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EXISTENCE OF SOLUTIONS AND CONTINUOUS AND SEMI-DISCRETE
STABILITY ESTIMATES FOR 3D/0D COUPLED SYSTEMS MODELLING

AIRFLOWS AND BLOOD FLOWS

Céline Grandmont1,2,3 and Sébastien Martin4,*

Abstract. In this paper we analyse geometric multiscale models arising in the description of physio-
logical flows such as blood flow in arteries or air flow in the bronchial tree. The geometrical complexity
of the networks in which air/blood flows lead to a classical decomposition in two areas: a truncated 3D
geometry corresponding to the largest contribution of the domain, and a 0D part connected to the 3D
part, modelling air/blood flows in smaller airways/vessels. The fluid in the 3D part is described by the
Stokes or the Navier–Stokes system which is coupled to 0D models or so-called Windkessel models. The
resulting Navier–Stokes–Windkessel coupled system involves Neumann non-local boundary conditions
that depends on the considered applications. We first show that the different types of Windkessel mod-
els share a similar formalism. Next we derive existence results and stability estimates for the continuous
coupled Stokes–Windkessel or Navier–Stokes–Windkessel problem as well as stability estimates for the
semi-discretized systems with either implicit or explicit treatment of the boundary conditions. In all
the calculations, we pay a special attention to the dependency of the various constants and smallness
conditions on the data with respect to the physical and numerical parameters. In particular we exhibit
different kinds of behavior depending on the considered 0D model. Moreover even if no energy estimates
can be derived in energy norms for the Navier–Stokes–Windkessel system, leading to possible and ob-
served numerical instabilities for large applied pressures, we show that stability estimates for both the
continuous and semi-discrete problems, can be obtained in appropriate norms for small enough data by
introducing a new well chosen Stokes-like operator. These sufficient stability conditions on the data may
give a hint on the order of magnitude of the data enabling stable computations without stabilization
method for the problem. Numerical simulations illustrate some of the theoretical results.
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1. Introduction

In the present work, we focus on the analysis and numerical analysis of geometric multiscale models used
either for simulating physiological flows such as airflows in the respiratory tract, see e.g. [2, 24,32,35,40,43,52]
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3 ULB, Faculté des Sciences, Campus de la Plaine - CP 213, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
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or blood flows in the arterial network, see e.g. [17, 19, 28, 44, 45, 51]. We aim, in particular, at giving a general
theoretical framework to the models and to numerical observations with respect to numerical stability.

Simulations in patient-specific geometries may provide valuable informations to physicians to improve diagno-
sis, pulmonary drug delivery [34] or blood surgery [16]. Nevertheless, direct simulations of 3D flows in geometries
such as the tracheo-bronchial tree or the arterial network are limited by the following constraints: since the whole
respiratory tree and the blood network are very complex, with a lot of bifurcations, and with different scales
therein, numerical costs related to a full 3D simulation in the whole domain are prohibitive. Not to mention
that the image processing of the complete bronchial tree or blood network is out of reach for the time being.
Therefore the whole domain is usually truncated, restricting the computational domain to a smaller part which
is considered to be the most significant one in terms of flow description at the global scale: the large bronchi for
airflows or the aorta region for blood flows. As a countereffect, the removed part has to be taken into account
thanks to suitable reduced models in order to describe the global behaviour of the whole system.

Air and blood are commonly modelled as homogeneous, viscous, Newtonian and incompressible fluids. Thus
we consider a system of partial differential equations involving the Navier–Stokes equations, which has to be
coupled to reduced models to take into account phenomena in the removed part of the domain. In this work, we
focus on so-called 0D or Windkessel models that describe how the fluid flux and average pressure on the artificial
boundaries is related to the mechanical properties of the truncated part. Note that 1D models (see for instance
[18, 20]) can also be considered to describe the reduced part. Here, the existence of solutions and numerical
stability of 3D/0D coupled systems is investigated, with special attention brought to applications related to,
both, airflows and blood flows modelling, which involve different kinds of 0D models sharing nevertheless a
similar formalism. The whole resulting system involves Navier–Stokes equations with nonlocal Neumann-type
boundary conditions which depend on the chosen 0D model.

Many authors investigated the difficulties related to this kind of problems. From the theoretical point of
view and the numerical point of view, one difficulty comes from the lack of energy estimate when considering
the Navier–Stokes system with Neumann boundary conditions and more generally mixed Dirichlet–Neumann
boundary conditions. Nevertheless existence of strong solutions (global in time for small data or local in time)
has been shown in [31] under the assumption that the out/inlets meet the lateral boundary with a right angle
and requiring some strong regularity estimates for the solution of the Stokes problem with mixed boundary
conditions (note nevertheless that these regularity results are not satisfied in this case). Additionally, when
coupling the Navier–Stokes system with 0D reduced models, we refer to [47] and [2, 26] for the same type
of wellposedness results of strong solutions. In particular, in [47], the existence result based on a fixed point
strategy, is obtained for the Navier–Stokes system with Robin-type conditions under a smallness assumption
on the Robin coefficient modeling the resistive part of the 0D model and under the same regularity assumption
required in [31]. In [2] the Navier–Stokes system coupled to the resistive 0D model is considered; the regularity
assumption that was previously used in [31] and [47] is dropped as well as the assumption on the resistance of
the 0D model needed in [47]. The proof relies on the lower regularity results for the solution of the Stokes system
in polygonal domains with mixed boundary conditions, that have been derived in [42] and on the introduction
of a well chosen Stokes-like operator, similar but simpler than the one we will introduce in this paper, that takes
into account the 0D model. Note that all these results are valid for small data or in small time. Note moreover
that concerning 3D/0D models (see [26]) and 3D/1D models (see [7, 18, 20, 46]), coupling conditions based on
the total pressure enables to have global energy estimates, allowing to prove global existence of weak solutions
as in [26]. From the numerical point of view, the lack of energy estimates for the Navier–Stokes system with
Neumann boundary conditions or coupled with 0D model is linked to numerical instabilities as soon as, for a
given physical setting, the applied pressure drop reach a threshold. To overcome this difficulty many strategies
have been proposed. For general flows, we refer to the early work of [11] that introduces a whole set of boundary
conditions that have been further extended and analysed in [12] where existence of weak solutions is proven.
For hemodynamic flows, stabilization methods – some of them similar as the one proposed in [12] – have been
introduced [1, 3, 4, 28]. These stabilization techniques lead to the modification of the resolved physical system.
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We also refer to [21, 31, 40], for reviews on these questions and to [5] where benchmark tests are performed for
various stabilization methods.

Concerning the coupling of the Navier–Stokes equations with 0D models (or other reduced models such as
1D models), many strategies have been considered for the theoretical analysis of such problems as for their
numerical implementation. For instance, as already stated, the existence result proved in [47] is based on a
fixed point theorem, whereas in [2] a global formulation of the coupled system is considered. Moreover, for the
modelling of physiological flows, many coupling strategies have been already implemented: the explicit treatment
has been used for instance in hemodynamics in [45, 51] or for airflows in [13] for 3D/1D coupling; the implicit
coupling with Neumann boundary conditions involving the full traction, achieved thanks to an iterative process
has been proposed in [28]. Still in the context of hemodynamics the implicit coupling and the implicit treatment
of the convective part of the fluid equations have been achieved by a Newton algorithm [17, 33]; however, in
each Newton sub-time-step, the coupling is explicit. The same strategy is used in [43] for mechanical ventilation
in a rat bronchial tree. In [37] an iterative procedure is proposed for 3D/0D hydraulic networks. Moreover we
refer for instance to [2] in the context of airflow modelling or [6] in the context of blood flows modelling where
implicit monolithic coupling schemes are considered. The efficiency of the numerical methods associated to
these problems relies on the analysis of two types of numerical difficulties: on the one hand, the explicit/implicit
treatment of the nonlocal boundary conditions which couple the 3D and 0D models, which may lead to numerical
instabilities and thus possible restrictions on the time-step, even with an implicit treatment of the coupling (when
achieved by an iterative procedure). On the other hand, the more intrinsic difficulties coming from the convective
term in the Navier–Stokes system which, as already stated, induces a lack of energy estimates and subsequent
observed numerical instabilities. When considering full fluid-structure interaction heterogeneous 3D/1D coupled
models, the question of the spurious numerical reflexions at the interface is a crucial one and is investigated in
[38], for instance, in which an iterative implicit coupling scheme is proposed.

