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BASIC CONVERGENCE THEORY FOR THE NETWORK ELEMENT METHOD

Julien Coatléven˚

Abstract. A recent paper introduced the network element method (NEM) where the usual mesh was
replaced by a discretization network. Using the associated network geometric coefficients and following
the virtual element framework, a consistent and stable numerical scheme was proposed. The aim of
the present paper is to derive a convergence theory for the NEM under mild assumptions on the exact
problem. We also derive basic error estimates, which are sub-optimal in the sense that we have to
assume more regularity than usual.
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1. Introduction

In recent years, the mimetic technology [5] has proved to be a very efficient tool to derive numerical schemes
to handle probably all classical partial differential equations, with general coefficients, even on very distorted
or exotic meshes. Many methods, and in particular the virtual element method (VEM, [3]) and the Hybrid-
High-Order (HHO) schemes [15] were developed following its principles, allowing to handle complex problems
such as linear [4, 14] and non linear [6, 8] elasticity, parabolic problems [29], multiphase flow problems [10],
Stokes problem [7], etc. Based on the success of those polygonal methods, in a recent paper [12] was explored
the idea that we probably need less than a mesh to derive an efficient variational numerical method. This
naturally led to the notion of discretization networks in [12], which is a common object in meshless methods
(see [21, 27, 28]). The network element method was then derived by reproducing the VEM principles directly
on the discretization network rather than on a mesh. Numerical examples illustrated the performance of the
method, and the excepted convergence rates were observed in practice.

The present paper is an attempt to propose a basis of a convergence theory for the network element method,
using again the elementary Poisson problem as a model problem. Notice that the consistency of the method is
mainly inherited from the properties of the approximate geometry, as is usual for meshless methods based on
discretization networks (see [16,21–23,27,28]), while its stability comes from its VEM-like (and also discontinuous
Galerkin like) formulation. Both were already studied in [12]. Thus, the major difficulty of the convergence
analysis consists in going from the purely discrete world of degrees of freedom where the network element method
is formulated, to the continuous world of Sobolev spaces. The key ingredient will be a family of functions forming
a partition of unity and whose integral will replace the discrete weights of the method. In this way, they play

Keywords and phrases. Meshless methods, virtual element method, network element method.
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the role usually assumed by a quadrature rule and will form what will naturally be called a quadrature family.
This is a major difference with partition of unity finite element methods [25], where a partition of unity is used
to decompose the functions and not the integral operator (see [2, 11]). Once this quadrature family is defined,
thanks to the variational nature of the network element method the spirit of the convergence theory will be highly
reminiscent of finite volume theory, discontinuous Galerkin our the unified framework of gradient discretization
(see [13,17–19]). In fact, once quadrature families are properly defined and their existence established, one could
consider our convergence theory for minimal regularity solutions as establishing that the Gradient discretization
framework properties are satisfied by the reconstruction operators associated to the quadrature family, with
however many additional technicalities coming from the lack of a mesh, this time very reminiscent of meshless
techniques and in particular partition of unity based methods (see [24]).

As explained in the original paper presenting the network element method [12], when compared to mesh
based methods the performance difference between them and the network element method comes from the cost
comparison of mesh generation on one side and network and geometry generation on the other side. Comparing
network and geometry generation, it is clear that most of the cost lies in the geometry generation step, however
in best cases this can be done by simply solving 𝑑 or 𝑑` 1 linear systems (see [12]). Establishing a convergence
theory allowing to understand which quality parameter is crucial to maintain convergence rates is consequently
very helpful for the long term goal of designing fast and robust geometry generation algorithms, which would
trully make the network element method more than a mathematical curiosity.

The paper will be organized as follows: in the first part of the paper (Sects. 1 and 2), we recall the definitions
of a discretization network and the associated geometric weights, as well as the network element method itself.
Then, in the second part of the paper (Sects. 3–5) we establish convergence results. Section 3 is devoted to
the reconstruction of functions from network element degrees of freedom. In particular, a crucial existence
result on quadrature families is established there, which constitutes the backbone of our convergence theory.
Section 4 is devoted to convergence to minimal regularity solutions, to emphasize the robustness of the approach.
Finally, Section 5 deals with error estimates. Notice that once the core theorem of Section 3 is established, the
last two sections follow the general spirit of finite volume (or discontinuous Galerkin) theory, with additional
technicalities specific to the network element method. For numerical experiments illustrating the behavior of
the method in practice, we refer the reader to [12].

2. Discretization networks and network geometries

2.1. Discretization networks

Let Ω be an open bounded connected subset of R𝑑, 𝑑 P Nzt0u, assumed to be at least Lipschitz. For any
𝑥 P R𝑑 and any 𝑟 ą 0, we denote 𝐵p𝑥, 𝑟q the ball of radius 𝑟 centered at 𝑥 for the usual Euclidean norm
|𝑥|2 “

řd
𝑖“1 𝑥

2
𝑖 . Following [12,21,27,28], a discretization network 𝒩 of Ω is defined from two sets of points 𝒫𝒯

and 𝒫ℱ , by setting 𝒩 “ t𝒯 ,ℱu, where:

– The set of cells 𝒯 is a set of pairs 𝐾 “ t𝑥𝐾 , 𝑟𝐾u, with 𝑥𝐾 P 𝒫𝒯 strictly inside Ω and 𝑟𝐾 a strictly positive
real number, for any 𝐾 P 𝒯 . We denote ℎ𝐾 “ 2𝑟𝐾 .

– The set of interfaces, denoted ℱ , is a set of pairs 𝜎 “ t𝑥𝜎, 𝒯𝜎u, with 𝑥𝜎 P 𝒫ℱ and 𝒯𝜎 a subset of 𝒯 . It is
subdivided into two subsets, the set of boundary interfaces ℱext and the set of interior interfaces ℱint. The
set of boundary interfaces ℱext is such that for all 𝐾 P 𝒯𝜎, 𝑥𝜎 is a point in Y𝐾P𝒯𝜎𝐵p𝑥𝐾 , 𝑟𝐾q X BΩ. The set
of interior interfaces ℱint is such that for all 𝐾 P 𝒯𝜎, 𝑥𝜎 is a point in Y𝐾P𝒯𝜎𝐵p𝑥𝐾 , 𝑟𝐾q X Ω̊.

– For all p𝐾1,𝐾2q P 𝒩 2 such that 𝐾1 ‰ 𝐾2, 𝑥𝐾1 ‰ 𝑥𝐾2 . For all p𝜎1, 𝜎2q P ℱ2 such that 𝜎1 ‰ 𝜎2, 𝑥𝜎1 ‰ 𝑥𝜎2 .
– Ω Ă

Ť

𝐾P𝒯 𝐵p𝑥𝐾 , 𝑟𝐾q. For any 𝐾 P 𝒯 such that BΩ X 𝐵p𝑥𝐾 , 𝑟𝐾q ‰ H, then ℱ𝐾 X ℱext ‰ H. For any
p𝐾,𝐿q P 𝒯 2 such that 𝐵p𝑥𝐾 , 𝑟𝐾q X𝐵p𝑥𝐿, 𝑟𝐿q ‰ H, then there exists 𝜎 P ℱ such that p𝐾,𝐿q Ă 𝒯𝜎.
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Figure 1. Example of network associated to a sectorial domain (orange triangles are interfaces,
blue circles are cells, lines represent the connectivity).

For any 𝐾 P 𝒯 , we also denote ℱ𝐾 “ t𝜎 P ℱ | 𝐾 P 𝒯𝜎u (the interfaces of 𝐾), which implies that for any
𝜎 P ℱ , 𝒯𝜎 denotes the cells connected to the interface 𝜎 and satisfies 𝒯𝜎 “ t𝐾 P 𝒯 | 𝜎 P ℱ𝐾u. We denote
ℎ “ max𝐾P𝒯 ℎ𝐾 and P𝑘pR𝑑q the set of polynomials of order 𝑘. A network is said to be admissible if for any cell
𝐾 P 𝒯 , the set p𝑥𝜎q𝜎Pℱ𝐾 is unisolvent for first order polynomials (see [12] for details and Fig. 1 for an example
of a network for a curved domain). We also recall the well known result that if Ω is Lipschitz then it satisfies
the cone condition for some angle 𝜏 and radius 𝑟 (see [1,20]), i.e. for any 𝑥 P Ω, there exists 𝜉 P R𝑑 with |𝜉| “ 1
such that 𝐶p𝑥, 𝜉, 𝜏, 𝑟q Ă Ω where 𝐶p𝑥, 𝜉, 𝜏, 𝑟q denotes the cone:

𝐶p𝑥, 𝜉, 𝜏, 𝑟q “ 𝐵p𝑥, 𝑟q X
 

𝑦 P R𝑑 | p𝑦 ´ 𝑥q𝑇 𝜉 ą |𝑦 ´ 𝑥| cos 𝜏
(

. (2.1)

Still using the fact that Ω is assumed Lipschitz, using Stein’s extension theorem [26] we also know that there
exists an operator 𝐸 such that for any 𝑘 ě 0, there exists 𝐶𝐸,𝑘 ą 0 such that for any 𝑣 P 𝐻𝑘pΩq, 𝐸𝑣 P 𝐻𝑘pR𝑑q,
𝐸𝑣 “ 𝑣 in Ω and

|𝐸𝑣|𝐻𝑘pR𝑑q ď 𝐶𝐸,𝑘|𝑣|𝐻𝑘pΩq,

and if 𝑣 P 𝐻1
0 pΩq, then 𝐸𝑣 “ 0 in R𝑑zΩ. Finally, for any subset 𝒪 of R𝑑, we denote 𝜒𝒪 the characteristic

function of 𝒪, i.e. 𝜒p𝑥q “ 1 if 𝑥 P 𝒪 and 𝜒p𝑥q “ 0 otherwise.

2.2. Network geometry

Following [12], as network geometry is defined as a set of coefficients:

𝒢 “
´

p𝑚𝐾q𝐾P𝒯 , p𝜂𝐾,𝜎q𝐾P𝒯 ,𝜎Pℱ𝐾 , p𝜀
0,𝑖
𝐾 q𝐾P𝒯 ,1ď𝑖ď𝑑, p𝜀

1,𝑖𝑗
𝐾 q𝐾P𝒯 ,1ď𝑖,𝑗ď𝑑, p𝜀

𝑖
𝜎q𝜎Pℱint,1ď𝑖ď𝑑

¯

.

The discrete measures p𝑚𝐾q𝐾P𝒯 are said to be admissible if and only if they satisfy

𝑚𝐾 ą 0 for all 𝐾 P 𝒯 , (2.2)

and
ÿ

𝐾P𝒯
𝑚𝐾 “ |Ω|, (2.3)

while the approximate consistency properties are given by
ÿ

𝜎Pℱ𝐾

𝜂𝑖𝐾,𝜎 “ 𝑚𝐾𝜀
0,𝑖
𝐾 @𝐾 P 𝒯 , @ 1 ď 𝑖 ď 𝑑, (2.4)
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and
ÿ

𝜎Pℱ𝐾

𝜂𝑖𝐾,𝜎p𝑥
𝑗
𝜎 ´ 𝑥

𝑗
𝐾q “ 𝑚𝐾p𝛿𝑖𝑗 ` 𝜀

1,𝑖𝑗
𝐾 q @𝐾 P 𝒯 , @ 1 ď 𝑖, 𝑗 ď 𝑑, (2.5)

and the approximate compatibility (or conservation) properties by
ÿ

𝐾P𝒯𝜎

𝜂𝑖𝐾𝜎 “ 𝜀𝑖𝜎 @ 𝜎 P ℱint, @ 1 ď 𝑖 ď 𝑑. (2.6)

A network geometry is said to be consistent if and only if it satisfies (2.4), (2.5), and said to be conservative if
and only if it satisfies (2.6). To measure the geometric approximation error, we introduce the constants 𝜃𝒜 ą 0
and 𝑝 ě 1, both independent on ℎ and such that:

|𝜀0,𝑖𝐾 | ď 𝜃𝒜ℎ
𝑝
𝐾 @𝐾 P 𝒯 , @ 1 ď 𝑖 ď 𝑑, (2.7)

and
|𝜀1,𝑖𝑗𝐾 | ď 𝜃𝒜ℎ

𝑝
𝐾 @𝐾 P 𝒯 , @ 1 ď 𝑖, 𝑗 ď 𝑑, (2.8)

and
|𝜀𝑖𝜎| ď 𝜃𝒜 min

𝐾P𝒯𝜎
𝑚𝐾ℎ

𝑝
𝐾 @ 𝜎 P ℱint, @ 1 ď 𝑖 ď 𝑑. (2.9)

We denote 𝐵𝐾 “ 𝐵p𝑥𝐾 , 𝑟𝐾q, and for any 𝑥 P R𝑑, we denote

𝒯 𝒩𝑥 “ t𝐾 P 𝒯 | 𝑥 P 𝐵𝐾u and 𝜂𝒩 “ sup
𝑥PR𝑑

cardp𝒯 𝒩𝑥 q.

We say that a network geometry is admissible if and only if it is consistent and conservative and the family of
measures is admissible. As soon as 𝒩 is an admissible network, existence of an admissible network geometry
was established in [12].

Remark 2.1. Here, we have chosen to slightly simplify condition (2.3) regarding the original and more general
notion of [12]:

ÿ

𝐾P𝒯
𝑚𝐾 “ p1` 𝜀Ωq|Ω|, (2.10)

which allowed an additional error 𝜀Ω on the sum of the discrete measures. However, once one has computed
measures pr𝑚𝐾q𝐾P𝒯 satisfying the above approximate relation (2.10), it is always feasible to define:

𝑚𝐾 “
r𝑚𝐾 |Ω|
ÿ

𝐿P𝒯
r𝑚𝐿

“
r𝑚𝐾

p1` 𝜀Ωq
.

Indeed, we then have for the 𝜂𝐾,𝜎’s corresponding to those pr𝑚𝐾q𝐾P𝒯 :

ÿ

𝜎Pℱ𝐾

𝜂𝑖𝐾,𝜎p𝑥
𝑗
𝜎 ´ 𝑥

𝑗
𝐾q “ r𝑚𝐾p𝛿𝑖𝑗 ` 𝜀

1,𝑖𝑗
𝐾 q “ 𝑚𝐾p1` 𝜀Ωqp𝛿𝑖𝑗 ` 𝜀

1,𝑖𝑗
𝐾 q “ 𝑚𝐾p𝛿𝑖𝑗 ` 𝜀Ω𝛿𝑖𝑗 ` p1` 𝜀Ωq𝜀

1,𝑖𝑗
𝐾 q.

The last term 𝜀1,𝑖𝑗𝐾 “ 𝜀Ω𝛿𝑖𝑗 ` p1` 𝜀Ωq𝜀
1,𝑖𝑗
𝐾 is bounded by 2𝜃𝒜ℎ

𝑝
𝐾 ` 𝜃

2
𝒜ℎ

2𝑝
𝐾 “ 𝜃𝒜ℎ

𝑝
𝐾 , with 𝜃𝒜 “ 2𝜃𝒜 ` 𝜃2𝒜ℎ

𝑝
𝐾 . As

the same holds for relations (2.4), we see that up to a modification of the value of 𝜃𝒜 using 𝜃𝒜, we can always
assume that

ř

𝐾P𝒯 𝑚𝐾 “ |Ω|. In other words, if we are able to derive a convergence theory assuming the exact
relation (2.3), then this convergence theory will also cover the more general notion of [12], which is the reason
why we only consider the simplest version here.
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3. The network element method

3.1. Model problem

As in [12], to ease the understanding we consider the simplest possible model problem, i.e. the Poisson
equation ´∆𝑢 “ 𝑓 on Ω with 𝑓 P 𝐿2pΩq. We complement it with homogeneous Dirichlet boundary conditions
𝑢 “ 0 on BΩ “ ΩzΩ, the boundary of the domain Ω assumed to be at least Lipschitz continuous. The associated
weak solution is the unique 𝑢 P 𝐻1

0 pΩq such that:
ż

Ω

∇𝑢 ¨∇𝑣 “
ż

Ω

𝑓𝑣 @ 𝑣 in 𝐻1
0 pΩq ô 𝑎p𝑢, 𝑣q “ 𝑙p𝑣q @ 𝑣 in 𝐻1

0 pΩq. (3.1)

3.2. Degrees of freedom and discrete variational formulation

The space of degrees of freedom is given by:

𝑋𝒩 “ tp𝑢𝜎q𝜎Pℱ | 𝑢𝜎 P R @ 𝜎 P ℱu and 𝑋𝒩 ,0 “ t𝑈 P 𝑋𝒩 | 𝑢𝜎 “ 0 for all 𝜎 P ℱextu .

The local set of degrees of freedom associated to a cell is denoted

𝑋𝒩 ,𝐾 “
 

p𝑢𝜎q𝜎Pℱ𝐾 | 𝑢𝜎 P R @ 𝜎 P ℱ𝐾
(

.

