Existence of solutions and continuous and semi-discrete stability estimates for 3D/0D coupled systems modelling airflows and blood flows
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2365-2419

In this paper we analyse geometric multiscale models arising in the description of physiological flows such as blood flow in arteries or air flow in the bronchial tree. The geometrical complexity of the networks in which air/blood flows lead to a classical decomposition in two areas: a truncated 3D geometry corresponding to the largest contribution of the domain, and a 0D part connected to the 3D part, modelling air/blood flows in smaller airways/vessels. The fluid in the 3D part is described by the Stokes or the Navier–Stokes system which is coupled to 0D models or so-called Windkessel models. The resulting Navier–Stokes–Windkessel coupled system involves Neumann non-local boundary conditions that depends on the considered applications. We first show that the different types of Windkessel models share a similar formalism. Next we derive existence results and stability estimates for the continuous coupled Stokes–Windkessel or Navier–Stokes–Windkessel problem as well as stability estimates for the semi-discretized systems with either implicit or explicit treatment of the boundary conditions. In all the calculations, we pay a special attention to the dependency of the various constants and smallness conditions on the data with respect to the physical and numerical parameters. In particular we exhibit different kinds of behavior depending on the considered 0D model. Moreover even if no energy estimates can be derived in energy norms for the Navier–Stokes–Windkessel system, leading to possible and observed numerical instabilities for large applied pressures, we show that stability estimates for both the continuous and semi-discrete problems, can be obtained in appropriate norms for small enough data by introducing a new well chosen Stokes-like operator. These sufficient stability conditions on the data may give a hint on the order of magnitude of the data enabling stable computations without stabilization method for the problem. Numerical simulations illustrate some of the theoretical results.

DOI : 10.1051/m2an/2021055
Classification : 76Z05, 76D07, 65M60, 74H15
Keywords: Stokes, Navier–Stokes, Windkessel models, implicit/explicit schemes, energy estimates, stability analysis, airflows, blood flows
@article{M2AN_2021__55_5_2365_0,
     author = {Grandmont, C\'eline and Martin, S\'ebastien},
     title = {Existence of solutions and continuous and semi-discrete stability estimates for {3D/0D} coupled systems modelling airflows and blood flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2365--2419},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021055},
     mrnumber = {4328496},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021055/}
}
TY  - JOUR
AU  - Grandmont, Céline
AU  - Martin, Sébastien
TI  - Existence of solutions and continuous and semi-discrete stability estimates for 3D/0D coupled systems modelling airflows and blood flows
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2365
EP  - 2419
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021055/
DO  - 10.1051/m2an/2021055
LA  - en
ID  - M2AN_2021__55_5_2365_0
ER  - 
%0 Journal Article
%A Grandmont, Céline
%A Martin, Sébastien
%T Existence of solutions and continuous and semi-discrete stability estimates for 3D/0D coupled systems modelling airflows and blood flows
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2365-2419
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021055/
%R 10.1051/m2an/2021055
%G en
%F M2AN_2021__55_5_2365_0
Grandmont, Céline; Martin, Sébastien. Existence of solutions and continuous and semi-discrete stability estimates for 3D/0D coupled systems modelling airflows and blood flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2365-2419. doi: 10.1051/m2an/2021055

G. Arbia, I. E. Vignon-Clementel, T.-Y. Hsia and J.-F. Gerbeau. Modified Navier-Stokes equations for the outflow boundary conditions in hemodynamics. Eur. J. Mech. B Fluids 60 (2016) 175–188. | MR | DOI

L. Baffico, C. Grandmont and B. Maury. Multiscale modeling of the respiratory tract. Math. Models Methods Appl. Sci. 20 (2010) 59–93. | MR | Zbl | DOI

Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser and Y. Zhang. Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3534–3550. | MR | Zbl | DOI

C. Bertoglio and A. Caiazzo. A Stokes-residual backflow stabilization method applied to physiological flows. J. Comput. Phys. 313 (2016) 260–278. | MR | DOI

C. Bertoglio, A. Caiazzo, Y. Bazilevs, M. Braack, M. Esmaily, V. Gravemeier, A. Marsden, O. Pironneau, I. E. Vignon-Clementel and W. A. Wall. Benchmark problems for numerical treatment of backflow at open boundaries. Int. J. Numer. Meth. Biomed. Engng. 34 (2017) e2918. | MR | DOI

C. Bertoglio, A. Caiazzo and M. A. Fernández. Fractional-step schemes for the coupling of distributed and lumped models in hemodynamics. SIAM J. Sci. Comput. 35 (2013) B551–B575. | MR | Zbl | DOI

