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BASIC CONVERGENCE THEORY FOR THE NETWORK ELEMENT METHOD

JULIEN COATLEVEN*

Abstract. A recent paper introduced the network element method (NEM) where the usual mesh was
replaced by a discretization network. Using the associated network geometric coefficients and following
the virtual element framework, a consistent and stable numerical scheme was proposed. The aim of
the present paper is to derive a convergence theory for the NEM under mild assumptions on the exact
problem. We also derive basic error estimates, which are sub-optimal in the sense that we have to
assume more regularity than usual.
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1. INTRODUCTION

In recent years, the mimetic technology [5] has proved to be a very efficient tool to derive numerical schemes
to handle probably all classical partial differential equations, with general coefficients, even on very distorted
or exotic meshes. Many methods, and in particular the virtual element method (VEM, [3]) and the Hybrid-
High-Order (HHO) schemes [15] were developed following its principles, allowing to handle complex problems
such as linear [4,14] and non linear [6, 8] elasticity, parabolic problems [29], multiphase flow problems [10],
Stokes problem [7], etc. Based on the success of those polygonal methods, in a recent paper [12] was explored
the idea that we probably need less than a mesh to derive an efficient variational numerical method. This
naturally led to the notion of discretization networks in [12], which is a common object in meshless methods
(see [21,27,28]). The network element method was then derived by reproducing the VEM principles directly
on the discretization network rather than on a mesh. Numerical examples illustrated the performance of the
method, and the excepted convergence rates were observed in practice.

The present paper is an attempt to propose a basis of a convergence theory for the network element method,
using again the elementary Poisson problem as a model problem. Notice that the consistency of the method is
mainly inherited from the properties of the approximate geometry, as is usual for meshless methods based on
discretization networks (see [16,21-23,27,28]), while its stability comes from its VEM-like (and also discontinuous
Galerkin like) formulation. Both were already studied in [12]. Thus, the major difficulty of the convergence
analysis consists in going from the purely discrete world of degrees of freedom where the network element method
is formulated, to the continuous world of Sobolev spaces. The key ingredient will be a family of functions forming
a partition of unity and whose integral will replace the discrete weights of the method. In this way, they play
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the role usually assumed by a quadrature rule and will form what will naturally be called a quadrature family.
This is a major difference with partition of unity finite element methods [25], where a partition of unity is used
to decompose the functions and not the integral operator (see [2,11]). Once this quadrature family is defined,
thanks to the variational nature of the network element method the spirit of the convergence theory will be highly
reminiscent of finite volume theory, discontinuous Galerkin our the unified framework of gradient discretization
(see [13,17-19]). In fact, once quadrature families are properly defined and their existence established, one could
consider our convergence theory for minimal regularity solutions as establishing that the Gradient discretization
framework properties are satisfied by the reconstruction operators associated to the quadrature family, with
however many additional technicalities coming from the lack of a mesh, this time very reminiscent of meshless
techniques and in particular partition of unity based methods (see [24]).

As explained in the original paper presenting the network element method [12], when compared to mesh
based methods the performance difference between them and the network element method comes from the cost
comparison of mesh generation on one side and network and geometry generation on the other side. Comparing
network and geometry generation, it is clear that most of the cost lies in the geometry generation step, however
in best cases this can be done by simply solving d or d + 1 linear systems (see [12]). Establishing a convergence
theory allowing to understand which quality parameter is crucial to maintain convergence rates is consequently
very helpful for the long term goal of designing fast and robust geometry generation algorithms, which would
trully make the network element method more than a mathematical curiosity.

The paper will be organized as follows: in the first part of the paper (Sects. 1 and 2), we recall the definitions
of a discretization network and the associated geometric weights, as well as the network element method itself.
Then, in the second part of the paper (Sects. 3-5) we establish convergence results. Section 3 is devoted to
the reconstruction of functions from network element degrees of freedom. In particular, a crucial existence
result on quadrature families is established there, which constitutes the backbone of our convergence theory.
Section 4 is devoted to convergence to minimal regularity solutions, to emphasize the robustness of the approach.
Finally, Section 5 deals with error estimates. Notice that once the core theorem of Section 3 is established, the
last two sections follow the general spirit of finite volume (or discontinuous Galerkin) theory, with additional
technicalities specific to the network element method. For numerical experiments illustrating the behavior of
the method in practice, we refer the reader to [12].

2. DISCRETIZATION NETWORKS AND NETWORK GEOMETRIES

2.1. Discretization networks

Let Q be an open bounded connected subset of R?, d € N\{0}, assumed to be at least Lipschitz. For any
x € R? and any r > 0, we denote B(z,r) the ball of radius r centered at = for the usual Euclidean norm
|z|? = Z?Zl x2. Following [12,21,27,28], a discretization network N of  is defined from two sets of points Pr
and P, by setting N' = {7, F}, where:

— The set of cells 7 is a set of pairs K = {xk,rk}, with x € Py strictly inside Q and rx a strictly positive
real number, for any K € 7. We denote hx = 2rg.

— The set of interfaces, denoted F, is a set of pairs 0 = {x,,7,}, with @, € Pr and 7, a subset of 7. It is
subdivided into two subsets, the set of boundary interfaces Feyt and the set of interior interfaces Fi,. The
set of boundary interfaces Feyt is such that for all K € 7, @, is a point in Uger, Bk, i) N 0Q. The set
of interior interfaces Fiy is such that for all K € 7, ¢, is a point in Uger, B(xk,rKx) N Q.

— For all (Ki, K2) € N? such that K} # Ko, T, # Tf,. For all (01,09) € F? such that o1 # 02, Ty, # To,-

Q < Uger Bk, rK). For any K € T such that 0Q n B(xg,rgx) # &, then Fg N Fexy # . For any

(K, L) € T? such that B(zk,rx) N B(zp,r) # &, then there exists o € F such that (K, L) < 7,.



BASIC CONVERGENCE THEORY FOR THE NETWORK ELEMENT METHOD 2505

FIGURE 1. Example of network associated to a sectorial domain (orange triangles are interfaces,
blue circles are cells, lines represent the connectivity).

For any K € 7, we also denote Fx = {0 € F | K € 7,} (the interfaces of K), which implies that for any
o € F, T, denotes the cells connected to the interface o and satisfies 7, = {K € T | 0 € Fx}. We denote
h = maxger hx and Py(R9) the set of polynomials of order k. A network is said to be admissible if for any cell
K € T, the set (,)qser, is unisolvent for first order polynomials (see [12] for details and Fig. 1 for an example
of a network for a curved domain). We also recall the well known result that if Q is Lipschitz then it satisfies
the cone condition for some angle 7 and radius r (see [1,20]), i.e. for any = € ), there exists £ € R? with [¢] = 1
such that C(x, &, 7,r) < Q where C(x, &, 7,7) denotes the cone:

C(z, & 7,7) = B(z,1) N {y eR?| (y—x)T€ > |y — x| cos 7'}. (2.1)

Still using the fact that € is assumed Lipschitz, using Stein’s extension theorem [26] we also know that there
exists an operator E such that for any k > 0, there exists Cg ; > 0 such that for any v € H*(Q), Ev e H*(R?),
Ev =wvin Q and

|E'U|Hk(Rd) < CE,]C|'U|HR:(Q),

and if v € H}(Q), then Fv = 0 in RA\Q. Finally, for any subset O of R, we denote yo the characteristic
function of O, i.e. x(x) =1if € O and x(x) = 0 otherwise.

2.2. Network geometry

Following [12], as network geometry is defined as a set of coefficients:

G = <(mK)KeTy (M .o)KeT oeri (€9 ) keT 1<icds (EF7 ) ket 1<ij<ds (Ei)ae.ﬂm,lsisd) .
The discrete measures (mg)ker are said to be admissible if and only if they satisfy
mg >0 forall KeT, (2.2)

and

> mg =19, (2.3)

KeT

while the approximate consistency properties are given by

D M, =miey VKeT,V1<i<d, (2.4)

UG]:K
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and
Z 77%(,6(95?7 - :EJK) = mK((sZ] + E}éij) VK € T? V1 < Zvj < d7 (25)

oeFk
and the approximate compatibility (or conservation) properties by

Y e =ch Vo€ Fu, V1<i<d (2.6)
KeT,

A network geometry is said to be consistent if and only if it satisfies (2.4), (2.5), and said to be conservative if
and only if it satisfies (2.6). To measure the geometric approximation error, we introduce the constants 64 > 0
and p > 1, both independent on h and such that:

€% < Oahh. VK eT,V1<i<d, (2.7)

and
ey < O4hh VK eT,V1<i,j<d, (2.8)

and
|Ef,|<0,4lr(réi£m;<h’;{ VoeF, V1<i<d. (2.9)

We denote Bx = B(xk,rk), and for any x € R4, we denote

TN ={KeT|xeBg} and ny = supcard(T)).

zeR4

We say that a network geometry is admissible if and only if it is consistent and conservative and the family of
measures is admissible. As soon as A is an admissible network, existence of an admissible network geometry
was established in [12].