We denote 𝑈 “ p𝑢𝜎q𝜎Pℱ , and for any 𝑈 P 𝑋𝒩 , 𝑈𝐾 “ p𝑢𝜎q𝜎Pℱ𝐾 . To any cell 𝐾 P 𝒯 is associated a point 𝑥𝐾
such that:

𝑥𝐾 “
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎𝑥𝜎 where
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎 “ 1,

where the p𝛾𝐾,𝜎q𝜎Pℱ𝐾 forms a barycentric interpolation for 𝑥𝐾 from the interface points p𝑥𝜎q𝜎Pℱ𝐾. Then we
denote:

ℳ𝐾p𝑈𝐾q “
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎𝑢𝜎.

To any cell 𝐾 P 𝒯 , is associated the local reconstruction operator Π𝐾 defined by:
ˇ

ˇ

ˇ

ˇ

ˇ

Π𝐾 : 𝑋𝒩 ,𝐾 ÞÝÑ P1pR𝑑q
𝑈𝐾 ÝÑ Π𝐾 p𝑈𝐾q “ℳ𝐾p𝑈𝐾q `∇𝐾 p𝑈𝐾q ¨ p𝑥´ 𝑥𝐾q,

(3.2)

where
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∇𝐾 : 𝑋𝒩 ,𝐾 ÞÝÑ P0pR𝑑q𝑑

𝑈𝐾 ÝÑ ∇𝐾 p𝑈𝐾q “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

𝑢𝜎𝜂𝐾,𝜎,
(3.3)

with of course ∇Π𝐾p𝑈𝐾q “ ∇𝐾p𝑈𝐾q, thus we will use either one notation or the other in the following.
Finally, with a slight abuse of notation we extend the definition of Π𝐾 , ℳ𝐾 and ∇𝐾 to all 𝑋𝒩 by setting
Π𝐾p𝑈q “ Π𝐾p𝑈𝐾q, ℳ𝐾p𝑈q “ℳ𝐾p𝑈𝐾q and ∇𝐾p𝑈q “ ∇𝐾p𝑈𝐾q. For any 𝜙 P 𝐶0pR𝑑q (and more generally
for any function for which it makes sense), we denote 𝒟𝐾p𝜙q “ p𝜙p𝑥𝜎qq𝜎Pℱ𝐾 the local set of degrees of freedom
associated with 𝜙, while 𝒟p𝜙q “ p𝜙p𝑥𝜎qq𝜎Pℱ denotes the complete set of degrees of freedom associated with 𝜙.

Let us recall some key ideas underlying the virtual element method and by this way also recall the ideas
underlying the derivation of the network element method in [12]. Assume that we are given a true mesh of Ω
whose set of cells is denoted 𝒯 to make the analogy with networks more obvious. Using the virtual element
projector ΠVEM

𝐾 onto first order polynomial functions (and denoting 𝜋𝑘 the 𝐿2 projection on polynomials of
order 𝑘) the simplest first order virtual element method consist in solving

ÿ

𝐾P𝒯

ż

𝐾

∇ΠVEM
𝐾 p𝑢q ¨∇ΠVEM

𝐾 p𝑣q `
ÿ

𝐾P𝒯
𝑠VEM
𝐾 p𝑢´ΠVEM

𝐾 p𝑢q, 𝑣 ´ΠVEM
𝐾 p𝑣qq “

ÿ

𝐾P𝒯

ż

𝐾

𝑓𝜋0p𝑣q,
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where the first term handles the polynomial part of the unknown VEM function to ensure consistency and
𝑠VEM
𝐾 p𝑢 ´ ΠVEM

𝐾 p𝑢q, 𝑣 ´ ΠVEM
𝐾 p𝑣qq is a stabilization bilinear form which only needs to scale with ℎ𝐾 in the

same way than the term it replaces to preserve consistency. The network element mimics the principles of the
virtual element method, but using a discretization network rather than a mesh. The discrete bilinear form is
constructed by analogy on the discretization network and its associated network geometry using the discrete
gradient ∇𝐾 to handle the polynomial part (replacing the ∇ΠVEM

𝐾 p𝑢q of the VEM) and then complemented
with a stabilization term which has the same form as 𝑠VEM

𝐾 and has the correct scaling to maintain consistency.
Consequently, the discrete counterpart 𝑎ℎ: 𝑋𝒩 ˆ𝑋𝒩 ÞÝÑ R of the bilinear form 𝑎p¨, ¨q is defined by setting

𝑎ℎp𝑈 ,𝑉 q “
ÿ

𝐾P𝒯
𝑎𝐾ℎ p𝑈𝐾 ,𝑉 𝐾q,

where 𝑎𝐾ℎ : 𝑋𝒩 ,𝐾 ˆ𝑋𝒩 ,𝐾 ÞÝÑ R is given by

𝑎𝐾ℎ p𝑈𝐾 ,𝑉 𝐾q “ 𝑚𝐾∇Π𝐾 p𝑈𝐾q ¨∇Π𝐾 p𝑉 𝐾q ` 𝑠
𝐾p𝑈𝐾 ´𝒟𝐾 pΠ𝐾 p𝑈𝐾qq ,𝑉 𝐾 ´𝒟𝐾 pΠ𝐾 p𝑉 𝐾qqq, (3.4)

with 𝑠𝐾 a positive symmetric bilinear form on 𝑋𝒩 ,𝐾 ˆ𝑋𝒩 ,𝐾 , such that

𝑠𝐾p𝑈𝐾 ,𝑉 𝐾q “ 𝑚𝐾ℎ
´2
𝐾

ÿ

𝜎Pℱ𝐾

ÿ

𝜎1Pℱ𝐾

𝑆𝐾,𝜎,𝜎1𝑢𝜎𝑣𝜎1 , (3.5)

where 𝑆𝐾 “ p𝑆𝐾,𝜎,𝜎1 q𝜎,𝜎1Pℱ𝐾 can be any symmetric positive definite matrix independent on the geometry 𝒢
associated to the network, for which we denote

𝑆˚ “ inf
𝐾P𝒯

inf
𝜉PRcardpℱKq,||𝜉||“1

𝜉𝑇𝑆𝐾𝜉 and 𝑆˚ “ sup
𝐾P𝒯

sup
𝜉PRcardpℱKq,||𝜉||“1

𝜉𝑇𝑆𝐾𝜉.

For the right-hand side, assume that 𝑓𝐾 is an approximation of 𝑓 at 𝑥𝐾 (for instance, one can use 𝑓p𝑥𝐾q if 𝑓
is regular enough for this quantity to make sense, or 1

|𝐵𝐾 |

ş

𝐵𝐾
𝐸𝑓), then we define a linear form 𝑙ℎ: 𝑋𝒩 ÞÝÑ R

by setting:
𝑙ℎp𝑉 q “

ÿ

𝐾P𝒯
𝑚𝐾𝑓𝐾ℳ𝐾p𝑉 𝐾q.

Then, the discretization by the network element method consists in finding a solution 𝑈 P 𝑋𝒩 ,0 of

𝑎ℎp𝑈 ,𝑉 q “ 𝑙ℎp𝑉 q for all 𝑉 P 𝑋𝒩 ,0. (3.6)

3.3. Basic properties of the network element method

The spaces 𝑋𝒩 ,𝐾 of degrees of freedom are endowed with the bilinear forms:

p𝑈 ,𝑉 q0,𝐾 “ 𝑚𝐾ℳ𝐾p𝑈𝐾qℳ𝐾p𝑉 𝐾q `
ÿ

𝜎Pℱ𝐾

𝑚𝐾p𝑢𝜎 ´ℳ𝐾p𝑈𝐾qqp𝑣𝜎 ´ℳ𝐾p𝑉 𝐾qq,

and
p𝑈 ,𝑉 q1,𝐾 “

ÿ

𝜎Pℱ𝐾

𝑚𝐾ℎ
´2
𝐾 p𝑢𝜎 ´ℳ𝐾p𝑈𝐾qqp𝑣𝜎 ´ℳ𝐾p𝑉 𝐾qq,

and the associated norm ||𝑈 ||20,𝐾 “ p𝑈 ,𝑈q0,𝐾 and semi-norm |𝑈 |
2
1,𝐾 “ p𝑈 ,𝑈q1,𝐾 , while we denote ||𝑈 ||2𝑋,𝐾 “

||𝑈 ||20,𝐾 ` |𝑈 |
2
1,𝐾 . We endow the space of degrees of freedom 𝑋𝒩 with the bilinear forms

p𝑈 ,𝑉 q0 “
ÿ

𝐾P𝒯
p𝑈 ,𝑉 q0,𝐾 and p𝑈 ,𝑉 q1 “

ÿ

𝐾P𝒯
p𝑈 ,𝑉 q1,𝐾 ,
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and the associated norm ||𝑈 ||20 “ p𝑈 ,𝑈q0 and semi-norm |𝑈 |
2
1 “ p𝑈 ,𝑈q1. Then we define:

p𝑈 ,𝑉 q𝑋 “ p𝑈 ,𝑉 q0 ` p𝑈 ,𝑉 q1 and ||𝑈 ||2𝑋 “ p𝑈 ,𝑈q𝑋 ,

which are obviously a scalar product and its associated norm on 𝑋𝒩 , making 𝑋𝒩 a Hilbert space. We recall
now the measures of quality of the discretization network and its associated geometry:

𝜃Π “ sup
𝐾P𝒯

sup
𝜎Pℱ𝐾

ℎ𝐾

ˇ

ˇ

ˇ

ˇ

𝜂𝐾,𝜎
𝑚𝐾

ˇ

ˇ

ˇ

ˇ

and 𝜃ℳ “ sup
𝐾P𝒯

sup
𝜎Pℱ𝐾

|𝛾𝐾,𝜎| and 𝜃ℱ “ max
𝐾P𝒯

cardpℱ𝐾q,

and

𝜃𝒯 “ sup
𝐾P𝒯

max
ˆ

|𝐵𝐾 X Ω|
𝑚𝐾

,
𝑚𝐾

|𝐵𝐾 X Ω|

˙

,

and we denote 𝑆𝑑1 “ |𝐵p0, 1q| the volume of the unit ball in dimension 𝑑. Using the quality measures and the
above norms, it was established in [12] that there exists 𝐶∇ ą 0 depending only on the quality parameters and
independent on ℎ such for any 𝑈 P 𝑋𝒩 :

𝑚𝐾 |∇𝐾 p𝑈q|
2
ď 𝐶2

∇p|𝑈 |
2
1,𝐾 `𝑚

2
𝐾 |.ℳ𝐾p𝑈𝐾q|

2q. (3.7)

Moreover, there exists 𝐶𝑎 ą 0 depending only on 𝑆˚ and the quality parameters and independent on ℎ such
that for any p𝑈 ,𝑉 q P 𝑋2

𝒩 ,𝐾 :
𝑎𝐾ℎ p𝑈 ,𝑉 q ď 𝐶𝑎||𝑈 ||𝑋,𝐾 ||𝑉 ||𝑋,𝐾 , (3.8)

while for any p𝑈 ,𝑉 q P 𝑋2
𝒩 :

𝑎ℎp𝑈 ,𝑉 q ď 𝐶𝑎||𝑈 ||𝑋 ||𝑉 ||𝑋 . (3.9)

There also exists 𝛼𝑎 ą 0 depending only on 𝑆˚ and the quality parameters and independent on ℎ such that

𝑎𝐾ℎ p𝑈 ,𝑈q ě 𝛼𝑎|𝑈 |
2
1,𝐾 for any 𝑈 P 𝑋𝒩 ,𝐾 and 𝑎ℎp𝑈 ,𝑈q ě 𝛼𝑎|𝑈 |

2
1 for any 𝑈 P 𝑋𝒩 . (3.10)

Finally, for any 𝑉 P 𝑋𝒩

𝑙ℎp𝑉 q ď 𝐶𝑓 |𝑉 |0 where 𝐶𝑓 “

˜

ÿ

𝐾P𝒯
𝑚𝐾 |𝑓𝐾 |

2

¸
1
2

. (3.11)

Assume that Ω satisfies the cone condition with angle 𝜏 and radius 𝑟, and denote 𝛿 ą 0 the smallest real number
such that for any 𝐾 P 𝒯 :

𝛿´1𝑟𝐾 ď minp𝑟, 𝑟𝐾q ď 𝛿𝑟𝐾 . (3.12)

Then, there exists 𝐶𝑃,𝑋𝒩 ą 0 depending on 𝜏 , 𝛿, 𝜂𝒩 , 𝜃𝒯 and Ω such that the following discrete Poincaré’s
inequality also holds, making existence, uniqueness and stability of the discrete solution an obvious consequence
of Lax–Milgram’s lemma:

||𝑈 ||20 ď 𝐶𝑃,𝑋𝒩 |𝑈 |
2
1 . (3.13)

4. Reconstruction operators for network element solutions

Our main objective in the present paper is to characterize the approximation properties of the network
element method. The main difficulty comes from the fact that we have only worked in the degree of freedom
(dof) space 𝑋𝒩 , and in particular, we have not defined any function on Ω as it would be the case in classical
variational methods, mesh-based or not. The first task is consequently to bridge this gap between the discrete
and continuous worlds.
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4.1. Quadrature families

To this end, we consider any family of functions p𝜓𝐾q𝐾P𝒯 such that for any 𝐾 P 𝒯 , 𝜓𝐾 P 𝐿8pR𝑑q and:
ż

Ω

𝜓𝐾 “ 𝑚𝐾 ,
ÿ

𝐾P𝒯
𝜓𝐾 “ 1 for a.e 𝑥 P Ω, supp 𝜓𝐾 Ă 𝐵p𝑥𝐾 , 𝜌𝐾q Ą 𝐵𝐾 , (4.1)

and we denote ℬ𝐾 “ 𝐵p𝑥𝐾 , 𝜌𝐾q. Such a family p𝜓𝐾q𝐾P𝒯 is called a quadrature family, while the set of all
quadrature families is denoted 𝛹p𝒩 ,𝒢q. For any 𝑥 P R𝑑, we denote

𝒯 ℬ𝑥 “ t𝐾 P 𝒯 | 𝑥 P ℬ𝐾u and 𝜂𝜓 “ sup
𝑥PR𝑑

cardp𝒯 ℬ𝑥 q, (4.2)

𝜅𝜓 “ max
ˆ

max
𝐾P𝒯

𝜌𝐾
𝑟𝐾

,max
𝐾P𝒯

𝑟𝐾
𝜌𝐾

˙

and 𝑀𝜓 “ max
𝐾P𝒯

||𝜓𝐾 ||𝐿8pΩq. (4.3)

We call p𝜂𝜓, 𝜅𝜓,𝑀𝜓q the parameters of a quadrature family. From these definitions we immediately deduce that
𝜅𝜓 ą 0, 𝑀𝜓 ą 0 and that

𝜅´1
𝜓 𝑟𝐾 ď 𝜌𝐾 ď 𝜅𝜓𝑟𝐾 and ||𝜓𝐾 ||𝐿8pΩq ď𝑀𝜓. (4.4)

Remark that the hypothesis 𝐵𝐾 Ă ℬ𝐾 also immediately implies that 𝜅𝜓 ě 1. If the domain Ω satisfies the cone
condition with angle 𝜏 and radius 𝑟, and if 𝛿 ą 0 is defined as in (3.12), then noticing that |𝐶p0, 𝜉, 𝜏, 1q| is in
fact independent on 𝜉 and denoting |𝐶p0, 𝜉, 𝜏, 1q| “ |𝐶p0, 𝜏, 1q| this common value, we have

|𝐵𝐾 X Ω| ě |𝐶p𝑥𝐾 , 𝜉, 𝜏,minp𝑟, 𝑟𝐾qq| “ |𝐶p0, 𝜉, 𝜏, 1q|minp𝑟, 𝑟𝐾q𝑑 ě |𝐶p0, 𝜏, 1q|minp𝑟, 𝑟𝐾q𝑑

leading to the useful inequality:
1
𝑚𝐾

ż

Ω

|𝜓𝐾 | ď𝑀𝜓𝜃𝒯
𝑆𝑑1𝜅

𝑑
𝜓𝛿

𝑑

|𝐶p0, 𝜏, 1q|
. (4.5)

We can now construct functions on R𝑑 and in particular on Ω using the 𝜓𝐾 ’s by setting:

Π𝒯 p𝑈q “
ÿ

𝐾P𝒯
𝜓𝐾ℳ𝐾p𝑈q and ∇𝒯 p𝑈q “

ÿ

𝐾P𝒯
𝜓𝐾∇𝐾p𝑈q and Π𝒩 p𝑈q “

ÿ

𝐾P𝒯
𝜓𝐾Π𝐾p𝑈𝐾q.

Those reconstructions will be the key to establish convergence results. Before turning to it, let us define

||𝑈 ||2𝒯 “
ÿ

𝐾P𝒯
𝑚𝐾ℳ𝐾p𝑈q

2.

Obviously, for any 𝑈 P 𝑋𝒩 , ||𝑈 ||𝒯 ď ||𝑈 ||𝑋 . Moreover:

Lemma 4.1. Let p𝒩 ,𝒢q be an admissible discretization network and an associated admissible network geometry.
Assume that Ω satisfies the cone condition with angle 𝜏 and radius 𝑟. Then there exists 𝐶 ą 0 depending only
on Ω and the quality parameters of the geometry and of the quadrature family such that for any 𝑈 P 𝑋𝒩 :

||Π𝒯 p𝑈q||𝐿2pΩq ď 𝐶||𝑈 ||𝒯 and ||∇𝒯 p𝑈q||𝐿2pΩq ď 𝐶||𝑈 ||𝑋 .

