as input to solve the hyperbolic part (2.36a) with a full
timestep ∆𝑡, then we again advance (2.36b) analytically for a half time step Δ𝑡

2 . As the source system is solved
analytically (and thus preserves realizability), we only have to ensure that realizability is preserved when solving
the hyperbolic part. We can thus avoid the time step restriction due to the cross-section 𝜎𝑡.

Corollary 2.10. The splitting scheme based on (2.36) is realizability-preserving under the CFL-like condition

∆𝑡 <
∆𝑥√
𝑑
· (2.37)

Note that we assumed in the proof of Theorem 2.9 that the optimization problems are solved exactly (by
using the exact ansatz functions 𝜓u𝜅

𝑖
). In practice, we have to solve these problems numerically which inevitably

introduces some numerical errors. Fortunately, we can account for these inexact solutions by using a slightly
tighter time step restriction as long as we can control the relative error in the ansatz function (compare [2,3,63]).

Corollary 2.11. Let 𝜀𝛾 ∈ (0, 1). If the numerical solution ̃︀𝛼(u) of the minimum-entropy problem (2.18) fulfils

𝛾(Ω) :=
𝜓u(Ω)

𝜂′*(b(Ω) · ̃︀𝛼(u))
≥ 1− 𝜀𝛾 (2.38)

for all u for which the problem has to be solved during the finite volume scheme, then Corollory 2.10 still holds
if the time step restrictions are tightened to

∆𝑡 <
1− 𝜀𝛾√

𝑑
∆𝑥. (2.39)

We can ensure that (2.38) holds by appropriately choosing the stopping criterion for the Newton scheme that
is used to solve the minimum entropy optimization problems (see Sect. 4). We will always use 𝜀𝛾 = 0.1 which
means that we scale the time step restrictions (2.37) by a safety factor of 0.9.

If we advance the hyperbolic system (2.36a) in time by strong-stability preserving Runge–Kutta schemes [25]
the CFL condition (2.37) still holds as these schemes consist of convex combinations of forward Euler steps. In
particular, we will use Heun’s method in all tests which is of second order.



2578 T. LEIBNER AND M. OHLBERGER

3. New scheme in transformed variables

We will now present the new scheme in transformed variables which uses the identification between the
realizable set ℛ+

b and R𝑛 given by the diffeomorphism (2.27).

3.1. Semidiscrete formulation

To derive the transformed scheme, note that

du
d𝛼

=
d

d𝛼

(︁⟨
b𝜓u

⟩)︁
(2.19)

=
d

d𝛼
(⟨b𝜂′*(𝛼 · b)⟩) =

⟨︀
bb𝑇 𝜂′′* (𝛼 · b)

⟩︀
= H(𝛼) (3.1)

is the (positive definite) Hessian of the objective function in the dual problem (2.18) (compare Sect. 4.1.2).
Further, for the flux

f𝑘(𝛼) = ⟨Ω𝑘b𝜂′*(𝛼 · b)⟩ (3.2)

(compare (2.13)) we have
df𝑘
d𝛼

=
⟨︀
Ω𝑘bb𝑇 𝜂′′* (𝛼 · b)

⟩︀
=: J𝑘(𝛼). (3.3)

In transformed variables, assuming u is sufficiently smooth, the hyperbolic system of equations (2.12) thus
becomes [38]

s(x,u(𝛼)) = 𝜕𝑡u(𝛼) +
𝑑−1∑︁
𝑘=0

𝜕𝑥𝑘
f𝑘(u(𝛼)) =

du
d𝛼

(𝛼)𝜕𝑡𝛼 +
𝑑−1∑︁
𝑘=0

df𝑘
d𝛼

(𝛼)𝜕𝑥𝑘
𝛼

= H(𝛼)𝜕𝑡𝛼 +
𝑑−1∑︁
𝑘=0

J𝑘(𝛼)𝜕𝑥𝑘
𝛼.

(3.4)

A numerical scheme based on the form (3.4) could potentially be much faster than the standard finite volume
scheme (2.32) as it avoids solving the non-linear optimization problem and only needs inversion of the positive
definite symmetric matrix H(𝛼). However, equation (3.4) is not in conservation form which makes it hard to
guarantee that numerical schemes converge to the correct weak solution of (2.12).

On the other hand, if we perform the space discretization first and then transform the semi-discrete equa-
tion (2.29) to the new variables, we arrive at

H(𝛼𝑖)𝜕𝑡𝛼𝑖 +
1
|𝑇𝑖|

∑︁
𝑗∈𝒩 (𝑖)

g𝑖𝑗(u(𝛼𝑖),u(𝛼𝑗)) = s(x𝑖,u(𝛼𝑖)), (3.5)

where 𝛼𝑖 = 𝛼(u𝑖) are the multipliers corresponding to the finite volume averaged moment u𝑖 via the inverse
diffeomorphism (2.18).

Since the space discretization is inherited from the conservative form (2.29), we now only have to discretize
in time and can expect that the moments of the solution converge to the corresponding solution of the non-
transformed scheme. In the following, we will show that this is indeed the case (see Sect. 3.3).

Remark 3.1. A similar idea has been used in [52] to efficiently solve an semi-implicit version of the standard
finite volume scheme (2.32) with Lax–Friedrichs flux. In fact, the scheme presented in the following is equivalent
to using the approach in [52] with explicit time discretization and only performing a single step of the Newton
iteration. The authors in [52] restrict their investigation to slab geometry and note that further research is
needed to examine the efficiency of their scheme in higher dimensions where the Jacobians of the coupled
system are not block-tridiagonal anymore. In contrast, using the fully explicit approach considered here the grid
cells decouple and the equations can be solved independently for each grid cell, also in several dimensions.
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3.2. Entropy stability on the semi-discrete level

On the semidiscrete level, the new scheme is just a variable transformation of the standard scheme. We can
thus show that the solutions of (3.5) also inherit a semidiscrete version of the entropy-dissipation property
(2.23).

Theorem 3.2. Let {𝛼𝑖(𝑡) | 𝑖 ∈ 𝐼𝒢} be a solution of the transformed semidiscrete equation (3.5) on a
(hyper)rectangular grid. Then we have

𝜕𝑡ℋ
(︁
𝜓u(𝛼𝑖)

)︁
+
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜂

(︁
𝜓u(𝛼𝑖)

)︁⟩
+

+
⟨

(Ω · n𝑖𝑗)𝜂
(︁
𝜓u(𝛼𝑗)

)︁⟩
−

)︂
≤ −𝜎𝑎⟨(𝛼𝑖 · b)𝜂′*(𝛼𝑖 · b)⟩+ ⟨(𝛼𝑖 · b)𝑄⟩. (3.6)

Proof. The negativity of the entropy contribution by the scattering term 𝜎𝑠
(︀
Giso

b − I
)︀
u can be shown exactly

as in the continuous case, see, e.g., [58]. The remaining part −𝜎𝑎u + ⟨b𝑄⟩ of the source term directly gives the
right-hand side of (3.6) after multiplication by 𝛼𝑖 (as done below). In the following, for notational simplicity,
we will thus only regard the flux term. To that end, first note that

𝜕𝑡ℋ
(︁
𝜓u(𝛼)

)︁
= 𝜕𝑡

⟨
𝜂
(︁
𝜓u(𝛼)

)︁⟩
= 𝜕𝑡⟨𝜂 ∘ 𝜂′*(𝛼 · b)⟩

= ⟨𝜂′ ∘ 𝜂′*(𝛼 · b)𝜂′′* (𝛼 · b)b⟩ · 𝜕𝑡𝛼 = ⟨(𝛼 · b)𝜂′′* (𝛼 · b)b⟩ · 𝜕𝑡𝛼,
(3.7)

where we used that 𝜂′ ∘ 𝜂′* is the identity by definition of the Legendre transform (see, e.g., [50]). Further, the
Legendre transform fulfills the relation

𝑝𝜂′*(𝑝)− 𝜂*(𝑝) = 𝜂(𝜂′*(𝑝)). (3.8)

Multiplying the semi-discrete equation (3.5) by 𝛼𝑖, we thus obtain (using the kinetic flux (2.30) and neglecting
the source term)

0 = 𝛼𝑖 ·H(𝛼𝑖)𝜕𝑡𝛼𝑖 + 𝛼𝑖 ·
1
|𝑇𝑖|

∑︁
𝑗∈𝒩 (𝑖)

g𝑖𝑗(u(𝛼𝑖),u(𝛼𝑗))

= 𝛼𝑖 ·
⟨︀
bb𝑇 𝜂′′* (𝛼𝑖 · b)

⟩︀
𝜕𝑡𝛼𝑖 + 𝛼𝑖 ·

⎛⎝ ∑︁
𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︁
⟨(Ω · n𝑖𝑗)𝜂′*(𝛼𝑖 · b)b⟩+ + ⟨(Ω · n𝑖𝑗)𝜂′*(𝛼𝑗 · b)b⟩−

)︁⎞⎠
= ⟨(𝛼𝑖 · b)𝜂′′* (𝛼𝑖 · b)b⟩ · 𝜕𝑡𝛼𝑖

+

⎛⎝ ∑︁
𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︁
⟨(Ω · n𝑖𝑗)(𝛼𝑖 · b)𝜂′*(𝛼𝑖 · b)⟩+ + ⟨(Ω · n𝑖𝑗)(𝛼𝑖 · b)𝜂′*(𝛼𝑗 · b)⟩−

)︁⎞⎠
(3.7)
= 𝜕𝑡ℋ

(︁
𝜓u(𝛼𝑖)

)︁
+

⎛⎝ ∑︁
𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︁
⟨(Ω · n𝑖𝑗)(𝛼𝑖 · b)𝜂′*(𝛼𝑖 · b)⟩+ + ⟨(Ω · n𝑖𝑗)(𝛼𝑗 · b)𝜂′*(𝛼𝑗 · b)⟩−

+ ⟨(Ω · n𝑖𝑗)((𝛼𝑖 −𝛼𝑗) · b)𝜂′*(𝛼𝑗 · b)⟩−
)︁)︁

(3.8)
= 𝜕𝑡ℋ

(︁
𝜓u(𝛼𝑖)

)︁
+
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︁
⟨(Ω · n𝑖𝑗)𝜂 ∘ 𝜂′*(𝛼𝑖 · b)⟩+ + ⟨(Ω · n𝑖𝑗)𝜂*(𝛼𝑖 · b)⟩+

+ ⟨(Ω · n𝑖𝑗)𝜂 ∘ 𝜂′*(𝛼𝑗 · b)⟩− + ⟨(Ω · n𝑖𝑗)𝜂*(𝛼𝑗 · b)⟩− + ⟨(Ω · n𝑖𝑗)((𝛼𝑖 −𝛼𝑗) · b)𝜂′*(𝛼𝑗 · b)⟩−
)︁

= 𝜕𝑡ℋ
(︁
𝜓u(𝛼𝑖)

)︁
+
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜂

(︁
𝜓u(𝛼𝑖)

)︁⟩
+

+
⟨

(Ω · n𝑖𝑗)𝜂
(︁
𝜓u(𝛼𝑗)

)︁⟩
−
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+ ⟨(Ω · n𝑖𝑗)𝜂*(𝛼𝑖 · b)⟩+ + ⟨(Ω · n𝑖𝑗)(𝜂*(𝛼𝑗 · b) + ((𝛼𝑖 −𝛼𝑗) · b)𝜂′*(𝛼𝑗 · b))⟩−
)︁

≥ 𝜕𝑡ℋ
(︁
𝜓u(𝛼𝑖)

)︁
+
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜂

(︁
𝜓u(𝛼𝑖)

)︁⟩
+

+
⟨

(Ω · n𝑖𝑗)𝜂
(︁
𝜓u(𝛼𝑗)

)︁⟩
−

+ ⟨(Ω · n𝑖𝑗)𝜂*(𝛼𝑖 · b)⟩
)︂
,

where we used for the estimate that the integral ⟨·⟩− is defined such that Ω·n𝑖𝑗 is negative and that 𝛼 ↦→ 𝜂*(𝛼·b)
is convex (and thus 𝜂*(𝛼𝑗 · b) + ((𝛼𝑖 − 𝛼𝑗) · b)𝜂′*(𝛼𝑗 · b) ≤ 𝜂*(𝛼𝑖 · b)). For a hyperrectangular grid, for each
interface of grid cell 𝑇𝑖 with outer normal n𝑖𝑗 the opposite interface has the same area and outer normal −n𝑖𝑗 .
Thus, the ⟨(Ω · n𝑖𝑗)𝜂*(𝛼𝑖 · b)⟩ terms cancel out which finally gives (3.6). �

Remark 3.3. The entropy density 𝜂 is strictly convex and thus attains its minimum at 𝜓 with 𝜂′(𝜓) = 0.
Consequently, for 𝜓 = 𝜓u(𝛼), the entropy density is minimal if 0 = 𝜂′

(︁
𝜓u(𝛼)

)︁
= 𝜂′ ∘ 𝜂′*(𝛼 · b) = 𝛼 · b. This

explains why absorption decreases the entropy for 𝛼 ·b > 0 and increases the entropy for 𝛼 ·b < 0 (see the right-
hand side of (3.6)). Similarly, a source of particles 𝑄(Ω) with velocity Ω increases the entropy if 𝛼 · b(Ω) > 0
and decreases it otherwise.