Remark 2.1. Here, we have chosen to slightly simplify condition (2.3) regarding the original and more general
notion of [12]:

D mi = (1+eq)lQ, (2.10)
KeT

which allowed an additional error g on the sum of the discrete measures. However, once one has computed
measures (Mg )ker satisfying the above approximate relation (2.10), it is always feasible to define:

e Pl e
Z M (1+eq)
LeT

Indeed, we then have for the ny ,’s corresponding to those (Mx)xer:

Z Mo (@] — wh) = Mg (0i; + e?) = mi (1 +20) (85 + ex”) = mg (3i; + eadij + (1 +ea)eg”).
JE}—K

The last term é};ij =eqdi; + (1+ 59)5};” is bounded by 20 4h%; + Hih? = HAAh’I’(, with 04 = 204 + 0% hh.. As
the same holds for relations (2.4), we see that up to a modification of the value of 6 4 using 0 A4, we can always
assume that ), mx = [Q|. In other words, if we are able to derive a convergence theory assuming the exact
relation (2.3), then this convergence theory will also cover the more general notion of [12], which is the reason
why we only consider the simplest version here.
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3. THE NETWORK ELEMENT METHOD

3.1. Model problem

As in [12], to ease the understanding we consider the simplest possible model problem, i.e. the Poisson
equation —Au = f on Q with f € L?(2). We complement it with homogeneous Dirichlet boundary conditions
u =0 on 0 = Q\Q, the boundary of the domain 2 assumed to be at least Lipschitz continuous. The associated
weak solution is the unique u € H}(Q) such that:

Vu-Vov = f fv Yoin H3(Q) <  a(u,v) =1(v) Yoin Hy(Q). (3.1)
Q Q
3.2. Degrees of freedom and discrete variational formulation

The space of degrees of freedom is given by:
Xv ={(to)per |us €ERVoeF} and Xyo={Ue€Xn|u,=0forall o€ Fe}.
The local set of degrees of freedom associated to a cell is denoted

Xy g = {(to)yer, |Us€RYoEFi}.

We denote U = (ug ),z and for any U € Xy, Uk = (Ug) 4 x, - To any cell K € 7 is associated a point Tx
such that:

Tg = Z TK,0Zo where Z TK,oc = 1a

UE.FK O’E]:K

where the (Vi o )oer, forms a barycentric interpolation for T from the interface points (2, )ser,. Then we

denote:
Z PYK,UUU .

oceFK

To any cell K € 7, is associated the local reconstruction operator IIx defined by:

HKI XN,K —> Pl(Rd)

L (3.2)
Ug — Ilg (UK) :MK(UK) + VK (UK) . (:B—:BK),
where
Vi: Xy x — Po(R)4
3.3
Uk — Vg (Uk) = — Z UsTK 55 (3:3)
0'6.7:1(

with of course VIIgx(Uk) = Vi(Uk), thus we will use either one notation or the other in the following.
Finally, with a slight abuse of notation we extend the definition of I, Mg and Vg to all X by setting
Hg(U) =g(Ugk), Mg(U) = Mg(Ug) and Vi (U) = Vg(Ug). For any ¢ € C°(R?) (and more generally
for any function for which it makes sense), we denote Dk (¢) = (¢(€s)) ez, the local set of degrees of freedom
associated with ¢, while D(p) = (p(xs)),cz denotes the complete set of degrees of freedom associated with ¢.

Let us recall some key ideas underlying the virtual element method and by this way also recall the ideas
underlying the derivation of the network element method in [12]. Assume that we are given a true mesh of
whose set of cells is denoted 7 to make the analogy with networks more obvious. Using the virtual element
projector IIJEM onto first order polynomial functions (and denoting 7 the L? projection on polynomials of
order k) the simplest first order virtual element method consist in solving

ZJ VHVEM HVEM Z SVEM —H\[/(EM(U) HVEM Z‘[ fﬂ_o

KeT KeT KeT
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where the first term handles the polynomial part of the unknown VEM function to ensure consistency and
sYEM(y — TTYEM (), v — TTEM(v)) is a stabilization bilinear form which only needs to scale with hx in the
same way than the term it replaces to preserve consistency. The network element mimics the principles of the
virtual element method, but using a discretization network rather than a mesh. The discrete bilinear form is
constructed by analogy on the discretization network and its associated network geometry using the discrete
gradient Vg to handle the polynomial part (replacing the VII}*M(u) of the VEM) and then complemented
with a stabilization term which has the same form as s)*™ and has the correct scaling to maintain consistency.
Consequently, the discrete counterpart ap: X x X —— R of the bilinear form a(-,-) is defined by setting

an(U, V)= > ap Uk, Vi),
KeT

where a: Xy x x Xy x — R is given by
af (U, Vi) =mgVg (Ug) Vg (Vi) +s5(Ug —Dx (g (Ugk)), Vg — Dk (Il (Vg))), (3.4)

with s% a positive symmetric bilinear form on Xy x x Xur i, such that

SK(UK,VK)=mKhI}2 Z Z Sk 0.0’ UoVy! s (3.5)

oeFK 0/6.7:}(

where Sk = (S K,a,o’)a,o’ eF, Can be any symmetric positive definite matrix independent on the geometry G
associated to the network, for which we denote

Sy = inf in 7S¢ and  S* = sup sup eTSke.
KeT geReard(FK) ||¢]|=1 KeT geReard(Fk) ||g||=1

For the right-hand side, assume that fx is an approximation of f at Zx (for instance, one can use f(T) if f
is regular enough for this quantity to make sense, or ﬁ SBK Ef), then we define a linear form I;,: X»r — R
by setting:

(V)= Y] mifx Mg (V).

KeT

Then, the discretization by the network element method consists in finding a solution U € X/ of
ah(U, V) = lh(V) for all V e XN70. (3.6)
3.3. Basic properties of the network element method
The spaces X,k of degrees of freedom are endowed with the bilinear forms:

(U, V)ox = mxgMr(Uk) Mi(Vi)+ Y mi(ug — Mg (Uk))(ve — Mk (Vk)),

O'E.FK

and

(U V)ik = Y, mihi’(us = Mg (Uk))(vs = Mi(Vi)),

ogeFK

and the associated norm ||U||37K = (U, U)o,k and semi-norm |U|? x = (U,U)1 i, while we denote HUHg(K =
U3 x + |U|% - We endow the space of degrees of freedom X with the bilinear forms

U, V)o= > (UV)x and (U, V)= ) (UV)k,
KeT KeT
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and the associated norm ||U||3 = (U,U), and semi-norm \Uﬁ = (U,U);. Then we define:
U, V)x =U,V)o+(U,V); and [U|% = (U,U)x,

which are obviously a scalar product and its associated norm on X, making X a Hilbert space. We recall
now the measures of quality of the discretization network and its associated geometry:

nK,a'

O = sup sup hg
KeT oceFk mg

and Opa = sup sup |vk.,| and Or = maxcard(Fg),
KeT oeFx / KeT

and

0 <|BK M Q| mg )
7 = Sup max y R
KeT mg |BK N Q|

and we denote S{ = |B(0,1)| the volume of the unit ball in dimension d. Using the quality measures and the
above norms, it was established in [12] that there exists C'y > 0 depending only on the quality parameters and
independent on A such for any U € X:

my Vi (U)* < CE(UR  + mk| My (Uxk)?). (3.7)

Moreover, there exists C, > 0 depending only on S* and the quality parameters and independent on h such
that for any (U,V) € XJQ\/’K:

ay (U, V) < Co||[U||x.xlIV]|x .k (3.8)

while for any (U, V) € X3
an(U, V) < Co||[U|[ x|V x- (3.9)

There also exists o, > 0 depending only on S, and the quality parameters and independent on h such that
o (U, U) = U g forany Ue Xy and  ap(U,U) = a,|U[] for any U € Xy (3.10)

Finally, for any V € X

(V)< Cy|V]p where Cj= (Z mK|fK|2> : (3.11)
KeT

Assume that € satisfies the cone condition with angle 7 and radius r, and denote § > 0 the smallest real number
such that for any K € 7:
S lrg < min(r,rx) < 07k (3.12)

Then, there exists Cp x,, > 0 depending on 7, §, na, f7 and €2 such that the following discrete Poincaré’s
inequality also holds, making existence, uniqueness and stability of the discrete solution an obvious consequence
of Lax—Milgram’s lemma:
2 2
||U||o < CPﬁXN |U|1 : (313)

4. RECONSTRUCTION OPERATORS FOR NETWORK ELEMENT SOLUTIONS

Our main objective in the present paper is to characterize the approximation properties of the network
element method. The main difficulty comes from the fact that we have only worked in the degree of freedom
(dof) space X, and in particular, we have not defined any function on €2 as it would be the case in classical
variational methods, mesh-based or not. The first task is consequently to bridge this gap between the discrete
and continuous worlds.
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4.1. Quadrature families
To this end, we consider any family of functions (v/x)xer such that for any K € T, ¢ € L®(R%) and:
f Vg = mg, Z Y =1 foraeax e, supp vk < B(xk,pr) D Bk, (4.1)
Q2 KeT

and we denote Bx = B(xk,pr). Such a family (¢ x)ker is called a quadrature family, while the set of all
quadrature families is denoted (N, G). For any x € R?, we denote