Proof. By definition, we have:

||Π𝒯 p𝑈q||
2
𝐿2pΩq “

ż

Ω

˜

ÿ

𝐾P𝒯
𝜓𝐾ℳ𝐾p𝑈q

¸2

ď

ż

Ω

˜

ÿ

𝐾P𝒯
|𝜓𝐾 |ℳ𝐾p𝑈q

2

¸˜

ÿ

𝐾P𝒯
|𝜓𝐾 |

¸

.
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Then notice that (4.1) implies that only 𝜂𝜓 terms are non zero in the second sum and thus using (4.5):

||Π𝒯 p𝑈q||
2
𝐿2pΩq ď 𝜂𝜓𝑀𝜓

ÿ

𝐾P𝒯

ˆ
ż

Ω

|𝜓𝐾 |

˙

ℳ𝐾p𝑈q
2 ď 𝜂𝜓𝑀

2
𝜓𝜃𝒯

𝑆𝑑1𝜅
𝑑
𝜓𝛿

𝑑

|𝐶p0, 𝜏, 1q|
||𝑈 ||2𝒯 .

Proceeding exactly in the same way, we obtain:

||∇𝒯 p𝑈q||
2
𝐿2pΩq ď 𝜂𝜓𝑀𝜓

ÿ

𝐾P𝒯

ˆ
ż

Ω

|𝜓𝐾 |

˙

|∇𝐾p𝑈q|
2,

and the second result follows using (3.7). �

4.2. Existence of quadrature families

To establish convergence and error estimates, we will not only need the existence of a quadrature family,
but also some control over its parameters, independently of the mesh size. However as we have not used any
specific partition in practice in the construction of the numerical scheme, this should be considered as a technical
requirement to construct a convergence theory. Moreover, such a theory will in fact depend on optimal bounds
for those constants. Deriving such optimal bounds over the entire set 𝛹p𝒩 ,𝒢q using only properties of the point
cloud is in fact a very difficult problem: one way to do it would consist in first defining what would be a relevant
measure of optimality (clearly a compromise must be found between p𝜅𝜓, 𝜂𝜓q and 𝑀𝜓) and then constructing
either a minimizing sequence of quadrature families or a quadrature family reaching this optimal compromise.
This is the reason why we introduce a more specific type of quadrature families, with the main advantage that
it will provide a practical mean to compute an upper bound on those constants, and the obvious drawback that
this bound could remain very pessimistic.

Consider any family p𝜓𝜎q𝜎Pℱ such that supp𝜓𝜎 Ă 𝐵p𝑥𝜎, 𝑟𝜎q and

Ω Ă
ď

𝜎Pℱ
𝐵p𝑥𝜎, 𝑟𝜎q and

ÿ

𝜎Pℱ
𝜓𝜎p𝑥q “ 1 @𝑥 P Ω and 0 ď 𝜓𝜎 ď 1 @ 𝜎 P ℱ . (4.6)

Denoting 𝑚𝜎 “

ż

Ω

𝜓𝜎, we consider a family of weights 𝜔 “ p𝜔𝐾𝜎q𝐾P𝒯 ,𝜎Pℱ𝐾 for which the family of functions

p𝜓𝐾q𝐾P𝒯 defined by:
𝜓𝐾 “

ÿ

𝜎Pℱ𝐾

𝜔𝐾,𝜎𝜓𝜎, (4.7)

is a quadrature family. To this end, simply injecting formula (4.7) in conditions (4.1) and (4.4) immediately
leads to:

ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜔𝐾,𝜎𝜓𝜎 “ 1 and
ÿ

𝜎Pℱ𝐾

𝜔𝐾,𝜎𝑚𝜎 “ 𝑚𝐾 where 𝑚𝜎 “

ż

Ω

𝜓𝜎.

Rearranging the sums in the first condition, we get:

ÿ

𝜎Pℱ

˜

ÿ

𝐾P𝒯𝜎

𝜔𝐾,𝜎

¸

𝜓𝜎 “ 1,

and thus as p𝜓𝜎q𝜎Pℱ is a partition of unity it is sufficient to find a solution to the following linear system:

A𝜓𝜔 “ 1ô

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐾P𝒯𝜎

𝜔𝐾,𝜎 “ 1 @𝜎 P ℱ
ÿ

𝜎Pℱ𝐾

𝜔𝐾,𝜎
𝑚𝜎

𝑚𝐾
“ 1 @𝐾 P 𝒯 ,

(4.8)
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to get a quadrature family. We say that such a quadrature family is an interface based quadrature family.
The existence of families belonging to this subclass of quadrature family is the object of the following theorem,
which plays a crucial role in our convergence theory. In fact, once the existence of this interface based quadrature
family established, the spirit of the convergence theory will then be reminiscent of finite volume theory, with the
major additional difficulty that we have to handle a discretization network rather than a mesh. The following
proposition and the associated corollary can thus undoubtedly be considered as the main results of the present
paper.

Proposition 4.2. If 𝒩 is an admissible network and 𝒢 an associated admissible geometry, then there exists a
solution to (4.8) for any family p𝑚𝜎q𝜎Pℱ such that

ÿ

𝐾P𝒯
𝑚𝐾 “

ÿ

𝜎Pℱ
𝑚𝜎 “ |Ω| .

Proof. Let 𝑦 “ pp𝑦𝜎q𝜎Pℱ , p𝑦𝐾q𝐾P𝒯 q P Rcardpℱq`cardp𝒯 q be such that A𝑇𝜓𝑦 “ 0. We have:

𝜔𝑇A𝑇𝜓𝑦 “ pA𝜓𝜔q
𝑇

𝑦 “
ÿ

𝜎Pℱ

ÿ

𝐾P𝒯𝜎

𝜔𝐾,𝜎𝑦𝜎 `
ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜔𝐾,𝜎
𝑚𝜎

𝑚𝐾
𝑦𝐾 “

ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜔𝐾,𝜎

ˆ

𝑦𝜎 `
𝑚𝜎

𝑚𝐾
𝑦𝐾

˙

,

and thus A𝑇𝜓𝑦 “ 0 is equivalent to:

𝑦𝜎 `
𝑚𝜎

𝑚𝐾
𝑦𝐾 “ 0 @𝐾 P 𝒯 ,@𝜎 P ℱ𝐾 .

Consequently, we have:
𝑦𝜎
𝑚𝜎

“ ´
𝑦𝐾
𝑚𝐾

@𝐾 P 𝒯 ,@𝜎 P ℱ𝐾 ,

For any p𝐾,𝐿q P 𝒯 , by definition of the discretization network there exists cells p𝐾𝑚q0ď𝑚ď𝑑p𝐾,𝐿q and interfaces
p𝜎𝑚q0ď𝑚ď𝑑p𝐾,𝐿q´1 such that 𝐾0 “ 𝐾, 𝐾𝑑p𝐾,𝐿q “ 𝐿 and t𝐾𝑚,𝐾𝑚`1u Ă 𝒯𝜎𝑚 for all 0 ď 𝑚 ď 𝑑p𝐾,𝐿q ´ 1.
Consequently:

𝑦𝜎𝑚
𝑚𝜎𝑚

“ ´
𝑦𝐾𝑚
𝑚𝐾𝑚

and
𝑦𝜎𝑚
𝑚𝜎𝑚

“ ´
𝑦𝐾𝑚`1

𝑚𝐾𝑚`1

.

Then there exists a constant 𝛼 such that 𝑦𝐾 “ 𝛼𝑚𝐾 and 𝑦𝜎 “ ´𝛼𝑚𝜎 for all 𝐾 P 𝒯 and all 𝜎 P ℱ . We have,
denoting 1 the vector with all components equal to 1:

1𝑇 𝑦 “
ÿ

𝜎Pℱ
𝑦𝜎 `

ÿ

𝐾P𝒯
𝑦𝐾 “ 𝛼

˜

ÿ

𝐾P𝒯𝑖

𝑚𝐾 ´
ÿ

𝜎Pℱ𝑖

𝑚𝜎

¸

“ 0 as
ÿ

𝐾P𝒯
𝑚𝐾 “

ÿ

𝜎Pℱ
𝑚𝜎 “ |Ω| ,

which from Fredholm alternative establishes the existence of a family p𝜔𝐾𝜎q𝐾P𝒯 ,𝜎Pℱ𝐾 satisfying (4.8). �

As we will see in the following corollary (otherwise we refer the reader to [24]), a partition of unity satisfying
(4.6) always exists. Thus as an immediate consequence of the above proposition we know that an interface based
quadrature family also exists and thus 𝛹p𝒩 ,𝒢q is non empty.

Corollary 4.3. Assume that Ω satisfies the cone condition with angle 𝜏 and radius 𝑟. Let 𝒩 be an admissible
network and 𝒢 an associated admissible geometry. Assume that there exists 0 ă 𝛼 ă 1 such that

Ω Ă
ď

𝜎Pℱ
𝐵p𝑥𝜎, 𝛼𝑟𝜎q where 𝑟𝜎 “ max

𝐾P𝒯𝜎
𝑟𝐾 . (4.9)
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Then there exists an interface based quadrature family for which 𝜅𝜓 and 𝑀𝜓 are bounded by constants depending
only on Ω, 𝜃𝒩 , 𝜃ℱ , 𝛼 and 𝜃𝜓, where

𝜃𝜓 “ inf
p𝜔𝐾𝜎q𝐾P𝒯 ,𝜎Pℱ𝐾 PA´1

𝜓 p1q
sup
𝐾P𝒯

sup
𝜎Pℱ𝐾

|𝜔𝐾,𝜎| and 𝜃𝒩 “ max

˜

sup
𝐾P𝒯

sup
𝜎Pℱ𝐾

𝑟𝜎
𝑟𝐾

,

ˆ

inf
𝐾P𝒯

inf
𝜎Pℱ𝐾

𝑟𝜎
𝑟𝐾

˙´1
¸

.

Proof. Consider a function 𝜁 P 𝐶8𝑐 pRq taking positive values between 0 and 𝑐, with 𝜁p0q “ 𝑐, 𝜁p´1q “ 0,
𝜁p1q “ 0, 𝜁p𝛼q ą 0 and compactly supported in s ´ 1, 1r. One can use for instance the function:

𝜁p𝑧q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑐𝑒

1
p𝑧2 ´ 1q for |𝑧| ă 1

0 for |𝑧| ě 1,

where 𝑐 is such that
ş

R 𝜁 “ 1. Another possible choice is given by:

𝜁p𝑧q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝜁˚p𝑧 ` 1q
𝜁˚p𝑧 ` 1q ` 𝜁˚p´𝑧q

for 𝑧 ď 0

𝜁˚p1´ 𝑧q
𝜁˚p1´ 𝑧q ` 𝜁˚p𝑧q

for 𝑧 ě 0
where 𝜁˚p𝑧q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑒´1{𝑧 for 𝑧 ą 0

0 otherwise .

Then the family p𝜓𝜎q𝜎Pℱ defined by setting for all 𝜎 P ℱ :

𝜓𝜎p𝑥q “
𝜁𝜎p𝑥q

ř

𝜎1Pℱ 𝜁𝜎1 p𝑥q
where 𝜁𝜎p𝑥q “ 𝜁

ˆ

|𝑥´ 𝑥𝜎|

𝑟𝜎

˙

, (4.10)

is a partition of unity of Ω, as we get by construction using hypothesis (4.9):

Ω Ă
ď

𝜎Pℱ
𝐵p𝑥𝜎, 𝑟𝜎q and

ÿ

𝜎Pℱ
𝜓𝜎p𝑥q “ 1 @𝑥 P Ω and 0 ď 𝜓𝜎 ď 1 @ 𝜎 P ℱ .

First, we establish that this family also satisfies ||𝜓𝜎||𝐿8pΩq ď 𝐶𝜓 for some constant 𝐶𝜓 independent on 𝑟𝜎. To
this end, first remark that 0 ď 𝜁𝜎 ď 𝑐: and that for any 𝑥 P Ω, using hypothesis (4.9) there exists 𝜎 P ℱ such
that 𝑥 P 𝐵p𝑥𝜎, 𝛼𝑟𝜎q, thus we have:

ÿ

𝜎1Pℱ

𝜁𝜎1 p𝑥q ě 𝜁𝜎p𝑥q ě 𝜁p𝛼q ą 0.

Immediately, this gives:

||𝜓𝜎||𝐿8pΩq ď
||𝜁||𝐿8pRq

𝜁p𝛼q
“ 𝐶𝜓

It is immediate to see that the associated family p𝜓𝐾q𝐾P𝒯 defined by (4.7) using an optimal solution to (4.8)
satisfies 𝑟𝐾 ď 𝜌𝐾 ď 2𝜃𝒩 𝑟𝐾 , as for all 𝜎 P ℱ𝐾 , 𝑟𝜎 ď 𝜃𝒩 𝑟𝐾 , 𝑟𝜎 ě 𝑟𝐾 , 𝜌𝐾 ď 2 max𝜎Pℱ𝐾 𝑟𝜎, and 𝜌𝐾 ě min𝜎Pℱ𝐾 𝑟𝜎,
and that:

||𝜓𝐾 ||𝐿8pΩq ď 𝜃ℱ𝜃𝜓𝐶𝜓. �

Remark 4.4. Given a family p𝜓𝜎q𝜎Pℱ , one can compute in practice the quantity 𝜃𝜓, or at the very least an
upper bound, simply solving (4.8) and looking eventually for its optimal solution. Remark that contrary to the
practice of the network element method itself, establishing this theoretical bound would require some numerical
integration techniques, most probably a quadrature rule. In some sense, we see that the network element method
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evacuates numerical integration from practice, and confines it to the computation of some theoretical stability
bounds. To see that 𝜃𝜓 can be controlled in a huge number of cases, consider the case where we construct the
discretization network from a mesh, using the cell barycenters and diameters to define the point cloud and
the connectivity, and choosing the interfaces to be the vertices of the mesh. Then, the p𝑚𝐾q𝐾P𝒯 can be taken
equal to the cell measure. If the mesh admits a simplicial submesh based on its vertices, which is a common
requirement, then using those simplices it is easy to construct a partition of unity satisfying (4.6), and the
p𝜔𝐾,𝜎q𝐾P𝒯 ,𝜎Pℱ𝐾 can be defined by 𝜔𝐾,𝜎 “ 1

𝑚𝜎

ş

𝐾
𝜓𝜎. Thus we get 𝜃𝜓 ď 1.

5. Convergence to minimal regularity solutions

We first recall the following strong consistency result established in [12]. Let p𝒩 ,𝒢q be an admissible dis-
cretization network and an associated admissible network geometry. For any 𝜙 P 𝐶1

𝑐 pR𝑑q, there exists 𝐶𝜙 ą 0
depending only on 𝜙 and the quality parameters and independent on ℎ such that for any 𝐾 P 𝒯 and any
𝑥 P 𝐵p𝑥𝐾 , 𝜉𝐾q where 𝜉𝐾 ď 𝜅𝜉𝑟𝐾 with 𝜅𝜉 ě 1:

|𝜙p𝑥q ´ℳ𝐾p𝒟𝐾p𝜙qq| ď 𝐶𝜙𝜅𝜉ℎ𝐾 , (5.1)

while for any 𝜙 P 𝐶2
𝑐 pR𝑑q, there exists another 𝐶𝜙 ą 0 depending only on 𝜙 and the quality parameters and

independent on ℎ such that for any 𝐾 P 𝒯 and any 𝑥 P 𝐵p𝑥𝐾 , 𝜉𝐾q:

|∇𝜙p𝑥q ´∇𝐾p𝒟𝐾p𝜙qq| ď 𝐶𝜙𝜅𝜉pℎ𝐾 ` ℎ
𝑝
𝐾q and |𝜙p𝑥q ´Π𝐾p𝒟𝐾p𝜙qq| ď 𝐶𝜙𝜅

2
𝜉pℎ

2
𝐾 ` ℎ

𝑝`1
𝐾 q. (5.2)

For any Φ P 𝐶2
𝑐 pR𝑑q𝑑, there exists 𝐶Φ ą 0 depending only on Φ and the quality parameters and independent

on ℎ such that, for any 𝐾 P 𝒩 and any 𝑥 P 𝐵p𝑥𝐾 , 𝜉𝐾q:

|div Φp𝑥q ´𝒟ℐ𝒱𝐾p𝒟𝐾pΦqq| ď 𝐶Φ𝜅𝜉pℎ𝐾 ` ℎ
𝑝
𝐾q with 𝒟ℐ𝒱𝐾p𝒟𝐾pΦqq “

1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

𝜂𝑇𝐾,𝜎Φp𝑥𝜎q. (5.3)

To establish convergence for solutions with minimal 𝐻1 regularity, we will first need to establish consistency
results for the reconstruction operators Π𝒯 , ∇𝒯 and Π𝒩 , as well as the stabilization bilinear form 𝑠ℎ. Next,
following the usual finite volume, discontinuous Galerkin our Gradient discretization procedure (see [18], [13]
or [17]), we will establish a refined weak consistency result for the discrete gradient ∇𝒯 applied to sequences
bounded in the || ¨ ||𝑋 norm, finally allowing to establish convergence of the network element method. Again,
no originality is claimed regarding the general guidelines of the proof, which are completely classical, however
every of these classical steps will require a careful treatment because of the quadrature family which takes care
of the lack of a mesh.