P. J. Blanco, S. Deparis and A. C. I. Malossi. On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems. J. Comput. Phys. 251 (2013) 136–155. | MR | DOI

P. J. Blanco, M. Discacciati and A. Quarteroni. Modeling dimensionally-heterogeneous problems: analysis, approximation and applications. Numer. Math. 119 (2011) 299–335. | MR | Zbl | DOI

P. J. Blanco, R. A. Feijóo and S. A. Urquiza. A unified variational approach for coupling 3D–1D models and its blood flow applications. Comput. Methods Appl. Mech. Engrg. 196 (2007) 4391–4410. | MR | Zbl | DOI

H. Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Ma trise. Masson, Paris (1983). | MR | Zbl

C.-H. Bruneau and P. Fabrie. Effective downstream boundary conditions for incompressible Navier-Stokes equations. Int. J. Numer Meth. Fluids 19 (1994) 693–705. | Zbl | DOI

C.-H. Bruneau and P. Fabrie. New efficient boundary conditions for incompressible Navier-Stokes equations: a well-posedness result. RAIRO Modél. Math. Anal. Numér. 30 (1996) 815–840. | MR | Zbl | Numdam | DOI

A. Comerford, C. Förster and W. A. Wall. Structured tree impedance outflow boundary conditions for 3D lung simulations. J. Biomech. Eng. 132 (2010) 081002. | DOI

A. Devys, C. Grandmont, B. Grec, B. Maury and D. Yakoubi. Numerical method for the 2D simulation of the respiration. In: CEMRACS 2008 – Modelling and numerical simulation of complex fluids. Vol. 28 of ESAIM Proc. EDP Sciences, Les Ulis (2009) 162–181. | MR | Zbl

M. Esmaily Moghadam, Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden and Modeling of Congenital Hearts Alliance (MOCHA) Investigators. A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48 (2011) 277–291. | MR | Zbl | DOI

M. Esmaily Moghadam, F. Migliavacca, I. E. Vignon-Clementel, T.-Y. Hsia, A. Marsden and Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J. Biomech. Eng. 134 (2012) 051002. | DOI

M. Esmaily Moghadam, I. E. Vignon-Clementel, R. Figliola and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244 (2012) 63–79. | MR | DOI

L. Formaggia, A. Moura and F. Nobile. On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. ESAIM: M2AN 41 (2007) 743–769. | MR | Zbl | Numdam | DOI

L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular Mathematics Modeling and simulation of the circulatory system. Springer-Verlag, Milan (2009). | MR | Zbl

L. Formaggia, A. Quarteroni and C. Vergara. On the physical consistency between three-dimensional and one-dimensional models in haemodynamics. J. Comput. Phys. 244 (2013) 97–112. | MR | Zbl | DOI

J. Fouchet-Incaux. Artificial boundaries and formulations for the incompressible Navier-Stokes equations: applications to air and blood flows. SeMA J. 64 (2014) 1–40. | MR | Zbl | DOI

J. Fouchet-Incaux. Modélisation, analyse numérique et simulations autour de la respiration. Ph.D. thesis, Université Paris-Sud (2015).

J. Fouchet-Incaux, C. Grandmont and S. Martin. Numerical stability of coupling schemes in the 3d/0d modelling of airflows and blood flows (2014). Preprint available at | HAL

T. Gengenbach, V. Heuveline and M. J. Krause. Numerical simulation of the human lung: A two-scale approach. EMCL 45 Preprint Ser. 29 2011–11 (2011).

J.-F. Gerbeau, M. Vidrascu and P. Frey. Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83 (2005) 155–165. | DOI

C. Grandmont, Y. Maday and B. Maury. A multiscale/multimodel approach of the respiration tree. New trends in continuum mechanics. In: Vol. 3 of Theta Series in Advanced Mathematics. Theta, Bucharest (2005) 147–157. | MR | Zbl

C. Grandmont and A. Soualah. Solutions fortes des équations de Navier-Stokes avec conditions dissipatives naturelles. ESAIM Proc. 25 (2008) 1–18. | MR | Zbl | DOI

V. Gravemeier, A. Comerford, L. Yoshihara, M. Ismail and W. A. Wall. A novel formulation for Neumann inflow boundary conditions in biomechanics. Int. J. Numer. Methods Biomed. Eng. 28 (2012) 560–573. | MR | Zbl | DOI

J. G. Heywood and R. Rannacher. Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. | MR | Zbl | DOI

J. G. Heywood and R. Rannacher. Finite-element approximations of the nonstationary Navier-Stokes problem. part IV: Error estimates for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. | MR | Zbl | DOI