TB={KeT|xeBx} and ny = supcard(ZP), (4.2)
zeR
Ky = max [ max PE nax T and My = max ||[Yk]||Le)- (4.3)
KeT ’I“KerT PK KeT )

We call (1, ky, My) the parameters of a quadrature family. From these definitions we immediately deduce that
Ky > 0, Mw > (0 and that

kp'ri < px < kgt and [Yllpe ) < My. (4.4)

Remark that the hypothesis Bx < Bg also immediately implies that £, > 1. If the domain (2 satisfies the cone
condition with angle 7 and radius r, and if § > 0 is defined as in (3.12), then noticing that |C(0,&,7,1)| is in
fact independent on & and denoting |C(0,&,7,1)| = |C(0, 7, 1)| this common value, we have

[Br 0 Q| > |C(ak, & 7, min(r,7x))| = |C(0,€, 7,1)min(r, 75 ) > |C(0,7,1)[min(r, rx )

leading to the useful inequality:
Sflifpéd

1
—_— < My0r————.
. f Wl < Mubr 150 7 1]

(4.5)

We can now construct functions on R? and in particular on  using the 1 x’s by setting:

Ir(U) = ), vxMg(U) and Vr(U)= > ¢xVg(U) and Iy(U)= ) YxlgUk).

KeT KeT KeT

Those reconstructions will be the key to establish convergence results. Before turning to it, let us define

UIIF = )] mxMg(U).

KeT
Obviously, for any U € Xy, ||U||7 < ||U||x. Moreover:

Lemma 4.1. Let (N, G) be an admissible discretization network and an associated admissible network geometry.
Assume that  satisfies the cone condition with angle T and radius r. Then there exists C > 0 depending only
on Q and the quality parameters of the geometry and of the quadrature family such that for any U € Xar:

Tz (U)ll2) < ClIUll7 and |V (U)l|2(0) < ClIU]|x-

Proof. By definition, we have:

T (U)[Z2(0) = J (Z wKMK(U)> < J (Z |1/)K|MK(U)2> (Z |¢K|> :
Q \KeT Q \KeT KeT
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Then notice that (4.1) implies that only 7, terms are non zero in the second sum and thus using (4.5):

Sd d
@)y < ot 3 ([ ol Me@)? < mbazor S o,

KeT

Proceeding exactly in the same way, we obtain:

IV @) < s ([ 1ol ) 19w,

KeT

and the second result follows using (3.7). O

4.2. Existence of quadrature families

To establish convergence and error estimates, we will not only need the existence of a quadrature family,
but also some control over its parameters, independently of the mesh size. However as we have not used any
specific partition in practice in the construction of the numerical scheme, this should be considered as a technical
requirement to construct a convergence theory. Moreover, such a theory will in fact depend on optimal bounds
for those constants. Deriving such optimal bounds over the entire set ¥ (N, G) using only properties of the point
cloud is in fact a very difficult problem: one way to do it would consist in first defining what would be a relevant
measure of optimality (clearly a compromise must be found between (K, 7y) and My) and then constructing
either a minimizing sequence of quadrature families or a quadrature family reaching this optimal compromise.
This is the reason why we introduce a more specific type of quadrature families, with the main advantage that
it will provide a practical mean to compute an upper bound on those constants, and the obvious drawback that
this bound could remain very pessimistic.

Consider any family (¢, ),ex such that supp v, < B(x,,r,) and

QCU (€,,7,) and Z%(m):l VeeQ and 0<t¢,<1 VoeF. (4.6)
oeF oeF
Denoting m, = | ., we consider a family of weights w = (Wko)KeT 0er, for which the family of functions
Q
(Vi) ket defined by:
wK = Z wK,a'waa (47)
oeFK

is a quadrature family. To this end, simply injecting formula (4.7) in conditions (4.1) and (4.4) immediately
leads to:

Z Z Wk,e¥o =1 and Z WK,cMe = Mg Wwhere m, = | 9.
Q

KeT oceFk oeFK

Rearranging the sums in the first condition, we get:

5 ( 3 o) -
ogeF \Ke7,

and thus as (¢, )ser is a partition of unity it is sufficient to find a solution to the following linear system:

Y wko=1 VoeF
KeT,

> wK(, —1VK€T

UG]'-K

quw =1< (48)
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to get a quadrature family. We say that such a quadrature family is an interface based quadrature family.
The existence of families belonging to this subclass of quadrature family is the object of the following theorem,
which plays a crucial role in our convergence theory. In fact, once the existence of this interface based quadrature
family established, the spirit of the convergence theory will then be reminiscent of finite volume theory, with the
major additional difficulty that we have to handle a discretization network rather than a mesh. The following
proposition and the associated corollary can thus undoubtedly be considered as the main results of the present

paper.

Proposition 4.2. If N is an admissible network and G an associated admissible geometry, then there exists a
solution to (4.8) for any family (my)ser such that

ZmK:ZmU:|Q|.

KeT oceF

Proof. Let y = (Yo )oer, YUk )KkeT) € Reard(F)+eard(T) he guch that ATy = 0. We have:

WALy = (Apw) Yy =D D wiolo + Y, D, WKoiyK_ > w;<0<yo+y;<>

ceF KeT, KeT oeFk KeT oceFk

and thus Agy = 0 is equivalent to:
Me
Yo+ —yx =0 VKeT VoeFg.
mi

Consequently, we have:

Yo o IK YKeT Voe Fr,

Mg mg

For any (K, L) € T, by definition of the discretization network there exists cells (K, )o<m<d(x,z) and interfaces
(0m)o<m<d(k,1)—1 such that Ko = K, Kyk ) = L and {Ky,, K1} © 75, for all 0 < m < d(K, L) —
Consequently:

yo_rn me, yO’m yKnL+1
—m = =" and = — .
Mo, meg,, Mo, MK i1
Then there exists a constant « such that yx = amg and y, = —am, for all K € 7 and all 0 € F. We have,

denoting 1 the vector with all components equal to 1:
lTy—Eya—&-EyK—a(ZmK—ng)—O as ZmK:ng:m\,
oeF KeT KeT; oeF; KeT oeF

which from Fredholm alternative establishes the existence of a family (wxe) ke cer, Satisfying (4.8). O

As we will see in the following corollary (otherwise we refer the reader to [24]), a partition of unity satisfying
(4.6) always exists. Thus as an immediate consequence of the above proposition we know that an interface based
quadrature family also exists and thus W(N,G) is non empty.

Corollary 4.3. Assume that Q satisfies the cone condition with angle T and radius v. Let N be an admissible
network and G an associated admissible geometry. Assume that there exists 0 < a < 1 such that

Qc U (xs,ar,) where T, = ma7>_< TK. (4.9)
Ke
oeF
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Then there exists an interface based quadrature family for which ky and My are bounded by constants depending
only on Q, Oy, 0, a and 0, where

-1

. T . . T

Oy = inf sup sup |wk.,| and Oy =max | sup sup —, <1nf inf U) .
(WKo)KeT oer €A, (1) KeT o€ Fk KeT oeFx TK \K€T 0€Fk TK

Proof. Consider a function ¢ € CP(R) taking positive values between 0 and ¢, with ¢(0) = ¢, ((—1) = 0,
¢(1) =0, ¢(a) > 0 and compactly supported in | — 1, 1[. One can use for instance the function:

1

C(z) = |ce (22 =1) for lz] <1

0 for |z] = 1,
where ¢ is such that §, ¢ = 1. Another possible choice is given by:

Ce(z+ 1)

for 2 <0 —1/z
() =| D) where  Gu(2) = |

Cs (1 - Z) 0 .
for z>=0 otherwise .
G(1 = 2) + G (2)
Then the family (1 )scr defined by setting for all o € F:
)
ZU’G]" <o/ (w)

is a partition of unity of 2, as we get by construction using hypothesis (4.9):

for 2> 0

Yol) = where G (@) = ¢ (122221, (4.10)

g

Qc |JB@o,rs) and Y ds(x)=1 VeeQ and 0<¢, <1 VoeF.
oeF oeF

First, we establish that this family also satisfies ||t)s || L= (q) < Cy for some constant Cy independent on 7. To
this end, first remark that 0 < ¢, < ¢: and that for any « € , using hypothesis (4.9) there exists o € F such
that « € B(x,, afy), thus we have:

2 (o () = (o () = ((a) > 0.

o'eF

Immediately, this gives:

<] Lo (m)
1Yol (@) () Cy

It is immediate to see that the associated family (¢x)ker defined by (4.7) using an optimal solution to (4.8)
satisfies rx < px < 20y, asforallo e Fi,re < OnTi, 7o = Tk, Pr < 2 MaXpery o, a0d px = Milgery 7o,
and that:

x|z (@) < 0705 Cy- O

Remark 4.4. Given a family (¢ )scr, one can compute in practice the quantity 6y, or at the very least an
upper bound, simply solving (4.8) and looking eventually for its optimal solution. Remark that contrary to the
practice of the network element method itself, establishing this theoretical bound would require some numerical
integration techniques, most probably a quadrature rule. In some sense, we see that the network element method
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evacuates numerical integration from practice, and confines it to the computation of some theoretical stability
bounds. To see that 6, can be controlled in a huge number of cases, consider the case where we construct the
discretization network from a mesh, using the cell barycenters and diameters to define the point cloud and
the connectivity, and choosing the interfaces to be the vertices of the mesh. Then, the (mg)xer can be taken
equal to the cell measure. If the mesh admits a simplicial submesh based on its vertices, which is a common
requirement, then using those simplices it is easy to construct a partition of unity satisfying (4.6), and the
(WK, o) KeT oceFx can be defined by wk » = m%, SK 5. Thus we get 0, < 1.