Thus this paper is concerned with the analysis and numerical analysis of the coupled 3D/0D models arising
in blood flows in large arteries as well as airflows in the bronchial tree. Here we derive energy or stability
estimates for continuous and semi-discrete Stokes or Navier–Stokes system coupled to typical Windkessel models
for explicit and implicit couplings, with a special emphasis to the dependance with respect to the physical
parameters. These estimates enable to justify the existence of solutions and in the discrete case, the aim is
to quantify, depending on the application field, the stability restrictions on the time step or on the data that
are sufficient to ensure stability estimates. Note that this paper improves and generalizes partial results that
can be found in [22, 23]. The outline of this article is as follows: in Section 2 we introduce the coupled fluid-
Windkessel models under study. We choose standard 0D models used in blood flow or airflow and we embed
them in a similar formalism. We also present the semi-discretized in time schemes considered for the coupled
fluid-Windkessel models, whose stability analysis will be performed in the next sections. Next, in Section 3, we
derive energy or stability estimates for the continuous or semi-discretized in time Stokes–Windkessel coupled
system. Implicit and explicit treatments of the boundary conditions are considered. We exhibit different type
of results depending on the considered 0D model. Note that the derived estimates leads to the existence of
weak solutions. Finally in Section 4 we study the Navier–Stokes–Windkessel coupled system. We prove stability
estimates both in the continuous case and two semi-discrete cases with either explicit or implicit coupling.
Since no energy estimate can be derived, we prove estimates in stronger norms linked to the domain of a
new well-chosen Stokes-like operator adapted to the coupled system. Once again the derived estimates enable
to prove existence of strong solutions locally in time or for small enough data and we exhibit different types
of behavior depending on the considered 0D model as well as on the coupling strategy. The final section is
devoted to some numerical illustrations of the physical and stability behavior of the considered model and
schemes. In particular we emphasize the difference between the different 0D models, exhibit restrictions on the
time step when considering an explicit strategy or on the applied data when considering the Navier–Stokes
system.
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2. Reduced models in airflows and blood flows

2.1. Models

In this section, we describe different types of models associated to physiological flows, such as air through
the bronchial tree or blood in the arterial network. The bronchial tree and the blood network have a complex
structure which can be described as an assembly of tubes in which the biological fluid (air or blood) flows.
For instance, the human respiratory tract is a dyadic tree of about 23 generations. The first generation (the
trachea) has a length of about 10 cm, while the last one is about 1 mm. Until the 15th generation, the flow
is convective whereas it is mainly diffusive in the acinar region. Moreover, the medical imaging and image
processing techniques allow to obtain a good segmented surface and an associated mesh only up to the 6th or
7th generation. In the same way, the arterial network can be described as tube network.

In this context the complexity of the geometries makes it difficult to address direct simulations over the
whole domain which then have to be truncated. Nevertheless, the removed parts corresponding to the smaller
scales have to be taken into account in the global modelling: this can be done by defining appropriate reduced
models. After truncation of the whole domain, we get a domain Ω ⊂ R3 involving artificial boundaries which
are denoted Γ𝑖, with 𝑖 ∈ {0, · · · , N}, N + 1 being the number of in/outlets. The lateral walls of the respiratory
tree or of the aorta are denoted Γℓ. In these 3D domains, we assume that the velocity u and the pressure 𝑝
of the fluid satisfy the following incompressible Stokes or Navier–Stokes system (corresponding respectively to
𝜀 = 0 and 𝜀 = 1): ⎧⎪⎨⎪⎩

𝜌(𝜕𝑡u + 𝜀(u · ∇)u)− 𝜇∆u +∇𝑝 = 0 in Ω,
div(u) = 0 in Ω,

u = 0 on Γℓ,
u(0, ·) = u0 in Ω,

with u0 the initial velocity, n the outward unit vector on every part of the boundary 𝜕Ω and 𝜌 and 𝜇 the
density and the viscosity of the fluid respectively. In order to model the whole system, i.e. the whole respiratory
tree or the whole blood network, taking into account the fluid flow in the removed part, the 3D model has to
be completed with a well-chosen reduced model. For instance, the removed part can be condensed into a 0D
model (0D in the sense that it does not depend on a space variable) coupled to the 3D model at each outlet
Γ𝑖. Here we choose to consider some classical 0D models (also referred to as Windkessel models), used in blood
or air flow modelling, but sharing the same formalism. We refer the reader to [48] for a review on geometric
multiscale modeling in the context of cardiovascular systems. The coupling between the 3D and the 0D parts
can be written as

𝜇∇u · n− 𝑝n = −𝑝𝑖n, on Γ𝑖, 𝑖 = 0, . . . ,N,

where 𝑝𝑖 is a constant in space interface pressure that depends on the considered 0D model. In all the studied
cases, the 0D pressure is a function of the 0D fluid flux 𝑄𝑖, namely

𝑝𝑖(𝑡) = 𝐹𝑖(𝑄𝑖(𝑠), 0 ≤ 𝑠 ≤ 𝑡).

Moreover the mass conservation at the interface Γ𝑖 writes

𝑄𝑖(𝑠) :=
∫︁

Γ𝑖

u(𝑠, ·) · n.

As a consequence the coupled system is Stokes or Navier–Stokes system with a generalized Neumann boundary
conditions based upon the modelling of phenomena in the truncated part:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌(𝜕𝑡u + 𝜀(u · ∇)u)− 𝜇∆u +∇𝑝 = 0 in Ω,
div(u) = 0 in Ω,

u = 0 on Γℓ,
𝜇∇u · n− 𝑝n = −𝐹𝑖(

∫︀
Γ𝑖

u · n)n on Γ𝑖, 𝑖 = 0, . . . ,N,
u(0, ·) = u0 in Ω,

(2.1)
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Figure 1. Reduced 0D model: the RC model for air flows.

Note that, as they involve the velocity flux at the artificial boundary, the boundary conditions are nonlocal. Note
also that we have implicitly made a choice: we consider the 3D system with Neumann boundary conditions, in
particular when we the 0D model is treated explicitly. Thus the splitting strategy will involve a Navier–Stokes
system solved with a prescribed pressure. Another choice could be to consider the continuity of the flux, which
leads to defective boundary conditions [39, 50]. In this paper we do not address this splitting strategy. Many
other coupling strategies have been developed for 3D/1D coupling, see for instance [9, 36] and also [8] for a
theoretical analysis of a simplified coupled problem. The choice of function 𝐹𝑖 depends on the application field
as it is designed to mimic the behaviour of the truncated subtree. For instance in the context of blood networks
models, so-called RCR and LRCR models are used whereas, in the context of airflows in the bronchial tree, a
so-called RC model is used. These models will be discussed thereafter.

Remark 2.1. In this work, several choice have been made:

∙ We express the Neumann condition by using the non-symmetric tensor 𝜎 := 𝜇∇u − 𝑝 I. This choice can
be justified by the fact that this quantity is continuous on cross section boundary in a Poiseuille flow in
a cylindrical domain. Another choice could be based on the physical symmetric stress tensor 𝜎symm. :=
𝜇(∇u + ∇ut) − 𝑝 I and we refer to [21, 31] for numerical comparisons between the two versions. Note
nevertheless that the analysis performed hereafter remains unchanged when considering the full fluid strain
tensor.