Remark 3.4. Since the two schemes are related by the transformation (2.27) on the semidiscrete level, the
entropy dissipation law (3.6) also holds for the standard unsplit finite volume scheme if we replace u(𝛼𝑖) by u𝑖
and 𝛼𝑖 by 𝛼(u𝑖).

3.3. Time discretization

To get a fully discrete numerical scheme, we still have to choose a time discretization for (3.5). To avoid
having to solve a large coupled non-linear system of equations in each time step, we will only consider explicit
schemes. Using, for example, the explicit Euler scheme and the kinetic flux (2.30), the fully discrete form of (3.5)
becomes

𝛼𝜅+1
𝑖 = 𝛼𝜅

𝑖 + ∆𝑡H(𝛼𝜅
𝑖 )−1

⎛⎝s(x𝑖,u(𝛼𝜅
𝑖 ))

−
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︁
⟨(Ω · n𝑖𝑗)𝜂′*(𝛼𝜅

𝑖 · b)b⟩+ +
⟨︀
(Ω · n𝑖𝑗)𝜂′*

(︀
𝛼𝜅
𝑗 · b

)︀
b
⟩︀
−

)︁⎞⎠
= 𝛼𝜅

𝑖 + ∆𝑡H(𝛼𝜅
𝑖 )−1u↑𝑖

(︀
u(𝛼𝜅

0 ),u(𝛼𝜅
1 ), . . . ,u

(︀
𝛼𝜅
𝑛x−1

)︀)︀
=: 𝛼𝜅

𝑖 + ∆𝑡H(𝛼𝜅
𝑖 )−1u↑,𝜅𝑖 ,

(3.9)

where the update term u↑𝑖 has been defined in (2.33). However, a time discretization using fixed time steps
might not be a suitable choice for the transformed scheme.

Example 3.5. Consider exemplarily the plane-source test (compare Sect. 5) using an equidistant grid with
𝑛𝑥 = 240 elements for the domain 𝑋 = [−1.2, 1.2]. We thus have ∆𝑥 = 2.4

240 = 10−2. The initial value in this
test is a small isotropic vacuum density 𝜓vac = 5 · 10−7 plus a Dirac delta at 𝑥 = 0 which is split into the grid
cells 𝑇left = 𝑇119 and 𝑇right = 𝑇120 adjacent to 0. The initial values for the finite volume scheme thus are given
as

u0
119 = u0

120 =
1

∆𝑥

Δ𝑥∫︁
0

⟨b(𝜇)𝜓𝑡=0(𝑥, 𝜇)⟩d𝑥 =
1

∆𝑥

Δ𝑥∫︁
0

⟨b(𝜇)(𝜓vac + 𝛿0(𝑥))⟩d𝑥 =
(︂
𝜓vac +

1
2∆𝑥

)︂
⟨b⟩ ≈ 50⟨b⟩

and u0
𝑖 = 𝜓vac⟨b⟩ = 5 · 10−7⟨b⟩ for 𝑖 /∈ {119, 120}. The initial values are thus isotropic with local particle

densities 𝜌𝑖 := 𝜌(u0
𝑖 ) given as 𝜌119 = 𝜌120 = ⟨50⟩ = 100 and 𝜌𝑗 =

⟨︀
5 · 10−7

⟩︀
= 10−6 for 𝑗 /∈ {119, 120}. The

multipliers corresponding to the isotropic moment with local particle density 𝜌 are

𝛼iso
b (𝜌) = 𝜂′

(︂
𝜌

⟨1⟩

)︂
𝛼1

b (3.10)
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with corresponding ansatz function

𝜓iso
b (𝜌) = 𝜂′*

(︀
𝛼iso

b (𝜌) · b
)︀

= 𝜂′*

(︂
𝜂′
(︂
𝜌

⟨1⟩

)︂
𝛼1

b · b
)︂

= 𝜂′*

(︂
𝜂′
(︂
𝜌

⟨1⟩

)︂)︂
=

𝜌

⟨1⟩
,

where we used again that 𝜂′ and 𝜂′* are inverse functions. If we now focus on cell 𝑇121 and ignore the source
term s(x121,u(𝛼121)), the update (3.9) takes the form

𝛼1
121 = 𝛼0

121 −∆𝑡H(𝛼121)−1

⎛⎝ ∑︁
𝑗∈{120,122}

1
∆𝑥

(︁
⟨|𝜇|b𝜂′*(𝛼121 · b)⟩+ + ⟨−|𝜇|b𝜂′*(𝛼𝑗 · b)⟩−

)︁⎞⎠
= 𝛼0

121 −∆𝑡H(𝛼121)−1

⎛⎝ ∑︁
𝑗∈{120,122}

1
∆𝑥

(︃⟨
|𝜇|b𝜌121

⟨1⟩

⟩
+

+
⟨
−|𝜇|b 𝜌𝑗

⟨1⟩

⟩
−

)︃⎞⎠
≈ 𝛼0

121 + ∆𝑡H(𝛼121)−1

(︃
1

∆𝑥

⟨
|𝜇|b𝜌120

⟨1⟩

⟩
−

)︃
,

where the approximation in the last step is based on the observation that 𝜌121 = 𝜌122 = 10−6 are much smaller
than 𝜌120 = 100 (see above). Inserting the definitions of the Hessian matrix (4.3) and the values of ∆𝑥, 𝜌120 and
𝜌121 we finally obtain

𝛼1
121 ≈ 𝛼0

121 + ∆𝑡
⟨︀
bb𝑇 5 · 10−7

⟩︀−1(︀
100⟨|𝜇|b 50⟩−

)︀
= 𝛼0

121 + 1010 ∆𝑡M−1⟨|𝜇|b⟩−.

For the full-moment M𝑁 models using Legendre polynomials as a basis, the mass matrix M is the unit matrix
and the basis functions b are approximately of unit order. We thus see that the update term is in the order of
1010 which is why a very small time step ∆𝑡 has to be chosen initially to limit the time stepping error.

The example shows that the transformed scheme is expected to require very small time steps in some instances,
e.g., whenever there are large differences in the particle density between adjacent cells (which is initially the
case for all our numerical tests, see Sect. 5). On the other hand, the time step does not have to be restricted to
ensure realizability which may allow for time steps that are even larger than those used in the standard scheme
in some situations. A time stepping scheme using a fixed time step ∆𝑡 would thus be very inefficient for the
new scheme.

Instead, we will use the Runge–Kutta method by Bogacki and Shampine [8] which adaptively chooses the
time step according to an embedded error estimate (see Sect. 4.2.1 for details). This way, we can use large
time steps where possible without introducing uncontrollable errors in time regions where a small time step is
required. If we define

𝛼↑𝑖
(︀
𝛼𝜅

0 ,𝛼
𝜅
1 , . . . ,𝛼

𝜅
𝑛x−1

)︀
:= H(𝛼𝜅

𝑖 )−1u↑𝑖
(︀
u(𝛼𝜅

0 ), . . . ,u
(︀
𝛼𝜅
𝑛x−1

)︀)︀
, (3.11)

the Runge–Kutta update takes the form

𝛼𝜅+1
𝑖 = 𝛼𝜅

𝑖 + ∆𝑡
𝑠−1∑︁
𝑝=0

𝑏̌𝑝𝛼
↑
𝑖

(︀
𝛽𝑝0, . . . ,𝛽

𝑝
𝑛x−1

)︀
(3.12a)

with stages 𝛽𝑝𝑖 given by

𝛽𝑝𝑖 = 𝛼𝜅
𝑖 + ∆𝑡

𝑝−1∑︁
𝑞=0

𝑎̌𝑝𝑞𝛼
↑
𝑖

(︀
𝛽𝑞0, . . . ,𝛽

𝑞
𝑛x−1

)︀
. (3.12b)

Here, 𝑠 is the number of stages in the Runge–Kutta scheme 𝑎̌𝑝𝑞, 𝑏̌𝑝 are the Runge–Kutta coefficients and we
neglected the varying time step for notational simplicity.
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3.4. Convergence properties

The new scheme calculates approximate solutions in transformed (𝛼) variables. However, we are usually
interested in the solution in original (u) variables. We can easily obtain such a solution by applying the diffeo-
morphism (2.27) to the transformed solution. However, a priori, it might be possible that this transformation
amplifies the discretization errors and destroys the accuracy of the scheme. Luckily, we can show that the order
of convergence of the time stepping scheme is preserved by the transformation.

Theorem 3.6. Let {𝛼𝑖(𝑡) | 𝑖 ∈ 𝐼𝒢} be a solution of the transformed semidiscrete equation (3.5) and let
{u𝑖(𝑡) := u(𝛼𝑖(𝑡)) | 𝑖 ∈ 𝐼𝒢} be the corresponding solution of the untransformed equation (2.29). Let further {𝛼𝜅

𝑖 }
be approximations of 𝛼𝑖 at discrete time points 𝑡𝜅 obtained by a time stepping scheme of order 𝑟, i.e.

𝛼𝜅
𝑖 = 𝛼𝑖(𝑡𝜅) + r𝜅𝑖

with r𝜅𝑖 = 𝒪((∆𝑡)𝑟). If the spectral norm ‖H‖ of the Hessian is bounded, then the corresponding moments
converge with the same order, i.e.,

u(𝛼𝜅
𝑖 ) = u𝑖(𝑡𝜅) +𝒪((∆𝑡)𝑟).

Proof. Using a zeroth order Taylor approximation with Lagrange form of the remainder, we have

u(𝛼𝜅
𝑖 ) = u(𝛼𝑖(𝑡𝜅) + r𝜅𝑖 ) = u(𝛼𝑖(𝑡𝜅)) + H

(︁
𝛼𝜉
𝑖

)︁
r𝜅𝑖 = u𝑖(𝑡𝜅) + H

(︁
𝛼𝜉
𝑖

)︁
r𝜅𝑖

with 𝛼𝜉
𝑖 = (1− 𝜉)𝛼𝑖(𝑡𝜅) + 𝜉r𝜅𝑖 for some 𝜉 ∈ [0, 1]. Due to the boundedness of H, we further have⃦⃦⃦

H
(︁
𝛼𝜉
𝑖

)︁
r𝜅𝑖
⃦⃦⃦
≤
⃦⃦⃦
H
(︁
𝛼𝜉
𝑖

)︁⃦⃦⃦
‖r𝜅𝑖 ‖ = 𝒪(∆𝑡𝑟).

�

For arbitrary 𝛼, we cannot expect the upper bound on ‖H‖ required by Theorem 3.6 to hold. However, note
that

w𝑇H(𝛼)w =
⟨

(b ·w)2𝜂′′* (𝛼 · b)
⟩
≤
(︂

max
Ω∈𝑉

‖b(Ω)‖2
)︂
‖w‖2⟨𝜂′′* (𝛼 · b)⟩. (3.13)

For Maxwell–Boltzmann entropy, we have 𝜂′′* = 𝜂′* and thus

⟨𝜂′′* (𝛼 · b)⟩ = ⟨𝜂′*(𝛼 · b)⟩ = 𝜌(u(𝛼))

is the local particle density corresponding to the multipliers 𝛼. Due to the conservation properties, the local
particle density remains bounded for the solutions of the moment equations. As a consequence, ‖H(𝛼)‖ should
be bounded for 𝛼 close enough to a solution of (3.5).

Once we have a 𝑟-th order time discretization for (3.5), we thus can expect the corresponding moments
to converge with the same order in practice, at least for time steps ∆𝑡 small enough. However, the order
of convergence of Runge–Kutta schemes is usually shown under the assumption of Lipschitz continuity of the
ordinary differential equation’s right-hand side (see, e.g., [28], Thm. II.3.4). In our case, we have to show Lipschitz
continuity of the functions 𝛼↑𝑖 . Under some additional assumptions, we indeed obtain Lipschitz continuity for
multipliers 𝛼 in a domain 𝐴.