5. CONVERGENCE TO MINIMAL REGULARITY SOLUTIONS

We first recall the following strong consistency result established in [12]. Let (N, G) be an admissible dis-
cretization network and an associated admissible network geometry. For any ¢ € C}(R?), there exists C,, > 0
depending only on ¢ and the quality parameters and independent on h such that for any K € 7 and any
x € B(xk, k) where i < kerg with ke > 1:

() = Mk (Dk(9))| < Cprichr, (5.1)

while for any ¢ € C%(R?), there exists another C, > 0 depending only on ¢ and the quality parameters and
independent on h such that for any K € 7 and any « € B(xk,{k):

V(@) — Vi (Pr(9))] < Core(hic +h)  and  |p(@) — Mx (D (p))| < Cpri(hic + ). (5.2)

For any ® € C2(R%)?, there exists Cp > 0 depending only on ® and the quality parameters and independent
on h such that, for any K € N and any « € B(z g, k):

|div ®(x) — DIV (D (®))| < Core(hi + hE) with DIV (Dg(®)) = m%( 3 ok, e(x,).  (5.3)

oceFK

To establish convergence for solutions with minimal H' regularity, we will first need to establish consistency
results for the reconstruction operators Il7, V7 and Iy, as well as the stabilization bilinear form s;. Next,
following the usual finite volume, discontinuous Galerkin our Gradient discretization procedure (see [18], [13]
or [17]), we will establish a refined weak consistency result for the discrete gradient V7 applied to sequences
bounded in the || - ||x norm, finally allowing to establish convergence of the network element method. Again,
no originality is claimed regarding the general guidelines of the proof, which are completely classical, however
every of these classical steps will require a careful treatment because of the quadrature family which takes care
of the lack of a mesh.

5.1. Global consistency results for smooth functions

Building on the local consistency results, we can derive consistency estimates for reconstructed functions:

Lemma 5.1 (Global approximation property). Let (N, G) be an admissible discretization network and an asso-
ciated admissible network geometry. For any ¢ € CL(RY), there erists Cy, depending only on ¢, 0F, O, Or,
04, My, ky and ny such that:

(D))~ el 2oy < O

while for any ¢ € C2(R?), there exists C, depending only on ¢, OF, 0, Oaq, 0.4, My, £y and 1y such that

IVT(D(9)) = Vellpa(qpe < Colh + 1) and [T (D(9) = @llp2(q) < Co(h® + h7FY).
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Proof. For any ¢ € C}(R?), we have as >, ., ¢ = 1:

¢ —Tr(D(p) = ¢ — Y, YLML(DL(¥)) = ¢ = Mk (Dk(9) + Y, br(Mk(Pk(#)) = ML(DL(¥))),
LeT LeT

Then, as the family (Bx)xer is an open cover of §2, we get that:

T (D)) — ol 22y < O T (D) — ol 2,0y

KeT
2
<2 ) [le = Mi(Pr(@O)lZ2menn +2 ), || 2 veMi(Dk(p)) = ML(PL(9))) (5.4)
KeT KeT ||LeT L2(Bk nQ)
For the first term, we obviously have using (5.1):

2 2,212 ST 4, d) q2 2,0
Z 1% —MK('DK(SO))HLz(BKmQ) < Z Coriphie < my | [supp | + Q—dﬁ'wh Cokyh®.
KeT KeT By nsupp ¢#J BrnQ

Notice then that, using hypotheses (4.1) we get:

> LMk (Di(9)) = ML(Di(p)))

LeT

<My ) IMr(Pr(p) = ML(DL(9))| x5, -
LeT

Thus we obtain using Cauchy—Schwarz inequality:

2

D UL(Mi(Di(9)) = ML(Dr(9))

LeT

<y M L D Mk (Pr () = ML(DrL(9))]* x5,

L2(Bx Q) KO LeT

< nyM; . 3 IMy (D () = ML(DL(9))]* X5, X5 -
LeT

Then the second term of (5.4) is bounded by

2

KeT

2

> br(Mi(Di(9)) = ML(Di(p)))

LeT

L2(Br Q)

<ol [ 303 [Mu(Die(o) = Mu(DL()P o X
Q KeT LeT

Noticing that Mg (Dg(p)) = 0 if Bx nsuppye = &, that
Mk (Dk(p)) = ML(DL(p))| < Mk (Dk(p) — @] + [ = ML(DL(p))l,
and that (5.1) gives for any x € Bx n Br:
Mk (Dk(p) = ML(DL(p))| < Cokiy(hi + hr),

we finally obtain that:
2

2

KeT

2 LMk (D (9)) = ML(DL(¥)))

LeT

L2(Br Q)
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< animiCiJ > > (e ho) X, b
KeT nsupp ¢# LeT nsupp p#J

M St a4
< 4777?0 i/{iC’ihZJ E XBrx < 4niMimbeih2 (|supp 0| + 2; wyh® ),
Q KeT ,Bx nsupp p#J

which concludes the proof of the first estimate. The same proof leads to the second and third estimates, replacing
(5.1) by respectively the first and second estimates of (5.2). O

Lemma 5.2 (Stabilization consistency). Let (N, G) be an admissible discretization network and an associated
admissible network geometry. For any o € C?(R?), there ewists C, depending only on ¢, Q, 0F, O, Or, 04,
01 and na such that:

su(Pn(9), Du(9)) = D, s (Pr(p) — Mk (P (), Pic(p) — Tk (D () < S*Cyp(h* + hPHY)?,
KeT

Proof. Using (5.2), there exists a constant C, such that for any o € Fg:

lp(x0) = i (D () (@o)] < Cp (Wi + W),

Thus, we get:
su(Da(e) Dalp) <0£5%CL 31 muc(hg + ™Y
KeT ,Bg nsupp p#J
d
< 979?5*03 Z (h3 + hgﬂ))QJ 1< 77N979f5*03, <|supp<p| I *;lihd) (B2 + B D)2,
BKF\Q

KeT ,Bg nsupp ¢#J

O

5.2. Weak consistency of the reconstructed gradient V-

In the remaining of this section, we will consider a family (N, Gp)nen of admissible discretization networks
and associated admissible network geometries indexed by h € H, where H is a bounded at most countable
subset of R* with 0 € H. We will consider the case where there exists constants # > 0, n > 0, M > 0 and
k > 0 independent on h and quadrature families (¢5)nery associated with each (N, Gpr), such that V h € H,
max(0z, ,0m,,07,,0.4,,00Mm,) < 0, max(nn,,,Ny,) < 7, Ky < k& and My, < M. We call such a family an
admissible discretization family. We have the following weak convergence property for discrete solutions on
admissible discretization families:

Lemma 5.3 (Weak consistency). Let (Ny,Gr)ren be an admissible discretization family. Let (Up)pen be a
family such that

-~ UpeXn, 0 for any he H.
— There exists C' > 0 independent on h such that ||Upl||x, < C for all h € H.
— There exists u € L*(Q) such that U, (Ujy) — u weakly in L*(Q) when h — 0.

Then we have, for any ® € C*(2)%:
J udivq)—&-f Vr7,{Up)-®—>0 when h— 0, (5.5)
Q Q

and also u e HY(Q) and V1, (Up) — Vu weakly in L*(Q)? when h — 0.
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Proof. Let us start by extending II7, (Uy) and Vg, (Up) by 0 outside of €, and denote those extensions
respectively HT, (Up) and Vq—h (U},). By virtue of Lemma 4.1, we know that up to a subsequence there exists
G € L2(R%)4 such that V7, (U) — G weakly in L2(R%)? when h — 0 and that I, (U}) — @ weakly in L2(R)
when h — 0, where @ denotes the extension by zero of u outside 2. Then recalling that:

DIVk(Dk(P) = — . nk,P(@,),

U'E}—K

notice that, for any ® e C°(R%)%:

J ﬁTh(Uh)divtﬁzf
R4

0 < 2 7/’KMK(Uh)> div® = K; L’Kmﬂ Y Mg (Up) div @,

KeTy,
which leads to:

fRd Iz, (Up)divd = ) VMg (Up)DIVk(Dk (D))

KeT,, J\BKﬁQ

+ )] f VM (Up) (div® — DIVE(Dk(P))) .