5.1. Global consistency results for smooth functions

Building on the local consistency results, we can derive consistency estimates for reconstructed functions:

Lemma 5.1 (Global approximation property). Let p𝒩 ,𝒢q be an admissible discretization network and an asso-
ciated admissible network geometry. For any 𝜙 P 𝐶1

𝑐 pR𝑑q, there exists 𝐶𝜙 depending only on 𝜙, 𝜃ℱ , 𝜃Π, 𝜃ℳ,
𝜃𝒜, 𝑀𝜓, 𝜅𝜓 and 𝜂𝜓 such that:

||Π𝒯 p𝒟p𝜙qq ´ 𝜙||𝐿2pΩq ď 𝐶𝜙ℎ,

while for any 𝜙 P 𝐶2
𝑐 pR𝑑q, there exists 𝐶𝜙 depending only on 𝜙, 𝜃ℱ , 𝜃Π, 𝜃ℳ, 𝜃𝒜, 𝑀𝜓, 𝜅𝜓 and 𝜂𝜓 such that

||∇𝒯 p𝒟p𝜙qq ´∇𝜙||𝐿2pΩq𝑑 ď 𝐶𝜙pℎ` ℎ
𝑝q and ||Π𝒩 p𝒟p𝜙qq ´ 𝜙||𝐿2pΩq ď 𝐶𝜙pℎ

2 ` ℎ𝑝`1q.
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Proof. For any 𝜙 P 𝐶1
𝑐 pR𝑑q, we have as

ř

𝐿P𝒯 𝜓𝐿 “ 1:

𝜙´Π𝒯 p𝒟p𝜙qq “ 𝜙´
ÿ

𝐿P𝒯
𝜓𝐿ℳ𝐿p𝒟𝐿p𝜙qq “ 𝜙´ℳ𝐾p𝒟𝐾p𝜙qq `

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qqq,

Then, as the family pℬ𝐾q𝐾P𝒯 is an open cover of Ω, we get that:

||Π𝒯 p𝒟p𝜙qq ´ 𝜙||2𝐿2pΩq ď
ÿ

𝐾P𝒯
||Π𝒯 p𝒟p𝜙qq ´ 𝜙||2𝐿2pℬ𝐾XΩq

ď 2
ÿ

𝐾P𝒯
||𝜙´ℳ𝐾p𝒟𝐾p𝜙qq||

2
𝐿2pℬ𝐾XΩq ` 2

ÿ

𝐾P𝒯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

𝐿2pℬ𝐾XΩq

. (5.4)

For the first term, we obviously have using (5.1):

ÿ

𝐾P𝒯
||𝜙´ℳ𝐾p𝒟𝐾p𝜙qq||

2
𝐿2pℬ𝐾XΩq ď

ÿ

𝐾P𝒯 ,ℬ𝐾Xsupp𝜙‰H

ż

ℬ𝐾XΩ

𝐶2
𝜙𝜅

2
𝜓ℎ

2
𝐾 ď 𝜂𝜓

ˆ

|supp𝜙| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙

𝐶2
𝜙𝜅

2
𝜓ℎ

2.

Notice then that, using hypotheses (4.1) we get:
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď𝑀𝜓

ÿ

𝐿P𝒯
|ℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qq|𝜒ℬ𝐿 .

Thus we obtain using Cauchy–Schwarz inequality:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

𝐿2pℬ𝐾XΩq

ď 𝜂𝜓𝑀
2
𝜓

ż

ℬ𝐾XΩ

ÿ

𝐿P𝒯
|ℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qq|

2
𝜒ℬ𝐿

ď 𝜂𝜓𝑀
2
𝜓

ż

Ω

ÿ

𝐿P𝒯
|ℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qq|

2
𝜒ℬ𝐿𝜒ℬ𝐾 .

Then the second term of (5.4) is bounded by

ÿ

𝐾P𝒯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

𝐿2pℬ𝐾XΩq

ď 𝜂𝜓𝑀
2
𝜓

ż

Ω

ÿ

𝐾P𝒯

ÿ

𝐿P𝒯
|ℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qq|

2
𝜒ℬ𝐿𝜒ℬ𝐾 .

Noticing that ℳ𝐾p𝒟𝐾p𝜙qq “ 0 if ℬ𝐾 X supp𝜙 “ H, that

|ℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qq| ď |ℳ𝐾p𝒟𝐾p𝜙qq ´ 𝜙| ` |𝜙´ℳ𝐿p𝒟𝐿p𝜙qq| ,

and that (5.1) gives for any 𝑥 P ℬ𝐾 X ℬ𝐿:

|ℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qq| ď 𝐶𝜙𝜅𝜓pℎ𝐾 ` ℎ𝐿q,

we finally obtain that:
ÿ

𝐾P𝒯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾p𝒟𝐾p𝜙qq ´ℳ𝐿p𝒟𝐿p𝜙qqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

𝐿2pℬ𝐾XΩq
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ď 𝜂𝜓𝑀
2
𝜓𝜅

2
𝜓𝐶

2
𝜙

ż

Ω

ÿ

𝐾P𝒯 Xsupp𝜙‰H

ÿ

𝐿P𝒯Xsupp𝜙‰H

pℎ𝐾 ` ℎ𝐿q
2𝜒ℬ𝐿𝜒ℬ𝐾

ď 4𝜂2
𝜓𝑀

2
𝜓𝜅

2
𝜓𝐶

2
𝜙ℎ

2

ż

Ω

ÿ

𝐾P𝒯 ,ℬ𝐾Xsupp𝜙‰H

𝜒ℬ𝐾 ď 4𝜂2
𝜓𝑀

2
𝜓𝜅

2
𝜓𝐶

2
𝜙ℎ

2

ˆ

|supp𝜙| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙

,

which concludes the proof of the first estimate. The same proof leads to the second and third estimates, replacing
(5.1) by respectively the first and second estimates of (5.2). �

Lemma 5.2 (Stabilization consistency). Let p𝒩 ,𝒢q be an admissible discretization network and an associated
admissible network geometry. For any 𝜙 P 𝐶2

𝑐 pR𝑑q, there exists 𝐶𝜙 depending only on 𝜙, Ω, 𝜃ℱ , 𝜃Π, 𝜃ℳ, 𝜃𝒜,
𝜃𝒯 and 𝜂𝒩 such that:

𝑠ℎp𝒟ℎp𝜙q,𝒟ℎp𝜙qq “
ÿ

𝐾P𝒯
𝑠𝐾p𝒟𝐾p𝜙q ´Π𝐾p𝒟𝐾p𝜙qq,𝒟𝐾p𝜙q ´Π𝐾p𝒟𝐾p𝜙qqq ď 𝑆˚𝐶𝜙pℎ

2 ` ℎp𝑝`1qq2.

Proof. Using (5.2), there exists a constant 𝐶𝜙 such that for any 𝜎 P ℱ𝐾 :

|𝜙p𝑥𝜎q ´Π𝐾p𝒟𝐾p𝜙qqp𝑥𝜎q| ď 𝐶𝜙pℎ
2
𝐾 ` ℎ

𝑝`1
𝐾 q.

Thus, we get:
𝑠ℎp𝒟ℎp𝜙q,𝒟ℎp𝜙qq ď 𝜃ℱ𝑆

˚𝐶2
𝜙

ÿ

𝐾P𝒯 ,𝐵𝐾Xsupp𝜙‰H

𝑚𝐾pℎ
2
𝐾 ` ℎ

p𝑝`1q
𝐾 q2

ď 𝜃𝒯 𝜃ℱ𝑆
˚𝐶2

𝜙

ÿ

𝐾P𝒯 ,𝐵𝐾Xsupp𝜙‰H

pℎ2
𝐾 ` ℎ

p𝑝`1q
𝐾 q2

ż

𝐵𝐾XΩ

1 ď 𝜂𝒩 𝜃𝒯 𝜃ℱ𝑆
˚𝐶2

𝜙

ˆ

|supp𝜙| `
𝑆𝑑1
2𝑑
ℎ𝑑
˙

pℎ2 ` ℎp𝑝`1qq2.

�

5.2. Weak consistency of the reconstructed gradient ∇𝒯
In the remaining of this section, we will consider a family p𝒩ℎ,𝒢ℎqℎPℋ of admissible discretization networks
and associated admissible network geometries indexed by ℎ P ℋ, where ℋ is a bounded at most countable
subset of R` with 0 P ℋ. We will consider the case where there exists constants 𝜃 ą 0, 𝜂 ą 0, 𝑀 ą 0 and
𝜅 ą 0 independent on ℎ and quadrature families p𝜓ℎqℎPℋ associated with each p𝒩ℎ,𝒢ℎq, such that @ ℎ P ℋ,
maxp𝜃ℱℎ , 𝜃Πℎ , 𝜃𝒯ℎ , 𝜃𝒜ℎ , 𝜃ℳℎ

q ď 𝜃, maxp𝜂𝒩ℎ , 𝜂𝜓ℎq ď 𝜂, 𝜅𝜓 ď 𝜅 and 𝑀𝜓ℎ ď 𝑀 . We call such a family an
admissible discretization family. We have the following weak convergence property for discrete solutions on
admissible discretization families:

Lemma 5.3 (Weak consistency). Let p𝒩ℎ,𝒢ℎqℎPℋ be an admissible discretization family. Let p𝑈ℎqℎPℋ be a
family such that

– 𝑈ℎ P 𝑋𝒩ℎ,0 for any ℎ P ℋ.
– There exists 𝐶 ą 0 independent on ℎ such that ||𝑈ℎ||𝑋ℎ ď 𝐶 for all ℎ P ℋ.
– There exists 𝑢 P 𝐿2pΩq such that Π𝒯ℎp𝑈ℎq á 𝑢 weakly in 𝐿2pΩq when ℎÑ 0.

Then we have, for any Φ P 𝐶8𝑐 pΩq
𝑑:

ż

Ω

𝑢div Φ`
ż

Ω

∇𝒯ℎp𝑈ℎq ¨ Φ Ñ 0 when ℎÑ 0, (5.5)

and also 𝑢 P 𝐻1
0 pΩq and ∇𝒯ℎp𝑈ℎq á ∇𝑢 weakly in 𝐿2pΩq𝑑 when ℎÑ 0.
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Proof. Let us start by extending Π𝒯ℎp𝑈ℎq and ∇𝒯ℎp𝑈ℎq by 0 outside of Ω, and denote those extensions
respectively rΠ𝒯ℎp𝑈ℎq and r∇𝒯ℎp𝑈ℎq. By virtue of Lemma 4.1, we know that up to a subsequence there exists
𝐺 P 𝐿2pR𝑑q𝑑 such that r∇𝒯ℎp𝑈ℎq á 𝐺 weakly in 𝐿2pR𝑑q𝑑 when ℎÑ 0 and that rΠ𝒯ℎp𝑈ℎq á r𝑢 weakly in 𝐿2pR𝑑q
when ℎÑ 0, where r𝑢 denotes the extension by zero of 𝑢 outside Ω. Then recalling that:

𝒟ℐ𝒱𝐾p𝒟𝐾pΦqq “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

𝜂𝑇𝐾,𝜎Φp𝑥𝜎q,

notice that, for any Φ P 𝐶8𝑐 pR𝑑q𝑑:
ż

R𝑑
rΠ𝒯ℎp𝑈ℎqdiv Φ “

ż

Ω

˜

ÿ

𝐾P𝒯ℎ

𝜓𝐾ℳ𝐾p𝑈ℎq

¸

div Φ “
ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾ℳ𝐾p𝑈ℎqdiv Φ,

which leads to:
ż

R𝑑
rΠ𝒯ℎp𝑈ℎqdiv Φ “

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾ℳ𝐾p𝑈ℎq𝒟ℐ𝒱𝐾p𝒟𝐾pΦqq

`
ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾ℳ𝐾p𝑈ℎq pdiv Φ´𝒟ℐ𝒱𝐾p𝒟𝐾pΦqqq .

Let us denote the previous identity 𝑇1`𝑇2, with obvious notations. Focusing on 𝑇1, we have using the definition
of 𝒟ℐ𝒱𝐾 :

𝑇1 “
ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

ℳ𝐾p𝑈ℎq𝜂𝐾,𝜎 ¨ Φp𝑥𝜎q.

Then, using the approximate geometrical conservation property i.e.
ř

𝐾P𝒯𝜎 𝜂𝐾,𝜎 “ 𝜀𝜎 for 𝜎 P ℱℎ,int and the
fact that 𝑢𝜎 “ 0 for 𝜎 P ℱℎ,ext as 𝑈ℎ P 𝑋𝒩ℎ,0, this rewrites:

𝑇1 “
ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

pℳ𝐾p𝑈ℎq ´ 𝑢𝜎q𝜂𝐾,𝜎 ¨ Φp𝑥𝜎q `
ÿ

𝐾Pℱℎ,int

𝜀𝜎 ¨ Φp𝑥𝜎q𝑢𝜎

“
ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

pℳ𝐾p𝑈ℎq ´ 𝑢𝜎q𝜂𝐾,𝜎 ¨ Φp𝑥𝐾q `
ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

pℳ𝐾p𝑈ℎq ´ 𝑢𝜎q𝜂𝐾,𝜎 ¨ pΦp𝑥𝜎q ´ Φp𝑥𝐾qq

`
ÿ

𝐾Pℱℎ,int

𝜀𝜎 ¨ Φp𝑥𝜎q𝑢𝜎 “ 𝑇1,1 ` 𝑇1,2 ` 𝑇1,3,

with obvious notations. Then, recalling that:

∇𝐾 p𝑈𝐾q “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

𝑢𝜎𝜂𝐾,𝜎,

the term 𝑇1,1 rewrites:

𝑇1,1 “ ´
ÿ

𝐾P𝒯ℎ

𝑚𝐾∇𝐾p𝑈ℎq ¨ Φp𝑥𝐾q “ ´
ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾∇𝐾p𝑈ℎq ¨ Φp𝑥𝐾q

“ ´

ż

R𝑑
r∇𝒯ℎp𝑈ℎq ¨ Φp𝑥q ´

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾∇𝐾p𝑈ℎq ¨ pΦp𝑥𝐾q ´ Φp𝑥qq,

which rewrites 𝑇1,1 “ 𝑇1,1,1`𝑇1,1,2 with obvious notations. For the second term, we have using Cauchy–Schwarz
inequality:

|𝑇1,1,2| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾∇𝐾p𝑈ℎq ¨ pΦp𝑥𝐾q ´ Φp𝑥qq

ˇ

ˇ

ˇ

ˇ

ˇ
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ď ℎ||∇Φ||𝐿8pR𝑑q𝑑ˆ𝑑

˜

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

|𝜓𝐾 ||∇𝐾p𝑈ℎq|
2

¸1{2 ˜
ÿ

𝐾P𝒯ℎ,ℬ𝐾Xsupp Φ‰H

ż

ℬ𝐾XΩ

|𝜓𝐾 |

¸1{2

ď 𝐶∇,ℎℎ||𝑈ℎ||𝑋ℎ ||∇Φ||𝐿8pR𝑑q𝑑ˆ𝑑 𝜃
1{2
𝒯ℎ 𝑀

1{2

˜

𝑆𝑑1𝜅
𝑑
𝜓𝛿

𝑑

|𝐶p0, 𝜏, 1q|

¸1{2 ˜
ÿ

𝐾P𝒯ℎ,ℬ𝐾Xsupp Φ‰H

ż

ℬ𝐾XΩ

|𝜓𝐾 |

¸1{2

,

using (3.7) and (4.5), and thus as 𝐶∇,ℎ is bounded by some 𝐶∇ ą 0 independent on ℎ:

|𝑇1,1,2| ď 𝜂1{2𝜃1{2𝑀𝐶∇

˜

𝑆𝑑1𝜅
𝑑
𝜓𝛿

𝑑

|𝐶p0, 𝜏, 1q|

¸1{2
ˆ

|supp Φ| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙1{2

ℎ||𝑈ℎ||𝑋ℎ ||∇Φ||𝐿8pR𝑑q𝑑ˆ𝑑 .

Now it just remains to bound 𝑇2, 𝑇1,2, 𝑇1,3 and 𝑇1,4. For 𝑇2, using (5.3) and Cauchy–Schwarz inequality we
immediately get:

|𝑇2| ď 𝐶Φ𝜅𝜓pℎ` ℎ
𝑝q

˜

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

|𝜓𝐾 ||ℳ𝐾p𝑈ℎq|
2

¸1{2 ˜
ÿ

𝐾P𝒯ℎ,ℬ𝐾Xsupp Φ‰H

ż

ℬ𝐾XΩ

|𝜓𝐾 |

¸1{2

ď 𝜂1{2𝐶Φ𝜅𝜓𝑀

˜

𝑆𝑑1𝜅
𝑑
𝜓𝛿

𝑑

|𝐶p0, 𝜏, 1q|

¸1{2
ˆ

|supp Φ| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙1{2

pℎ` ℎ𝑝q||𝑈ℎ||𝑋ℎ .