Theorem 3.7. The function 𝛼↑𝑖 is Lipschitz-continuous on 𝐴𝑛x if there exist constants 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 ∈ R>0

such that for all 𝛼 ∈ 𝐴 ⊂ R𝑛 we have

𝑐1 ≤ ‖H(𝛼)‖ ≤ 𝑐2, (3.14a)
𝜌(u(𝛼)) = ⟨𝜂′*(𝛼 · b)⟩ ≤ 𝑐3, (3.14b)

⟨𝜂′′* (𝛼 · b)⟩ ≤ 𝑐4, (3.14c)
⟨𝜂′′′* (𝛼 · b)⟩ ≤ 𝑐5. (3.14d)
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The proof is technical and can be found in Section A.
For Maxwell–Boltzmann entropy, since 𝜂′* = 𝜂′′* = 𝜂′′′* = exp and by definition of the Hessian (4.3), we see that

(3.14b) implies (3.14c), (3.14d) and the upper bound in (3.14a). Moreover, all the assumptions (3.14a)–(3.14d)
are fulfilled if ‖𝛼‖ remains bounded.

Corollary 3.8. For Maxwell–Boltzmann entropy, 𝛼↑𝑖 is Lipschitz-continuous on 𝐴𝑛x if 𝐴 is bounded.

3.5. Regularization

As discussed above, the bound (3.14b) on the local particle density 𝜌 can be expected to hold in practice.
Unfortunately, this is not true for the lower bound on ‖H‖. Considering again (3.13), we see that we cannot
expect the lower bound to hold as long as 𝜂′′* is not bounded from below. In particular, for Maxwell–Boltzmann
entropy, equation (3.14) would require a lower bound on the ansatz density 𝜓u(𝛼𝑖). Even if such a lower bound
exists for the exact solution, it might be extremely small. Factoring in numerical errors, it is clear that in
practice this bound will not always hold. In addition, H may be very badly conditioned, up to the point that
it might be numerically singular.

For the standard scheme, where H shows up as the Hessian of the objective function in the minimum entropy
optimization problem (2.18), we thus use several regularization techniques to ensure that the Newton scheme
always converges (see Sect. 4.1.5). While most of these techniques are not easily carried over to the transformed
scheme, we here investigate two approaches to regularize the new scheme.

3.5.1. Isotropic regularization of the Hessian

As a first approach, we regularize the Hessian matrix by adding a small multiple of the mass matrix M =⟨︀
bb𝑇

⟩︀
. Exemplarily, for the explicit Euler scheme, the update formula (3.9) then becomes

𝛼𝜅+1
𝑖 = 𝛼𝜅

𝑖 + ∆𝑡(H(𝛼𝜅
𝑖 ) + 𝜖M)−1u↑,𝜅𝑖 . (3.15)

This corresponds to adding a small isotropic particle density to the derivative of the ansatz function in the
Hessian

H(𝛼) + 𝜖M =
⟨︀
bb𝑇 𝜂′′* (𝛼 · b)

⟩︀
+ 𝜖
⟨︀
bb𝑇

⟩︀
=
⟨︀
bb𝑇 (𝜂′′* (𝛼 · b) + 𝜖)

⟩︀
.

and ensures that the lower bound in (3.14a) holds for the regularized matrix.
To analyze the introduced error, note that without regularization the update in the Euler scheme is

u
(︀
𝛼𝜅+1
𝑖

)︀
= u

(︁
𝛼𝜅
𝑖 + ∆𝑡H(𝛼𝜅

𝑖 )−1u↑,𝜅𝑖
)︁

= u(𝛼𝜅
𝑖 ) +

du
d𝛼

(𝛼𝜅
𝑖 )∆𝑡H(𝛼𝜅

𝑖 )−1u↑,𝜅𝑖 + r

(3.1)
= u(𝛼𝜅

𝑖 ) + ∆𝑡u↑,𝜅𝑖 + r = u𝜅+1
𝑖 + r

(3.16)

with remainder of order 𝒪((∆𝑡)2). Using the regularization (3.15), the local truncation error becomes

u
(︀
𝛼𝜅+1
𝑖

)︀
= u𝜅+1

𝑖 −∆𝑡𝜖M(H(𝛼𝜅
𝑖 ) + 𝜖M)−1u↑,𝜅𝑖 + r.

Remember that the terms in u↑,𝜅𝑖 , except for the constant source term ⟨b𝑄⟩, all scale with either 𝜓u(𝛼𝜅
𝑖 ) or

𝜓u(𝛼𝜅
𝑗 ), 𝑗 ∈ 𝒩 (𝑖). Thus, if 𝛼𝜅

𝑖 corresponds to an ansatz density 𝜓u(𝛼𝜅
𝑖 ) which is significantly greater than 𝜖, the

additional error term

∆𝑡𝜖M(H(𝛼𝜅
𝑖 ) + 𝜖M)−1u↑,𝜅𝑖 ≈ ∆𝑡𝜖M(H(𝛼𝜅

𝑖 ))−1u↑,𝜅𝑖 = 𝒪(∆𝑡𝜖)

does not negatively impact the rate of convergence as long as we choose 𝜖 as 𝒪(∆𝑡). Similarly, if 𝜓u(𝛼𝜅
𝑖 ), 𝜓u(𝛼𝜅

𝑗 )

and 𝑄 are small (more precisely, 𝒪(𝜖)), the additional error is of order 𝒪(∆𝑡𝜖 1
𝜖 𝜖) = 𝒪(∆𝑡𝜖). However, if 𝜓u(𝛼𝜅

𝑖 )

is small, but at least one of 𝜓u(𝛼𝜅
𝑗 ) and 𝑄 is not, we obtain an additional error of 𝒪(∆𝑡𝜖 1

𝜖 1) = 𝒪(∆𝑡). In this
case, i.e., if the particle density in grid cell 𝑇𝑖 is small and there is a strong source or an influx from an neighbor
entity 𝑇𝑖, the regularization (3.15) might negatively affect the solution. For higher-order time stepping schemes,
the error analysis gets much more involved, but we expect similar results, i.e., significant regularization errors
only in regions with large differences in particle densities between adjacent cells.
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3.5.2. Direct constraints for the entropy variables

Instead of modifying the Hessian, we might try to directly enforce the boundedness of the entropy variables
required in Corollary 3.8. For example, we could replace all multipliers 𝛼 with ‖𝛼‖ > 𝛼max for some 𝛼max ∈ R>0

by the closest multiplier 𝛼reg with ‖𝛼reg‖ ≤ 𝛼max.
We tested this approach in several numerical tests and found that, for general bases b, the regularization

either introduced large errors into the solution (for 𝛼max small) or did not improve the numerical stability (for
large 𝛼max).

A notable exception is the hat function basis h𝑛. Since the hat functions are non-negative, remembering that
the ansatz density has the form exp(𝛼 ·h𝑛) (for Maxwell–Boltzmann entropy), we see that large positive entries
of 𝛼 correspond to large ansatz densities and large (in absolute values) negative entries correspond to small
ansatz densities. Thus, if we enforce a lower bound on the entries of 𝛼 by replacing all entries 𝛼𝑙 < 𝛼min by
𝛼min for some negative 𝛼min ∈ R, we would expect in general that the introduced error is small since we are
only replacing entries corresponding to very small ansatz densities by entries corresponding to slightly larger
but still very small densities.

Indeed, in our numerical tests, the error is very small (see Sect. 5.3.2). Note, however, that there might be
cases where also this regularization technique leads to significant errors. Consider, e.g., a highly anisotropic
particle distributions in one dimension where the density is very low at one boundary of an interval in the
velocity partition and very high at the other boundary. Here, replacing the entry corresponding to the very low
density might significantly alter the ansatz density in that interval.

For the other bases (p𝑛 and f𝑁 ), a similar regularization technique which replaces only multipliers corre-
sponding to small ansatz densities is not straightforward since for these bases there is no clear correspondence
between the sign of 𝛼 entries and the magnitude of the ansatz density.

3.6. Entropy stability on the fully discrete level

In general, we cannot expect that an explicit time discretization preserves the entropy-stability of the semidis-
crete scheme. However, we can enforce this property by using a relaxation of the standard Runge–Kutta
scheme [48]. To that end, we collect the multipliers for each grid cell in a single vector, i.e., we define

𝛼̂ :=

⎛⎜⎝ 𝛼0(𝑡)
...

𝛼𝑛x−1(𝑡)

⎞⎟⎠ and 𝛼̂↑(𝛼̂) =

⎛⎜⎝ 𝛼↑0(𝛼0, . . . ,𝛼𝑛x−1)
...

𝛼↑𝑛x−1(𝛼0, . . . ,𝛼𝑛x−1)

⎞⎟⎠ =

⎛⎜⎝ H(𝛼0)−1u↑0(𝛼0, . . . ,𝛼𝑛x−1)
...

H(𝛼𝑛x−1)−1u↑𝑛x−1(𝛼0, . . . ,𝛼𝑛x−1)

⎞⎟⎠.
Further, we define the total entropy as

ℋ̂(𝛼̂) :=
∑︁
𝑖∈𝐼𝒢

ℋ
(︁
𝜓u(𝛼𝑖)

)︁
=
∑︁
𝑖∈𝐼𝒢

⟨
𝜂
(︁
𝜓u(𝛼𝑖)

)︁⟩
=
∑︁
𝑖∈𝐼𝒢

⟨𝜂(𝜂′*(𝛼𝑖 · b))⟩.

Then

ℋ̂′(𝛼̂) =

⎛⎜⎝ H(𝛼0)𝛼0

...
H(𝛼𝑛x−1)𝛼𝑛x−1,

⎞⎟⎠
(where we again used that 𝜂′ ∘ 𝜂′* is the identity) and thus

d
d𝑡
ℋ̂(𝛼̂(𝑡)) = ℋ̂′(𝛼̂(𝑡)) · 𝛼̂↑(𝛼̂(𝑡))

=
∑︁
𝑖∈𝐼𝒢

𝛼𝑖 · u↑𝑖 (𝛼0, . . . ,𝛼𝑛x−1)
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(Proof of)(3.6)

≤
∑︁
𝑖∈𝐼𝒢

(⟨(𝛼𝑖 · b)𝑄⟩ − 𝜎𝑎⟨(𝛼𝑖 · b)𝜂′*(𝛼𝑖 · b)⟩

−
∑︁

𝑗∈𝒩 (𝑖)

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜂

(︁
𝜓u(𝛼𝑖)

)︁⟩
+

+
⟨

(Ω · n𝑖𝑗)𝜂
(︁
𝜓u(𝛼𝑗)

)︁⟩
−

)︂⎞⎠
=
∑︁
𝑖∈𝐼𝒢

(⟨(𝛼𝑖 · b)𝑄⟩ − 𝜎𝑎⟨(𝛼𝑖 · b)𝜂′*(𝛼𝑖 · b)⟩)

−
∑︁

𝑆𝑖𝑗 boundary interface

|𝑆𝑖𝑗 |
|𝑇𝑖|

(︂⟨
(Ω · n𝑖𝑗)𝜂

(︁
𝜓u(𝛼𝑖)

)︁⟩
+

+ ⟨(Ω · n𝑖𝑗)𝜂(𝜓𝑏(x𝑖𝑗))⟩−

)︂
, (3.17)

i.e., the change in total entropy is bounded by entropy fluxes over the domain boundary and entropy production
via particle absorption or creation. Here, x𝑖𝑗 is the center of interface 𝑆𝑖𝑗 and 𝜓𝑏 is the boundary value of the
kinetic equation (2.1c). If we use an explicit Runge–Kutta scheme of the form (3.12) for time discretization of
(3.5), we would expect the total entropy to approximately evolve as

ℋ̂
(︀
𝛼̂𝜅+1)︀ = ℋ̂(𝛼̂𝜅) + ∆𝑡

𝑠−1∑︁
𝑝=0

𝑏̌𝑝ℋ̂′
(︁
𝛽̂
𝑝
)︁
· 𝛼̂↑

(︁
𝛽̂
𝑝
)︁
, (3.18)

where 𝛽̂
𝑝

=
(︀
𝛽𝑝0, . . . ,𝛽

𝑝
𝑛x−1

)︀𝑇 contains the collected Runge–Kutta stages (compare the definition (3.12) of the
Runge–Kutta scheme). Though (3.18) does not hold exactly, we can enforce this property by introducing a
relaxation into the Runge–Kutta scheme (3.12) and replace (3.12a) by the relaxed version [48]

𝛼𝜅+1
𝑖,𝛾 = 𝛼𝜅

𝑖 + 𝛾𝜅∆𝑡
𝑠−1∑︁
𝑝=0

𝑏̌𝑝𝛼
↑
𝑖

(︁
𝛽̂
𝑝
)︁
, (3.19)

where 𝛾𝜅 is calculated by finding a root of

𝑟(𝛾) := ℋ̂
(︀
𝛼̂𝜅+1
𝛾

)︀
− ℋ̂(𝛼̂𝜅)− 𝛾∆𝑡

𝑠−1∑︁
𝑝=0

𝑏̌𝑝ℋ̂′
(︁
𝛽̂
𝑝
)︁
· 𝛼̂↑

(︁
𝛽̂
𝑝
)︁

=
∑︁
𝑖∈𝐼𝒢

(︃⟨︀
𝜂 ∘ 𝜂′*(𝛼𝜅+1

𝑖,𝛾 · b)
⟩︀
− ⟨𝜂 ∘ 𝜂′*(𝛼𝜅

𝑖 · b)⟩ − 𝛾∆𝑡
𝑠−1∑︁
𝑝=0

𝑏̌𝑝𝛽
𝑝
𝑖 · u

↑
𝑖

(︁
𝛽̂𝑝

)︁)︃
.