∙ Lateral walls in the 3D part are assumed to be fully rigid and, consequently, we impose the fluid velocity to
be equal to zero on Γℓ. This assumption is valid in the context of air flows, at least for normal breathing. In
the context of blood flow modelling, the models should be enriched in order to take into account deformable
walls: we refer to [25,48] for more sophisticated models involving a deformable domain.

Let us give some details on the considered reduced models.

∙ The RC model for air flows consists in reducing the truncated subtree into a resistive contribution
and a compliant contribution plugged in series at each outlet of the 3D domain, see Figure 1: therefore we
introduce a resistance 𝑅 related to the resistance of the distal network (bronchial subtrees) and a compliance
𝐶 describing the elasticity property of the surrounding tissues (lung parenchyma). The outlet pressure 𝑝𝑖 is
associated to the current pressure 𝑃 and the model reduces to the following ODE:{︃

𝑃 = 𝑅𝑄 + 𝑃d,

𝑄 = 𝐶
d𝑃d

d𝑡
.

(2.2)

As a straightforward consequence,

𝑃 (𝑡) = 𝑅𝑄(𝑡) + (𝑃 (0)−𝑅𝑄(0)) + 𝐶−1

∫︁ 𝑡

0

𝑄(𝑠) d𝑠. (2.3)
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Figure 2. Reduced 0D model: the RCR model for blood flows.

∙ The RCR model for blood flows consists in reducing the truncated subtree into a proximal part which
is mainly resistive and a distal part which is resistive and compliant. The two parts are plugged in series
at each outlet of the 3D domain, see Figure 2. Therefore we introduce a proximal resistance 𝑅p, a distal
resistance 𝑅d and a compliance 𝐶, the latter representing the wall elasticity of the blood vessels. The outlet
pressure 𝑝𝑖 is the current pressure 𝑃 and the model reduces to the following ODE:{︃

𝑃 = 𝑅p𝑄 + 𝑃d,

𝑄 = 𝐶
d𝑃d

d𝑡
+

𝑃d

𝑅d
.

As a straightforward consequence,

𝑃 (𝑡) = 𝑃 (0)e−
𝑡

𝑅d𝐶 + 𝑅p

(︁
𝑄(𝑡)− e−

𝑡
𝑅d𝐶 𝑄(0)

)︁
+ 𝐶−1

∫︁ 𝑡

0

𝑄(𝑠) e−
𝑡−𝑠
𝑅d𝐶 d𝑠. (2.4)

∙ The LRCR model consists in considering inductive properties plugged in series with the previous RCR
model, see Figure 3. The corresponding set of equations is⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑃 = 𝑅p𝑄 + 𝑃d,

𝑄 = 𝐶
d
d𝑡

(𝑃d − 𝑃L) +
𝑃d − 𝑃L

𝑅d
,

𝑃L = 𝐿
d𝑄

d𝑡
.

As a straightforward consequence,

𝑃 (𝑡) = 𝑃 (0)e−
𝑡

𝑅d𝐶 + 𝐿

(︂
d𝑄

d𝑡
(𝑡)− e−

𝑡
𝑅d𝐶

d𝑄

d𝑡
(0)
)︂

+ 𝑅p

(︁
𝑄(𝑡)− e−

𝑡
𝑅d𝐶 𝑄(0)

)︁
+ 𝐶−1

∫︁ 𝑡

0

𝑄(𝑠) e−
𝑡−𝑠
𝑅d𝐶 d𝑠.

In all these cases, it can be noticed that the proximal pressure that connects the 3D domain to the truncated
0D model only depends on the flux 𝑄𝑖 so that function 𝐹𝑖(·) takes the following general form:

𝐹𝑖(𝑄𝑖(𝑠), 0 ≤ 𝑠 ≤ 𝑡) = 𝛼𝑖𝑄𝑖(𝑡) + 𝛽𝑖
d𝑄𝑖

d𝑡
(𝑡) + 𝛾𝑖

∫︁ 𝑡

0

e−
𝑡−𝑠
𝜏𝑖 𝑄𝑖(𝑠) d𝑠 + P𝑖(𝑡), (2.5)

where coefficients 𝛼𝑖 ≥ 0, 𝛽𝑖 ≥ 0, 𝛾𝑖 ≥ 0 and characteristic time 𝜏𝑖 ∈ (0, +∞) are associated to corresponding
models, and 𝑡 ↦→ P𝑖(𝑡) is a source term which also depends on the models. The coefficients 𝛼𝑖 model
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Figure 3. Reduced 0D model: the RCRL model.

Table 1. Model parameters.

𝛼 𝛽 𝛾 𝜏 P(𝑡)

R 𝑅 0 0 +∞ 0
RC 𝑅p 0 𝐶−1 +∞ 𝑃 (0)−𝑅𝑄(0)

RCR 𝑅p 0 𝐶−1 𝑅d𝐶 (𝑃 (0)−𝑅p𝑄(0))e
− 𝑡

𝑅d𝐶

RCL 𝑅p 𝐿 𝐶−1 +∞ (𝑃 (0)−𝑅p𝑄(0)− 𝐿
d𝑄

d𝑡
(0))

RCRL 𝑅p 𝐿 𝐶−1 𝑅d𝐶 (𝑃 (0)−𝑅p𝑄(0)− 𝐿
d𝑄

d𝑡
(0))e

− 𝑡
𝑅d𝐶

dissipation of the flux, 𝛽𝑖 represent inertia, 𝛾𝑖 represent elastance of the 0D models with an associated
relaxation time 𝜏𝑖. In particular, Table 1 summarizes the possible choices for these parameters related to the
previous described models:

Remark 2.2. The link between the different models can be described as follows

∙ The four-element RCRL model with 𝑅d = +∞ leads to a so-called 𝑅𝐶𝐿 model.
∙ The four-element RCRL model with 𝐿 = 0 leads to the 𝑅𝐶𝑅 model.
∙ The RCR model with 𝑅d = +∞ allows us to get the RC model with 𝑅 = 𝑅p.
∙ The RC model with 𝐶 = +∞ allows us to get the R model.

Remark 2.3. The compliance parameter in the RCR and LRCR represent the wall elasticity whereas we choose
to consider rigid wall for the 3D part. We refer to [25,48] for more sophisticated models involving a deformable
domain.

2.2. Variational formulation of the coupled system

Let us now write the variational formulation associated to the coupled problem. Define the following functional
spaces

𝐻1
0,Γℓ

(Ω) = {v ∈ (𝐻1(Ω))3, v = 0 on Γℓ}, V = {v ∈ 𝐻1
0,Γℓ

(Ω), div(v) = 0}.
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Multiplying the first equation of system (2.1) by v ∈ V, integrating over the whole domain Ω and using
integrations by parts with boundary conditions (2.5), we get:

𝜌

∫︁
Ω

𝜕𝑡u(𝑡, ·) · v + 𝜀𝜌

∫︁
Ω

(u(𝑡, ·)∇)u(𝑡, ·) v + 𝜇

∫︁
Ω

∇u(𝑡, ·) · ∇v +
N∑︁

𝑖=0

𝛼𝑖

(︂∫︁
Γ𝑖

u(𝑡, ·) · n
)︂(︂∫︁

Γ𝑖

v · n
)︂

+
N∑︁

𝑖=0

𝛽𝑖

(︂∫︁
Γ𝑖

𝜕𝑡u(𝑡, ·) · n
)︂(︂∫︁

Γ𝑖

v · n
)︂

+
N∑︁

𝑖=0

𝛾𝑖

(︂∫︁ 𝑡

0

e−
𝑡−𝑠
𝜏𝑖

(︂∫︁
Γ𝑖

u(𝑠, ·) · n
)︂

d𝑠

)︂(︂∫︁
Γ𝑖

v · n
)︂

= −
N∑︁

𝑖=0

P𝑖

(︂∫︁
Γ𝑖

v · n
)︂

.