Next, for 𝑇1,2 we get using Cauchy–Schwarz inequality once again:

|𝑇1,2| ď ℎ||∇Φ||𝐿8pR𝑑q𝑑ˆ𝑑

˜

ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

ż

ℬ𝐾XΩ

ℎ´2
𝐾 |𝜓𝐾 | |ℳ𝐾p𝑈ℎq ´ 𝑢𝜎|

2

ˇ

ˇ

ˇ

ˇ

ℎ𝐾𝜂𝐾,𝜎
𝑚𝐾

ˇ

ˇ

ˇ

ˇ

2
¸1{2

ˆ

˜

ÿ

𝐾P𝒯ℎ,ℬ𝐾Xsupp Φ‰H

ż

ℬ𝐾XΩ

|𝜓𝐾 |

¸1{2

ď 𝜂1{2𝜃3{2𝑀

˜

𝑆𝑑1𝜅
𝑑
𝜓𝛿

𝑑

|𝐶p0, 𝜏, 1q|

¸1{2
ˆ

|supp Φ| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙1{2

ℎ||𝑈ℎ||𝑋ℎ ||∇Φ||𝐿8pR𝑑q𝑑ˆ𝑑 .

Finally, for 𝑇1,3, we have using (2.9) and Cauchy–Schwarz inequality:

|𝑇1,3| ď 𝜃𝒜||Φ||𝐿8pR𝑑q𝑑
ÿ

𝐾P𝒯ℎ,ℬ𝐾Xsupp Φ‰H

ÿ

𝜎Pℱ𝐾

𝑚𝐾ℎ
𝑝
𝐾 |𝑢𝜎|

ď 𝜃𝒜||Φ||𝐿8pR𝑑q𝑑ℎ
𝑝

˜

ÿ

𝐾P𝒯ℎ,ℬ𝐾Xsupp Φ‰H

ÿ

𝜎Pℱ𝐾

𝑚𝐾

¸1{2 ˜
ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

𝑚𝐾 |𝑢𝜎|
2

¸1{2

ď 𝜃𝒜||Φ||𝐿8pR𝑑q𝑑𝜃
1{2
ℱ 𝑀

1{2
𝜓 𝜂

1{2
𝜓 ℎ𝑝

ˆ

|supp Φ| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙1{2
˜

ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

𝑚𝐾 |𝑢𝜎|
2

¸1{2

.

Then notice that:
ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

𝑚𝐾 |𝑢𝜎|
2 ď 2

ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

𝑚𝐾 |𝑢𝜎 ´ℳ𝐾p𝑈𝐾q|
2 ` 2

ÿ

𝐾P𝒯ℎ

ÿ

𝜎Pℱ𝐾

𝑚𝐾 |ℳ𝐾p𝑈𝐾q|
2
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which immediately leads to:

|𝑇1,3| ď 2𝜃𝒜||Φ||𝐿8pR𝑑q𝑑𝜃
1{2
ℱ 𝑀

1{2
𝜓 𝜂

1{2
𝜓 ℎ𝑝

ˆ

|supp Φ| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙1{2

p||𝑈ℎ||
2
0,ℎ ` ℎ

2|𝑈ℎ|
2
1,ℎq

1{2.

Consequently, using our hypothesis, for any Φ P 𝐶8𝑐 pR𝑑q𝑑 there exists 𝐶Φp𝑀, 𝜃, 𝜂, 𝜅q ą 0 depending on 𝜃, 𝜂, 𝜅
and Φ and the bound on the family p𝑈ℎqℎPℋ such that, as soon as ℎ ď 1:

ˇ

ˇ

ˇ

ˇ

ż

R𝑑
rΠ𝒯ℎp𝑈ℎqdiv Φ`

ż

Ω

r∇𝒯ℎp𝑈ℎq ¨ Φ
ˇ

ˇ

ˇ

ˇ

ď 𝐶Φp𝑀, 𝜃, 𝜂, 𝜅qℎ,

which directly implies (5.5) and leads to ∇𝒯ℎp𝑈ℎq á ∇r𝑢 weakly in 𝐿2pRq𝑑 when ℎÑ 0. Thus 𝐺 “ ∇r𝑢, which
implies r𝑢 P 𝐻1pR𝑑q and thus 𝑢 P 𝐻1

0 pΩq and concludes the proof. �

5.3. Convergence result for minimal regularity solutions

To conclude, we will need the following useful link between the discrete norm || ¨ ||𝑋ℎ and classical norms for
regular functions:

Lemma 5.4. Let p𝒩ℎ,𝒢ℎqℎPℋ be an admissible discretization family. For any 𝜙 P 𝐶8𝑐 pR𝑑q, there exists 𝐶 ą 0
depending only on 𝜙, 𝜃 and 𝜂 such that

||𝒟ℎp𝜙q||𝑋ℎ ď 𝐶

ˆ

|supp𝜙| `
𝑆𝑑1
2𝑑
ℎ𝑑
˙1{2

˜

||𝜙||𝐿8pR𝑑q ` sup
|𝛼|“1

||B𝛼𝜙||𝐿8pR𝑑q

¸

.

Proof. First notice that by definition, we have:

||𝒟ℎp𝜙q||
2
𝑋ℎ
“

ÿ

𝐾P𝒯ℎ, supp 𝜙X𝐵𝐾‰H

𝑚𝐾 |ℳ𝐾p𝒟𝐾p𝜙qq|
2`

ÿ

𝐾P𝒯ℎ, supp 𝜙X𝐵𝐾‰H

ÿ

𝜎Pℱ𝐾

𝑚𝐾ℎ
´2
𝐾 |ℳ𝐾p𝒟𝐾p𝜙qq´𝜙p𝑥𝜎q|

2

Immediately, using Taylor’s expansion, we know that:

𝜙p𝑥𝜎1 q “ 𝜙p𝑥𝜎q `
ÿ

|𝛼|“1

p𝑥𝜎1 ´ 𝑥𝜎q
𝛼

ż 1

0

B𝛼𝜙p𝑥` 𝑡p𝑥𝜎1 ´ 𝑥𝜎qq,

with:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|𝛼|“1

p𝑥𝜎1 ´ 𝑥𝜎q
𝛼

ż 1

0

B𝛼𝜙p𝑥` 𝑡p𝑥𝜎1 ´ 𝑥𝜎qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď dℎ𝐾 sup
|𝛼|“1

||B𝛼𝜙||𝐿8pR𝑑q.

Then, as
ř

𝜎Pℱ𝐾 𝛾𝐾,𝜎 “ 1, and as ℳ𝐾p𝒟𝐾p𝜙qq “
ř

𝜎1Pℱ𝐾 𝛾𝐾𝜎1𝜙p𝑥𝜎1 q we immediately get that:

||𝒟ℎp𝜙q||
2
𝑋ℎ
ď 𝜃2ℳℎ

𝜃2ℱℎ

˜

ÿ

𝐾P𝒯ℎ, supp 𝜙X𝐵𝐾‰H

𝑚𝐾

¸˜

||𝜙||2𝐿8pR𝑑q ` 𝑑
2𝜃ℱℎ sup

|𝛼|“1

||B𝛼𝜙||2𝐿8pR𝑑q

¸

ď 𝜂𝒩ℎ𝜃
2
ℳℎ

𝜃2ℱℎ𝜃𝒯ℎ

ˆ

|supp𝜙| `
𝑆𝑑1
2𝑑
ℎ𝑑
˙

˜

||𝜙||2𝐿8pR𝑑q ` 𝑑
2𝜃ℱℎ sup

|𝛼|“1

||B𝛼𝜙||2𝐿8pR𝑑q

¸

,

which concludes the proof. �
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Gathering Lemmas 5.1, 5.2, 5.3 and 5.4 and the stability (3.9) and coercivity (3.10) results of [12] up to some
reformulation of our approximation extensively using the quadrature family, one could now recast our results
inside the Gradient discretization framework (see [17]) and thus automatically obtain the convergence to minimal
regularity solutions. However, this would require introducing many new concepts and notations, which is the
reason why (and also for the sake of completeness) we provide a basic finite volume like proof of the convergence
of the method:

Proposition 5.5 (Convergence). Let p𝒩ℎ,𝒢ℎqℎPℋ be an admissible discretization family, and let p𝑈ℎqℎPℋ be
the solution of the associated problem (3.6) for each ℎ P ℋ. Assume that:

ÿ

𝐾P𝒯

ż

ℬ𝐾XΩ

|𝑓𝐾 ´ 𝑓 |
2.Ñ 0

Then Π𝒯ℎp𝑈ℎq strongly converges in 𝐿2pΩq to the solution 𝑢 of (3.1) when ℎÑ 0. Moreover ∇𝒯ℎp𝑈ℎq strongly
converges in 𝐿2pΩq𝑑 to ∇𝑢 when ℎÑ 0

Proof. In the following, 𝐶 ą 0 denotes a constant independent on ℎ whose value can change from one line to
another. From the hypothesis, we know that there exists some ℎ0 small enough such that:

ÿ

𝐾P𝒯

ż

ℬ𝐾XΩ

|𝑓𝐾 ´ 𝑓 |
2 ď ||𝑓 ||𝐿2pΩq

holds for any ℎ ď ℎ0. Then, using (3.9)–(3.10)–(3.13), it is clear that

||𝑈ℎ||𝑋ℎ ď 𝐶

˜

ÿ

𝐾P𝒯ℎ

𝑚𝐾 |𝑓𝐾 |
2

¸
1
2

ď 𝐶||𝑓 ||𝐿2pΩq.

Using Lemma 4.1, we get ||Π𝒯ℎp𝑈ℎq||𝐿2pΩq ď 𝐶||𝑓 ||𝐿2pΩq and ||∇𝒯ℎp𝑈ℎq||𝐿2pΩq𝑑 ď 𝐶||𝑓 ||𝐿2pΩq. Consequently, up
to subsequence, there exists 𝑢 P 𝐿2pΩq such that the hypothesis of Lemma 5.3 are satisfied. Thus 𝑢 P 𝐻1

0 pΩq
and ∇𝒯ℎp𝑈ℎq á ∇𝑢 weakly in 𝐿2pΩq𝑑. Next, for any 𝜙 P 𝐶8𝑐 pΩq, we have:

𝑎ℎp𝑈ℎ,𝒟ℎp𝜙qq “ 𝑙ℎp𝒟ℎp𝜙qq.

Remark that:

𝑎ℎp𝑈ℎ,𝒟ℎp𝜙qq “

ż

Ω

∇𝒯ℎp𝑈ℎq ¨∇𝜙` 𝑠ℎp𝑈ℎ,𝒟ℎp𝜙qq `
ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾∇Π𝐾p𝑈ℎq ¨ p∇Π𝐾p𝒟𝐾p𝜙qq ´∇𝜙q.

Using Cauchy–Schwarz inequality and Lemma 5.2 we get:

ˇ

ˇ𝑠ℎp𝑈ℎ,𝒟ℎp𝜙qq
ˇ

ˇ ď
ˇ

ˇ𝑠ℎp𝑈ℎ,𝑈ℎq
ˇ

ˇ

1{2 ˇ
ˇ𝑠ℎp𝒟ℎp𝜙q,𝒟ℎp𝜙qq

ˇ

ˇ

1{2
ď 𝐶pℎ2 ` ℎ𝑝`1q||𝑈ℎ||𝑋ℎ ď 𝐶pℎ2 ` ℎ𝑝`1q||𝑓 ||𝐿2pΩq.

Estimate (5.2) gives:
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾∇Π𝐾p𝑈ℎq ¨ p∇Π𝐾p𝒟𝐾p𝜙qq ´∇𝜙q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶ℎ

ˆ

|supp 𝜙| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙

||𝑈ℎ||𝑋ℎ .

Thus using Lemma 5.3 we get that:

𝑎ℎp𝑈ℎ,𝒟ℎp𝜙qq Ñ

ż

Ω

∇𝑢 ¨∇𝜙 when ℎÑ 0.
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Finally, for the right-hand side we have that:

𝑙ℎp𝒟ℎp𝜙qq “

ż

Ω

𝑓

˜

ÿ

𝐾P𝒯ℎ

𝜓𝐾ℳ𝐾p𝒟𝐾p𝜙qq

¸

`
ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾p𝑓 ´ 𝑓𝐾qℳ𝐾p𝒟𝐾p𝜙qq.

Using Cauchy–Schwarz inequality, we can bound the second term by:

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾
𝜓𝐾p𝑓 ´ 𝑓𝐾qℳ𝐾p𝒟𝐾p𝜙qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶||𝜙||𝐿8pΩq

ˆ

|supp 𝜙| `
𝑆𝑑1
2𝑑
𝜅𝑑𝜓ℎ

𝑑

˙1{2
˜

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

|𝑓𝐾 ´ 𝑓 |
2

¸1{2

,

which immediately leads to:

𝑙ℎp𝒟ℎp𝜙qq Ñ

ż

Ω

𝑓𝜙 when ℎÑ 0.

Using the density of 𝐶8𝑐 pΩq in 𝐻1
0 pΩq, this concludes the proof of the fact that for all 𝑣 P 𝐻1

0 pΩq:
ż

Ω

∇𝑢 ¨∇𝑣 “
ż

Ω

𝑓𝑣.

Next, let 𝜙 P 𝐶8𝑐 pΩq. Using the triangular inequality, we have:
ż

Ω

|∇𝒯ℎp𝑈ℎq ´∇𝑢|2 ď
ż

Ω

|∇𝒯ℎp𝑈ℎq ´∇𝒯ℎp𝒟ℎp𝜙qq|
2 `

ż

Ω

|∇𝒯ℎp𝒟ℎp𝜙qq ´∇𝜙|2 `
ż

Ω

|∇𝜙´∇𝑢|2.

From Lemma 5.1, we know that:
ż

Ω

|∇𝒯ℎp𝒟ℎp𝜙qq ´∇𝜙|2 Ñ 0 when ℎÑ 0.

Next, we have using Lemma 4.1 and (3.10)
ż

Ω

|∇𝒯ℎp𝑈ℎ ´𝒟ℎp𝜙qq|
2 ď 𝐶||𝑈ℎ ´𝒟ℎp𝜙q||

2
𝑋ℎ
ď 𝐶𝑎ℎp𝑈ℎ ´𝒟ℎp𝜙q,𝑈ℎ ´𝒟ℎp𝜙qq.

Immediately, we see that:

𝑎ℎp𝑈ℎ ´𝒟ℎp𝜙q,𝑈ℎ ´𝒟ℎp𝜙qq “ 𝑎ℎp𝑈ℎ,𝑈ℎq ´ 2𝑎ℎp𝑈ℎ,𝒟ℎp𝜙qq ` 𝑎ℎp𝒟ℎp𝜙q,𝒟ℎp𝜙qq.

We have already seen that:

𝑎ℎp𝑈ℎ,𝒟ℎp𝜙qq Ñ

ż

Ω

∇𝑢 ¨∇𝜙 when ℎÑ 0.

From Lemma 5.4, we known that the family p||𝒟ℎ𝜙||𝑋ℎqℎPℋ is also bounded. Thus, we can apply the above
reasoning to 𝜙 and we get:

𝑎ℎp𝒟ℎp𝜙q,𝒟ℎp𝜙qq Ñ

ż

Ω

∇𝜙 ¨∇𝜙 when ℎÑ 0.

Finally, we have as 𝑈ℎ is solution of (3.6) that 𝑎ℎp𝑈ℎ,𝑈ℎq “ 𝑙ℎp𝑈ℎq. However

𝑙ℎp𝑈ℎq “

ż

Ω

𝑓Π𝒯ℎp𝑈ℎq `
ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

𝜓𝐾p𝑓 ´ 𝑓𝐾qℳ𝐾p𝑈𝐾q,
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and as Cauchy–Schwarz inequality gives:
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾
𝜓𝐾p𝑓 ´ 𝑓𝐾qℳ𝐾p𝑈𝐾q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶||𝑈ℎ||0

˜

ÿ

𝐾P𝒯ℎ

ż

ℬ𝐾XΩ

|𝑓𝐾 ´ 𝑓 |
2

¸1{2

,

and Π𝒯ℎp𝑈ℎq á 𝑢 weakly in 𝐿2pΩq, we deduce that:

𝑙ℎp𝑈ℎq Ñ

ż

Ω

𝑓𝑢 “

ż

Ω

|∇𝑢|2 when ℎÑ 0.

Gathering all the previous results, we get that

lim sup
ℎÑ0

ż

Ω

|∇𝒯ℎp𝑈ℎ ´𝒟ℎp𝜙qq|
2 ď 𝐶||𝑢´ 𝜙||2𝐻1pΩq.

