Basic convergence theory for the network element method
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2503-2533

A recent paper introduced the network element method (NEM) where the usual mesh was replaced by a discretization network. Using the associated network geometric coefficients and following the virtual element framework, a consistent and stable numerical scheme was proposed. The aim of the present paper is to derive a convergence theory for the NEM under mild assumptions on the exact problem. We also derive basic error estimates, which are sub-optimal in the sense that we have to assume more regularity than usual.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021062
Classification : 65N30, 65N12, 65N15
Keywords: Meshless methods, virtual element method, network element method
@article{M2AN_2021__55_5_2503_0,
     author = {Coatl\'even, Julien},
     title = {Basic convergence theory for the network element method},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2503--2533},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021062},
     mrnumber = {4332501},
     zbl = {1483.65179},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021062/}
}
TY  - JOUR
AU  - Coatléven, Julien
TI  - Basic convergence theory for the network element method
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2503
EP  - 2533
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021062/
DO  - 10.1051/m2an/2021062
LA  - en
ID  - M2AN_2021__55_5_2503_0
ER  - 
%0 Journal Article
%A Coatléven, Julien
%T Basic convergence theory for the network element method
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2503-2533
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021062/
%R 10.1051/m2an/2021062
%G en
%F M2AN_2021__55_5_2503_0
Coatléven, Julien. Basic convergence theory for the network element method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2503-2533. doi: 10.1051/m2an/2021062

[1] R. Adams and J. Fournier, Sobolev spaces, 2nd edition. Elsevier (2003). | MR | Zbl

[2] I. Babuška, U. Banerjee and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach. Acta Numer. 12 (2003) 1–125. | MR | Zbl | DOI

[3] L. Beirao Da Veiga, F. Brezzi, A. Cangiani, G. Manzini and L. D. Marini, A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl | DOI

[4] L. Beirao Da Veiga, F. Brezzi and L. D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | MR | Zbl | DOI

[5] L. Beirao Da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. Springer (2014). | MR | Zbl

[6] L. Beirao Da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | MR | Zbl | DOI

[7] L. Beirao Da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | MR | Zbl | Numdam | DOI

[8] M. Botti, D. A. Di Pietro and P. Sochala, A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 2017 55 (2018) 2687–2717. | MR | Zbl | DOI

[9] S. Brenner and R. Scott, The mathematical theory of finite element methods, 3rd edition. Springer (2008). | MR | Zbl | DOI

[10] F. Chave, D. A. Di Pietro and L. Formaggia, A hybrid high-order method for darcy flows in fractured porous media. SIAM J. Sci. Comput. 40 (2018) 1063–1094. | MR | Zbl | DOI

[11] J.-S. Chen, M. Hillman and S.-W. Chi, Meshfree methods: Progress made after 20 years. J. Eng. Mech. 143 (2017) 04017001. | DOI

[12] J. Coatléven, Principles of a network element method. J. Comput. Phys. 433 (2021) 110197. | MR | Zbl | DOI

[13] D. A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. Springer (2012). | MR | Zbl | DOI

[14] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | MR | Zbl | DOI

[15] D. A. Di Pietro and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C.R. Acad. Sci. Paris, Ser. I 353 (2015) 31–34. | MR | Zbl | DOI

[16] O. Diyankov, Uncertain grid method for numerical solution of PDES. Technical Report, NeurOK Software (2008).

[17] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The gradient discretisation method. Springer (2018). | MR | DOI

[18] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In: Techniques of scientific computiing, edited by P. G. Ciarlet and J.-L. Lions. Part III: Handbook of Numerical Analysis. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl

[19] R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilisation and hybrid interfaces. IMA J. Num. Anal. 30 (2010) 1009–1043. | MR | Zbl | DOI

[20] P. Grisvard, Elliptic problems in nonsmooth domains. Pitman Publishing Inc, MA (1985). | MR | Zbl

[21] A. Katz and A. Jameson, Edge-based meshless methods for compressible viscous flow with applications to overset grids. In: Proceedings of the 38th Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics (2008).

[22] A. Katz and A. Jameson, A meshless volume scheme. In: Proceedings of 19th AIAA Computational Fluid Dynamics, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (2009) 2009–3534.

[23] E. Kwan Yu Chiu, Q. Wang, R. Hu and A. Jameson, A conservative mesh-free scheme and generalized framework for conservation laws. SIAM J. Sci. Comput. 34 (2012) 2896–2916. | MR | Zbl | DOI

[24] J. M. Melenk, On approximation in meshless methods. Springer Berlin Heidelberg, Berlin, Heidelberg (2005) 65–141. | MR | Zbl

[25] J. M. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289–314. | MR | Zbl | DOI

[26] E. M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press (1970). | MR | Zbl

[27] N. Trask, P. Bochev and M. Perego, A conservative, consistent, and scalable mesh-free mimetic method. J. Comput. Phys. 409 (2020) 109–187. | MR | Zbl | DOI

[28] N. Trask, M. Perego and P. Bochev, A high-order staggered meshless method for elliptic problems. SIAM J. Sci. Comput. 39 (2017) 479–502. | MR | Zbl | DOI

[29] G. Vacca and L. Beirao Da Veiga, Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31 (2015) 2110–2134. | MR | Zbl | DOI

Cité par Sources :