Notice that 𝜀 = 1 includes the full Navier–Stokes system whereas 𝜀 = 0 allows us to deal with the linear Stokes
system. The variational formulation is essential for the derivation of energy estimates (see the forthcoming
subsections) which may be obtained by considering v = u. The estimates are easily derived in the linear case
but difficulties emerge in the nonlinear case because of the inertial effects. This difficulty is partially overcome
by using several tools: first the construction of a suitable operator (see Definition 4.1, page 2384) associated to
a normed space which is deeply related to the inertia of the system and, second, a bilinear form that takes into
account the fluid dissipation along with its 0D counterpart, namely the flux dissipation of 0D model. Let us
moreover introduce a useful functional space and related property:

H := V
𝐿2

= {v ∈ 𝐿2(Ω), div(v) = 0, v · n = 0 on Γℓ}.

In this space the following lemma holds true:

Lemma 2.4. There exists 𝜅 > 0 such that,⃒⃒⃒⃒∫︁
Γ𝑖

v · n
⃒⃒⃒⃒
≤ 𝜅‖v‖𝐿2(Ω), ∀v ∈ H, ∀𝑖 ∈ {0, . . . ,N}.

We refer the reader to [2] for the proof of this lemma. Note that this estimate is deeply based on the divergence-
free property and on the fact that Γ𝑖 ∪ Γ𝑗 = ∅ for all 𝑖 ̸= 𝑗. Note that, for all v ∈ H, the flux

∫︀
Γ𝑖

v ·n has to be
understood in a weak way: indeed it can be defined by means of duality:∫︁

Γ𝑖

v · n := ⟨v · n, 1⟩
𝐻−

1
2 (Γ𝑖),𝐻

1
2 (Γ𝑖)

= ⟨v · n, 𝑔𝑖⟩
𝐻−

1
2 (𝜕Ω),𝐻

1
2 (𝜕Ω)

=
∫︁

Ω

v · ∇𝑔𝑖,

where 𝑔𝑖 is a function in 𝐻1(Ω) such that 𝑔𝑖 = 1 on Γ𝑖 and 𝑔𝑖 = 0 on Γ𝑗 , 𝑗 ̸= 𝑖. Note that such functions exist
as the boundaries Γ𝑖 are not in contact. Finally, if v ∈ V, the classical flux formula is recovered. Let us also
introduce the following inequality, that can be deduced from the trace inequality: there exists 𝐶Γ > 0 such that⃒⃒⃒⃒∫︁

Γ𝑖

v · n
⃒⃒⃒⃒
≤ 𝐶Γ‖∇v‖𝐿2(Ω), ∀v ∈ V, ∀𝑖 ∈ {0, . . . ,N}. (2.6)

In what follows, for the sake of simplicity (and without loss of generality for the mathematical analysis), we
will consider two artificial boundaries:

∙ one “inlet” Γ0 with standard Neumann boundary condition, i.e.

𝛼0 = 0, 𝛽0 = 0, 𝛾0 = 0, P0 := 𝑝0,

where 𝑡 ↦→ 𝑝0(𝑡) is a prescribed pressure.
∙ one “outlet” Γ1 which is renamed Γ𝑊 (with a subscript which stands for Windkessel boundary condition)

coupled with a generic Windkessel model. For that reason we rename 𝛼1, 𝛽1, 𝛾1, 𝜏1 as 𝛼, 𝛽, 𝛾, 𝜏 .
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Moreover note that the non-homogeneous Neumann boundary condition on Γ0 can be reduced to homogeneous
Neumann boundary condition by defining a new unknown pressure 𝑝 − 𝑝0 (which will be still denoted 𝑝) and
a new Windkessel source term P − 𝑝0 (which will be still denoted P). Thus we will consider 𝑝0 = 0, since the
pressure drop is taken into account in the Windkessel source term P. Consequently we consider the following
problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u(𝑡, ·) ∈ V such that, for all v ∈ V,

𝜌

∫︁
Ω

𝜕𝑡u(𝑡, ·) · v + 𝜀𝜌

∫︁
Ω

(u(𝑡, ·)∇)u(𝑡, ·) v + 𝜇

∫︁
Ω

∇u(𝑡, ·) · ∇v + 𝛼

(︂∫︁
Γ𝑊

u(𝑡, ·) · n
)︂(︂∫︁

Γ𝑊

v · n
)︂

+𝛽

(︂∫︁
Γ𝑊

𝜕𝑡u(𝑡, ·) · n
)︂(︂∫︁

Γ𝑊

v · n
)︂

+ 𝛾

(︂∫︁ 𝑡

0

e−
𝑡−𝑠

𝜏

(︂∫︁
Γ𝑊

u(𝑠, ·) · n
)︂

d𝑠

)︂(︂∫︁
Γ𝑊

v · n
)︂

= −P(𝑡)
(︂∫︁

Γ𝑊

v · n
)︂

.

(2.7)

Remark 2.5. In the whole paper we consider Neumann boundary conditions at the outlets for the 3D parts.
We could have considered u · 𝜏 = 0 and (𝜎 · n) · n = 𝐹𝑖(𝑄𝑖) instead. The analysis that follows would be
essentially unchanged except for some regularity properties associated to the Stokes-like operator we introduce
for the Navier–Stokes–Windkessel system, see Remark 4.5.

2.3. Discretization schemes

We investigate the numerical stability of various coupling strategies between the Stokes or Navier–Stokes
system and the 0D models. In particular, we aim at deriving stability estimates on the solution of the discretized-
in-time and pay attention to the sensitivity of the stability constants or possible smallness conditions with respect
to the physiological and numerical parameters.

In what follows, discretized-in-time systems will be referred as semi-discretized systems. Let ∆𝑡 > 0 be
the time step and 𝑡𝑛 = 𝑛∆𝑡, 𝑛 ∈ {0, . . . , 𝑁}, with 𝑁∆𝑡 = 𝑇 . We denote by (u𝑛, 𝑝𝑛) the approximated
solution at time 𝑡𝑛 of the continuous velocity and pressure fields 𝑡 ↦→ (u(𝑡, ·), 𝑝(𝑡, ·)). If we discretize in time
the strong formulation of system (2.7), using the first order backward Euler scheme for the time derivative, the
approximated velocity and pressure u𝑛+1 and 𝑝𝑛+1 satisfy:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜌

(︂
u𝑛+1 − u𝑛

∆𝑡
+ 𝜀u𝑛+𝐼 · ∇u𝑛+1

)︂
− 𝜇∆u𝑛+1 +∇𝑝𝑛+1 = 0, in Ω,

div(u𝑛+1) = 0, in Ω,
u𝑛+1 = 0, on Γℓ,

𝜇∇u𝑛+1 · n− 𝑝𝑛+1n = 0, on Γ0,
𝜇∇u𝑛+1 · n− 𝑝𝑛+1n = −𝐹Δ𝑡((𝑄𝑘)0≤𝑘≤𝑚), on Γ𝑊 ,

u0 = u0, in Ω,

(2.8)

where the choice 𝐼 ∈ {0, 1} corresponds to a semi-implicit or an implicit treatment of the convection term.
Function 𝐹Δ𝑡 is a time approximation of 𝐹 , where 𝐹 is defined by (2.5). It depends on the approximations
(𝑄𝑘)0≤𝑘≤𝑚 of the fluxes (𝑄(𝑡𝑘))0≤𝑘≤𝑚. Note that we may consider either explicit treatment of the boundary
conditions with 𝑚 = 𝑛 or implicit treatment with 𝑚 = 𝑛 + 1. The approximate function is chosen as:

𝐹Δ𝑡((𝑄𝑘)0≤𝑘≤𝑚) = 𝛼𝑄𝑚 + 𝛽
𝑄𝑛+1 −𝑄𝑛

∆𝑡
+ 𝛾∆𝑡

𝑚∑︁
𝑘=𝑚−𝑛

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑚+1−𝑘

𝑄𝑘 + P(𝑡𝑚). (2.9)

Note that, here, the inertance term will be always treated in an implicit way. Indeed an explicit treatment of this
added mass term leads to possibly unconditionally unstable schemes, see Section 5.3.1, as it has been observed
and analyzed in [15] in the context of blood flows. In what follows we investigate the case 𝛽 = 0 and the case
𝛽 ̸= 0 in order to understand the stabilization effect of the inertance on the scheme.
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Remark 2.6. The Definition (2.9) of the approximate function modelling the 0D model is built upon the approx-
imation of the RC and RCR models which leads us to the following quadrature formula

𝛾

∫︁ 𝑡𝑚

0

e−
𝑡𝑚−𝑠

𝜏 𝑄(𝑠) d𝑠 ≃ 𝛾∆𝑡

𝑚∑︁
𝑘=𝑚−𝑛

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑚+1−𝑘

𝑄𝑘.

Indeed in the case of the RC model (𝛼 > 0, 𝛽 = 0, 𝛾 > 0, 𝜏 = +∞), the integral
∫︀ 𝑡

0
𝑄(𝑠) d𝑠 is approximated

by the classical rectangle rule whereas for the RCR model (𝛼 > 0, 𝛽 = 0, 𝛾 > 0, 𝜏 < +∞), Equation (2.9)
corresponds to the following discretization of system (2.2)⎧⎨⎩𝐹Δ𝑡((𝑄𝑘)0≤𝑘≤𝑚) := 𝑃𝑛+1 = 𝑅p𝑄𝑚 + 𝑃𝑛+1

d ,

𝐶
𝑃𝑛+1

d − 𝑃𝑛
d

∆𝑡
+

𝑃𝑛+1
d

𝑅d
= 𝑄𝑚.

(2.10)

We aim at studying the stability of the coupling schemes in both Stokes and Navier–Stokes regimes. In
particular we focus on the derivation of stability conditions for the implicit and explicit schemes. The goal is
to quantify the possible restrictions on the data and numerical parameters with respect to the physiological
parameters and investigate the differences that can be encountered for various 0D models corresponding to
blood flows and respiratory flows. Consequently since our aim is to differentiate the behaviour of typical models
used either in blood flows or in air flows, we focus on the case 𝛾 > 0 in the forthcoming theorems. Note that
the case 𝛾 = 0 will be treated in remarks pointing out the possible simplifications. In any case, the variational
formulation of System (2.8) writes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u𝑛+1 ∈ V such that, for all v ∈ V,

𝜌

∫︁
Ω

(u𝑛+1 − u𝑛) · v + 𝜀 𝜌∆𝑡

∫︁
Ω

(u𝑛+𝐼∇)u𝑛+1 v + 𝜇 ∆𝑡

∫︁
Ω

∇u𝑛+1 · ∇v + 𝛼 ∆𝑡

(︂∫︁
Γ𝑊

u𝑚 · n
)︂(︂∫︁

Γ𝑊

v · n
)︂

+𝛽

(︂∫︁
Γ𝑊

u𝑛+1 · n−
∫︁

Γ𝑊

u𝑛 · n
)︂(︂∫︁

Γ𝑊

v · n
)︂

+ 𝛾∆𝑡2

(︃
𝑚∑︁

𝑘=𝑚−𝑛

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑚+1−𝑘 ∫︁
Γ𝑊

u𝑘 · n

)︃(︂∫︁
Γ𝑊

v · n
)︂

= −P𝑚 ∆𝑡

(︂∫︁
Γ𝑊

v · n
)︂

,

(2.11)
where P𝑚 = P(𝑡𝑚). In the above formulation, the choice of 𝜀 allows us to discuss the Stokes (𝜀 = 0) and
Navier–Stokes (𝜀 = 1) cases; the index 𝐼 corresponds to the implicit (𝐼 = 1) or semi-implicit (𝐼 = 0) treatment
of the convection term; finally the index 𝑚 allows us to describe an explicit (𝑚 = 𝑛) or implicit (𝑚 = 𝑛 + 1)
coupling between 3D and 0D models.

3. Study of the Stokes–Windkessel coupled system

3.1. Energy estimates for the continuous system

Let us now derive the energy estimates related to Problem (2.7) with 𝜀 = 0. This property is an important
issue of the analysis of the numerical strategies which are built upon similar principles at the discrete level
and is a key ingredient to prove existence of weak solutions. In particular, all the following calculations can be
justified thanks to a Galerkin approximation, leading to a rigorous derivation of the existence of weak solution.

Theorem 3.1 (Energy estimates for the Stokes system). Let 𝑇 > 0 and 𝜇 > 0. Assume that 𝛼 ≥ 0, 𝛽 ≥ 0,
𝛾 > 0 and 0 < 𝜏 ≤ +∞. Any weak solution u of the Problem (2.7) with 𝜀 = 0 satisfies, for 0 ≤ 𝑡 ≤ 𝑇 :

𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

2

∫︁ 𝑡

0

‖∇u(𝑠, ·)‖2𝐿2(Ω) d𝑠 +
𝛽

2
𝑄2(𝑡) + 𝛼

∫︁ 𝑡

0

𝑄2(𝑠) d𝑠 +
𝛾

2
𝑉 2(𝑡) +

𝛾

𝜏

∫︁ 𝑡

0

𝑉 2(𝑠)d𝑠 (3.1)

≤ 𝜌

2
‖u0‖2𝐿2(Ω) +

𝛽

2
𝑄2(0) +

𝐶2
Γ

2𝜇

∫︁ 𝑡

0

(P(𝑠))2 d𝑠,
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where 𝑄(𝑠) =
∫︀
Γ𝑊

u(𝑠, ·) · n and 𝑉 (𝑡) =
∫︀ 𝑡

0
e−

𝑡−𝑠
𝜏 𝑄(𝑠)d𝑠.

Proof. Taking v = u(𝑡, ·) in the variational formulation (2.7) we get

𝜌

2
d
d𝑡
‖u(𝑡, ·)‖2𝐿2(Ω) + 𝜇‖∇u(𝑡, ·)‖2𝐿2(Ω) + 𝛼𝑄2(𝑡) + 𝛽

d𝑄2

d𝑡
(𝑡) + 𝛾𝑄(𝑡)

∫︁ 𝑡

0

e−
𝑡−𝑠

𝜏 𝑄(𝑠) d𝑠 + P(𝑡)𝑄(𝑡) = 0.

Introducing the auxiliary volume

𝑉 (𝑡) =
∫︁ 𝑡

0

e−
𝑡−𝑠

𝜏 𝑄(𝑠)d𝑠, (3.2)

we obtain easily that 𝑉 satisfies the following ODE

d𝑉

d𝑡
(𝑡) +

1
𝜏

𝑉 (𝑡) = 𝑄(𝑡). (3.3)

Note that the previous ODE (3.3) is also valid for 𝜏 = +∞ since, in this case, 𝑉 (𝑡) =
∫︀ 𝑡

0
𝑄(𝑠) d𝑠. From

equations (3.2) and (3.3), we get

𝛾𝑄(𝑡)
∫︁ 𝑡

0

e−
𝑡−𝑠

𝜏 𝑄(𝑠) d𝑠 = 𝛾

(︂
d𝑉

d𝑡
(𝑡) +

1
𝜏

𝑉 (𝑡)
)︂

𝑉 (𝑡) =
𝛾

2
d𝑉 2

d𝑡
(𝑡) +

𝛾

𝜏
𝑉 2(𝑡).