By density of 𝐶8pΩq in 𝐻1
0 pΩq, for any 𝜀 ą 0 we can choose 𝜙 such that

||𝜙´ 𝑢||2𝐻1pΩq ď min
´𝜀

3
,
𝜀

3𝐶

¯

,

while for this fixed 𝜙, we can choose ℎ𝜀 ą 0 such that for any ℎ P ℋ, ℎ ď ℎ𝜀
ż

Ω

|∇𝒯ℎp𝑈ℎ ´𝒟ℎp𝜙qq|
2 ď

𝜀

3
and

ż

Ω

|∇𝒯ℎp𝒟ℎp𝜙qq ´∇𝜙|2 ď 𝜀

3
.

Thus for any 𝜀 ą 0, there exists ℎ𝜀 ą 0 such that for any ℎ P ℋ, ℎ ď ℎ𝜀 we have:
ż

Ω

|∇𝒯ℎp𝑈ℎq ´∇𝑢|2 ď 𝜀,

which implies that ∇𝒯ℎp𝑈ℎq Ñ ∇𝑢 strongly in 𝐿2pΩq when ℎ Ñ 0. Proceeding in exactly the same way, we
show that Π𝒯ℎp𝑈ℎq Ñ 𝑢 strongly in 𝐿2pΩq, which concludes the proof. �

6. Error estimates for regular problems

The aim of this section is to provide explicit convergence rates when the solution 𝑢 of (3.1) is regular enough.
To establish error estimates for solutions with Sobolev regularity, we will first need to refine the local consistency
results for the NEM operators ℳ𝐾 , ∇𝐾 and Π𝐾 . Then, building on those local results we will establish global
consistency results similar to Lemmas (5.1) and (5.2), for functions with Sobolev regularity only. Finally, using
those consistency results we will be able to establish our error estimates.

We recall the following useful result on Riesz potentials (see [9]): let 𝐵 be a ball of R𝑑 of radius 𝜌, 𝑓 P 𝐿𝑝p𝐵q,
𝑝 ě 1 and 𝑚 ě 1. Let 𝑔 be defined by:

𝑔p𝑥q “

ż

𝐵

|𝑥´ 𝑧|𝑚´𝑑|𝑓p𝑧q|d𝑧.

Then, there exists 𝐶𝑚,𝑑 ą 0 depending only on 𝑚 and 𝑑 such that

||𝑔||𝐿𝑝p𝐵q ď 𝐶𝑚,𝑑𝜌
𝑚||𝑓 ||𝐿𝑝p𝐵q. (6.1)

Another useful remark is the following: as Ω is Lipschitz, using Stein’s extension theorem for any 𝑘 ě 0 and any
𝑣 P 𝐻𝑘pΩq, we have:

ÿ

𝐾P𝒯
|𝑣|2𝐻𝑘pℬ𝐾q ď

ÿ

𝐾P𝒯
|𝐸𝑣|2𝐻𝑘pℬ𝐾q “

ÿ

𝐾P𝒯

ż

R𝑑
|𝐸𝑣|2𝜒ℬ𝐾 “

ż

R𝑑
|𝐸𝑣|2

˜

ÿ

𝐾P𝒯
𝜒𝐾

¸

ď 𝜂𝜓|𝐸𝑣|
2
𝐻𝑘pR𝑑q,
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and thus
ÿ

𝐾P𝒯
|𝑣|2𝐻𝑘pℬ𝐾q ď 𝜂𝜓𝐶

2
𝐸,𝑘|𝑣|

2
𝐻𝑘pΩq, (6.2)

where we recall that
𝒯 ℬ𝑥 “ t𝐾 P 𝒯 | 𝑥 P ℬ𝐾u and 𝜂𝜓 “ sup

𝑥PR𝑑
cardp𝒯 ℬ𝑥 q.

6.1. Network element interpolation

For continuous functions, we have already defined degrees of freedom through the operator 𝒟 : 𝐶0pΩq ÞÝÑ
𝑋𝒩 . To handle the case of functions that only belong to a Sobolev space, we define another operator, clearly
inspired by the usual Clément finite element interpolant. To any 𝜎 P ℱ , we associate a radius 𝑟𝜎 ą 0 such that
𝐵𝜎 Ă ℬ𝐾 , where we denote 𝐵𝜎 “ 𝐵p𝑥𝜎, 𝑟𝜎q, as well as:

𝜃ℐ “ max

˜

sup
𝐾P𝒯

sup
𝜎Pℱ𝐾

𝑟𝜎
𝑟𝐾

,

ˆ

inf
𝐾P𝒯

inf
𝜎Pℱ𝐾

𝑟𝜎
𝑟𝐾

˙´1
¸

.

We define the operator ℐ: 𝐻1pΩq ÞÝÑ 𝑋𝒩 by setting ℐp𝑣q “ pℐ𝜎p𝑣qq𝜎Pℱ where:

ℐ𝜎p𝑣q “
1
|𝐵𝜎|

ż

𝐵𝜎

𝐸𝑣 for any 𝜎 P ℱ , (6.3)

and we of course denote ℐ𝐾p𝑣q “ pℐ𝜎p𝑣qq𝜎Pℱ𝐾 . We also introduce the operator ℐ: 𝐻1
0 pΩq ÞÝÑ 𝑋𝒩

ℐ0
𝜎p𝑣q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
|𝐵𝜎|

ż

𝐵𝜎

𝐸𝑣 for any 𝜎 P ℱint

0 for any 𝜎 P ℱext.

(6.4)

6.2. Local consistency for the network element interpolation

Proposition 6.1 (Local approximation results for network element interpolation).
Assume that Ω is Lipschitz and satisfies the cone condition with angle 𝜏 and radius 𝑟. Let 𝒩 be an admissible

network and 𝒢 an associated admissible geometry. Then, we have:
For any 𝑣 P 𝐻1pΩq

||𝑣 ´ℳ𝐾pℐ𝐾p𝑣qq||𝐿2pℬ𝐾XΩq ď 𝐶ℎ𝐾 |𝐸𝑣|𝐻1pℬ𝐾q. (6.5)

For any 𝑣 P 𝐻2pΩq:
||∇𝑣 ´∇𝐾pℐ𝐾p𝑣qq||𝐿2pℬ𝐾XΩq𝑑 ď 𝐶pℎ𝐾 ` ℎ

𝑝
𝐾q||𝐸𝑣||𝐻2pℬ𝐾q, (6.6)

and
||𝑣 ´Π𝐾pℐ𝐾p𝑣qq||𝐿2pℬ𝐾XΩq ď 𝐶pℎ2

𝐾 ` ℎ
𝑝`1
𝐾 q||𝐸𝑣||𝐻2pℬ𝐾q. (6.7)

For any Φ P 𝐻2pΩq𝑑:

||divpΦq ´𝒟ℐ𝒱𝐾pℐ𝐾pΦqq||𝐿2pℬ𝐾XΩq ď 𝐶pℎ𝐾 ` ℎ
𝑝
𝐾q||Φ||𝐻2pℬ𝐾q, (6.8)

where the constants 𝐶 ą 0 in the above result can vary from line to line but only depend on the quality parameters
𝜃𝒜, 𝜃𝒯 , 𝜃ℱ , 𝜃ℳ, 𝜃Π, 𝜂𝒩 , 𝜂𝜓, 𝑀𝜓, 𝜃ℐ , and not on ℎ. The same results hold replacing ℐ by ℐ0 under the additional
hypothesis that the functions 𝜙 (resp. Φ) belong to 𝐻1

0 pΩq (resp. 𝐻1
0 pΩq

𝑑).
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Proof. First remark that by density of 𝐶8pΩq in 𝐻1pΩq and 𝐻2pΩq, it suffices to establish the results for
𝜙 P 𝐶8pΩq. For any 𝜙 P 𝐶8pΩq, let us denote r𝜙 “ 𝐸𝜙 to avoid repeating the notation 𝐸 everywhere. Using
Taylor’s expansion formula, we have for any 𝜎 P ℱ𝐾 and any p𝑥,𝑦q P ℬ2

𝐾 :

r𝜙p𝑥q “ r𝜙p𝑦q `
ÿ

|𝛼|“1

p𝑥´ 𝑦q𝛼
ż 1

0

B𝛼 r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qqd𝑡,

which immediately gives, as
ř

𝜎Pℱ𝐾 𝛾𝐾,𝜎 “ 1:

r𝜙p𝑥q “
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎
|𝐵𝜎|

ż

𝐵𝜎

r𝜙p𝑥qd𝑦 “ℳ𝐾pℐ𝐾p𝜙qq `
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“1

p𝑥´ 𝑦q𝛼
ˆ
ż 1

0

B𝛼 r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qqd𝑡
˙

d𝑦.

Next, denoting 𝑅ℳ𝜙p𝑥q “ r𝜙p𝑥q ´ℳ𝐾pℐ𝐾p𝜙qq, following [9] we define the change of variable p𝑦, 𝑡q ÝÑ p𝑧, 𝑡q
for which 𝑧 “ 𝑥` 𝑡p𝑦 ´ 𝑥q and d𝑡d𝑦 “ 𝑡´𝑑d𝑡d𝑧. The domain of integration for p𝑦, 𝑡q is 𝐵𝜎ˆs0, 1r. Its image by
the above change of variable is:

𝐷𝑥,𝜎 “

"

p𝑧, 𝑡q | 𝑡 Ps0, 1r,
ˇ

ˇ

ˇ

ˇ

1
𝑡
p𝑧 ´ 𝑥q ` 𝑥´ 𝑥𝜎

ˇ

ˇ

ˇ

ˇ

ă 𝑟𝜎

*

.

Notice that p𝑥´ 𝑦q𝛼 “ 𝑡´𝑚p𝑥´ 𝑧q𝛼 if |𝛼| “ 𝑚 and that if p𝑧, 𝑡q P 𝐷𝑥,𝜎 then:
ˇ

ˇ

ˇ

ˇ

1
𝑡
|𝑧 ´ 𝑥| ´ |𝑥𝜎 ´ 𝑥|

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
𝑡
p𝑧 ´ 𝑥q ` 𝑥´ 𝑥𝜎

ˇ

ˇ

ˇ

ˇ

ă 𝑟𝜎 and 𝑠p𝑥, 𝑧q “
|𝑧 ´ 𝑥|

|𝑥´ 𝑥𝜎| ` 𝑟𝜎
ă 𝑡. (6.9)

Using the above change of variable, we obtain:

𝑅ℳ𝜙p𝑥q “
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎
|𝐵𝜎|

ÿ

|𝛼|“1

ż

𝐷𝑥,𝜎

p𝑥´ 𝑧q𝛼B𝛼 r𝜙p𝑧q𝑡´𝑑´1d𝑡d𝑧.

The projection of 𝐷𝑥,𝜎 on the 𝑧-space being the convex hull of t𝑥uY𝐵𝜎, denoted 𝐶𝑥,𝜎, applying Fubini–Tonelli’s
theorem we get:

𝑅ℳ𝜙p𝑥q “
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎
|𝐵𝜎|

ÿ

|𝛼|“1

ż

𝐶𝑥,𝜎

p𝑥´ 𝑧q𝛼B𝛼 r𝜙p𝑧q

ż 1

0

𝜒𝐷𝑥,𝜎 p𝑧, 𝑡q𝑡
´𝑑´1d𝑡d𝑧.

Using (6.9) we get:

ˇ

ˇ

ˇ

ˇ

ż 1

0

𝜒𝐷𝑥,𝜎
p𝑧, 𝑡q𝑡´𝑑´1d𝑡d𝑧

ˇ

ˇ

ˇ

ˇ

ď

ż 1

𝑠p𝑥,𝑧q

𝑡´𝑑´1d𝑡 ď
1
𝑑

`

𝑠p𝑥, 𝑧q´𝑑 ´ 1
˘

ď
1
𝑑
p|𝑥´ 𝑥𝜎| ` 𝑟𝜎q

𝑑
|𝑥´ 𝑧|

´𝑑
.

Thus, injecting this in the above expression for 𝑅ℳ𝜙p𝑥q, we get as |𝛼| “ 1 and |𝑥´ 𝑥𝜎| ď 𝜌𝐾 :

|𝑅ℳ𝜙p𝑥q| ď
ÿ

𝜎Pℱ𝐾

ÿ

|𝛼|“1

𝜃ℳ
𝑑𝑆𝑑1𝑟

𝑑
𝜎

p𝜌𝐾 ` 𝑟𝜎q
𝑑

ż

𝐶𝑥,𝜎

|B𝛼 r𝜙p𝑧q| |𝑥´ 𝑧|
1´𝑑 d𝑧.

Recall that 𝜃´1
ℐ 𝑟𝐾 ď 𝑟𝜎 ď 𝜃ℐ𝑟𝐾 and 𝜌𝐾 ď 𝜅𝜓𝑟𝐾 and thus finally as 𝐶𝑥,𝜎 Ă ℬ𝐾 by construction:

|𝑅ℳ𝜙p𝑥q| ď
p𝑑` 1q𝜃𝑑ℐ𝜃ℳ𝜃ℱ

𝑆𝑑1
p𝜅𝜓 ` 𝜃ℐq

𝑑

ż

ℬ𝐾
|B𝛼 r𝜙p𝑧q| |𝑥´ 𝑧|

1´𝑑 d𝑧.
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Consequently, applying (6.1) we obtain the first result (6.5):
ż

ℬ𝐾XΩ

|𝜙´ℳ𝐾pℐ𝐾p𝜙qq|2 ď 𝐶2
1,𝑑

pp𝑑` 1q𝜃𝑑ℐ𝜃ℳ𝜃ℱ𝜅𝜓q
2

4𝑆𝑑21

p𝜅𝜓 ` 𝜃ℐq
2𝑑ℎ2

𝐾 ||∇r𝜙||2𝐿2pℬ𝐾q.

To establish (6.6) we proceed the same way however the geometric approximation errors require a specific
treatment. Using again Taylor’s expansion, we see that for any 𝜎 P ℱ𝐾 and p𝑥,𝑦q P ℬ2

𝐾 :

r𝜙p𝑥q “ r𝜙p𝑦q `∇r𝜙p𝑦q ¨ p𝑥´ 𝑦q ` 2
ÿ

|𝛼|“2

p𝑥´ 𝑦q𝛼

𝛼!

ż 1

0

𝑡B𝛼 r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qqd𝑡.

Then, using (2.4):

𝜀0
𝐾 r𝜙p𝑥q “

1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

r𝜙p𝑥q𝜂𝐾,𝜎 “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

r𝜙p𝑦q𝜂𝐾,𝜎d𝑦

`
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

∇r𝜙p𝑦q ¨ p𝑥´ 𝑦q𝜂𝐾,𝜎d𝑦

`
2
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“2

p𝑥´ 𝑦q𝛼

𝛼!

ż 1

0

𝑡B𝛼 r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qq𝜂𝐾,𝜎d𝑡d𝑦 “ ℰ1 ` ℰ2 ` ℰ3,

each ℰ𝑖 corresponding to one line in the above expression. By definition, the first term of the above expression
is exactly:

ℰ1 “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

r𝜙p𝑦q𝜂𝐾,𝜎d𝑦 “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

ℐ𝜎pr𝜙q𝜂𝐾,𝜎d𝑦 “ ∇Π𝐾pℐ𝐾p𝜙qq.

From Taylor’s expansion, we get:

∇r𝜙p𝑦q “ ∇r𝜙p𝑥q `
ÿ

|𝛼|“1

p𝑦 ´ 𝑥q𝛼
ż 1

0

B𝛼∇r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qqd𝑡.

Using this expansion and the fact that 1
|𝐵𝜎 |

ş

𝐵𝜎
𝑦d𝑦 “ 𝑥𝜎, the second term of the above expression rewrites:

ℰ2 “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

∇r𝜙p𝑦q ¨ p𝑥´ 𝑦q𝜂𝐾,𝜎d𝑦 “
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

∇r𝜙p𝑥q ¨ p𝑥´ 𝑥𝜎q𝜂𝐾,𝜎

`
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“1

p𝑦 ´ 𝑥q𝛼
ż 1

0

B𝛼∇r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qq ¨ p𝑥´ 𝑦q𝜂𝐾,𝜎d𝑡d𝑦,

and thus, using the first order approximate consistency properties (2.4) and (2.5):

ℰ2 “ ´∇r𝜙p𝑥q ´∇r𝜙p𝑥q ¨ p𝑥𝐾 ´ 𝑥q𝜀0
𝐾 ´

𝑑
ÿ

𝑖“1

𝑑
ÿ

𝑗“1

𝜀1,𝑖𝑗𝐾 B𝑥𝑗 r𝜙p𝑥q𝑒𝑖

`
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“1

p𝑦 ´ 𝑥q𝛼
ż 1

0

B𝛼∇r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qq ¨ p𝑥´ 𝑦q𝜂𝐾,𝜎d𝑡d𝑦.