KeT, BrnQ

Let us denote the previous identity 77 + 75, with obvious notations. Focusing on T3, we have using the definition
of DIV:
Ti= ) > Mg(Unng, o).

KETh oceFk

Then, using the approximate geometrical conservation property i.e. >’ KeT, Mi,o = €0 for 0 € Fp ¢ and the
fact that us = 0 for 0 € Fj, oxt as U, € Xp, 0, this rewrites:

Tv= ), 3 MxUn) —us)ng, ®(xo)+ Y, €0 B(xo)us

KeT;, ceFk KeFhn int
= > Y Mi(Un) —ug)ng, - ®(@r)+ Y, Y. Mr(Un) —us) g, - (B(xs) — B(2K))
KeTy, ceFk KeTy, ceFk
+ Z Eq* @(mg)ua = Tl,l + TLQ + T1,3,
KeFh int

with obvious notations. Then, recalling that:
v = Z uanK o
G'E.FK
the term T ; rewrites:

Tip=— Y mgVg(Up)- (k) =— )] f UV (Un) - ®(xk)

KeTy, KeT;, YBrnQ

=— JRd Va (Uy) - ®(x) — Z Ve V(U - (®(xx) — ®(x)),

KeTy, JBK nQ

which rewrites 7711 = T4 ,1,1 +71,1,2 with obvious notations. For the second term, we have using Cauchy—Schwarz
inequality:

|3 f, o w0 o)
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1/2 1/2
< h||V®|| Lo (rayaxa < > L . |1/JK|VK(Uh)|2> ( > L . 1/}K|>

KeTy, KeTy ,Brx nsupp P#

Gdjed 5 1/2 1/2
VD oo gayara OL2MY2 | L7 f
o @ey<a bz, |C(0,7,1)] KeT, Bkgupp‘@#@ BxnQ - ’

using (3.7) and (4.5), and thus as Cy j, is bounded by some Cy > 0 independent on h:

< Oy nh||Usl|x,

d.dsd \ Y2 1/2
T ol < o202 ar0 L0 o+ S end)  hw Vo
‘ 1,1,2| S v |C(O T 1)‘ |Supp | + 9d "{’L/} || h||Xh|| ||Lx(]Rd)dXd'

Now it just remains to bound T5, T4 2, T1 3 and T; 4. For T, using (5.3) and Cauchy-Schwarz inequality we
immediately get:

1/2 1/2
ITo| < Canp(h+ 1) ( D f |wK||MK<Uh>2) ( D f |¢K|>
KeT, BrnQ KeTy, ,Bi nsupp ®#J Bk nQ

/2 1/2
Gddgd \ 1 gd /
< V2 Cpry M (W)J <Supp ®| + 2;%;#) (h+ W) ||U]|x, -

€0, 7,1
2) 1/2

Next, for T 2 we get using Cauchy—Schwarz inequality once again:

hKTIK,a’
mg

T 2| < h||V®|po0(gayaxa ( Z Z f k| Mk (Un) — u,)?

KeT;, oeFk By nQ

12
S < > |wK|>
KeT;, Bk nsupp ®# BrnQ

/2 1/2
Gded 5 1 gd /
v ; (|Supp | + lemff,hd> U x, [V oo yana

< 1/2093/2 \p
7 1C(0,7,1

Finally, for T} 3, we have using (2.9) and Cauchy—Schwarz inequality:

|11,3|<6«4||I||L°O Rd)d mKh |’LL(,‘
(R) K
KeTy Bk nsupp ®#J ceFk

1/2 1/2
<0A||(I)||L°G(Rd)dhp( > > mK) (2 > mK|Ua|2>

KeTy Bk nsupp ®#J ceFk KeTy, ceFk

1/2
gd 1/2
< 9A||<I>||Loo(Rd)d91f/2Mi/2nL/2hp (supp | + 2;I€§iphd> Z Z mi|ug | .
KGTh O’E]‘-K

Then notice that:

Z Z ’ITLK|UU‘2<2 Z Z mK|ug—MK(UK)‘2+2 Z Z TTLK‘./\/IK(UK”2

KETh O’E]:K KGTh G'E]:K KEThUE.FK
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which immediately leads to:
gd 1/2
Tusl < 20412 on etya32 My "y 1 (supp @] + ;ln:zhd) WO+ B NU[E ).

Consequently, using our hypothesis, for any ® € C%(R?)? there exists Cg (M, 0,7, ) > 0 depending on 6, 1,
and ® and the bound on the family (U},)per such that, as soon as h < 1:

J Iz, (U)div® +J V1, (Up) - @’ < Co(M, 0,1, K)h,
R4 Q

which directly implies (5.5) and leads to V7, (Up,) — Vi weakly in L*(R)? when h — 0. Thus G = Vi, which
implies % € H*(R?) and thus u € H}(£2) and concludes the proof. O

5.3. Convergence result for minimal regularity solutions

To conclude, we will need the following useful link between the discrete norm || - || x, and classical norms for
regular functions:

Lemma 5.4. Let (N, Gn)nern be an admissible discretization family. For any ¢ € CF(RY), there exists C' > 0
depending only on ¢, 6 and n such that

gd N\ 12 §
I1Dn@llx, < © (o + 551 (Hgllmgen + sup 1% lmcen )

Proof. First notice that by definition, we have:

IDr(o)lI%, = > mi| Mg (Dk(e)) P+ > 1 mih | My (Dk(9) — ()|

KeTy, supp ¢ynBg#J KeTy, supp ¢ynBg# ceFk
Immediately, using Taylor’s expansion, we know that:
1
play) = plaa) + Y @y — 20 | ple+ tle, 2.,
|ou|=1 0
with:

1
S (@, - xo)af el 1wy~ o))| < dhac s 1%
0 ol=

=1

Then, as 3,z V.o = 1, and as Mk (Dr(p)) = Xy er, Vico' P(T,) We immediately get that:

IPr(o)I%, < 0in, 0%, ( Z mK) <||<P|2Loc(w) +d*0z, sup |5a%0||%m(w))
KeTy, supp ¢pnBrx#J la|=1

d

s .
< 13 030, 0%, 05, (Jsuppee| + 517) <|so||%m<Rd> 7, s 0 wix(u@)) ,

which concludes the proof. O
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Gathering Lemmas 5.1, 5.2, 5.3 and 5.4 and the stability (3.9) and coercivity (3.10) results of [12] up to some
reformulation of our approximation extensively using the quadrature family, one could now recast our results
inside the Gradient discretization framework (see [17]) and thus automatically obtain the convergence to minimal
regularity solutions. However, this would require introducing many new concepts and notations, which is the
reason why (and also for the sake of completeness) we provide a basic finite volume like proof of the convergence
of the method:

Proposition 5.5 (Convergence). Let (Np,Gr)nery be an admissible discretization family, and let (Up)per be
the solution of the associated problem (3.6) for each h € H. Assume that:

— 2 —
KZEJTJ‘BKGQUCK f‘ . 0

Then 117, (U},) strongly converges in L?(2) to the solution u of (3.1) when h — 0. Moreover V1, (U},) strongly
converges in L?(2)% to Vu when h — 0

Proof. In the following, C' > 0 denotes a constant independent on h whose value can change from one line to
another. From the hypothesis, we know that there exists some hg small enough such that:

5 L Fic = 12 < 1 fllzcen
KeT Bk nQ

holds for any h < hg. Then, using (3.9)—(3.10)—(3.13), it is clear that

Unl[x, < C( > mKIfK|2> < Cllflle2 @)

KeTy,

Using Lemma 4.1, we get ||TI7, (Un)||12(0) < Cl|fll12() and [|V7, (Un)||L2@)e < C||fl|12(q)- Consequently, up
to subsequence, there exists u € L?(Q) such that the hypothesis of Lemma 5.3 are satisfied. Thus u € H}(Q)
and Vr, (Up) — Vu weakly in L?(Q)?. Next, for any ¢ € CX(Q), we have:

an(Un, Dr(9)) = ln(Dn(p)).

Remark that:

(UL D) = | ViU Yo+ Uil + N [ onVIlk(U) - (VIIk(D(o) = Ve
KeT, KN

Using Cauchy—Schwarz inequality and Lemma 5.2 we get:

1/2

1/2
" (U1, Di(@))| < |s"Un, U s"(Dn(0). Dul))]* < Ch2 + b ) |[U] [x,, < O + W) || 2.