(3.20)

If ℋ̂ is convex, 𝑟(𝛾) is also convex and has exactly two roots, one at zero and one close to one [48] (for ∆𝑡 small
enough). Unfortunately, in our case, ℋ̂ is not necessarily convex since 𝜂 ∘ 𝜂′* is not necessarily convex. In the
Maxwell–Boltzmann case, for example, we have 𝜂 ∘ 𝜂′*(𝑝) = exp(𝑝)(𝑝− 1) which is convex only for 𝑝 > −1 (and
concave for 𝑝 < −1). However, in our numerical experiments, we always found a root of 𝑟(𝛾) close to one.

Remark 3.9. We could use the same approach to obtain entropy-stability for the standard finite volume
scheme. However, in that case, each time we want to evaluate 𝑟(𝛾) for a new 𝛾 we would have to solve the
minimum-entropy optimization problem on each grid cell (to evaluate the equivalent of ℋ̂

(︀
𝛼̂𝜅+1
𝛾

)︀
), which would

make the root finding procedure prohibitively expensive.

Additional details on our implementation of the relaxed Runge–Kutta scheme can be found in Section 4.2.1.

4. Implementation details

We implemented both schemes in the generic C++ framework DUNE [6,7], more specifically in the DUNE generic
discretization toolbox dune-gdt [54] and the dune-xt-modules [42,43]. The implementation is available in [37].
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4.1. Standard finite volume scheme

The implementation for the standard finite volume scheme is taken from [63]. Here, we only shortly recall the
relevant parts. Further, we will restrict ourselves to Maxwell–Boltzmann entropy (2.20) such that the ansatz
becomes 𝜓u = 𝜂′*(𝛼(u) · b) = exp(𝛼(u) · b).

4.1.1. Analytic solution of the source system

As mentioned above, we use a second-order splitting approach (see (2.36)) to handle the source term inde-
pendently of the flux term. Remember that we assume that the scattering is isotropic and that the parameters
𝜎𝑠, 𝜎𝑎, 𝑄 are time-independent. The source system (2.36b) on grid cell 𝑇𝑖 thus takes the form

𝜕𝑡u𝑖(𝑡) =
(︀
𝜎𝑠(x𝑖)Giso

b − 𝜎𝑡(x𝑖)I
)︀
u𝑖(𝑡) + ⟨b𝑄⟩. (4.1)

Since (4.1) is linear in u𝑖 with time-independent system matrix, we can solve it explicitly using matrix exponen-
tials and the variation of constants formula. Under the additional assumption that the source is also isotropic,
i.e., that 𝑄 does not depend on Ω, the solution to (4.1) is (see [63] for a detailed derivation)

u𝑖(𝑡) = e−𝜎𝑎𝑡
(︀
e−𝜎𝑠𝑡u𝑖(0) +

(︀
1− e−𝜎𝑠𝑡

)︀
Giso

b u𝑖(0)
)︀

+
1− e−𝜎𝑎𝑡

𝜎𝑎
⟨b⟩𝑄.

Note that (4.1.1) can easily be calculated without any matrix operations due to the rank one structure of Giso
b

(see (2.10)).

4.1.2. Solving the optimization problem

The second part of the standard splitting scheme, the flux system (2.36a), is advanced in time using Heun’s
method, which is a second-order strong-stability preserving Runge–Kutta scheme [25]. In each stage of the time
stepping scheme, we have to solve the optimization problem (2.17) once in each cell. This usually accounts for
the majority of computation time which makes it mandatory to pay special attention to the implementation of
the optimization algorithm.

Recall that the objective function in the dual problem (2.18) is

𝑝(𝛼) = 𝑝u,b,𝜂(𝛼) = ⟨𝜂*(b ·𝛼)⟩ − u ·𝛼.

The gradient and the Hessian of 𝑝 are given by

q(𝛼) = qu,b,𝜂(𝛼) = ∇𝛼𝑝(𝛼) = ⟨b𝜂′*(b ·𝛼)⟩ − u (4.2)

and
H(𝛼) = Hb,𝜂(𝛼) = D𝛼q(𝛼) =

⟨︀
bb𝑇 𝜂′′* (b ·𝛼)

⟩︀
, (4.3)

respectively. Note that 𝜂′′* > 0 since we assumed that 𝜂 (and thus also 𝜂*) is strictly convex, and remember
that the basis functions contained in b are linearly independent. As a consequence, the Hessian H is positive
definite (and thus invertible).

To find a minimizer of 𝑝, we are searching for a root of the gradient q using Newton’s method. The Newton
direction d(𝛼) solves

H(𝛼)d(𝛼) = −q(𝛼).

The update takes the form
𝛼𝑘+1 = 𝛼𝑘 + 𝜁𝑘d(𝛼𝑘)

where 𝜁𝑘 is determined by a backtracking line search such that

𝑝(𝛼𝑘+1) < 𝑝(𝛼𝑘) + 𝜉𝜁𝑘q(𝛼𝑘) · d(𝛼𝑘)
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with 𝜉 ∈ (0, 1). In our implementation, we always use 𝜉 = 10−3.
To avoid numerical problems for moments corresponding to a very small local particle density, before entering

the Newton algorithm for the moment vector u we rescale it to

𝜑 :=
u
𝜌(u)

such that 𝜌(𝜑) = 1. If the optimization algorithm for 𝜑 stops at an iterate 𝛽, we return

̃︀𝛼 = 𝛽 + 𝛼1
b log

(︂
𝜌(u)

𝜌(u(𝛽))

)︂
(4.4)

(remember that 𝛼1
b is the multiplier with the property that 𝛼1

b ·b ≡ 1, see Def. 2.2). This ensures that the local
particle density is preserved exactly:

𝜌(u(̃︀𝛼)) = ⟨exp(b · ̃︀𝛼)⟩ = ⟨exp(b · 𝛽)⟩ 𝜌(u)
𝜌(u(𝛽))

= 𝜌(u). (4.5)

Given tolerances 𝜏 ∈ R>0, 𝜀𝛾 ∈ (0, 1), we will stop the Newton iteration at iterate 𝛽 if

(1)
⃦⃦
q𝜑(𝛽)

⃦⃦
2
< 𝜏 :=

⎧⎨⎩
𝜏

(1+‖𝜑‖2)𝜌(u)+𝜏
if b = f𝑁

𝜏

(1+√𝑛‖𝜑‖2)𝜌(u)+
√
𝑛𝜏

if b ∈ {h𝑛,p𝑛},
and (4.6)

(2) u − (1− 𝜀𝛾)u(̃︀𝛼) ∈ ℛ+
b , (4.7)

where ̃︀𝛼 is obtained from 𝛽 by (4.4) and, as always, 𝑛 is the number of moments. As shown in [63], the first
criterion guarantees that the gradient of the objective function is sufficiently small, i.e., ‖qu(̃︀𝛼)‖2 ≤ 𝜏 . The sec-
ond criterion (4.7) ensures that (2.38) holds and thus that the whole scheme is realizability-preserving although
the optimization problems are only solved approximately. In our implementation, we choose the tolerances as
𝜏 = 10−9 and 𝜀𝛾 = 0.1.

Checking the second stopping criterion (4.7) might be quite expensive (depending on the basis b). We
therefore check this criterion only if additionally

1− 𝜀𝛾 < exp(−(‖d(𝛽)‖1 + |log 𝜌(u(𝛽))|)) (4.8)

holds. This criterion approximately ensures (2.38) (see [3, 58]) but, in general, is much easier to evaluate
than (4.7). For the HFM𝑛 models, however, checking realizability is just checking positivity, so in that case
we do not need to check (4.8) first.

4.1.3. Caching

We use two types of caching for the standard scheme. First, for each grid cell we store the moment vector
u𝜅−1
𝑖 from the last time step and the corresponding multiplier ̃︀𝛼𝜅−1

𝑖 obtained by entropy minimization. In this
way we do not have to solve the optimization problem again if the moment vector in that grid cell did not
change during the last time step. In addition, we store the last few solutions of the minimization problem with
corresponding input moment vectors per thread of execution, so if several grid cells contain the same values, we
only have to perform the optimization once and then use the cached values. If we encounter a moment vector
that can not be found in the caches, we take the moment vector that is closest to the input vector (in one-norm)
and use the corresponding multiplier 𝛼 as an initial guess.



2588 T. LEIBNER AND M. OHLBERGER

4.1.4. Linear solvers

In each iteration of the Newton scheme described above and in each time step of the new scheme, we have
to apply the inverse of a positive definite Hessian matrix. We assemble the matrices using the quadratures
described in Section 4.1.6. Inversion is then done by computing a Cholesky factorization of the assembled
matrix. For the full moment models, the Hessian matrices are dense, so we use the LAPACK [5] routine dpotrf
to compute the factorization and then use dtrsv to actually invert the linear systems. For the PMM𝑛 models,
the Hessian is block-diagonal (each block corresponds to one interval/triangle of the partition) such that we can
perform the Cholesky decomposition independently for each block. For the HFM𝑛 models in one dimension,
the Hessian matrices are tridiagonal, so we can use the specialized LAPACK algorithms dpttrf and dpttrs.
In three dimensions, the HFM𝑛 Hessians are not tridiagonal anymore but still sparse, so we use the sparse
SimplicialLDLT solver from the Eigen library [26].

4.1.5. Regularization

Though the Hessian H(𝛼) is positive definite and thus invertible, it may be very badly conditioned, espe-
cially for multipliers 𝛼 corresponding to moments u(𝛼) close to the boundary of the realizable set. Moreover,
in general, the integral in the definition (4.3) of H can only be calculated approximately using a numerical
quadrature (see Sect. 4.1.6). If the quadrature is not sufficiently accurate, the approximate Hessian may have a
significantly worse condition or may even be numerically singular.

To improve this situation, a change of basis can be performed after each Newton iteration such that the
Hessian at the current iterate becomes the unit matrix in the new basis [3]. We use this procedure in our
implementation for all bases except for the hat function bases h𝑛 where the change of basis would destroy the
sparsity of the Hessian [63].

For tests with strong absorption, the local particle density may become very small in parts of the domain. As
a consequence, also the entries of the Hessian H become very small which may cause numerical problems. We
thus choose a “vacuum” density 𝜓vac with corresponding local particle density 𝜌vac = ⟨𝜓vac⟩. We then enforce
a minimum local particle density of 𝜌vac by replacing moments u with local particle density 𝜌(u) < 𝜌vac by the
isotropic moment with vacuum density 𝜌vac. Obviously, this approach leads to a violation of the conservation
properties of the scheme. However, since we only replace moments with very small local particle densities by
moments with slightly larger but still very small densities, the effect should be negligible in practice.