Then we obtain

𝜌

2
d
d𝑡
‖u(𝑡, ·)‖2𝐿2(Ω) + 𝜇‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛽

2
d
d𝑡

𝑄2(𝑡) + 𝛼𝑄2(𝑡) +
𝛾

2
d
d𝑡

𝑉 2(𝑡) +
𝛾

𝜏
𝑉 2(𝑡) = −P(𝑡)

∫︁
Γ𝑊

u(𝑡, ·) · n.

(3.4)

Using a trace inequality and Young’s inequality, the term P(𝑡)
∫︀
Γ𝑊

u(𝑡, ·) · n can be controlled by:⃒⃒⃒⃒
P(𝑡)

∫︁
Γ𝑊

u(𝑡, ·) · n
⃒⃒⃒⃒
≤ 𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝐶2
Γ

2𝜇
P2(𝑡). (3.5)

Finally using (3.5) to bound the right hand side of (3.4), we obtain

𝜌

2
d
d𝑡
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛽

2
d
d𝑡

𝑄2(𝑡) + 𝛼𝑄2(𝑡) +
𝛾

2
d
d𝑡

𝑉 2(𝑡) +
𝛾

𝜏
𝑉 2(𝑡) ≤ 𝐶2

Γ

2𝜇
P2(𝑡). (3.6)

We conclude by a simple time integration and remembering that 𝑉 (0) = 0. �

Remark 3.2 (Case 𝛾 = 0). In this case, the introduction of the auxiliary volume 𝑉 is not necessary and the
estimate (3.1) is still valid with 𝛾 = 0.

Remark 3.3. Note that other energy estimates can be derived. For instance, assume that 𝛼 ̸= 0. Then the
estimate of the source term can be replaced by⃒⃒⃒⃒

P(𝑡)
∫︁

Γ𝑊

u(𝑡, ·) · n
⃒⃒⃒⃒
≤ 𝛼

2
𝑄2(𝑡) +

1
2𝛼

P2(𝑡). (3.7)

As a consequence (3.6) can be replaced by

𝜌

2
d
d𝑡
‖u(𝑡, ·)‖2𝐿2(Ω) + 𝜇‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛽

2
d
d𝑡

𝑄2(𝑡) +
𝛼

2
𝑄2(𝑡) +

𝛾

2
d
d𝑡

𝑉 2(𝑡) +
𝛾

𝜏
𝑉 2(𝑡) ≤ 1

𝛼
P2(𝑡).
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It leads to

𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) + 𝜇

∫︁ 𝑡

0

‖∇u(𝑠, ·)‖2𝐿2(Ω) d𝑠 +
𝛽

2
𝑄2(𝑡) +

𝛼

2

∫︁ 𝑡

0

𝑄2(𝑠) d𝑠 +
𝛾

2
𝑉 2(𝑡) +

𝛾

𝜏

∫︁ 𝑡

0

𝑉 2(𝑠) d𝑠

≤ 𝜌

2
‖u0‖2𝐿2(Ω) +

𝛽

2
𝑄2(0) +

1
2𝛼

∫︁ 𝑡

0

P2(𝑠) d𝑠. (3.8)

Note moreover that different estimates can be obtained for other cases:

∙ If 𝜇 = 0 and 𝛼 = 0, then the source term can be bounded as⃒⃒⃒⃒
P(𝑡)

∫︁
Γ𝑊

u(𝑡, ·) · n
⃒⃒⃒⃒
≤ 𝜅 |P(𝑡)| ‖u(𝑡, ·)‖𝐿2(Ω) ≤ 𝜅2 P2(𝑡)

2𝜌
+

𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) . (3.9)

by Lemma 2.4 and Young’s inequality.
∙ If 𝛽 ̸= 0, ⃒⃒⃒⃒

P(𝑡)
∫︁

Γ𝑊

u(𝑡, ·) · n
⃒⃒⃒⃒
≤ |P(𝑡)| |𝑄(𝑡)| ≤ P2(𝑡)

2𝛽
+

𝛽

2
𝑄2(𝑡). (3.10)

Nevertheless, with the previous inequalities (3.9) and (3.10), the energy estimate obtained by Gronwall lemma
involves an exponential growth that behaves as 𝑒𝑡. Indeed if we denote U(𝑡) as the left-hand side of (3.1), we
use (3.4) and (3.9) to obtain: U′(𝑡) ≤ 𝜅2 P2(𝑡)

2𝜌 + U(𝑡) and by Gronwall lemma,

U(𝑡) ≤
{︂

𝜅2

2𝜌

∫︁ 𝑡

0

P2(𝑠) d𝑠 + U(0)
}︂

e𝑡.

A very similar argument leads to a similar estimate if we use (3.10) instead of (3.9).
To summarize, when 𝛾 > 0 and 𝜏 < +∞, in the case where the system is dissipative in u (𝜇 > 0) or 𝑄

(𝛼 > 0) then, for zero applied pressures, the energy of the system is decreasing. When 𝜇 = 𝛼 = 0 then the energy
of the system is also bounded but with a bound that behaves as e𝑇 .

Remark 3.4. Note that when 𝛾 > 0 and 𝜏 < +∞, the auxiliary volume 𝑉 defined by (3.2) is “dissipated”
by the model. In particular, in that respect, the 𝑅𝐶𝑅 model (𝜏 < +∞) and the 𝑅𝐶 model (𝜏 = +∞) used
respectively in blood flow simulations and air flow simulations behave in a different way, the auxiliary volume
𝑉 being dissipated in the RCR case whereas it is not in the RC case.

This energy estimate enable to obtain the following existence theorem:

Theorem 3.5. Let 𝑇 > 0, u0 ∈ 𝐻, P ∈ 𝐿2(0, 𝑇 ). There exists a unique u ∈ 𝐿∞(0, 𝑇 ; 𝐻) ∩ 𝐿2(0, 𝑇 ; 𝑉 ) weak
solution of (2.7) with 𝜀 = 0 satisfying (3.6).

Proof. The proof is standard and based on a Galerkin approximation. �

3.2. Energy estimates for the semi-discretized system

In this subsection, we establish energy estimates for the solution of the semi-discretized Stokes system with
implicit treatment of the boundary conditions (see Thm. 3.6) or explicit treatment (see Thm. 3.9). Taking u𝑛+1

as a test function in the variational formulation (2.11) with 𝜀 = 0 provides the following equality:

𝜌
⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
− 𝜌

∫︁
Ω

u𝑛 · u𝑛+1 + 𝜇∆𝑡
⃦⃦
∇u𝑛+1

⃦⃦2

𝐿2(Ω)
+ 𝛼∆𝑡𝑄𝑚𝑄𝑛+1 + 𝛽((𝑄𝑛+1)2 −𝑄𝑛𝑄𝑛+1)

+𝛾∆𝑡2
𝑚∑︁

𝑘=𝑚−𝑛

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑚+1−𝑘

𝑄𝑘𝑄𝑛+1 + ∆𝑡P𝑚𝑄𝑛+1 = 0.
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We have

𝜌
⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
− 𝜌

∫︁
Ω

u𝑛 · u𝑛+1 =
𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
− 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝜌

2

⃦⃦
u𝑛+1 − u𝑛

⃦⃦2

𝐿2(Ω)

and

(𝑄𝑛+1)2 −𝑄𝑛𝑄𝑛+1 =
(𝑄𝑛+1)2

2
− (𝑄𝑛)2

2
+

(𝑄𝑛+1 −𝑄𝑛)2

2
.