Estimate (5.2) gives:

d
GV (U - (VL (D () — V)| < (supp o+ 5 whd) U5,

KeT,, JBK:’\Q

Thus using Lemma 5.3 we get that:

an(Up, Dr(p —>J Vu-V¢ when h — 0.
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Finally, for the right-hand side we have that:
(D) = | 1 ( > WW(DK(@))) #3 ld - fOMe(Di(e))
@ \KeT, KeT,, VBrnQ

Using Cauchy—Schwarz inequality, we can bound the second term by:

g4 1/2 1/2
< Cllel = (o) <|Supp ol + f%hd> < > J |frx — f|2> ;
KeTy, BrxnQ

Z 1/J1< [ = [K)MK(Dk(p))

KGTh

which immediately leads to:

(D (e —>Jfga when h — 0.

Using the density of C(Q) in HJ (), this concludes the proof of the fact that for all v € HZ(9):

JQ Vu- Vv = JQ fo.

Next, let ¢ € CP (). Using the triangular inequality, we have:

| 95 = Vu < [ V5,08 = V5@uDE + | 195Dl = Vel + | [V Vu
From Lemma 5.1, we know that:
JQ V1, (Dn(p)) — Vo> -0  when h — 0.
Next, we have using Lemma 4.1 and (3.10)
5 V7. (Un = Di()” < CllUL = Du(9)l%, < Can(Un —Di(p),Up — Di(y)).

Immediately, we see that:
an(Un = D), Un — D)) = an(Un, Un) — 2an(Un, Di(p)) + an(Dr(p), Pu(p))-

We have already seen that:

an(Up,Dp(p)) > | Vu-Vo when h—0.
Q

From Lemma 5.4, we known that the family (||Dne||x, ),cs is also bounded. Thus, we can apply the above
reasoning to ¢ and we get:

an(Dp(p), Dr(p)) — J V-V when h—0.
Q
Finally, we have as Uy, is solution of (3.6) that ap(Up,U},) = I (Uy). However

O = [ M+ [ e - MU,

KeT;, BrnQ
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and as Cauchy—Schwarz inequality gives:

1/2
<0|Uh|o<2f5 Q|fK—f2> ,

KETh

>, L Vi (f = fr)Mk(Uk)

KGTh

and Iz, (Up) — u weakly in L2(€2), we deduce that:

Ih(Uy) — J fu= f |Vul?>  when & — 0.
Q Q
Gathering all the previous results, we get that

“I,?SEPL V1, (U~ Di(@))? < Cllu— ol -

By density of C* () in Hg (), for any ¢ > 0 we can choose ¢ such that

i = ull3 gy < min (5, 2=)
3°3C
while for this fixed ¢, we can choose h. > 0 such that for any h e H, h < h.

3

| wn@i-DuenP S ad [ VA Dae) - Vel < 5
Q Q

Thus for any € > 0, there exists h. > 0 such that for any h € H, h < h. we have:
| 1wn@n - vup <.
Q

which implies that V7, (U}) — Vu strongly in L?(Q) when A — 0. Proceeding in exactly the same way, we
show that Ilz, (U}) — u strongly in L?(2), which concludes the proof. O

6. ERROR ESTIMATES FOR REGULAR PROBLEMS

The aim of this section is to provide explicit convergence rates when the solution u of (3.1) is regular enough.
To establish error estimates for solutions with Sobolev regularity, we will first need to refine the local consistency
results for the NEM operators Mg, Vi and Ilx. Then, building on those local results we will establish global
consistency results similar to Lemmas (5.1) and (5.2), for functions with Sobolev regularity only. Finally, using
those consistency results we will be able to establish our error estimates.

We recall the following useful result on Riesz potentials (see [9]): let B be a ball of R? of radius p, f € LP(B),
p=1and m > 1. Let g be defined by:

@) = | lo— =" (el
B
Then, there exists Ci, ¢ > 0 depending only on m and d such that

ll9llzr(B) < Cm,ap™ || fllLe(B)- (6.1)

Another useful remark is the following: as 2 is Lipschitz, using Stein’s extension theorem for any k > 0 and any
ve HE(Q), we have:

> 013 ) < > | B0l 5,0) = > JRi |Ev|*X5,c = fRd |Evl? (Z XK) < 0y Bolie gay,
KeT YR

KeT KeT KeT
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and thus

Z ‘Uﬁ{k(BK) < nwclz?,kWﬁlk(Q)’ (6.2)
KeT
where we recall that

TP ={KeT|xzeBg} and 7y = supcard(Z}).

reRd

6.1. Network element interpolation

For continuous functions, we have already defined degrees of freedom through the operator D : C°(Q)
Xr. To handle the case of functions that only belong to a Sobolev space, we define another operator, clearly
inspired by the usual Clément finite element interpolant. To any o € F, we associate a radius r, > 0 such that
B, < Bk, where we denote B, = B(x,,r5), as well as:

-1
To . . To
07 = max [ sup sup —, | inf inf — .
z (KGI;O—G].E; TK <K€TU€]:K TK> )
We define the operator Z: H(Q2) — X by setting Z(v) = (Z,(v))ser where:

1

I, (v) = B

J Ev  forany o e F, (6.3)
B,

and we of course denote Zg (v) = (Z,(v))oer, - We also introduce the operator Z: Hj () —> X

1
| B |

J FEv  for any o € Fint
B,

7(v) = (6.4)

0 for any o € Foxs.-

6.2. Local consistency for the network element interpolation

Proposition 6.1 (Local approximation results for network element interpolation).
Assume that §) is Lipschitz and satisfies the cone condition with angle T and radius r. Let N be an admissible
network and G an associated admissible geometry. Then, we have:

For any ve H ()

v = Mg (ZkW)llr2xne) < Chi|Ev|m sy (6.5)
For any ve H*(Q):
190 — Vi )l aeannas < Clhse + W) 1 Bellms(an. (6.6)
and
|0 =T (ke ()| 28 ) < ClhE + W[ Bol|r2(5,0)- (6.7)
For any ® € H*(Q)4:
div(®) — DIV (Tre (@) |2 51y < Ol + KBl 1 (63)

where the constants C' > 0 in the above result can vary from line to line but only depend on the quality parameters
04,07, 0F, O, O, Oar, Ny, My, 07, and not on h. The same results hold replacing I by Z° under the additional
hypothesis that the functions ¢ (resp. ®) belong to HE () (resp. H(Q)?).



2524 J. COATLEVEN

Proof. First remark that by density of C*(Q) in H'(Q2) and H?(Q), it suffices to establish the results for
p € C*(Q). For any ¢ € C*(Q), let us denote g = Ep to avoid repeating the notation F everywhere. Using
Taylor’s expansion formula, we have for any o € F and any (z,y) € B%:

@) = 3w+ Y (- y)afo B + tly — w)dt,

|a|=1

which immediately gives, as >, . Fr VKo = 1t

px)= > rgj P(x)dy = Mg (Tk(p)) + rg‘] 3 (x—y)° (L Pz + t(y — w))dt) dy.

oeFk oeFk Ul | 1

Next, denoting Ryme(x) = §(x) — Mi(Zk(p)), following [9] we define the change of variable (y,t) — (z,t)
for which z = & + t(y — ) and dtdy = t~¢dtdz. The domain of integration for (y,t) is B, x]0, 1[. Its image by
the above change of variable is:

< n,} |

Notice that (x —y)* =t " (x — 2)* if |a| = m and that if (2,t) € Dy, then:

1
Dw,o = {(zvt) ‘tE]O,l[, ;(z—m) +T T

|z — |

: |z — x| — |z, — x| <r, and s(xz,z)= <t. (6.9)

<|Fe-w)+
[ | —(2—@ r— X _—
t 7 |z —x,| + 70

Using the above change of variable, we obtain:

Rpmp(z ’YK z Z f (:B — 2)%0°P(z)t~ 4" dtdz.
De

ae]-'K ||| 1

The projection of Dy, on the z-space being the convex hull of {z} U B,, denoted Cy, ., applying Fubini—Tonelli’s
theorem we get:

RM@ Z VKo Z J CC—Z aaa~( )J‘ XDEU(Z t)t d— ldtdZ

ceFk \\1

Using (6.9) we get:

1
1 1 _
< f At < = (s(z,2) " = 1) < <7 (| — zo| +74)" & — 2|72
S

s(x,z)

1
J XD. ., (2, t)t_d_ldtdz
0

S

Thus, injecting this in the above expression for Rapp(x), we get as |a] =1 and | — x| < px:

Ras@)l < 3 3 2o +r) [ 1003 - 2

oeFk |a| 1 x,0
Recall that 0517"1( <71y < Ozrg and pi < Kyri and thus finally as Cp »  Bx by construction:

(d + )9%9/\49]:

(kg + 07)? L 10°3(2)] j& — 2"~ d.
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Consequently, applying (6.1) we obtain the first result (6.5):

((d +1)070r07ky)?
45§

L = Mil@x()I < Ly (g + 02)* 2| V3|2
KN

To establish (6.6) we proceed the same way however the geometric approximation errors require a specific
treatment. Using again Taylor’s expansion, we see that for any o € F and (z,y) € B%:

(@) = 3(w) + Vo) @-p)+2 Y & J 109G (@ + Hy — a))dt.

| =2

Then, using (2.4):