Finally, if the optimizer fails for a moment vector u (for example, by reaching a maximum number of iterations
or being unable to solve for the Newton direction) we use the isotropic-regularization technique from [3], i.e.,
we replace u by the regularized moment vector

u𝑟 := (1− 𝑟)u + 𝑟Giso
b u. (4.9)

and retry the optimization. If the optimizer still fails, we increase 𝑟 until the optimizer succeeds, which is
guaranteed at least for 𝑟 = 1 where u𝑟 is isotropic. In our implementation, the sequence of regularization
parameters 𝑟 is chosen as

{︀
10−8, 10−6, 10−4, 10−3, 0.01, 0.05, 0.1, 0.5, 1

}︀
. As the regularized moment vector u𝑟

always has the same local particle density as the original moment vector u, this technique does not violate the
mass conservation of the scheme but it may potentially completely alter the solution. In practice, regularization
is only used rarely and if it is used, a small regularization parameters is usually sufficient.

4.1.6. Quadrature rules

We have to approximate the same integrals for both schemes, so we use the quadratures and quadrature
orders that have been determined in [63] for the standard scheme. Using these quadratures, the quadrature
error should usually be negligible compared to the moment approximation error [63].

In one dimension, we use Gauss–Lobatto quadratures. These quadratures include the endpoints of the interval
in the set of quadrature points which ensures that the numerically realizable set and the analytically realizable
set agree for the HFM𝑛 and PMM𝑛 models (see [63] for details). For these models, we use a quadrature of order
15 per interval of the partition 𝒫. For the full moment M𝑁 models, we split the domain in the two intervals
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[−1, 0] and [0, 1] that are needed for calculation of the kinetic flux and use a quadrature of order 2𝑁 + 40 on
each interval.

In three dimensions, for the HFM𝑛 and PMM𝑛 models, we use Fekete quadratures on each spherical triangle
of the triangulation 𝒫. Similar to the one-dimensional situation, these quadratures include the vertices of the
triangle which is again important for realizability considerations [63]. We use a quadrature order of 15 for the
HFM6 and PMM32 models and a quadrature order of 9 for the other HFM𝑛 and PMM𝑛 models. For the M𝑁

models, we use tensor-product quadrature rules of order 2𝑁 + 8 on the octants of the sphere.

4.1.7. Implementation of initial and boundary conditions

The initial values for the finite volume scheme are computed by integration of the kinetic equation’s initial
values (2.1b):

u0
𝑖 =

1
|𝑇𝑖|

∫︁
𝑇𝑖

⟨𝜓𝑡=0(x,Ω)b⟩dx

Since the initial values in our test cases are isotropic (see Sect. 5), i.e., 𝜓𝑡=0(x,Ω) = 𝜓𝑡=0(x), we only have to
compute the velocity integral of the basis ⟨b⟩. For this integral, we use the same quadratures as in Section 4.1.6
to ensure that the result is numerically realizable. Except for the plane-source and point-source tests, the initial
values are constant in each grid cell 𝑇𝑖, so we use the midpoint quadrature to evaluate the spatial integral. For
the plane-source test, we always use an even number of grid cells and distribute the Dirac delta at 𝑥 = 0 into the
two adjacent grid cells, i.e., the initial value in these grid cells is set to the constant 𝜓𝑡=0|𝑇𝑖

(x) = 𝜓vac+ 1
2Δ𝑥 . For

the point-source test, we use a Gauss–Legendre tensor product quadrature of order 20 to evaluate the spatial
integrals for the initial values.

Boundary conditions for the moment equations are implemented by replacing the ansatz function 𝜓u𝑗
belong-

ing to a grid cell 𝑇𝑗 outside of the computational domain (such cells often called “ghost cells”) by the boundary
condition 𝜓𝑏 of the kinetic equation (2.1c) in the computation of the kinetic flux (2.30).

4.2. New scheme

For the new scheme, evaluation of quadrature rules and boundary conditions and assembly and inversion
of the Hessian matrices is performed exactly in the same way as for the standard scheme (see Sects. 4.1.4,
4.1.6 and 4.1.7. To get the initial values

{︀
𝛼0
𝑖

}︀
for the new scheme, we solve the minimum entropy problems

for the initial moments
{︀
u0
𝑖

}︀
which are computed as described in Section 4.1.7 using the Newton scheme from

Section 4.1.2.

4.2.1. Embedded and relaxed Runge–Kutta schemes

Our time stepping scheme is outlined in Algorithm 1. As mentioned above (see Sect. 3.3), we use embedded
Runge–Kutta methods (see, e.g., [28], Chapt. II.4) to adaptively choose the time step for the new scheme. These
schemes include a second set of coefficients {̃︀𝑏𝑝}𝑝=0,...,𝑠−1 to obtain a different approximation (usually of lower
order) of the solution at the next time step which is used for error estimation. More precisely, in addition to
the approximation 𝛼𝜅+1

𝑖 given by (3.12a) we compute a second approximation

̃︀𝛼𝜅+1
𝑖 = 𝛼𝜅

𝑖 + ∆𝑡
𝑠−1∑︁
𝑝=0

̃︀𝑏𝑝𝛼↑𝑖 (︀𝛽𝑝0, . . . ,𝛽𝑝𝑛x−1

)︀
(4.10)

in each grid cell 𝑇𝑖 and regard the error between these two approximations to decide if the time step is appro-
priate. As an error measure, we use the mixed error (see [28], Chapt. II.4, Eq. (4.11))

err
(︁
𝛼̂𝜅+1, ̃︀𝛼𝜅+1

)︁
= max
𝑙=0,...,𝑀−1

|𝛼𝑙 − ̃︀𝛼𝑙|
τabs + max(𝛼𝑙, ̃︀𝛼𝑙)τrel

· (4.11)
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Here, τabs and τrel are absolute and relative error tolerances and 𝛼𝑙 and ̃︀𝛼𝑙 are the 𝑀 = 𝑛 · 𝑛x components of
the coefficient vectors

𝛼̂𝜅+1 =
(︁(︀

𝛼𝜅+1
0

)︀𝑇
, . . . ,

(︀
𝛼𝜅+1
𝑛x−1

)︀𝑇)︁𝑇
and ̃︀𝛼𝜅+1 =

(︂(︁̃︀𝛼𝜅+1
0

)︁𝑇
, . . . ,

(︁̃︀𝛼𝜅+1
𝑛x−1

)︁𝑇)︂𝑇
(4.12)

respectively. For simplicity, we will always use τabs = τrel = τ in the following. We use an automatic step size
control which tries to select the time step as large as possible while still maintaining an error (4.11) below one,
i.e., at 𝑡 = 0 we start with a very small time step of ∆𝑡0 = 10−15 and then compute the new time step ∆𝑡new

from the previous time step ∆𝑡 by (compare [28], Chapt. II.4, Eq. (4.13))

∆𝑡new(∆𝑡, err) = ∆𝑡 ·min

(︃
max

(︂
0.8 ·

(︂
1

err

)︂ 1
𝑞+1.

,
1
5

)︂
, 5

)︃
(4.13)

where 𝑞 is the order of the lower-order scheme in the adaptive Runge–Kutta method, 0.8 is a safety factor and
the minimum and maximum ensure that the time step does not change too fast. If err > 1 or if an exception is
thrown during the computation (e.g., if a matrix inversion fails or infs or NaNs are detected in the results) we
recompute the solutions with halved time step Δ𝑡

2 .

Algorithm 1: Adaptive time stepping scheme.
1 Δ𝑡← 10−15, 𝑡← 0, 𝛼̂𝜅 ← 𝛼̂0;
2 while 𝑡 < 𝑡end do
3 𝑒 = 1000; // Make sure the following while-loop is entered

4 while 𝑒 > 1 do
5 try:
6 Compute 𝛼̂𝜅+1, ̃︀𝛼𝜅+1 from 𝛼̂𝜅 by applying (3.12a), (4.10) on each grid cell.

7 catch (Linear solver failures or invalid values (infs or NaNs) in 𝛼̂𝜅+1, ̃︀𝛼𝜅+1):
8 Δ𝑡← Δ𝑡/2;
9 continue;

10 end
11 Δ𝑡accepted ← Δ𝑡;

12 𝑒← err
(︀
𝛼̂𝜅+1, ̃︀𝛼𝜅+1

)︀
; // see (4.11)

13 Δ𝑡← Δ𝑡new(Δ𝑡, 𝑒); // see (4.13)

14 end
15 𝑡← 𝑡 + Δ𝑡accepted;

16 𝛼̂𝜅 ← 𝛼̂𝜅+1;

17 end

For implementation of the relaxed Runge–Kutta scheme, we simply compute (compare (3.20))

∑︁
𝑖∈𝐼𝒢

𝑠−1∑︁
𝑝=0

𝑏̌𝑝𝛽
𝑝
𝑖 · u

↑
𝑖

(︀
𝛽𝑝0, . . . ,𝛽

𝑝
𝑛x−1

)︀
on the fly while computing our Runge–Kutta scheme. Once the time step is accepted by the adaptive control,
we compute

∆𝑡
𝑠−1∑︁
𝑝=0

𝑏̌𝑝𝛼
↑
𝑖

(︀
𝛽𝑝0, . . . ,𝛽

𝑝
𝑛x−1

)︀
(which is needed to compute 𝛼𝜅+1

𝑖,𝛾 , see (3.19))) and use a simple bisection algorithm to find the root 𝛾𝜅 of 𝑟(𝛾)
that is close to 1. We then compute 𝛼𝜅+1

𝑖 = 𝛼𝜅+1
𝑖,𝛾𝜅

according to (3.19).
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5. Numerical experiments

We want to investigate the behaviour of the new scheme in several benchmarks. For that purpose, we use the
same test cases as in [63]. Our C++ implementation and the generated data can be found in [37].

In the following, we will briefly restate the test cases. For a more detailed description and plots of (numerical)
solutions see [63] and references therein. As the minimum entropy models cannot handle zero densities, we use
the small isotropic distribution 𝜓vac = 5 · 10−7 to approximate a vacuum. Note that we increased the vacuum
density slightly compared to [63] to avoid numerical difficulties with very low densities. We use the following
test cases:

– Plane-source. In this test case, all mass is concentrated in the middle of the computational domain 𝑋 =
[−1.2, 1.2], i.e., we use the isotropic initial distribution

𝜓𝑡=0(𝑧, 𝜇) = 𝜓vac + 𝛿(𝑧) for 𝑧 ∈ 𝑋.

See Section 4.1.7 for details on the implementation of this initial condition. The physical coefficients are set
to 𝜎𝑠 ≡ 1, 𝜎𝑎 ≡ 0 and 𝑄 ≡ 0. Vacuum boundary conditions are used.

– Source-beam. In this test case, a strongly anisotropic beam enters the computational domain 𝑋 = [0, 3] from
the left. In addition, a source is present in the interval [1, 1.5]. More precisely, the approximate vacuum is
used as initial condition and boundary condition on the right-hand side, and the left boundary distribution
is

𝜓𝑏(𝑡, 0, 𝜇) =
𝑒−105(𝜇−1)2⟨︀
𝑒−105(𝜇−1)2

⟩︀·
The parameters are set to

𝜎𝑎(𝑧) =

{︃
1 if 𝑧 ≤ 2,
0 else,

𝜎𝑠(𝑧) =

⎧⎪⎨⎪⎩
0 if 𝑧 ≤ 1,
2 if 1 < 𝑧 ≤ 2,
10 else

𝑄(𝑧) =

{︃
1
2 if 1 ≤ 𝑧 ≤ 1.5,
0 else.

– Point-source. The point-source test is a smoothed three-dimensional analogue of the plane-source test. The
initial condition in the domain 𝑋 = [−1, 1]3 is

𝜓𝑡=0(x,Ω) = 𝜓vac +
1

4𝜋4𝜎3
exp

(︃
−|x|

2

𝜋𝜎2

)︃
,

where 𝜎 = 0.03. The parameters are the same as in the plane-source test.
– Checkerboard. The checkerboard test case is loosely based on a part of a reactor core [11]. The domain
𝑋 = [0, 7]3 is split into scattering and absorbing regions, 𝑋 = 𝑋𝑠 ∪𝑋𝑎, where

𝑋𝑎 =

{︃
x = (𝑥, 𝑦, 𝑧)𝑇 ∈ [1, 6]3

⃒⃒⃒⃒
⃒ (⌊𝑥⌋+ ⌊𝑦⌋+ ⌊𝑧⌋) mod 2 = 1,

x /∈ [3, 4]3 ∪ [3, 4]× [5, 6]× [3, 4]

}︃

The parameters are

𝜎𝑠(x) =

{︃
1 if x ∈ 𝑋𝑠,

0 else,
, 𝜎𝑎(x) =

{︃
0 if x ∈ 𝑋𝑠,

10 else,
, 𝑄(x) =

{︃
1
4𝜋 if x ∈ [3, 4]3,
0 else.

