An embedded discontinuous Galerkin method for the Oseen equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2349-2364

In this paper, the a priori error estimates of an embedded discontinuous Galerkin method for the Oseen equations are presented. It is proved that the velocity error in the L2(Ω) norm, has an optimal error bound with convergence order k + 1, where the constants are dependent on the Reynolds number (or ν−1), in the diffusion-dominated regime, and in the convection-dominated regime, it has a Reynolds-robust error bound with quasi-optimal convergence order k + 1/2. Here, k is the polynomial order of the velocity space. In addition, we also prove an optimal error estimate for the pressure. Finally, we carry out some numerical experiments to corroborate our analytical results.

DOI : 10.1051/m2an/2021059
Classification : 65N12, 65N22, 65N30, 76D07
Keywords: Reynolds-robust, quasi-optimal, embedded discontinuous Galerkin method, Oseen equations
@article{M2AN_2021__55_5_2349_0,
     author = {Han, Yongbin and Hou, Yanren},
     title = {An embedded discontinuous {Galerkin} method for the {Oseen} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2349--2364},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021059},
     mrnumber = {4328498},
     zbl = {1491.65137},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021059/}
}
TY  - JOUR
AU  - Han, Yongbin
AU  - Hou, Yanren
TI  - An embedded discontinuous Galerkin method for the Oseen equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2349
EP  - 2364
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021059/
DO  - 10.1051/m2an/2021059
LA  - en
ID  - M2AN_2021__55_5_2349_0
ER  - 
%0 Journal Article
%A Han, Yongbin
%A Hou, Yanren
%T An embedded discontinuous Galerkin method for the Oseen equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2349-2364
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021059/
%R 10.1051/m2an/2021059
%G en
%F M2AN_2021__55_5_2349_0
Han, Yongbin; Hou, Yanren. An embedded discontinuous Galerkin method for the Oseen equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2349-2364. doi: 10.1051/m2an/2021059

G. Barrenechea, E. Burman and J. Guzmán, Well-posedness and H ( div ) -conforming finite element approximation of a linearised model for inviscid incompressible flow. Math. Models Methods Appl. Sci. 30 (2020) 847–865. | MR | Zbl | DOI

D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. Heidelberg, Springer (2013). | MR | Zbl | DOI

M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196 (2007) 853–866. | MR | Zbl | DOI

S. Brenner and R. Scott, The mathematical theory of finite element methods. Springer Science & Business Media (2007). | MR | Zbl

E. Burman, M. A. Fernández and P. Hansbo, Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44 (2006) 1248–1274. | MR | Zbl | DOI

A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Math. Comput. 86 (2017) 1643–1670. | MR | Zbl | DOI

R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58 (2008) 264–283. | MR | Zbl | DOI

H. Dallmann, D. Arndt and G. Lube, Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. 36 (2016) 796–823. | MR | Zbl | DOI

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements. Appl. Math. Sci. 159, Springer-Verlag, New York (2004). | MR | Zbl | DOI

N. Fehn, M. Kronbichler, C. Lehrenfeld, G. Lube and P. W. Schroeder, High-order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H ( div ) methods. Int. J. Numer. Methods Fluids 91 (2019) 533–556. | MR | DOI

G. Fu, An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Eng. 345 (2019) 502–517. | MR | Zbl | DOI

B. García-Archilla, V. John and J. Novo, Symmetric pressure stabilization for equal-order finite element approximations to the time-dependent Navier-Stokes equations. IMA J. Numer. Anal. 41 (2021) 1093–1129. | MR | Zbl | DOI

G. N. Gatica, A simple introduction to the mixed finite element method. Theory and Applications. Springer Briefs in Mathematics, Springer, London (2014). | MR | Zbl | DOI

J. Guzmán, C. W. Shu and F. A. Sequeira, H ( div ) conforming and DG methods for incompressible Euler’s equations. IMA J. Numer. Anal. 37 (2017) 1733–1771. | MR | Zbl

Y. Han and Y. Hou, Robust error analysis of H ( div ) -conforming DG method for the time-dependent incompressible Navier-Stokes equations. J. Comput. Appl. Math. 390 (2021) 113365. | MR | Zbl | DOI

T. L. Horváth and S. Rhebergen, A locally conservative and energy-stable finite-element method for the Navier-Stokes problem on time-dependent domains. Int. J. Numer. Methods Fluids 89 (2019) 519–532. | MR | DOI

T. L. Horváth and S. Rhebergen, An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains. J. Comput. Phys. 417 (2020) 109577. | MR | Zbl | DOI

K. L. A. Kirk and S. Rhebergen, Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations. J. Sci. Comput. 81 (2019) 881–897. | MR | Zbl | DOI

R. J. Labeur and G. N. Wells, Energy stable and momentum conserving hybrid finite element method for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 34 (2012) A889–A913. | MR | Zbl | DOI

P. L. Lederer and S. Rhebergen, A pressure-robust embedded discontinuous Galerkin method for the Stokes problem by reconstruction operators. SIAM J. Numer. Anal. 8 (2020) 2915–2933. | MR | Zbl | DOI

P. L. Lederer, C. Lehrenfeld and J. Schöberl, Hybrid Discontinuous Galerkin methods with relaxed H ( div ) -conformity for incompressible flows. Part II.. ESAIM: M2AN 53 (2019) 503–522. | MR | Zbl | Numdam | DOI

C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307 (2016) 339–361. | MR | Zbl | DOI

A. Natale and C. J. Cotter, A variational H ( div ) finite-element discretization approach for perfect incompressible fluids. IMA J. Numer. Anal. 38 (2018) 1388–1419. | MR | Zbl | DOI

D. D. A. Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. Springer (2020). | MR | DOI

S. Rhebergen and G. Wells, Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J. Numer. Anal. 55 (2017) 1982–2003. | MR | Zbl | DOI

S. Rhebergen and G. N. Wells, A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76 (2018) 1484–1501. | MR | Zbl | DOI

S. Rhebergen and G. N. Wells, Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations. J. Sci. Comput. 77 (2018) 1936–1952. | MR | Zbl | DOI

S. Rhebergen and G. N. Wells, An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358 (2020) 112619. | MR | Zbl | DOI

J. Schöberl, C++ 11 implementation of finite elements in NGSolve. Institute for analysis and scientific computing, Vienna University of Technology (2014).

P. W. Schroeder and G. Lube, Divergence-free H ( div ) -FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. J. Sci. Comput. 75 (2018) 830–858. | MR | Zbl | DOI

Cité par Sources :