1 1 1
e - P > d
%P(x . Efj )M = o G;}( B JBU )Ny dy

Z Big| JB Ve(y) - (& — y)nk .dy

1
) f 0P + t(y — @)k ,didy = & + & + &3,
0

m
K Jef a| By \a\ 2

each &; corresponding to one line in the above expression. By definition, the first term of the above expression
is exactly:

1

= E = — E = VI (Z

& M |B\ nmdy m "7Kady Vg (Zx(p))-
oeFK oeFK

From Taylor’s expansion, we get:

1
VEly) = Vel@) + 3] (y-e)* | Vel + iy - @),
=1 0
Using this expansion and the fact that ﬁ § 5. Ydy = ., the second term of the above expression rewrites:

f2= —— 2 1IJB V@(y)‘(ﬂc—y)nK,gGly:mi 2, Vo@) - (@ - @),

B
mK 0'6.7:1( | g O'G]"K

o 2 B, 2
mK O’€.7: U|

and thus, using the first order approximate consistency properties (2.4) and (2.5):

1
) j V(@ + ty — @) - (@ — y)m ,didy,
0

B jal=1

d d
& =—V@(x) — V() (xK — T)e) — ZZ ex’ 0u,p(@)e;

i B, 2
MK 6.7:1( U|

Gathering the previous results, we get that:

1
) J PV + ity — x)) - (@ — Y didy.
0

B jaj=1

d d
Rn(g)(@) = V(@) - V(T () = = (3(@) + Vi) - (zc — 2))el — ) D ekI0n, (e

i=175=1
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+L Z ; va |a|2=1(y - m)afo *Vo(x + ity — ) - (z — y)ng didy

2 1 (:Ii B y)a ! X
+m7 Z W J Z Y J to go(a: + t(y — QZ))’I’]Kya.dtdy
K oeFK ol JB, |a|=2 : 0

= Bi1(p)(2) + R 2(0) (@) + Rus(p)(®),
each Ry ;(¢)(x) corresponding to one line in the previous expression. Immediately, we see that:

2
dx

d d
(@(w) + V() (xx — w))e% + 3N ko, B(@)es

i=1j=1

1R () (@) 2o ey = J

BKF\Q

< 20407 (131325, + (hdY2 + NIV BB, ) -

Using the same change of variable as above and (6.1) to estimate R 2(¢) and Ry 3(y), this finally leads to the
second estimate (6.6). The proof of estimate (6.8) follows the same lines, while estimate (6.7) can be established
by refining our expansion of R (¢) through Taylor’s expansion and proceeding as above to estimate the residual
terms. As for the results involving ZV, it suffices to notice that 0 = ¢(x,) for o € Foyx; and ¢ € C*(Q) and then
proceed as above. O

6.3. Global consistency for network element interpolation

Proposition 6.2 (Global approximation results for network element interpolation). Assume that §2 is Lipschitz
and satisfies the cone condition with angle 7 and radius v. Let N be an admissible network and G an associated
admissible geometry. Then, we have:

For any ve HY(Q)

lv = 7 (Z(v))|[r2(0) < CeaChllvllr (o), (6.10)
and
IZ(W)llx < CeaCllv][m (o) (6.11)
For any ve H*(Q)
Vv = V7 (Z(0)l|r20) < Ce2C(h + hP)||v]|g2(q), (6.12)
and
lo =T (Z(0))||22() < Cr2C(h* + WP H)[[0]| 120 (6.13)
For any ® € H*(Q)4:
|div(®) — DIVT(Z(®))l12(0) < Cp2C(h + BP)[|®|fr2(0)e, (6.14)

where

DIVI(Z(®)) = ), vk DIVk(Tk()),
KeT

and where the constants C' > 0 in the above result can vary from line to line but only depend on the quality
parameters 0.4, 07, O0F, Oaq, O, a, Ny, My, 07, and not on h. The same results hold replacing I by Z° under
the additional hypothesis that the functions ¢ (resp. ®) belong to H} () (resp. HE(Q)?).
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Proof. Using the notations of Proposition 6.1 and proceeding again by density, let ¢ € C®(£2). For (6.10), we
proceed along the lines of Lemma 5.1:

I (Z(9)) = @llTo@) < . IT(Z(9) = el Torne <2 D, e — Mr(T(@)28,n0)
KeT KeT

2

+2 )

KeT

D LMK (T (9) — ML(ZL(p)))

LeT

=2 ) (kg + Ix2),
L2(Bx nQ) KeT

with obvious notations. For the first term, using estimate (6.5) we obviously have for some C' > 0 independent
on h:

oIk = Y e = M@k @2 enn) < D) CPhENVER 2,0 < 16CEC?R Vel 20
KeT KeT KeT

Proceeding as in the proof of Lemma 5.1 for the second term immediately leads to:

2

D UMk (Zk(9) = ML(Tr(9)

<y M2 f S IM(Tre(9)) — Mi(Zr(0) x5, x5
LeT Q

L2(Bg nQ) LeT

Then, notice that |[Mg(Zx(p)) — Mr(Zr(p))| < IMr(Tk(p)) —¢| + | — Mr(Zr(p))| which leads to, for
some C > 0 independent on h coming from estimate (6.5):

Ik < 2y M} J
BrxnQ

Mk (Zk(p)) — of (Z XL> +2m My )] L o= ML(Z ()] X8y

LeT LeT | Bk nBL#J

~ ~12
< W MECHENV R + 20 MEC Y1 [ VO e
LeT Lo

Summing over K € 7, we get using Fubini—Tonelli’s theorem:

5} tca < AR Vel + sttt [0 ([ 3 ],
KeT LeT BrnQ  KeT

and thus

Z Iy < 47]3Mi0§,102h2||V<PH2L2(Q)-

KeT
Estimates (6.12) and (6.13) can be obtained proceeding the same way, following the lines of the proof of
Lemma 5.1 and using the local estimates established in the first part of the present proof. Estimate (6.11) can
be obtained proceeding as in Lemma 5.4 and using the above Taylor’s expansions. (]

Lemma 6.3 (Stabilization consistency for the network element interpolant). Let (N, G) be an admissible dis-
cretization network and an associated admissible network geometry. For any v e H?():

sn(Z(v),Z(v)) < S*Cp2C(h* + hP*1)?[v] 2

where the constant C' > 0 only depend on the quality parameters 04, 01, 0F, Oaq, O, na, My, My, 07, and not
on h. The same result holds replacing T by I° under the additional hypothesis that the functions v belongs to
Hy(9).
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Proof. Again, by density of C*(Q) in H?(12), it suffices to establish the result for ¢ € C*(Q). We have:

h(Z(9), T(9)) < 0r5* Y j 2 Y T,(0) — e (Tae(9) (@) .

KeT YBrnQ oeFK

As T (T (p))) is a first order polynomial, we have for any o € Fk:

|B*10| fB i (T ())(@) = Tk (Tie (9) (o).

Then using Cauchy—Schwarz inequality, for any o € Fi:

Zo () — Mk (T (9))( |B . Ir (o))

From the proof of Proposition 6.1, using the notations defined there we know that Taylor’s expansion gives for
any x € Bg:

¢(x) — Mk (Tk(p))(@) = Bu(p)(z) - (v —TK)

+2Z VK

ceFK

) Jl 1093 + t(y — x))dtdy
0

”\\2

1
) f V(@ + iy — @) - (z — y)didy,
0

o€ U‘ By | | 1
and the results follows using the same techniques as in the proof of Lemma (6.7). O
6.4. Error estimates
We are now in position to establish error estimates for regular problems:

Proposition 6.4. Let (N,G) be an admissible discretization network and an associated admissible network
geometry, and let U be the solution of the associated problem (3.6). Assume that there exists Cy > 0 such that:

1/2
S| it sP) <o
KeT VB nQ

and assume that the solution u of (3.1) satisfies u € H3(Q). Then, if (Vi) ker is a quadrature family, we have
the following error estimates:

|U —I°(uw)||x < C(h+ hP), (6.15)
and
||’U,—HT(U)||L2(Q) < C(h-l—hp) and ||VU—V'J‘( )||L2(Q C(h+hp) (616)
and for any K € T
llu = Mg (U)l|2Biray < C(h+hP)  and  ||Vu—VgU)||L2,~0) < C(h+ hP), (6.17)

where the constant C' > 0 depends on u, d, O, 07, O, 04, Opg, My, Ky, Ny, 07, and £ but not on h.
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Proof. In the following, C' > 0 denotes a constant that can depend on u, d, 0x, 07, 0, 0.4, O, My, Ky, N,
Ny, 07 and €2 whose value can change from one line to another. First, as we have already noticed in the proof
of Proposition 5.5, by (3.9)—(3.10) and (3.13), it is clear that:

IUnlIx <C ( > mK|fK|2> < CA+ W) fllL2 -
KeT

As Io(u) € Xy 0 by construction, we can use it in our discrete variational problem. Consequently for any
Ve X./\[702

an(T’(w), V)= | Vu- -V (V) +

f Vi (Vg (Z%(w)) — Vu) - VI (V) + s"(Z°(u), V).
Q e IBKn

Using Cauchy—Schwarz inequality and (3.9)—(3.10) and Lemma 6.3, we get:

{1/2

1/2 )
(20w, V)| < [s"(@ (), 2| 5" (V, V)| < CO2 + ) IV [ ful oy,

while the same Cauchy—Schwarz inequality and (6.6) leads to:

Ui (Vg (T (u)) — Vu) - VIIg (V)| < C(h + hP)|u| g2 (o) |V || x-

KeT JBK nQ

Then, using the fact that U is solution of the discrete problem (3.6), we have that:
an(U,V) =ln(V) = f fMr(V)+ 3] f K (fx = [IMk(V).
KeT BK“Q

Using Cauchy—Schwarz inequality, we can bound the second term by:

1/2
<C|lv -7
Vil (KQLWW f|>

Combining the above results, we see that there exists C' > 0 such that for all V'€ Xxr o, we have:

Z 1/JKf fr)Mg (V)| <

KeT

|an(U —I%u), V)| <

. Vu-Vz(V)— . fHT(V)' + C(h +hP)||V]|x.