Vacuum initial and boundary conditions are used.
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– Shadow. The shadow test case represents an isotropic particle stream that is partially blocked by an absorber,
resulting in a shadowed region behind the absorber. The particle stream is given by an isotropic boundary
condition with density 𝜌 = 2 at 𝑥 = 0. On the other boundaries of the domain 𝑋 = [0, 12] × [0, 4] × [0, 3]
and as an initial condition, the approximate vacuum is prescribed. The parameters are as follows:

𝜎𝑠(x) = 𝑄(x) = 0

𝜎𝑎(x) =

{︃
50 if x ∈ [2, 3]× [1, 3]× [0, 2]
0 else.

Whenever we need a reference scheme, we use the splitting scheme based on (2.36). The obvious choice might
be the unsplit scheme (2.32), as the new scheme is just a coordinate transformation of this scheme. However,
the splitting scheme is easy to implement and avoids the time step restriction due to the physical parameters.
For the new scheme, a similar splitting approach is not straightforward. Thus, using (2.32) as a reference would
arguably give the new scheme an unfair advantage.

5.1. Convergence

Under some assumed bounds on the Hessian H and the local particle density 𝜌, the transformed scheme will
always converge to the same solution as the splitting scheme (2.36) (see Sect. 3.4). However, in practice, taking
numerical errors into account, these bounds may not always hold (in particular the lower bound on the norm
of H).

In our first experiment, we thus want to validate that the two schemes converge to the same solutions also
in our numerical test cases. For that purpose, we compute numerical solutions with both schemes for varying
tolerance and time step parameter, respectively, and calculate the errors with respect to a reference solution
(new scheme with τ = 10−9).

Remark 5.1. It might be more intuitive to compute the reference solution using the standard finite volume
scheme with a very small time step ∆𝑡. However, since we only want to show that both schemes converge to
the same solution, it does not matter whether we use the standard scheme or the new transformed scheme as a
reference, and computing the new scheme for a small tolerance τ is significantly faster.

As an error measure, we choose the 𝐿1-error of the piecewise constant finite volume approximations 𝐸1(u) =
‖u − uref‖𝐿1(𝑋) at the final time 𝑡end. We use a relatively coarse grid for all test cases to be able to compute
the results for very small tolerance parameter τ or time step ∆𝑡 in reasonable time. However, we confirmed at
least for large parameters (τ ∈ {10−2, 10−3}, ∆𝑡 = ∆𝑡max) that the results are similar for the grid sizes and
final times used in Section 5.5 (see Tabs. S1 and S2 in the supplementary materials).

As can be seen in Figure 1 (for the plane source test) and Figures S1 and S2 in the supplementary materials
(source-beam and point-source), both schemes nicely converge to the same solution. For the standard scheme,
the error is basically independent of the model which is not true for the new scheme. This is probably due
to the fact that for the new scheme, the error estimate during the time stepping is calculated in transformed
(𝛼-)variables while the final error is plotted in the original (u-)variables. The 𝐿∞-errors behave similarly (data
not shown).

5.2. Time stepping behavior

Now that we have confirmed also numerically that the new scheme indeed yields the same solutions as the
standard scheme, we would like to investigate the properties of the new scheme. We will focus on the time
stepping behavior first. We will only present the results for some exemplary models in the one-dimensional test
cases here. Results for additional models and for the three-dimensional tests are similar and can be found in
the supplementary materials (Figs. S3–S10).

Figure 2 shows the time steps chosen by the adaptive time stepping scheme (with a tolerance of τ = 10−3) in
the one-dimensional test cases for some exemplary models. As expected, for all models, the new scheme takes
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Figure 1. 𝐿1-error against reference solution (new scheme with τ = 10−9) in the plane-source
test (𝑛𝑥 = 240, 𝑡end = 0.5). (a) New scheme for decreasing tolerance parameter τ. (b) Standard
scheme for decreasing time step ∆𝑡.

very small time steps initially. This can be explained by the large time derivatives of the solution in 𝛼-variables
at the beginning of the test (see Example 3.5).

In the plane-source test (Fig. 2a), the time steps are rapidly and almost monotonically increasing for all
models and finally reach a time step that is even above the maximal realizability-preserving time step (2.37)
used in the standard scheme (except for the PMM2 model). In the source-beam test (Fig. 2b), the time steps
are also increasing initially but are less stable afterwards. In particular for the M𝑁 models there are strong
oscillations in the time step sizes.

To test the influence of the tolerance parameter τ on the time steps, we compute the test cases for the M10

model again for varying τ. The M10 model was chosen since it is more complex than the M2 model, not as
expensive to compute as the M100 model and still shows the time step oscillations in the source-beam test.
However, we also tested several other models and found that they all show a similar behavior with respect to
the τ tolerance. As can be seen in Figure 3, for small tolerances (τ ≤ 10−3), increasing τ basically just scales
the time step curve by a constant factor which is due to the third-order time-stepping scheme (increasing τ by a
factor of 10 results in an increase of the time step by a factor of approximately 3

√
10). However, this scaling does

not extend to large tolerance parameters (τ = 10−1, 10−2). In particular, for the plane-source test, increasing
the tolerance above τ = 10−3 does not result in larger time steps (see Fig. 3a). In addition, the time steps
oscillate much more. This is due to the fact that the time step predicted from the standard error estimate for
these tolerances is often too large, leading to infs and NaNs during the computations and a subsequent reduction
in the time step (compare Sect. 4.2.1).

Finally, we measured the times needed to compute a single time step of the new scheme or the standard
scheme for several models (see Fig. 4). For the new scheme, the time needed to compute a time step is basically
constant, except for time steps which have to be recomputed because the error estimate is above the tolerance. In
contrast, time step computation times of the standard scheme are increasing over time. This is probably mostly
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Figure 2. Time steps taken in the adaptive Runge–Kutta scheme. For clarity, instead of
plotting each time point we plot the mean of 10 time steps each to avoid small oscillations. The
solid horizontal line represents the upper bound (2.37) on the time step used in the standard
splitting scheme (which approximately agrees with the bound (2.34) because 1

Δ𝑥 ≫ 𝜎𝑡 for
these test cases). (a) Plane-source test, 𝑛𝑥 = 1200, 𝑡end = 1, τ = 0.001. (b) Source-beam test,
𝑛𝑥 = 1200, 𝑡end = 2.5, τ = 0.001.

due to the caching used in the implementation of the standard scheme (see Sect. 4.1.3) which is particularly
effective during the first time steps where most grid cells still contain the initial approximate vacuum. The new
scheme does not use any caching. As a consequence, the standard scheme is faster for the first few time steps
but after a short time the new scheme’s time steps are computed significantly faster.

As can also be seen from Figure 4, recomputations of time steps in the adaptive time stepping scheme (which
show up in Fig. 4 as spikes in the computation times of the new scheme) occur rarely, except for the M𝑁 models
in the source-beam test. This is in line with the erratic time stepping behavior that we observed for these models
(compare Figs. 2b and 3b) and can be improved using regularization (see next section).

5.3. Regularization

5.3.1. Isotropic regularization of the Hessian

In the previous section, we saw that the time steps for the M10 model in the source-beam test (Fig. 3b)
oscillate a lot between 𝑡 = 0.5 and 𝑡 = 1 and sometimes even get as small as 10−8. These oscillations are mostly
caused by ill-conditioned Hessian matrices which arise from the interaction between the highly anisotropic
particle beam from the left boundary and the particles from the source 𝑄 in the absorbing but non-scattering
region [0, 1].

A possible workaround for this problem is the regularization (3.15) which adds a small isotropic particle
density during computation of the Hessian matrix. As can be seen when comparing Figures 5a to 3b, this
indeed improves the time step sizes and removes the very small time steps. As a consequence, the regularized
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Figure 3. Time steps for the M10 model in the plane-source (𝑛x = 1200, 𝑡end = 1) and the
source-beam test (𝑛x = 600, 𝑡end = 2.5) for different tolerance parameters τ. Again, the solid
horizontal line represents the upper bound (2.37) and the time steps are plotted as the mean
of 10 time steps each. (a) Plane-source. (b) Source-beam.

Figure 4. Wall times for computing a single time step of new and standard schemes (using
𝛼 and u variables, respectively) in one-dimensional tests. (a) Plane-source test, 𝑛𝑥 = 1200,
𝑡end = 1, τ = 0.001. (b) Source-beam test, 𝑛𝑥 = 1200, 𝑡end = 2.5, τ = 0.001.
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Figure 5. Effect of the regularization (3.15) on time steps and errors for the M10 model in
the source-beam test. (a) Time steps for different tolerance parameters τ using a regularization
parameter of 𝜖 = 10−7. (b) Errors (𝐿1-error with respect to the non-regularized solution)
and number of time steps 𝑛𝑡 for τ = 10−9 and varying regularization parameter 𝜖. The non-
regularized version uses 𝑛𝑡 = 3918 time steps.

scheme needs significantly less time steps (see Fig. 5b). For example, the regularized scheme with regularization
parameter 𝜖 = 10−7 only needs 𝑛𝑡 = 1495 time steps instead of 3918 for the non-regularized scheme.

The price to pay for the regularization is an additional error in the order of 10−3–10−4 at the final time 𝑡end

(see Fig. 5b for the 𝐿1 error, the 𝐿∞ error is of the same order (data not shown)). This seems to be below the
typical error introduced by the temporal discretization in the standard scheme (see Sect. 5.5.1 and Fig. S1b).

Increasing the regularization parameter 𝜖 above 10−7 increases the regularization error but does not further
decrease the number of time steps.

5.3.2. Regularization for the hat function basis

For the hat function (HFM𝑛) models, we can use a different regularization technique that might result in
smaller regularization errors. Although, according to our testing, time step declines are much less common for
the HFM𝑛 models than for the M𝑁 models, we observed such declines for the HFM6 model in the shadow test
around 𝑡 = 8 (see Fig. 6a). In this test, (almost) all particles enter the domain with positive 𝑥-velocity. Since
there is no scattering and a strongly absorbing region, the density of particles with negative 𝑥-velocity becomes
very low in parts of the domain which also leads to large (in absolute values) negative entries in the 𝛼̂ coefficient
vectors. To improve the situation, we tested the regularization technique introduced in Section 3.5.2: Whenever
the time step falls below ∆𝑡min = 0.01, we replace all entries in the 𝛼̂ vector that are smaller than 𝛼min = −1000
by 𝛼min.

As can be seen in Figure 6b, this simple regularization technique removes the very small time steps. The
overall number of time steps is reduced from 1152 to 547. The 𝐿1-error at the final time 𝑡end between the results
with and without regularization is only about 10−6 in this case.



ENTROPY-VARIABLE-BASED DISCRETIZATIONS FOR MINIMUM ENTROPY MOMENT MODELS 2597

Figure 6. Time steps taken by the adaptive Runge–Kutta scheme in the HFM6 shadow test
case (𝑛x = 60× 20× 15, 𝑡end = 20) for a tolerance of τ = 0.01. The solid and dotted horizontal
line represent the time step restrictions (2.37) and (2.34), respectively. (a) No regularization.
The time step sharply declines around 𝑡 = 8. (b) When enforcing a lower bound of −1000 on
the entries of the multipliers 𝛼, the time steps stay above 10−3.

5.4. Entropy stability

To test the entropy stability properties of the different schemes, we calculate the entropy ℋ̂ (see Sect. 3.6) at
each time step and compute the difference between the actual entropy ℋ̂

(︀
𝛼̂𝜅+1)︀ and the entropy given by the

discrete entropy law. To that end, let ℋ̂est(𝛼̂
𝜅) be the entropy estimated for the next time point 𝑡𝜅+1 from 𝛼̂𝜅

using the entropy law (3.18). To get an compact error measure, we use the cumulated difference between actual
entropy and estimated entropy, i.e.,

∆ℋ̂ :=
𝑛𝑡−1∑︁
𝜅=0

⃒⃒⃒
ℋ̂
(︀
𝛼̂𝜅+1)︀− ℋ̂est(𝛼̂

𝜅)
⃒⃒⃒
∆𝑡𝜅

We tested several representative moment models in the one-dimensional test cases using the new transformed
scheme with either the non-modified Runge–Kutta scheme (RK) or the relaxed Runge–Kutta scheme (RRK).
We restrict our investigation to one dimension here since we do not expect a qualitatively different behavior in
three dimensions.