The discrete energy balance thus writes:

𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
− 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝜌

2

⃦⃦
u𝑛+1 − u𝑛

⃦⃦2

𝐿2(Ω)
+ 𝜇∆𝑡

⃦⃦
∇u𝑛+1

⃦⃦2

𝐿2(Ω)
+ 𝛼∆𝑡𝑄𝑚𝑄𝑛+1

+
𝛽

2
(𝑄𝑛+1)2 − 𝛽

2
(𝑄𝑛)2 +

𝛽

2
(𝑄𝑛+1 −𝑄𝑛)2 + 𝛾∆𝑡𝑉 𝑛+1,𝑚𝑄𝑛+1 + ∆𝑡P𝑚𝑄𝑛+1 = 0, (3.11)

where

𝑉 𝑛+1,𝑚 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆𝑡

𝑛+1∑︁
𝑘=1

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑛+2−𝑘

𝑄𝑘, if 𝑚 = 𝑛 + 1,

∆𝑡

𝑛∑︁
𝑘=0

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑛+1−𝑘

𝑄𝑘, if 𝑚 = 𝑛.

Defining the dimensionless parameter
𝛿Δ𝑡 :=

𝜏

𝜏 + ∆𝑡
, (3.12)

note that the discrete volume 𝑉 𝑛+1,𝑛+1 (resp. 𝑉 𝑛+1,𝑛) is obtained by the rectangle rule with top–right (resp.
top–left) corner approximation of the volume 𝑉 (𝑡𝑛+1):

𝑉 𝑛+1,𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆𝑡𝛿Δ𝑡

𝑛+1∑︁
𝑘=1

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑛+1−𝑘

𝑄𝑘 =: 𝑉 𝑛+1
imp , if 𝑚 = 𝑛 + 1,

∆𝑡𝛿Δ𝑡

𝑛∑︁
𝑘=0

(︂
𝜏

𝜏 + ∆𝑡

)︂𝑛−𝑘

𝑄𝑘 =: 𝑉 𝑛+1
exp , if 𝑚 = 𝑛.

(3.13)

We now distinguish the implicit and explicit cases in the following (resp. 𝑚 = 𝑛 + 1 and 𝑚 = 𝑛).

3.2.1. Implicit coupling

Let us first consider the implicit case, namely 𝑚 = 𝑛+1. In the case of implicit coupling the analysis is nearly
the same as in the continuous framework. More precisely the implicit coupling of the Stokes system with any
0D model leads to unconditionally stable schemes in standard energy norms. Denoting 𝑉 𝑘

imp = 𝑉 𝑘,𝑘, see (3.13),
we easily verify that

𝑄𝑛+1 =
𝑉 𝑛+1

imp − 𝑉 𝑛
imp

∆𝑡
+

1
𝜏

𝑉 𝑛+1
imp ,

which corresponds to the time discretization of Equation (3.3) by a backward Euler scheme. Here we choose
to analyse the standard backward Euler scheme; nevertheless alternate time discretization schemes may be
considered, based on Crank–Nicolson method for instance. In this case the analysis should be quite similar since
the dissipative property of the backward Euler scheme is not used in the forthcoming derivation of the stability
estimates.

Theorem 3.6 (Implicit coupling with the Stokes system). Let 𝜇 > 0 and 𝑇 > 0. Assume that 𝛼 ≥ 0, 𝛽 ≥ 0,
𝛾 > 0 and 0 < 𝜏 ≤ +∞. Let ∆𝑡 > 0 be the time step and 𝑡𝑛 = 𝑛∆𝑡, 𝑛 ∈ {0, . . . , 𝑁}, with 𝑁∆𝑡 = 𝑇 . The
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discrete solution u𝑛+1 of Problem (2.11) with 𝜀 = 0 satisfies the estimate

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
∆𝑡

𝑛+1∑︁
𝑘=1

‖∇u𝑘‖2𝐿2(Ω) +
𝛽

2
(𝑄𝑛+1)2 + 𝛼∆𝑡

𝑛+1∑︁
𝑘=1

(𝑄𝑘)2 +
𝛾

2
(𝑉 𝑛+1

imp )2 +
𝛾∆𝑡

𝜏

𝑛+1∑︁
𝑘=1

(𝑉 𝑘
imp)2 (3.14)

≤ 𝜌

2
‖u0‖2𝐿2(Ω) +

𝛽

2
(𝑄0)2 +

𝐶2
Γ

2𝜇
∆𝑡

𝑛+1∑︁
𝑘=1

(P𝑘)2.

Proof. The proof is a straightforward adaptation of the proof of Theorem 3.1. �

Remark 3.7 (Case 𝛾 = 0). As for the continuous case, the same kind of discrete energy estimate for 𝛾 = 0
may be derived without introducing the discrete auxiliary volume.

Remark 3.8. Note that Theorem 3.6 can be extended to the fully-discretized system, using a standard Lagrange
finite element approximation. Moreover different estimates of the source term as the estimates (3.7) and (3.10)
obtained in Remark 3.3, can be adapted to the semi-discrete and fully-discrete frameworks with straightforward
consequences on the global estimate (3.14). Furthermore in the semi-discrete framework, the estimate (3.9) is
still true, and, in the fully-discrete framework, it is still valid but under some assumptions on the discrete finite
element spaces, ensuring that Lemma 2.4 holds at the discrete finite element level. In particular, Lemma 2.4
will be satisfied for any vℎ ∈ Vℎ = {vℎ ∈ Xℎ,

∫︀
Ω

div(vℎ)𝑞ℎ = 0, ∀𝑞ℎ ∈ 𝑀ℎ} provided that Xℎ is a conformal
Lagrange finite element approximation of 𝐻1

0,Γℓ
(Ω) and 𝑀ℎ contains an internal approximation space of 𝐻1(Ω).

In particular we cannot consider finite element spaces involving discontinuous pressures. For instance if we
consider 𝑃2–𝑃1 continuous Lagrange discretizations, any vℎ ∈ Vℎ satisfies⃒⃒⃒⃒∫︁

Γ𝑖

vℎ · n
⃒⃒⃒⃒
≤ 𝜅‖vℎ‖𝐿2(Ω), ∀𝑖 ∈ {0, . . . ,N}.

Indeed to prove Lemma 2.4 in the discrete setting, we need to build a discrete lifting 𝑔ℎ such that

∙ 𝑔ℎ = 1 on Γ𝑖 and 𝑔ℎ = 0 on Γ𝑗, 𝑗 ̸= 𝑖;
∙ 𝑔ℎ ∈ 𝐻1(Ω) with ‖𝑔ℎ‖𝐻1 ≤ 𝐶 where 𝐶 does not depend on ℎ;
∙ 𝑔ℎ has to belong to 𝑀ℎ so that ∫︁

Ω

div(vℎ)𝑔ℎ = 0, ∀vℎ ∈ Vℎ.