Consequently, it just remains to estimate:
R(V) = J Vu-Vr(V) —f fIr (V) = J Vu-Vr(V) +J Aully (V).
Q Q Q Q
As (Vi) ker is a quadrature family, we get:

L Aullr (V) = )] f Yrdiv(Vu) Mg (V)

KeT

=S m (V) M(V J Vi (div(Va) — DIV (T (V) ) M (V).

KeT oceFk KeT
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As v, =0 for any o € Foxy and as the geometry is approximately conservative, we get:

LAuHT Z Z Nio  Lo(Vu) (Mg (V) —v,) Z €y I,

KeT oeFk o€Fint

+ Z f Y (div(Vu) = DIV (T (Vu))) Mk (V).

KeT
We denote: )
Gy =— Vu.
K |Br N Q| BrnQ B
then we get:
| autr(v) = 2% me (@(T0) - Gio)(Muc(V) -~ )
Q KeT oeFi
— Z mrGg - VHK Z eqs - 1, VU, UU—F Z mK./\/lK( )GK'E%
KeT o€Fint KeT
+ > f Vi (div(Vu) — DIVE (T (V) Mg (V)
KeT
= >0 D ke (Zo(Vu) = Gr) Mk (V) —v5) + | D vk (Vu—Gkg) - VIIg(V)
KeT oeFk Q KeT
— J Vu-Vr(V)+ )] J Vi (div(Vu) — DIV (T (Vu))) Mg (V)
Q KeT
+ Z €y - 1, VU Ua + Z mK./\/lK( )GK ~€2<,
o€Fint KeT
and thus:
= >0 D ke (To(Vu) = Gr) Mk (V) —v5) + | D) ¥k(Vu—Gg) - VIIg(V)
KeT oeFk Q KeT
+ ] ¢K (div(Vu) — DIVk (T (Vu)))M + Y €0 Lo(Vu)vy + Y, mxMg (V)G - k.
KeT o€Fint KeT

We rewrite this last identity R(V') = Ry + R + Rs + R4 + Rs with obvious notations. Proceeding as in the
proof of Proposition 6.2, it is clear as Vu € H(£2) that there exists C' > 0 (applying Stein’s extension theorem
to Vu) such that:

1/2

Ch
|||vu||H1(BKmQ) and

_ Vu — Gg|?
‘BKmQ JBKGQ K|

Consequently, using Cauchy—Schwarz inequality we get that:

MK, _
[Ril<Ch ) K| feol,, xhi 1o (V) = G || M (V) = o

KeT 0'6.7'—}(

1/2 1/2
<9H (Z mKZU(Vu)—GK|2> <Z mKhK2|MK(V)_'UU|2>

KeT KeT
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< ChM20)%0n| [Vl | 1 (o) V || x

and
1/2 ' o
. \< J WKM_GKP) ( (5 L) mK|VHK(v>||2>
Kgff BrnQ Kg']’ mg Jo
/
UNM,%QTSii/Q‘é(Sd
< h 1 |

( C(0,7.1)] Chl|Vulla @[V ]x

as well as:

|Rs| < C(h+ hP)|Vu| gz V]| x.

Next, using the convention e, = 0 for o € Feyt, we have:

_ €o Lo (Vu)vs
| Bal = a;]-'K;} card(7,)
< OhP (Z 3 Card ,(Va)l[os — Mic(V) + 3 mucl Myc(V)] < y cardl(T)|IU(VU)>>’
KeT oceFk KeT ceFK g

and using Cauchy—Schwarz inequality, this leads to:

1/2
|R4|<9Ahp<h|V|X+|V|o><Z > mK|L,(Vu)|2> :

KeT oceFk
Then, notice that by definition of By, we have:
0z

Bx|
7, f ))? < _IBk| E(Vu)]? < — E(Vu)|?.
2Vl < 157 S BBl S TV S B Sy, PO
As:
mg _ mg |Br n Q| HT\BK\ -
|Br| |Bx 0| |Bk] Bg| ~

and consequently |R4| < 1/201/29 d/2hp(h\V|X + |V1]0)CEg,0l|Vul|2(). Finally, we have using Cauchy—
Schwarz inequality that:

1

B0l [E(Vu)l?,

1/2
|Rs| < 04h"|V o <Z mK|GK|2> and |Gg|* <
KeT

and thus:

1/2 1/2
|Rs| < 0407V ]y (Z mKGK|2> < 0405°h7 |V, (Z f > ,
KeT BK“Q

KeT
and consequently |Rs| < UNHAQ;—/QhP\V|0C'E7O|\VUHLQ(Q). Thus, there exists C' > 0 such that |R(V)| < C(h +
hP)||V]|x. Using (3.9)—(3.10)—(3.13), we get:

U -Z°(w)[[% < Can(U —ZI°(u), U — I°(u)),

and thus taking V = U —Z°(u), we obtain ||[U —Z°(u)||x < C(h+h?). Finally remark that using the triangular
inequality, we have:

lu = T7 (U)l[72(0) < [lu = Tr (Z°()l[72 () + |[T7(Z°(w) = U7 (U)|Z2(0);
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and
IVu =V (U)[|720) < [[Vu = V2 (Z0(w)|[72(0) + [IV2(Z° (1) = V2 (U)|[72(0,

and that Lemma 4.1, and (3.9)—(3.10)—(3.13) gives us:
(U = Z°(w))l120) < CIIU = Z°(w)|lx  and  [|[V7(U = Z°(w))llr2() < ClIU — I°(u)||x

Combining the above results with the interpolation results (6.10) and (6.12) consequently gives the desired
estimates. To obtain the local estimates, remark that:

|lu— MK(U)||2L2(BKmQ) < ju— MK(IO(U))Hzm(BKmQ) + HMK(IO(U)) - MK(U)||2L2(BKmQ)a

and that:

|BK M Q|
= —Mmg

Mk (Z°(u)) = M (U)[ 72, e :J (M (Z°(u)) = Mg (U)[? M (Z°(u) Mg (U)?

BKﬁQ
< 9T|Io(u) ~U]2 < QTHIO(U) ~U|% <C(h+ hP)?,

and the result immediately follows from (6.5). In the same way, we have:
[[Vu — VK(U)HQLQ(BKmQ)d <|[Vu— VK(IO(“))H%z(BKmQ)d + ||VK(IO(U)) - VK(U)”%Z(BKmQ)d

< [Vu = V(@ )2 (5, ey + Cvo7|IZ°(u) - UJI%,
and the result follows from (6.6). O

A direct use of the estimates of Proposition 6.4 would only provide a rate h+h? for the L? convergence of Iy (U)
towards u. However, the estimates of Propositions 6.1 and 6.2 suggest that one could achieve min(h?, h?*1), and
thus L? superconvergence if p > 1. This is moreover what is observed in practice (see [12]). However, the usual
duality argument that is expected to lead to such a result is difficult to apply in our context. For this reason, we
do not wish to elaborate any further on optimal L? convergence rates here. The above result is also sub-optimal
in the sense that we require u € H3(£2) instead of the usual H?(Q). This is due to the fact that in the above proof
we use the strong form of the Poisson problem and the local consistency of the discrete divergence operator
DIV applied to Vu, which is probably sub-optimal. We nevertheless hope that the available results emphasize
enough the link between quality parameters, geometrical approximation order and convergence rates.

7. CONCLUSION AND PERSPECTIVES

On the simplest possible model problem, we established convergence results and error estimates for the
network element method. The error estimates are slightly sub-optimal as they require a solution belonging to
H?3. The natural extension to heterogeneous and anisotropic diffusion tensors and reaction coefficients of the
method and the associated convergence results will be the subject of a future paper. The results presented here
could be improved in two ways: first by establishing a more explicit bound on the parameters of the quadrature
family, probably through an estimation of 6, using network quality parameters, and secondly by establishing
error estimates with H? regularity instead of H3.
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