J. G. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 22 (1996) 325–352. | MR | Zbl | DOI

M. Ismail, A. Comerford and W. A. Wall. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. Int. J. Numer. Methods Biomed. Eng. 29 (2013) 1285–1305. | MR | DOI

M. Ismail, V. Gravemeier, A. Comerford and W. A. Wall. A stable approach for coupling multidimensional cardiovascular and pulmonary networks based on a novel pressure-flow rate or pressure-only Neumann boundary condition formulation. Int. J. Numer. Methods Biomed. Eng. 4 (2014) 447–469. | MR | DOI

C. Kleinstreuer, Z. Zhang, Z. Li, W. L. Roberts and C. Rojas. A new methodology for targeting drug-aerosols in the human respiratory system. Int. J. Heat Mass Transfer 51 (2008) 5578–5589. | Zbl | DOI

A. P. Kuprat, S. Kabilan, J. P. Carson, R. A. Corley and D. R. Einstein. A bidirectional coupling procedure applied to multiscale respiratory modeling. J. Comput. Phys. 244 (2013) 148–167. | MR | Zbl | DOI

J. S. Leiva, P. J. Blanco and G. C. Buscaglia. Iterative strong coupling of dimensionally heterogeneous models. Internat. J. Numer. Methods Engrg. 81 (2010) 1558–1580. | MR | Zbl | DOI

J. S. Leiva, P. J. Blanco and G. C. Buscaglia, Partitioned analysis for dimensionally-heterogeneous hydraulic networks. Multiscale Model. Simul. 9 (2011) 872–903. | MR | Zbl | DOI

A. C. I. Malossi, P. J. Blanco, P. Crosetto, S. Deparis and A. Quarteroni. Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels. Multiscale Model. Simul. 11 (2013) 474–506. | MR | Zbl | DOI

A. C. I. Malossi, P. J. Blanco, S. Deparis and A. Quarteroni. Algorithms for the partitioned solution of weakly coupled fluid models for cardiovascular flows. Int. J. Numer. Methods Biomed. Eng. 27 (2011) 2035–2057. | MR | Zbl | DOI

B. Maury. The respiratory system in equations. In: Vol. 7 of MS&A: Modeling, Simulation and Applications. Springer-Verlag Italia, Milan (2013). | MR | Zbl

V. Maz’Ya and J. Rossmann. Point estimates for Green’s matrix to boundary value problems for second order elliptic systems in a polyhedral cone. ZAMM: Z. Angew. Math. Mech. 82 (2002) 291–316. | MR | Zbl | DOI

V. Maz’Ya and J. Rossmann. L p estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280 (2007) 751–793. | MR | Zbl | DOI

J. M. Oakes, A. L. Marsden, C. Grandmont, S. C. Shadden, C. Darquenne and I. E. Vignon-Clementel. Airflow and particle deposition simulations in health and emphysema: From in vivo to in silico animal experiments. Ann. Biomed. Eng. 42 (2014) 899–914. | DOI

A. Porpora, P. Zunino, C. Vergara and M. Piccinelli. Numerical treatment of boundary conditions to replace lateral branches in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 28 (2012) 1165–1183. | MR | DOI

A. Quarteroni, S. Ragni and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Visual Sci. 4 (2001) 111–124. | MR | Zbl | DOI

A. Quarteroni and A. Veneziani. Modeling and simulation of blood flow problems, edited by M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.-L. Lions, J. Periaux and M. F. Wheeler. In: Computational Science for the 21st Century. J. Wiley and Sons (1997) 369–379. | Zbl

A. Quarteroni and A. Veneziani. Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. Multiscale Model. Simul. 1 (2003) 173–195. | MR | Zbl | DOI

A. Quarteroni, A. Veneziani and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Engrg. 302 (2016) 193–252. | MR | DOI

R. Temam. Navier-Stokes equations: theory and numerical analysis, Vol 2. American Mathematical Society (2001). | MR | Zbl

A. Veneziani and C. Vergara. Flow rate defective boundary conditions in haemodynamics simulations. Inter. J. Numer. Methods Fluids 47 (2005) 803–816. | MR | Zbl | DOI

I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3776–3796. | MR | Zbl | DOI

W. A. Wall, L. Wiechert, A. Comerford and S. Rausch. Towards a comprehensive computational model for the respiratory system. Int. J. Numer. Methods Biomed. Eng. 26 (2010) 807–827. | Zbl | DOI

Cité par Sources :