As can be seen in Table 1, with the non-relaxed Runge–Kutta scheme the difference ∆ℋ̂ between the entropy
of the solutions and the discrete entropy law (3.18) is in the order of 10−4 to 10−7. The entropy ℋ̂(𝛼̂𝜅) is in the
order of 100 to 1000, so the relative error is quite low even without relaxation. If relaxation is used, the error
vanishes for all test cases (up to a remainder in the order of 10−12 which is the tolerance parameter for our root
finding algorithm). However, the relaxation comes at a price, as can be seen from the computation times. With
relaxation, the computations take at least twice as long (for the M50 model in the source-beam test), up to a
factor of about 20 for the HFM50 model in the plane-source test. Note that we use a simple custom bisection
root finding algorithm to compute the relaxation parameters and that we did not optimize the relaxed version
for performance, so it should be possible to significantly reduce the performance impact of the relaxation. Still,
given that the error is already quite low without relaxation, it seems advisable to simply use the non-modified
Runge–Kutta scheme unless exact entropy stability is required in the application.
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Table 1. Entropy stability results. The average absolute value of the entropy is computed as
|ℋ̂|av = 1

𝑡end

∑︀𝑛𝑡−1
𝜅=0 |ℋ̂(𝛼̂𝜅)|∆𝑡𝜅. RK: Transformed scheme using Runge–Kutta method. RRK:

Transformed scheme using relaxed Runge–Kutta method.

Wall time Δℋ̂
Test case Model |ℋ̂|av RK (s) RRK (s) Factor RK RRK

Plane-source HFM10 877 22 170 7.7 3.9e-04 4.4e-13
Plane-source HFM50 878 81 1689 20.8 4.7e-04 4.5e-13
Plane-source PMM10 881 24 135 5.6 3.7e-05 4.7e-13
Plane-source PMM50 872 83 1181 14.2 5.9e-05 4.6e-13
Plane-source M10 865 45 189 4.2 2.5e-04 4.4e-13
Plane-source M50 876 253 821 3.3 3.2e-04 4.6e-13
Source-beam HFM10 411 41 442 10.8 1.3e-04 1.1e-12
Source-beam HFM50 500 140 2073 14.8 2.2e-05 1.1e-12
Source-beam PMM10 336 38 474 12.5 3.7e-04 2.5e-12
Source-beam PMM50 492 122 1413 11.6 5.2e-06 1.1e-11
Source-beam M10 507 955 3519 3.7 3.8e-07 1.4e-11
Source-beam M50 518 1827 3398 1.9 1.4e-05 1.3e-12

5.5. Performance

We now want to compare the performance of the new scheme to the standard splitting scheme. Since the
standard scheme uses a fixed time step ∆𝑡 and the new scheme uses adaptive time steps controlled by the
tolerance parameter τ, we first have to decide on how to choose these parameters to have a fair comparison.

5.5.1. Choice of time stepping parameters

For the standard scheme, we have an upper bound ∆𝑡max := 1−𝜀𝛾√
𝑑

∆𝑥 (see Eq. (2.39)) on the time step due
to realizability considerations. If we again consider the convergence results for the standard scheme (compare
Figs. 1b, S1b, S2b and Tabs. S1, S2) we see that choosing ∆𝑡 = ∆𝑡max results in a time stepping error in
the order of about 10−2 to 10−3. Note that the errors regarded here are solely due to the time stepping, i.e.,
the solution both schemes are converging to in the convergence tests is the exact solution of the semidiscrete
moment equation (2.29). Since we are usually interested in an approximation of the solution to the kinetic
equation (2.1), we also have to take errors into account that arise due to the space discretization and due
to the moment approximation. Choosing a time step smaller than ∆𝑡max thus would only be reasonable if
the time stepping error is of the same order or even larger than the errors due to the spatial discretization
and the moment approximation. This seems to be the case, e.g., for the checkerboard test where the moment
approximation errors are relatively small and for the shadow test which has a large final time 𝑡end such that
time discretization errors accumulate over time [63]. However, for most of the regarded test cases, the errors
introduced by the moment approximation (compare [63]) are much larger than the error of up to 10−2 we
observed due to the time stepping. We thus always use ∆𝑡 = ∆𝑡max with 𝜀𝛾 = 0.1 for the standard scheme.

By the same arguments, we could use a tolerance parameter of τ = 0.1 for the new scheme which also yields
time stepping errors in the order of 10−3 to 10−2 in our tests. However, we observed in Section 5.2 that, with
with the current standard error estimate, increasing the tolerance above about 10−3 to 10−2 does not necessarily
improve performance since the time steps do not increase accordingly. In some cases, we even observed increased
computation times for larger tolerances as time steps had to be recomputed more frequently. We thus choose a
tolerance of τ = 10−3 in slab geometry and τ = 10−2 in three dimensions.

Note that with this choice of parameters, the time stepping error is probably considerably lower for the new
scheme. For the test cases where this error is insignificant, it might be possible to choose larger time steps for
the new scheme with an improved error estimate that is specifically adapted to the moment equations. However,
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we did not find such an error estimate yet. On the other hand, for test cases (e.g., checkerboard) where the time
stepping error is relevant, a smaller time step would have to be used for the standard scheme which then would
be significantly slower than the following results indicate. Alternatively, adaptive time stepping could also for
the standard scheme. However, finding an adaptive time stepping scheme of the desired order that (provenly)
preserves realizability may be difficult. The Bogacki–Shampine method used here is realizability-preserving
(with the same times step restriction (2.34) as the forward Euler method) since the intermediate stages are
just convex combinations of forward Euler steps and the zero vector. Similarly, the strong-stability-preserving
embedded methods from the preprint [15] could be used. For the Dormand–Prince method [17], on the other
hand, it is not clear under which conditions realizability is preserved (due to the negative coefficients in its
Butcher tableau). In contrast, any adaptive time stepping scheme can be used for the new scheme.

For the standard scheme, we use the regularization techniques described in Section 4.1.2 to ensure that we
are always able to solve the optimization problems. For the new scheme, we do not use any regularization.

5.5.2. Timings

Computational times for the one-dimensional test cases can be found in Figure 7. As expected (see [63]),
computational times are increasing linearly (HFM𝑛, PMM𝑛) or quadratically (M𝑁 ).

In the plane-source test (see Fig. 7a), the new scheme is several times faster than the standard scheme for
all models except for the low-order HFM𝑛 and PMM𝑛 models.

For the source-beam test, we saw in Section 5.2 that the time steps significantly vary over time for some
models. In particular, the M𝑁 models show strongly oscillating time steps. These oscillations seem to be much less
pronounced for the higher-order models (see Supplementary Figs. S4 and S5). As a consequence, computational
times for the new scheme are not increasing monotonically with the moment order (see Fig. 7b), e.g., computing
the M20 model takes longer than computing the M60 model. Thus, the standard scheme is faster for the low-
order models and again significantly slower for the high-order models. Except for the HFM2 and PMM2 model,
the HFM𝑛 and PMM𝑛 models do not show these oscillations and again reach time steps that are larger than
∆𝑡max after some time. Consequently, overall computation times are faster with the new scheme.

For all models, the time steps are initially very small (see analysis in Sect. 5.1) but are rapidly increasing
(see Fig. 2a). After some time, the time steps are even larger than the time steps taken by the standard scheme
for most models. In addition, the time to compute a time step is (on average) much smaller for the new scheme
(see Fig. 4a). This is especially true for the M𝑁 models which is why the speed-up for these models is significantly
larger than for the HFM𝑛 and PMM𝑛 models where solving the optimization problem is already quite fast.

In the three-dimensional point-source test, the final time 𝑡end = 0.75 is relatively small and none of the
models reaches ∆𝑡max during the test (compare Supplementary Fig. S6). Consequently, the computation times
are only slightly faster for most models with the new scheme (see Fig. 8a). The higher-order PMM𝑛 models
show considerably smaller time steps than the other models and thus overall computation times are even higher
than with the standard scheme.

The checkerboard test case has strongly absorbing regions and thus is the first test where the time step
restrictions (2.37) and (2.34) significantly differ. After some time, the time steps are mostly between these two
bounds and even exceed the upper bound several times (compare Supplementary Fig. S6b). The higher order
M𝑁 models show some oscillations in the beginning but much less than in the source-beam test and the time
steps always stay relatively large. Thus, overall computation times are greatly improved and up to ten times
as fast as with the standard splitting scheme (see Fig. 8b). In addition, as mentioned earlier, for this test case
the increased accuracy of the new scheme might be important, as the error due to the timestepping with the
standard scheme are of the same order as the error due to the spatial and moment approximation. Again, the
speed-up is smaller for the HFM𝑛 models and non-existent for the PMM𝑛 models.

The shadow test case is highly challenging for the numerical solvers. In the absorbing domain, very small
local particle densities occur which lead to numerical problems when inverting the Hessians (whose entries scale
with the density). In addition, as only right-going particles are entering the domain, densities for particles
with negative 𝑥-velocity decline much faster than positive 𝑥-velocity densities, resulting in very anisotropic
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Figure 7. Computational times versus moment number 𝑛 for the two schemes in the one-
dimensional tests (𝑛𝑥 = 1200 grid elements, τ = 0.001, no parallelization). (a) Plane-source.
(b) Source-beam.

distributions and ill-conditioned Hessians. For the standard scheme, we are dealing with these problems by
enforcing a minimum density and using an isotropic regularization technique to replace ill-conditioned moment
vectors (see Sect. 4.1.2). These techniques, in particular the isotropic regularization, introduce additional errors
which in theory might completely alter the solution. In practice, regularization is usually mainly applied to
moment vectors with very low densities and thus does not destroy accuracy. However, it should be noted that
this is not guaranteed automatically and has to be verified for every new application of the scheme. In our case,
regularization is massively used by the M𝑁 and PMM𝑛 models. The HFM𝑛 models do not use regularization.

For the new scheme, for this comparison, we did not use any regularization. Thus, it is particularly remarkable
that, for the M𝑁 models, the new scheme is about as fast as the standard splitting scheme, although frequent
recomputations can be observed (see Supplementary Fig. S3d) and the time steps are considerably smaller and
highly varying (compare Supplementary Fig. S8).

For the PMM𝑛 and higher-order HFM𝑛 models, computational times are several times higher for the new
scheme than for the standard splitting scheme (see Fig. 8c). For these models, the time steps are converging
to a value well above the maximum time step of the unsplit scheme but also significantly below the time step
of the splitting scheme (compare Supplementary Fig. S7). In addition, computing a time step for these models
is already quite fast with the standard scheme and the speed-up of the new scheme is not large enough to
compensate the smaller time step (compare Supplementary Fig. S3c). Note however that the PMM𝑛 models do
not show significant oscillations or other problems though the standard scheme has to use regularization. To
be competitive with respect to computation times in this test case, the new scheme probably also needs to use
a splitting technique. Though there is no formal limit on the time step for the new scheme due to the strong
absorption, we would expect the approximation error (and thus the time step) to be dominated by this term.
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Figure 8. Computational times versus moment number 𝑛 for the two schemes in the three-
dimensional tests (τ = 0.01, 32 threads, 1000 tasks per thread) and parallel scaling. (a) Point-
source problem (𝑛x = 503, 𝑡end = 0.75). The new scheme is slightly faster for the M𝑁 and HFM𝑛

models and slower for the PMM𝑛 models. (b) Checkerboard problem (𝑛x = 703, 𝑡end = 3.2).
Here, the new scheme is several times faster for the M𝑁 models and slightly faster for the
HFM𝑛 models. In the PMM𝑛 tests, the new model is on par or slightly faster in the low-order
tests and slightly slower for PMM512. (c) Shadow problem (𝑛x = 60 × 20 × 15, 𝑡end = 20).
The new scheme is significantly slower for the HFM𝑛 and PMM𝑛 models and about as fast as
the standard scheme for most M𝑁 models. (d) Computational times for 10 time steps in the
point-source test (𝑛x = 1003, M3 model) against number of threads. The dotted lines represent
perfect scaling. t/t: tasks per thread.
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5.5.3. Parallel scaling

As already mentioned, one of the major drawbacks of the minimum-entropy-based moment models are their
computational costs. As we have seen above, the new scheme often is several times faster than the scheme in
standard variables. However, even with this speed-up computations without parallelization still take excessively
long. In addition, there are cases where the new scheme is not faster or even slower than the standard scheme.

As the minimization problems or matrix inversions on different grid cells are independent, parallelization is
easily possible for both schemes. However, for the standard scheme, load balancing may be a serious issue [34].
Usually, some minimization problems are harder to solve than others, resulting in different numbers of iterations
in the Newton scheme. The new scheme does not have this problem, as it only needs the inversion of a relatively
small positive definite matrix in each grid cell. For these matrix sizes, direct solvers usually perform at least as
good as iterative methods and take an approximately constant time per inversion.