Gathering the previous results, we get that:

𝑅Πp𝜙qp𝑥q “ ∇r𝜙p𝑥q ´∇𝐾pℐ𝐾p𝜙qq “ ´
´

r𝜙p𝑥q `∇r𝜙p𝑥q ¨ p𝑥𝐾 ´ 𝑥q
¯

𝜀0
𝐾 ´

𝑑
ÿ

𝑖“1

𝑑
ÿ

𝑗“1

𝜀1,𝑖𝑗𝐾 B𝑥𝑗 r𝜙p𝑥q𝑒𝑖
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`
1
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“1

p𝑦 ´ 𝑥q𝛼
ż 1

0

B𝛼∇r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qq ¨ p𝑥´ 𝑦q𝜂𝐾,𝜎d𝑡d𝑦

`
2
𝑚𝐾

ÿ

𝜎Pℱ𝐾

1
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“2

p𝑥´ 𝑦q𝛼

𝛼!

ż 1

0

𝑡B𝛼 r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qq𝜂𝐾,𝜎d𝑡d𝑦

“ 𝑅Π,1p𝜙qp𝑥q `𝑅Π,2p𝜙qp𝑥q `𝑅Π,3p𝜙qp𝑥q,

each 𝑅Π,𝑖p𝜙qp𝑥q corresponding to one line in the previous expression. Immediately, we see that:

||𝑅Π,1p𝜙qp𝑥q||
2
𝐿2pℬ𝐾XΩq “

ż

ℬ𝐾XΩ

ˇ

ˇ

ˇ

ˇ

ˇ

´

r𝜙p𝑥q `∇r𝜙p𝑥q ¨ p𝑥𝐾 ´ 𝑥q
¯

𝜀0
𝐾 `

𝑑
ÿ

𝑖“1

𝑑
ÿ

𝑗“1

𝜀1,𝑖𝑗𝐾 B𝑥𝑗 r𝜙p𝑥q𝑒𝑖

ˇ

ˇ

ˇ

ˇ

ˇ

2

d𝑥

ď 2𝜃2𝒜ℎ
2𝑝
´

𝑑||r𝜙||2𝐿2pℬ𝐾XΩq ` pℎ𝑑
1{2 ` 𝑑2q2||∇r𝜙||2𝐿2pℬ𝐾XΩq

¯

.

Using the same change of variable as above and (6.1) to estimate 𝑅Π,2p𝜙q and 𝑅Π,3p𝜙q, this finally leads to the
second estimate (6.6). The proof of estimate (6.8) follows the same lines, while estimate (6.7) can be established
by refining our expansion of 𝑅ℳp𝜙q through Taylor’s expansion and proceeding as above to estimate the residual
terms. As for the results involving ℐ0, it suffices to notice that 0 “ 𝜙p𝑥𝜎q for 𝜎 P ℱext and 𝜙 P 𝐶8𝑐 pΩq and then
proceed as above. �

6.3. Global consistency for network element interpolation

Proposition 6.2 (Global approximation results for network element interpolation). Assume that Ω is Lipschitz
and satisfies the cone condition with angle 𝜏 and radius 𝑟. Let 𝒩 be an admissible network and 𝒢 an associated
admissible geometry. Then, we have:

For any 𝑣 P 𝐻1pΩq
||𝑣 ´Π𝒯 pℐp𝑣qq||𝐿2pΩq ď 𝐶𝐸,1𝐶ℎ||𝑣||𝐻1pΩq, (6.10)

and
||ℐp𝑣q||𝑋 ď 𝐶𝐸,1𝐶||𝑣||𝐻1pΩq. (6.11)

For any 𝑣 P 𝐻2pΩq
||∇𝑣 ´∇𝒯 pℐp𝑣qq||𝐿2pΩq ď 𝐶𝐸,2𝐶pℎ` ℎ

𝑝q||𝑣||𝐻2pΩq, (6.12)

and
||𝑣 ´Π𝒩 pℐp𝑣qq||𝐿2pΩq ď 𝐶𝐸,2𝐶pℎ

2 ` ℎ𝑝`1q||𝑣||𝐻2pΩq. (6.13)

For any Φ P 𝐻2pΩq𝑑:

||divpΦq ´𝒟ℐ𝒱𝒯 pℐpΦqq||𝐿2pΩq ď 𝐶𝐸,2𝐶pℎ` ℎ
𝑝q||Φ||𝐻2pΩq𝑑 , (6.14)

where
𝒟ℐ𝒱𝒯 pℐpΦqq “

ÿ

𝐾P𝒯
𝜓𝐾𝒟ℐ𝒱𝐾pℐ𝐾pΦqq,

and where the constants 𝐶 ą 0 in the above result can vary from line to line but only depend on the quality
parameters 𝜃𝒜, 𝜃𝒯 , 𝜃ℱ , 𝜃ℳ, 𝜃Π, 𝜂𝒩 , 𝜂𝜓, 𝑀𝜓, 𝜃ℐ , and not on ℎ. The same results hold replacing ℐ by ℐ0 under
the additional hypothesis that the functions 𝜙 (resp. Φ) belong to 𝐻1

0 pΩq (resp. 𝐻1
0 pΩq

𝑑).
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Proof. Using the notations of Proposition 6.1 and proceeding again by density, let 𝜙 P 𝐶8pΩq. For (6.10), we
proceed along the lines of Lemma 5.1:

||Π𝒯 pℐp𝜙qq ´ 𝜙||2𝐿2pΩq ď
ÿ

𝐾P𝒯
||Π𝒯 pℐp𝜙qq ´ 𝜙||2𝐿2pℬ𝐾XΩq ď 2

ÿ

𝐾P𝒯
||𝜙´ℳ𝐾pℐ𝐾p𝜙qq||2𝐿2pℬ𝐾XΩq

`2
ÿ

𝐾P𝒯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾pℐ𝐾p𝜙qq ´ℳ𝐿pℐ𝐿p𝜙qqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

𝐿2pℬ𝐾XΩq

“ 2
ÿ

𝐾P𝒯
p𝐼𝐾,1 ` 𝐼𝐾,2q,

with obvious notations. For the first term, using estimate (6.5) we obviously have for some 𝐶 ą 0 independent
on ℎ:

ÿ

𝐾P𝒯
𝐼𝐾,1 “

ÿ

𝐾P𝒯
||𝜙´ℳ𝐾pℐ𝐾p𝜙qq||2𝐿2pℬ𝐾XΩq ď

ÿ

𝐾P𝒯
𝐶2ℎ2

𝐾 ||∇r𝜙||2𝐿2pℬ𝐾q ď 𝜂𝜓𝐶
2
𝐸,1𝐶

2ℎ2||∇𝜙||2𝐿2pΩq.

Proceeding as in the proof of Lemma 5.1 for the second term immediately leads to:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐿P𝒯
𝜓𝐿pℳ𝐾pℐ𝐾p𝜙qq ´ℳ𝐿pℐ𝐿p𝜙qqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

𝐿2pℬ𝐾XΩq

ď 𝜂𝜓𝑀
2
𝜓

ż

Ω

ÿ

𝐿P𝒯
|ℳ𝐾pℐ𝐾p𝜙qq ´ℳ𝐿pℐ𝐿p𝜙qq|2 𝜒ℬ𝐿𝜒ℬ𝐾 .

Then, notice that |ℳ𝐾pℐ𝐾p𝜙qq ´ℳ𝐿pℐ𝐿p𝜙qq| ď |ℳ𝐾pℐ𝐾p𝜙qq ´ 𝜙| ` |𝜙´ℳ𝐿pℐ𝐿p𝜙qq| which leads to, for
some 𝐶 ą 0 independent on ℎ coming from estimate (6.5):

𝐼𝐾,2 ď 2𝜂𝜓𝑀2
𝜓

ż

ℬ𝐾XΩ

|ℳ𝐾pℐ𝐾p𝜙qq ´ 𝜙|2
˜

ÿ

𝐿P𝒯
𝜒𝐿

¸

` 2𝜂𝜓𝑀2
𝜓

ÿ

𝐿P𝒯 |ℬ𝐾Xℬ𝐿‰H

ż

ℬ𝐿XΩ

|𝜙´ℳ𝐿pℐ𝐿p𝜙qq|2 𝜒ℬ𝐾

ď 2𝜂2
𝜓𝑀

2
𝜓𝐶ℎ

2
𝐾 ||∇r𝜙||2𝐿2pℬ𝐾q ` 2𝜂𝜓𝑀2

𝜓𝐶
ÿ

𝐿P𝒯
ℎ2
𝐿

ż

ℬ𝐿XΩ

|∇r𝜙|
2
𝜒ℬ𝐾 .

Summing over 𝐾 P 𝒯 , we get using Fubini–Tonelli’s theorem:

ÿ

𝐾P𝒯
𝐼𝐾,2 ď 2𝜂3

𝜓𝑀
2
𝜓𝐶

2
𝐸,1𝐶

2ℎ2||∇𝜙||2𝐿2pΩq ` 2𝜂𝜓𝑀2
𝜓𝐶

ÿ

𝐿P𝒯
ℎ2
𝐿

ż

ℬ𝐿XΩ

|∇r𝜙|
2

˜

ż

Ω

ÿ

𝐾P𝒯
𝜒𝐾

¸

,

and thus
ÿ

𝐾P𝒯
𝐼𝐾,2 ď 4𝜂3

𝜓𝑀
2
𝜓𝐶

2
𝐸,1𝐶

2ℎ2||∇𝜙||2𝐿2pΩq.

Estimates (6.12) and (6.13) can be obtained proceeding the same way, following the lines of the proof of
Lemma 5.1 and using the local estimates established in the first part of the present proof. Estimate (6.11) can
be obtained proceeding as in Lemma 5.4 and using the above Taylor’s expansions. �

Lemma 6.3 (Stabilization consistency for the network element interpolant). Let p𝒩 ,𝒢q be an admissible dis-
cretization network and an associated admissible network geometry. For any 𝑣 P 𝐻2pΩq:

𝑠ℎpℐp𝑣q,ℐp𝑣qq ď 𝑆˚𝐶𝐸,2𝐶pℎ
2 ` ℎ𝑝`1q2||𝑣||2𝐻2pΩq.

where the constant 𝐶 ą 0 only depend on the quality parameters 𝜃𝒜, 𝜃𝒯 , 𝜃ℱ , 𝜃ℳ, 𝜃Π, 𝜂𝒩 , 𝜂𝜓, 𝑀𝜓, 𝜃ℐ , and not
on ℎ. The same result holds replacing ℐ by ℐ0 under the additional hypothesis that the functions 𝑣 belongs to
𝐻1

0 pΩq.
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Proof. Again, by density of 𝐶8pΩq in 𝐻2pΩq, it suffices to establish the result for 𝜙 P 𝐶8pΩq. We have:

𝑠ℎpℐp𝜙q,ℐp𝜙qq ď 𝜃𝒯 𝑆
˚
ÿ

𝐾P𝒯

ż

𝐵𝐾XΩ

ℎ´2
𝐾

ÿ

𝜎Pℱ𝐾

|ℐ𝜎p𝜙q ´Π𝐾pℐ𝐾p𝜙qqqp𝑥𝜎q|2.

As Π𝐾pℐ𝐾p𝜙qqq is a first order polynomial, we have for any 𝜎 P ℱ𝐾 :

1
|𝐵𝜎|

ż

𝐵𝜎

Π𝐾pℐ𝐾p𝜙qqp𝑥q “ Π𝐾pℐ𝐾p𝜙qp𝑥𝜎q.

Then using Cauchy–Schwarz inequality, for any 𝜎 P ℱ𝐾 :

|ℐ𝜎p𝜙q ´Π𝐾pℐ𝐾p𝜙qqp𝑥𝜎q|2 ď
1
|𝐵𝜎|

ż

𝐵𝜎

|r𝜙´Π𝐾pℐ𝐾p𝜙qqq|2.

From the proof of Proposition 6.1, using the notations defined there we know that Taylor’s expansion gives for
any 𝑥 P ℬ𝐾 :

r𝜙p𝑥q ´Π𝐾pℐ𝐾p𝜙qqp𝑥q “ 𝑅Πp𝜙qp𝑥q ¨ p𝑥´ 𝑥𝐾q

`2
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“2

p𝑥´ 𝑦q𝛼

𝛼!

ż 1

0

𝑡B𝛼 r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qqd𝑡d𝑦

`
ÿ

𝜎Pℱ𝐾

𝛾𝐾,𝜎
|𝐵𝜎|

ż

𝐵𝜎

ÿ

|𝛼|“1

p𝑦 ´ 𝑥q𝛼
ż 1

0

B𝛼∇r𝜙p𝑥` 𝑡p𝑦 ´ 𝑥qq ¨ p𝑥´ 𝑦qd𝑡d𝑦,

and the results follows using the same techniques as in the proof of Lemma (6.7). �

6.4. Error estimates

We are now in position to establish error estimates for regular problems:

Proposition 6.4. Let p𝒩 ,𝒢q be an admissible discretization network and an associated admissible network
geometry, and let 𝑈 be the solution of the associated problem (3.6). Assume that there exists 𝐶𝑓 ą 0 such that:

˜

ÿ

𝐾P𝒯

ż

ℬ𝐾XΩ

|𝑓𝐾 ´ 𝑓 |
2

¸1{2

,ď 𝐶𝑓ℎ

and assume that the solution 𝑢 of (3.1) satisfies 𝑢 P 𝐻3pΩq. Then, if p𝜓𝐾q𝐾P𝒯 is a quadrature family, we have
the following error estimates:

||𝑈 ´ ℐ0
p𝑢q||𝑋 ď 𝐶pℎ` ℎ𝑝q, (6.15)

and
||𝑢´Π𝒯 p𝑈q||𝐿2pΩq ď 𝐶pℎ` ℎ𝑝q and ||∇𝑢´∇𝒯 p𝑈q||𝐿2pΩq ď 𝐶pℎ` ℎ𝑝q, (6.16)

and for any 𝐾 P 𝒯

||𝑢´ℳ𝐾p𝑈q||𝐿2p𝐵𝐾XΩq ď 𝐶pℎ` ℎ𝑝q and ||∇𝑢´∇𝐾p𝑈q||𝐿2p𝐵𝐾XΩq𝑑 ď 𝐶pℎ` ℎ𝑝q, (6.17)

where the constant 𝐶 ą 0 depends on 𝑢, 𝑑, 𝜃ℱ , 𝜃𝒯 , 𝜃Π, 𝜃𝒜, 𝜃ℳ, 𝑀𝜓, 𝜅𝜓, 𝜂𝜓, 𝜃ℐ , and Ω but not on ℎ.
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Proof. In the following, 𝐶 ą 0 denotes a constant that can depend on 𝑢, 𝑑, 𝜃ℱ , 𝜃𝒯 , 𝜃Π, 𝜃𝒜, 𝜃ℳ, 𝑀𝜓, 𝜅𝜓, 𝜂𝒩 ,
𝜂𝜓, 𝜃ℐ and Ω whose value can change from one line to another. First, as we have already noticed in the proof
of Proposition 5.5, by (3.9)–(3.10) and (3.13), it is clear that:

||𝑈ℎ||𝑋 ď 𝐶

˜

ÿ

𝐾P𝒯
𝑚𝐾 |𝑓𝐾 |

2

¸
1
2

ď 𝐶p1` ℎq||𝑓 ||𝐿2pΩq.

As ℐ0
p𝑢q P 𝑋𝒩 ,0 by construction, we can use it in our discrete variational problem. Consequently for any

𝑉 P 𝑋𝒩 ,0:

𝑎ℎpℐ0
p𝑢q,𝑉 q “

ż

Ω

∇𝑢 ¨∇𝒯 p𝑉 q `
ÿ

𝐾P𝒯

ż

ℬ𝐾XΩ

𝜓𝐾p∇Π𝐾pℐ0
p𝑢qq ´∇𝑢q ¨∇Π𝐾p𝑉 q ` 𝑠

ℎpℐ0
p𝑢q,𝑉 q.

Using Cauchy–Schwarz inequality and (3.9)–(3.10) and Lemma 6.3, we get:

ˇ

ˇ𝑠ℎpℐ0
p𝑢q,𝑉 q

ˇ

ˇ ď
ˇ

ˇ𝑠ℎpℐ0
p𝑢q,ℐ0

p𝑢qq
ˇ

ˇ

1{2 ˇ
ˇ𝑠ℎp𝑉 ,𝑉 q

ˇ

ˇ

1{2
ď 𝐶pℎ2 ` ℎ𝑝`1q||𝑉 ||𝑋 |𝑢|𝐻2pΩq,

while the same Cauchy–Schwarz inequality and (6.6) leads to:
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐾P𝒯

ż

ℬ𝐾XΩ

𝜓𝐾p∇Π𝐾pℐ𝐾p𝑢qq ´∇𝑢q ¨∇Π𝐾p𝑉 q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶pℎ` ℎ𝑝q|𝑢|𝐻2pΩq||𝑉 ||𝑋 .

Then, using the fact that 𝑈 is solution of the discrete problem (3.6), we have that:

𝑎ℎp𝑈 ,𝑉 q “ 𝑙ℎp𝑉 q “

ż

Ω

𝑓Π𝒯 p𝑉 q `
ÿ

𝐾P𝒯

ż

ℬ𝐾XΩ

𝜓𝐾p𝑓𝐾 ´ 𝑓qℳ𝐾p𝑉 q.

