A recent paper introduced the network element method (NEM) where the usual mesh was replaced by a discretization network. Using the associated network geometric coefficients and following the virtual element framework, a consistent and stable numerical scheme was proposed. The aim of the present paper is to derive a convergence theory for the NEM under mild assumptions on the exact problem. We also derive basic error estimates, which are sub-optimal in the sense that we have to assume more regularity than usual.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021062
Keywords: Meshless methods, virtual element method, network element method
@article{M2AN_2021__55_5_2503_0,
author = {Coatl\'even, Julien},
title = {Basic convergence theory for the network element method},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {2503--2533},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {5},
doi = {10.1051/m2an/2021062},
mrnumber = {4332501},
zbl = {1483.65179},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021062/}
}
TY - JOUR AU - Coatléven, Julien TI - Basic convergence theory for the network element method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 2503 EP - 2533 VL - 55 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021062/ DO - 10.1051/m2an/2021062 LA - en ID - M2AN_2021__55_5_2503_0 ER -
%0 Journal Article %A Coatléven, Julien %T Basic convergence theory for the network element method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 2503-2533 %V 55 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021062/ %R 10.1051/m2an/2021062 %G en %F M2AN_2021__55_5_2503_0
Coatléven, Julien. Basic convergence theory for the network element method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2503-2533. doi: 10.1051/m2an/2021062
[1] and , Sobolev spaces, 2nd edition. Elsevier (2003). | MR | Zbl
[2] , and , Survey of meshless and generalized finite element methods: A unified approach. Acta Numer. 12 (2003) 1–125. | MR | Zbl | DOI
[3] , , , and , , Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI
[4] , and , Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | MR | Zbl | DOI
[5] , and , The mimetic finite difference method for elliptic problems. Springer (2014). | MR | Zbl
[6] , and , A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | MR | Zbl | DOI
[7] , and , Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | MR | Zbl | Numdam | DOI
[8] , and , A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 2017 55 (2018) 2687–2717. | MR | Zbl | DOI
[9] and , The mathematical theory of finite element methods, 3rd edition. Springer (2008). | MR | Zbl | DOI
[10] , and , A hybrid high-order method for darcy flows in fractured porous media. SIAM J. Sci. Comput. 40 (2018) 1063–1094. | MR | Zbl | DOI
[11] , and , Meshfree methods: Progress made after 20 years. J. Eng. Mech. 143 (2017) 04017001. | DOI
[12] , Principles of a network element method. J. Comput. Phys. 433 (2021) 110197. | MR | Zbl | DOI
[13] and , Mathematical aspects of discontinuous Galerkin methods. Springer (2012). | MR | Zbl | DOI
[14] and , A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | MR | Zbl | DOI
[15] and , Hybrid high-order methods for variable-diffusion problems on general meshes. C.R. Acad. Sci. Paris, Ser. I 353 (2015) 31–34. | MR | Zbl | DOI
[16] , Uncertain grid method for numerical solution of PDES. Technical Report, NeurOK Software (2008).
[17] , , , and , The gradient discretisation method. Springer (2018). | MR | DOI
[18] , and , Finite volume methods. In: Techniques of scientific computiing, edited by and . Part III: Handbook of Numerical Analysis. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl
[19] , and , Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilisation and hybrid interfaces. IMA J. Num. Anal. 30 (2010) 1009–1043. | MR | Zbl | DOI
[20] , Elliptic problems in nonsmooth domains. Pitman Publishing Inc, MA (1985). | MR | Zbl
[21] and , Edge-based meshless methods for compressible viscous flow with applications to overset grids. In: Proceedings of the 38th Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics (2008).
[22] and , A meshless volume scheme. In: Proceedings of 19th AIAA Computational Fluid Dynamics, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (2009) 2009–3534.
[23] , , and , A conservative mesh-free scheme and generalized framework for conservation laws. SIAM J. Sci. Comput. 34 (2012) 2896–2916. | MR | Zbl | DOI
[24] , On approximation in meshless methods. Springer Berlin Heidelberg, Berlin, Heidelberg (2005) 65–141. | MR | Zbl
[25] and , The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289–314. | MR | Zbl | DOI
[26] , Singular integrals and differentiability properties of functions. Princeton University Press (1970). | MR | Zbl
[27] , and , A conservative, consistent, and scalable mesh-free mimetic method. J. Comput. Phys. 409 (2020) 109–187. | MR | Zbl | DOI
[28] , and , A high-order staggered meshless method for elliptic problems. SIAM J. Sci. Comput. 39 (2017) 479–502. | MR | Zbl | DOI
[29] and , Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31 (2015) 2110–2134. | MR | Zbl | DOI
Cité par Sources :