To investigate the scaling behaviour, for both schemes we computed ten time steps of the point-source test
case with a varying number of threads. We use a work-stealing task-based parallelization (implemented using
Intel TBB [32]). To see the impact of load balancing we perform all test both with 1 task per thread (no load
balancing) and 1000 tasks per thread. The results are shown in Figure 8d. If load balancing is used, both schemes
scale almost perfectly to 16 threads. When going to 32 threads the scaling is slightly worse which may be due
to the used dual-socket system with 2× 16 CPU cores.

Removing the load balancing has a large impact on the standard scheme while the new scheme is much less
affected. We would expect that this difference is emphasized if even more threads (or processes) are used. The
new scheme thus should be better suited to massively (MPI)-parallel computations.

5.5.4. Masslumping for the transformed scheme with hat function basis

The basis functions used by the HFM𝑛 models are basically the Lagrange P1 nodal basis functions used
in the (continuous) finite element method, i.e., each basis function evaluates to 1 on exactly one node of the
triangulation and to 0 on all other nodes (see Sect. 2.4.2). As a consequence, the Hessian matrix (3.1) is
tridiagonal (in one dimension) or sparse (three dimensions). Compared to the M𝑁 models where the Hessian is
dense, this significantly reduces the computational effort required for assembly and inversion. However, especially
in three dimensions, assembling and inverting the Hessian matrix still account for the vast majority of the new
scheme’s computational time.

We can significantly speed up these computations by using a quadrature that only contains the nodes of the
triangulation. With such a quadrature, the basis functions always evaluate to either zero or one and the Hessian
matrix becomes diagonal. The downside is, of course, that an additional quadrature error is introduced as the
nodal quadrature is only of first order. However, this additional error is of the same order as introduced by the
linear finite element discretization. This approach is sometimes called masslumping as using such a quadrature
diagonalizes the mass matrix in the finite element method (“all mass is lumped together on the diagonal”).

Remark 5.2. Masslumping could also be used for the standard scheme and should lead to similar speed-ups
(assuming that the masslumping does not negatively affect the number of iterations needed for the solution of
the optimization problems). Since our focus in this work is on the new scheme, we did not yet test masslumping
for the standard scheme.

For the one-dimensional tests, we use the two-point Gauss–Lobatto quadrature in each interval (containing
only the end-points of interval) for the masslumped version. As quadrature points that are on the same vertex
of the partition can be merged, we only have one quadrature point per vertex. The reference quadrature uses
24 quadrature points per interval. In addition, we only have to evaluate one component of the integrand per
quadrature point (the one corresponding to the non-zero basis function) instead of two. Overall, this reduces
the number of integrand evaluations by a factor of about 48. The results can be found in Figure 9. For both
test cases, almost independently of the number of moments 𝑛, the computations are about 40 times as fast
using masslumping (see Fig. 9a). This is in line with the reduction in the number of evaluations. The 𝐿1 errors
(compared to the non-masslumped result) are decreasing with second order (see Fig. 9b). The 𝐿∞ errors in
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Figure 9. Effect of masslumping on computational times and accuracy of the HFM𝑛 models in
the one-dimensional tests (1200 grid elements, τ = 0.001, no parallelization). Ps: Plane-source,
Sb: Source-beam, ml: masslumped. (a) Computational times versus moment number. (b) Errors
introduced by masslumping (reference is the non-masslumped solution).

the source-beam test are decreasing with order about 1.3, while the 𝐿∞ errors in the plane-source tests are
converging with very low order.

For the three-dimensional tests, we use the vertex quadrature on the reference triangle (with the vertexes
(0, 0), (1, 0), (0, 1) as quadrature points and weight 1

6 each) transferred to each spherical triangle. This results
in one quadrature point per vertex of the triangulation. The triangulation consists of 2 · 4𝑟+1 triangles and
2 + 4𝑟+1 vertices (where 𝑟 is the number of refinements of the initial octants, see Sect. 2.4.2), and the reference
quadrature has 55 quadrature points per spherical triangle. The standard implementation thus uses about 110
times as many evaluations. The results can be found in Figure 10. For all test cases, the masslumped version
is more than two orders of magnitude faster than the version using the reference quadrature. The maximum
speed-up is 216 times (point-source, HFM1026), which is considerably higher than the reduction in quadrature
points. The additional speed-up is due to the more efficient implementation, as the masslumped version does
not need to use sparse matrices and the associated indirect indexing. When looking at the profiler results, we
see that the time for assembling and inverting the (diagonal) Hessian is negligible in the masslumped version.
Overall, the time needed for the operator evaluation (which consists of calculating the kinetic fluxes and the
source term and applying the inverse Hessian matrix) has been reduced to a point where the vector operations
in the adaptive Runge–Kutta scheme now make up a major part of the computation time.

For all three-dimensional test cases, the errors compared to the non-masslumped version are quite large (see
Fig. 10b). However, both the 𝐿1 and the 𝐿∞ error converge with first order in 𝑛 for all test cases which corre-
sponds to second-order convergence in the grid width of the (velocity space) triangulation, as each refinement
halves the grid width but increases the number of vertices (approximately) by a factor of 4. The convergence
rate thus is similar (for the checkerboard test) to or even higher (point-source, shadow) than the convergence
of the (second-order discretization of the) moment approximation (compare [63]). Thus, for high-order models,
the additional quadrature error introduced by masslumping might be acceptable given the massive speed-up.
In any case, it might be preferable to replace a lower-order moment model with high-order quadrature by a
higher-order masslumped model.
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Figure 10. Effect of masslumping on computational times and accuracy of the HFM𝑛 models
in the three-dimensional tests (τ = 0.01, no parallelization). Ps: Point-source (𝑛x = 303, 𝑡end =
0.75), Cb: Checkerboard (𝑛x = 353, 𝑡end = 3.2), S: Shadow (𝑛x = 36 × 12 × 9, 𝑡end = 20),
ml: masslumped. (a) Computational times versus moment number. (b) Errors introduced by
masslumping (reference is the non-masslumped solution).

6. Conclusion and outlook

In this paper, we introduced a new numerical scheme for entropy-based moment equations that is based on
a variable transformation of the semi-discretized equations and gets rid of the minimum-entropy optimization
problems (except for the initial values). We have shown analytically and numerically that the new scheme
converges to the correct solutions, and that it follow a discrete entropy law if a relaxed Runge–Kutta method
is used for time stepping. In addition, we investigated the performance of the new scheme in several numerical
benchmarks and showed that it is often several times faster than the untransformed scheme, at the same or
even higher accuracy in time. In addition, for the hat function basis, we showed that a massive speed-up can
be obtained by using a quadrature that contains only the vertices of the triangulation (at the cost of additional
quadrature error), making very high-order models computable in reasonable time. Finally, we did some tests
on parallel scaling of the schemes which suggest that the new scheme does not have the same load-balancing
problems as the untransformed scheme.

To improve the scheme, better error estimates for the adaptive timesteppers should be investigated to get rid
of the erratic time step behaviour observed in the source-beam and shadow tests. Here, larger errors could be
allowed for multipliers that correspond to small densities and thus only have a minor effect on the solution in
original variables. In addition, regularization techniques could be used to replace such multipliers if they limit
the time step. These regularization techniques might also be needed to be able to solve problems where some
Hessians are numerically singular. For applications involving strong scattering or absorption, splitting methods
for the new scheme might be of interest to remove the time step restriction induced by the corresponding terms.

While we restricted ourselves to a first-order scheme, the same variable transformation can also be applied
to higher-order kinetic schemes as regarded, e.g., in [58,61].

In future work, we will investigate further model reduction by POD-based reduced basis methods [31, 47]
which should be much easier with the new scheme as it is well-defined on the whole R𝑛 and not only on the
realizable set (which is a convex cone in R𝑛).
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Appendix A. Proof of Theorem 3.7

Proof. We want to show that the derivatives of 𝛼↑𝑖 are bounded, i.e.,
⃦⃦⃦
𝜕𝛼↑𝑖
𝜕𝛼𝑗

⃦⃦⃦
≤ 𝐶. Here, since all matrix norms

are equivalent, ‖·‖ can be an arbitrary matrix norm. We will show that the rows of 𝜕𝛼↑𝑖
𝜕𝛼𝑗

are bounded in Euclidean

norm which bounds the Frobenius matrix norm. By the definition of 𝛼↑𝑖 (see (3.11)), we have

𝜕𝛼↑𝑖
𝜕𝛼𝑗

=
𝜕

𝜕𝛼𝑗

(︁
H(𝛼𝑖)
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)︁
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(A.1)

where 𝐻−1
𝑘,𝑙 is the (𝑘, 𝑙)-th entry of H−1 and 𝑢↑𝑖𝑙 and 𝛼𝑗𝑙 are the 𝑙-th component of u↑𝑖 and 𝛼𝑗 , respectively.

For 𝑖 ̸= 𝑗, the first term in (A.1) vanishes. For 𝑖 = 𝑗, since (see, e.g., [24])

𝜕H−1

𝜕𝛼
= −H−1 𝜕H

𝜕𝛼
H−1, (A.2)

the first term in (A.1) depends on H−1(𝛼𝑖), u
↑
𝑖 and derivatives of H(𝛼𝑖). The terms in u↑𝑖 , except for the constant

source term ⟨b𝑄⟩, all scale with either 𝜌(u(𝛼𝑖)) or 𝜌(u(𝛼𝑗)), 𝑗 ∈ 𝒩 (𝑖) (compare (2.33) and (2.14)). By (3.14b),
u↑𝑖 is thus bounded. By (3.14a), after multiplication with H−1 the term is still bounded (as

⃦⃦
H−1

⃦⃦
= ‖H‖−1).

For the first term of (A.1), it remains to show that
⃦⃦⃦
𝜕H(𝛼𝑖)
𝜕𝛼𝑖𝑙

⃦⃦⃦
is bounded for 𝑙 ∈ {0, . . . , 𝑛− 1}. We have

w𝑇 𝜕H(𝛼𝑖)
𝜕𝛼𝑖𝑙

w = w𝑇 𝜕

𝜕𝛼𝑖𝑙

⟨︀
bb𝑇 𝜂′′* (𝛼𝑖 · b)

⟩︀
w =

⟨
(b ·w)2𝑏𝑙𝜂′′′* (𝛼𝑖 · b)

⟩
≤
(︂

max
Ω∈𝑉

|𝑏𝑙(Ω)|‖b(Ω)‖2
)︂
‖w‖2⟨𝜂′′′* (𝛼𝑖 · b)⟩.

Thus, by (3.14d),
⃦⃦⃦
𝜕H(𝛼𝑖)
𝜕𝛼𝑖𝑙

⃦⃦⃦
is bounded.

To show that the second summand in (A.1) is bounded, by (3.14a), we only have to show boundedness of
𝜕u↑𝑖
𝜕𝛼𝑗𝑙

for 𝑙 ∈ {0, . . . , 𝑛− 1}. We have (compare (2.33))

𝜕u↑𝑖
𝜕𝛼𝑗𝑙

=
𝜕

𝜕𝛼𝑗𝑙

⎛⎝ ∑︁
𝑘∈𝒩 (𝑖)

|𝑆𝑖𝑘|
|𝑇𝑖|

(︀
⟨(Ω · n𝑖𝑘)𝜂′*(𝛼

𝜅
𝑖 · b)b⟩+ + ⟨(Ω · n𝑖𝑘)𝜂′*(𝛼

𝜅
𝑘 · b)b⟩−

)︀
− s(x𝑖,u𝜅𝑖 )

⎞⎠. (A.3)

Since s is linear in u, and du𝑖

d𝛼𝑗
= H(u𝑖)𝛿𝑖𝑗 (compare (3.1)), the term in (A.3) involving s results in columns of

the Hessian (multiplied by some constant matrices, see (2.14)) and thus is bounded by (3.14a). Computing the
derivative of the flux terms in (A.3), we obtain terms like

𝜕

𝜕𝛼𝑗𝑙
⟨(Ω · n𝑖𝑘)𝜂′*(𝛼

𝜅
𝑖 · b)b⟩+ = ⟨(Ω · n𝑖𝑘)𝜂′′* (𝛼𝜅

𝑖 · b)𝑏𝑙𝛿𝑖𝑙b⟩+

which are bounded by (3.14c). �
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