Using Cauchy–Schwarz inequality, we can bound the second term by:

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝐾P𝒯

ż

ℬ𝐾
𝜓𝐾p𝑓 ´ 𝑓𝐾qℳ𝐾p𝑉 q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶||𝑉 ||0

˜

ÿ

𝐾P𝒯

ż

ℬ𝐾XΩ

|𝑓𝐾 ´ 𝑓 |
2

¸1{2

.

Combining the above results, we see that there exists 𝐶 ą 0 such that for all 𝑉 P 𝑋𝒩 ,0, we have:

ˇ

ˇ𝑎ℎp𝑈 ´ ℐ0
p𝑢q,𝑉 q

ˇ

ˇ ď

ˇ

ˇ

ˇ

ˇ

ż

Ω

∇𝑢 ¨∇𝒯 p𝑉 q ´

ż

Ω

𝑓Π𝒯 p𝑉 q

ˇ

ˇ

ˇ

ˇ

` 𝐶pℎ` ℎ𝑝q||𝑉 ||𝑋 .

Consequently, it just remains to estimate:

ℛp𝑉 q “
ż

Ω

∇𝑢 ¨∇𝒯 p𝑉 q ´

ż

Ω

𝑓Π𝒯 p𝑉 q “

ż

Ω

∇𝑢 ¨∇𝒯 p𝑉 q `

ż

Ω

∆𝑢Π𝒯 p𝑉 q.

As p𝜓𝐾q𝐾P𝒯 is a quadrature family, we get:
ż

Ω

∆𝑢Π𝒯 p𝑉 q “
ÿ

𝐾P𝒯

ż

Ω

𝜓𝐾divp∇𝑢qℳ𝐾p𝑉 q

“
ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜂𝐾,𝜎 ¨ ℐ𝜎p∇𝑢qℳ𝐾p𝑉 q `
ÿ

𝐾P𝒯

ż

Ω

𝜓𝐾pdivp∇𝑢q ´𝒟ℐ𝒱𝐾pℐ𝐾p∇𝑢qqqℳ𝐾p𝑉 q.
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As 𝑣𝜎 “ 0 for any 𝜎 P ℱext and as the geometry is approximately conservative, we get:
ż

Ω

∆𝑢Π𝒯 p𝑉 q “
ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜂𝐾,𝜎 ¨ ℐ𝜎p∇𝑢qpℳ𝐾p𝑉 q ´ 𝑣𝜎q `
ÿ

𝜎Pℱint

𝜀𝜎 ¨ ℐ𝜎p∇𝑢q𝑣𝜎

`
ÿ

𝐾P𝒯

ż

Ω

𝜓𝐾pdivp∇𝑢q ´𝒟ℐ𝒱𝐾pℐ𝐾p∇𝑢qqqℳ𝐾p𝑉 q.

We denote:
𝐺𝐾 “

1
|𝐵𝐾 X Ω|

ż

𝐵𝐾XΩ

∇𝑢.

then we get:
ż

Ω

∆𝑢Π𝒯 p𝑉 q “
ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜂𝐾,𝜎 ¨ pℐ𝜎p∇𝑢q ´𝐺𝐾qpℳ𝐾p𝑉 q ´ 𝑣𝜎q

´
ÿ

𝐾P𝒯
𝑚𝐾𝐺𝐾 ¨∇Π𝐾p𝑉 q `

ÿ

𝜎Pℱint

𝜀𝜎 ¨ ℐ𝜎p∇𝑢q𝑣𝜎 `
ÿ

𝐾P𝒯
𝑚𝐾ℳ𝐾p𝑉 q𝐺𝐾 ¨ 𝜀

0
𝐾

`
ÿ

𝐾P𝒯

ż

Ω

𝜓𝐾pdivp∇𝑢q ´𝒟ℐ𝒱𝐾pℐ𝐾p∇𝑢qqqℳ𝐾p𝑉 q

“
ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜂𝐾,𝜎 ¨ pℐ𝜎p∇𝑢q ´𝐺𝐾qpℳ𝐾p𝑉 q ´ 𝑣𝜎q `

ż

Ω

ÿ

𝐾P𝒯
𝜓𝐾p∇𝑢´𝐺𝐾q ¨∇Π𝐾p𝑉 q

´

ż

Ω

∇𝑢 ¨∇𝒯 p𝑉 q `
ÿ

𝐾P𝒯

ż

Ω

𝜓𝐾pdivp∇𝑢q ´𝒟ℐ𝒱𝐾pℐ𝐾p∇𝑢qqqℳ𝐾p𝑉 q

`
ÿ

𝜎Pℱint

𝜀𝜎 ¨ ℐ𝜎p∇𝑢q𝑣𝜎 `
ÿ

𝐾P𝒯
𝑚𝐾ℳ𝐾p𝑉 q𝐺𝐾 ¨ 𝜀

0
𝐾 ,

and thus:

ℛp𝑉 q “
ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝜂𝐾,𝜎 ¨ pℐ𝜎p∇𝑢q ´𝐺𝐾qpℳ𝐾p𝑉 q ´ 𝑣𝜎q `

ż

Ω

ÿ

𝐾P𝒯
𝜓𝐾p∇𝑢´𝐺𝐾q ¨∇Π𝐾p𝑉 q

`
ÿ

𝐾P𝒯

ż

Ω

𝜓𝐾pdivp∇𝑢q ´𝒟ℐ𝒱𝐾pℐ𝐾p∇𝑢qqqℳ𝐾p𝑉 q `
ÿ

𝜎Pℱint

𝜀𝜎 ¨ ℐ𝜎p∇𝑢q𝑣𝜎 `
ÿ

𝐾P𝒯
𝑚𝐾ℳ𝐾p𝑉 q𝐺𝐾 ¨ 𝜀

0
𝐾 .

We rewrite this last identity ℛp𝑉 q “ 𝑅1 ` 𝑅2 ` 𝑅3 ` 𝑅4 ` 𝑅5 with obvious notations. Proceeding as in the
proof of Proposition 6.2, it is clear as ∇𝑢 P 𝐻1pΩq that there exists 𝐶 ą 0 (applying Stein’s extension theorem
to ∇𝑢) such that:

|ℐ𝜎p∇𝑢q ´𝐺𝐾 | ď
𝐶ℎ

|𝐵𝐾 X Ω|
||∇𝑢||𝐻1p𝐵𝐾XΩq and

ˇ

ˇ

ˇ

ˇ

ż

𝐵𝐾XΩ

|∇𝑢´𝐺𝐾 |2
ˇ

ˇ

ˇ

ˇ

1{2

ď 𝐶ℎ||∇𝑢||𝐻1p𝐵𝐾XΩq.

Consequently, using Cauchy–Schwarz inequality we get that:

|𝑅1| ď 𝐶ℎ
ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

ℎ𝐾 |𝜂𝐾,𝜎|

𝑚𝐾
𝑚𝐾ℎ

´1
𝐾 |ℐ𝜎p∇𝑢q ´𝐺𝐾 ||ℳ𝐾p𝑉 q ´ 𝑣𝜎|

ď 𝜃Π

˜

ÿ

𝐾P𝒯
𝑚𝐾 |ℐ𝜎p∇𝑢q ´𝐺𝐾 |2

¸1{2 ˜
ÿ

𝐾P𝒯
𝑚𝐾ℎ

´2
𝐾 |ℳ𝐾p𝑉 q ´ 𝑣𝜎|

2

¸1{2
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ď 𝐶ℎ𝜂1{2𝜃
1{2
𝒯 𝜃Π||∇𝑢||𝐻1pΩq||𝑉 ||𝑋 ,

and

|𝑅2| ď

˜

ÿ

𝐾P𝒯

ż

𝐵𝐾XΩ

|𝜓𝐾 ||∇𝑢´𝐺𝐾 |2
¸1{2 ˜

ÿ

𝐾P𝒯

ˆ

1
𝑚𝐾

ż

Ω

|𝜓𝐾 |

˙

𝑚𝐾 ||∇Π𝐾p𝑉 q||
2

¸1{2

ď

˜

𝜂𝒩𝑀
2
𝜓𝜃𝒯 𝑆

𝑑
1𝜅

𝑑
𝜓𝛿

𝑑

|𝐶p0, 𝜏, 1q|

¸1{2

𝐶ℎ||∇𝑢||𝐻1pΩq||𝑉 ||𝑋 ,

as well as:
|𝑅3| ď 𝐶pℎ` ℎ𝑝q|∇𝑢|𝐻2pΩq𝑑 ||𝑉 ||𝑋 .

Next, using the convention 𝜀𝜎 “ 0 for 𝜎 P ℱext, we have:

|𝑅4| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

𝜎Pℱ

ÿ

𝐾P𝒯𝜎

𝜀𝜎 ¨ ℐ𝜎p∇𝑢q𝑣𝜎
cardp𝒯𝜎q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝜃𝒜ℎ
𝑝

˜

ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝑚𝐾

cardp𝒯𝜎q
|ℐ𝜎p∇𝑢q||𝑣𝜎 ´ℳ𝐾p𝑉 q| `

ÿ

𝐾P𝒯
𝑚𝐾 |ℳ𝐾p𝑉 q|

˜

ÿ

𝜎Pℱ𝐾

1
cardp𝒯𝜎q

|ℐ𝜎p∇𝑢q|

¸¸

,

and using Cauchy–Schwarz inequality, this leads to:

|𝑅4| ď 𝜃𝒜ℎ
𝑝pℎ|𝑉 |𝑋 ` |𝑉 |0q

˜

ÿ

𝐾P𝒯

ÿ

𝜎Pℱ𝐾

𝑚𝐾 |ℐ𝜎p∇𝑢q|2
¸1{2

.

Then, notice that by definition of ℬ𝐾 , we have:

|ℐ𝜎p∇𝑢q|2 ď
1
|𝐵𝜎|

ż

𝐵𝜎

|𝐸p∇𝑢q|2 ď |ℬ𝐾 |
|𝐵𝜎||ℬ𝐾 |

ż

ℬ𝐾
|𝐸p∇𝑢q|2 ď 𝜃ℐ

|ℬ𝐾 |

ż

ℬ𝐾
|𝐸p∇𝑢q|2.

As:
𝑚𝐾

|ℬ𝐾 |
“

𝑚𝐾

|𝐵𝐾 X Ω|
|𝐵𝐾 X Ω|
|ℬ𝐾 |

ď 𝜃𝒯
|𝐵𝐾 |

|ℬ𝐾 |
ď 𝜃𝒯 𝜅

𝑑
𝜓,

and consequently |𝑅4| ď 𝜂
1{2
𝜓 𝜃

1{2
𝒯 𝜃𝒜𝜅

𝑑{2
𝜓 ℎ𝑝pℎ|𝑉 |𝑋 ` |𝑉 |0q𝐶𝐸,0||∇𝑢||𝐿2pΩq. Finally, we have using Cauchy–

Schwarz inequality that:

|𝑅5| ď 𝜃𝒜ℎ
𝑝|𝑉 |0

˜

ÿ

𝐾P𝒯
𝑚𝐾 |𝐺𝐾 |

2

¸1{2

and |𝐺𝐾 |
2 ď

1
|𝐵𝐾 X Ω|

ż

𝐵𝐾XΩ

|𝐸p∇𝑢q|2,

and thus:

|𝑅5| ď 𝜃𝒜ℎ
𝑝|𝑉 |0

˜

ÿ

𝐾P𝒯
𝑚𝐾 |𝐺𝐾 |

2

¸1{2

ď 𝜃𝒜𝜃
1{2
𝒯 ℎ𝑝|𝑉 |0

˜

ÿ

𝐾P𝒯

ż

𝐵𝐾XΩ

|𝐸p∇𝑢q|2
¸1{2

,

and consequently |𝑅5| ď 𝜂𝒩 𝜃𝒜𝜃
1{2
𝒯 ℎ𝑝|𝑉 |0𝐶𝐸,0||∇𝑢||𝐿2pΩq. Thus, there exists 𝐶 ą 0 such that |ℛp𝑉 q| ď 𝐶pℎ`

ℎ𝑝q||𝑉 ||𝑋 . Using (3.9)–(3.10)–(3.13), we get:

||𝑈 ´ ℐ0
p𝑢q||2𝑋 ď 𝐶𝑎ℎp𝑈 ´ ℐ0

p𝑢q,𝑈 ´ ℐ0
p𝑢qq,

and thus taking 𝑉 “ 𝑈´ℐ0
p𝑢q, we obtain ||𝑈´ℐ0

p𝑢q||𝑋 ď 𝐶pℎ`ℎ𝑝q. Finally remark that using the triangular
inequality, we have:

||𝑢´Π𝒯 p𝑈q||
2
𝐿2pΩq ď ||𝑢´Π𝒯 pℐ0

p𝑢qq||2𝐿2pΩq ` ||Π𝒯 pℐ0
p𝑢qq ´Π𝒯 p𝑈q||

2
𝐿2pΩq,
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and
||∇𝑢´∇𝒯 p𝑈q||

2
𝐿2pΩq ď ||∇𝑢´∇𝒯 pℐ0

p𝑢qq||2𝐿2pΩq ` ||∇𝒯 pℐ0
p𝑢qq ´∇𝒯 p𝑈q||

2
𝐿2pΩq,

and that Lemma 4.1, and (3.9)–(3.10)–(3.13) gives us:

||Π𝒯 p𝑈 ´ ℐ0
p𝑢qq||𝐿2pΩq ď 𝐶||𝑈 ´ ℐ0

p𝑢q||𝑋 and ||∇𝒯 p𝑈 ´ ℐ0
p𝑢qq||𝐿2pΩq ď 𝐶||𝑈 ´ ℐ0

p𝑢q||𝑋

Combining the above results with the interpolation results (6.10) and (6.12) consequently gives the desired
estimates. To obtain the local estimates, remark that:

||𝑢´ℳ𝐾p𝑈q||
2
𝐿2p𝐵𝐾XΩq ď ||𝑢´ℳ𝐾pℐ0

p𝑢qq||2𝐿2p𝐵𝐾XΩq ` ||ℳ𝐾pℐ0
p𝑢qq ´ℳ𝐾p𝑈q||

2
𝐿2p𝐵𝐾XΩq,

and that:

||ℳ𝐾pℐ0
p𝑢qq´ℳ𝐾p𝑈q||

2
𝐿2p𝐵𝐾XΩq “

ż

𝐵𝐾XΩ

|ℳ𝐾pℐ0
p𝑢qq´ℳ𝐾p𝑈q|

2 “
|𝐵𝐾 X Ω|
𝑚𝐾

𝑚𝐾 |ℳ𝐾pℐ0
p𝑢qq´ℳ𝐾p𝑈q|

2

ď 𝜃𝒯 |ℐ0
p𝑢q ´𝑈 |20 ď 𝜃𝒯 ||ℐ0

p𝑢q ´𝑈 ||2𝑋 ď 𝐶pℎ` ℎ𝑝q2,

and the result immediately follows from (6.5). In the same way, we have:

||∇𝑢´∇𝐾p𝑈q||
2
𝐿2p𝐵𝐾XΩq𝑑 ď ||∇𝑢´∇𝐾pℐ0

p𝑢qq||2𝐿2p𝐵𝐾XΩq𝑑 ` ||∇𝐾pℐ0
p𝑢qq ´∇𝐾p𝑈q||

2
𝐿2p𝐵𝐾XΩq𝑑

ď ||∇𝑢´∇𝐾pℐ0
p𝑢qq||2𝐿2p𝐵𝐾XΩq𝑑 ` 𝐶∇𝜃𝒯 ||ℐ

0
p𝑢q ´𝑈 ||2𝑋 ,

and the result follows from (6.6). �

A direct use of the estimates of Proposition 6.4 would only provide a rate ℎ`ℎ𝑝 for the 𝐿2 convergence of Π𝒩 p𝑈q
towards 𝑢. However, the estimates of Propositions 6.1 and 6.2 suggest that one could achieve minpℎ2, ℎ𝑝`1q, and
thus 𝐿2 superconvergence if 𝑝 ě 1. This is moreover what is observed in practice (see [12]). However, the usual
duality argument that is expected to lead to such a result is difficult to apply in our context. For this reason, we
do not wish to elaborate any further on optimal 𝐿2 convergence rates here. The above result is also sub-optimal
in the sense that we require 𝑢 P 𝐻3pΩq instead of the usual 𝐻2pΩq. This is due to the fact that in the above proof
we use the strong form of the Poisson problem and the local consistency of the discrete divergence operator
𝒟ℐ𝒱𝐾 applied to ∇𝑢, which is probably sub-optimal. We nevertheless hope that the available results emphasize
enough the link between quality parameters, geometrical approximation order and convergence rates.

7. Conclusion and perspectives

On the simplest possible model problem, we established convergence results and error estimates for the
network element method. The error estimates are slightly sub-optimal as they require a solution belonging to
𝐻3. The natural extension to heterogeneous and anisotropic diffusion tensors and reaction coefficients of the
method and the associated convergence results will be the subject of a future paper. The results presented here
could be improved in two ways: first by establishing a more explicit bound on the parameters of the quadrature
family, probably through an estimation of 𝜃𝜓 using network quality parameters, and secondly by establishing
error estimates with 𝐻2 regularity instead of 𝐻3.
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