3.2.2. Explicit coupling

We recall that the 𝛽-term that accounts for the 0D model inertia is treated in an implicit way. Using the
definition of the auxiliary volume, and denoting 𝑉 𝑘

exp := 𝑉 𝑘,𝑘−1, see (3.13), we can derive discrete equations
relating the flow to the discrete auxiliary volume:

𝑉 𝑛+1
exp − 𝑉 𝑛

exp

∆𝑡
+

1
𝜏

𝑉 𝑛+1
exp = 𝑄𝑛, (3.15)

1
𝛿Δ𝑡

𝑉 𝑛+1
exp − 𝑉 𝑛

exp

∆𝑡
+

1
𝜏

𝑉 𝑛
exp = 𝑄𝑛, (3.16)

where 𝛿Δ𝑡 is defined by (3.12).
These are the key ingredients to prove:

Theorem 3.9 (Explicit coupling with the Stokes system). Let 𝜇 > 0 and 𝑇 > 0. Assume that 𝛼 ≥ 0, 𝛽 ≥ 0,
𝛾 > 0 and 0 < 𝜏 ≤ +∞. Let ∆𝑡 > 0 be the time step and 𝑡𝑛 = 𝑛∆𝑡, 𝑛 ∈ {0, . . . , 𝑁}, with 𝑁∆𝑡 = 𝑇 . The
discrete solution u𝑛+1 of Problem (2.11) with 𝜀 = 0 and 𝑚 = 𝑛 satisfies the following stability estimate
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∙ Under the condition

0 < ∆𝑡 < 𝜆1 :=
𝛼

4𝛾

(︃√︂
1 +

8𝜌𝛾

𝜅2𝛼2
− 1

)︃
,

we have

𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
+

𝜇∆𝑡

2

𝑛+1∑︁
𝑘=1

‖∇u𝑘‖2𝐿2(Ω) +
𝛾∆𝑡

𝜏

𝑛+1∑︁
𝑘=1

(𝑉 𝑘
exp)2 +

𝛽

2
(𝑄𝑛+1)2 +

𝛾

2𝛿Δ𝑡
(𝑉 𝑛+2

exp )2

≤ e𝐶S
Δ𝑡𝑇 e

𝑇
𝜆1−Δ𝑡

(︃
𝐸0 +

𝐶2
Γ

2𝜇
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2
)︃

,

where 𝐸0 is a constant that only depends on the energy norm of the initial conditions and

𝐶S
Δ𝑡 :=

𝛼𝜅2

𝜌
+

2∆𝑡

𝜏2
.

∙ Assume furthermore that 𝛽 > 0. Then, under the condition

0 ≤ ∆𝑡 < 𝜆̃1 :=
𝛼

4𝛾

(︃√︂
1 +

8𝛽𝛾

𝛼2
− 1

)︃
,

we have

𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
+

𝜇∆𝑡

2

𝑛+1∑︁
𝑘=1

‖∇u𝑘‖2𝐿2(Ω) +
𝛾∆𝑡

𝜏

𝑛+1∑︁
𝑘=1

(𝑉 𝑘
exp)2 +

𝛽

2
(𝑄𝑛+1)2 +

𝛾

2𝛿Δ𝑡
(𝑉 𝑛+2

exp )2

≤ e𝐶S
Δ𝑡𝑇 e

𝑇
𝜆̃1−Δ𝑡

(︃
𝐸0 +

𝐶2
Γ

2𝜇
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2
)︃

,

where 𝐸0 is a constant that only depends on the energy norm of the initial conditions and

𝐶S
Δ𝑡 :=

𝛼

𝛽
+

2∆𝑡

𝜏2
.

Proof. Considering the energy equality (3.11), with 𝑚 = 𝑛, we obtain

𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
− 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝜌

2

⃦⃦
u𝑛+1 − u𝑛

⃦⃦2

𝐿2(Ω)
+ 𝜇∆𝑡

⃦⃦
∇u𝑛+1

⃦⃦2

𝐿2(Ω)
+ 𝛼∆𝑡 𝑄𝑛𝑄𝑛+1 (3.17)

+
𝛽

2
(𝑄𝑛+1)2 − 𝛽

2
(𝑄𝑛)2 +

𝛽

2
(𝑄𝑛+1 −𝑄𝑛)2 + 𝛾∆𝑡 𝑉 𝑛+1

exp 𝑄𝑛+1 + ∆𝑡 P𝑛𝑄𝑛+1 = 0.

Let us deal with the explicit terms. The first one can be bounded simply as follows⃒⃒
𝛼∆𝑡 𝑄𝑛𝑄𝑛+1

⃒⃒
≤ 𝛼∆𝑡

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛+1)2.

The second one, involving the discrete auxiliary volume 𝑉 𝑛+1
exp , can be rewritten as follows, using Equation (3.16)

𝛾∆𝑡 𝑉 𝑛+1
exp 𝑄𝑛+1 = 𝛾∆𝑡

(︃
1

𝛿Δ𝑡

𝑉 𝑛+2
exp − 𝑉 𝑛+1

exp

∆𝑡
+

1
𝜏

𝑉 𝑛+1
exp

)︃
𝑉 𝑛+1

exp

=
𝛾

𝛿Δ𝑡

(︃
(𝑉 𝑛+2

exp )2

2
−

(𝑉 𝑛+1
exp )2

2
−

(𝑉 𝑛+2
exp − 𝑉 𝑛+1

exp )2

2

)︃
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2,
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and we get

𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
+ 𝜇∆𝑡‖∇u𝑛+1‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+1
exp )2

2
+

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp − 𝑉 𝑛+1

exp )2

2

+
𝐶2

Γ

2𝜇
∆𝑡(P𝑛)2 +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω),

where we have used an estimate similar to (3.5) to bound the source term. The stability estimate is built upon
the control of the following extra terms:

𝛼∆𝑡

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛+1)2,

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp − 𝑉 𝑛+1

exp )2

2
.

Thanks to (3.16) we have

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp − 𝑉 𝑛+1

exp )2

2
≤ 𝛾

𝛿Δ𝑡

(︂
∆𝑡2𝛿2

Δ𝑡(𝑄
𝑛+1)2 +

∆𝑡2

𝜏2
𝛿2
Δ𝑡(𝑉

𝑛+1
exp )2

)︂
.

Consequently we obtain

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+1
exp )2

2

+
𝛾

𝛿Δ𝑡

(︂
∆𝑡2𝛿2

Δ𝑡(𝑄
𝑛+1)2 +

∆𝑡2

𝜏2
𝛿2
Δ𝑡(𝑉

𝑛+1
exp )2

)︂
+

𝐶2
Γ

2𝜇
∆𝑡(P𝑛)2.

and since 𝛿Δ𝑡 < 1, we obtain

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛)2 +

𝛼∆𝑡

2
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+1
exp )2

2

+
𝛾

𝛿Δ𝑡

(︂
∆𝑡2(𝑄𝑛+1)2 +

∆𝑡2

𝜏2
(𝑉 𝑛+1

exp )2
)︂

+
𝐶2

Γ

2𝜇
∆𝑡(P𝑛)2. (3.18)

Now we discuss two different cases: 𝛽 ≥ 0 (general case), 𝛽 > 0 (0D inertial case).
∙ In the general case 𝛽 ≥ 0, and in particular if 𝛽 = 0, the terms

𝛼∆𝑡

2
(𝑄𝑛)2,

𝛼∆𝑡

2
(𝑄𝑛+1)2,

𝛾

𝛿Δ𝑡
∆𝑡2(𝑄𝑛+1)2,

in the right-hand side of (3.18) cannot be controlled by the inertia of the 0D model. However they can be
controlled by the inertial term of the fluid. Indeed by Lemma 2.4,

(𝑄𝑘)2 ≤ 𝜅2
⃦⃦
u𝑘
⃦⃦2

𝐿2(Ω)
,

and, as a consequence, we deduce from (3.18) and the above inequality that

𝜌

2

(︂
1− 𝛼𝜅2

𝜌
∆𝑡− 2𝛾𝜅2

𝜌
∆𝑡2

)︂
‖u𝑛+1‖2𝐿2(Ω) +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2 +
𝛽

2
(𝑄𝑛+1)2

≤ 𝜌

2

(︂
1 +

𝛼𝜅2

𝜌
∆𝑡

)︂
‖u𝑛‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(︂
1 +

2∆𝑡2

𝜏2

)︂
(𝑉 𝑛+1

exp )2

2

+
𝛽

2
(𝑄𝑛)2 +

𝐶2
Γ

2𝜇
∆𝑡(P𝑛)2.
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Defining

𝑃 (∆𝑡) := 1− 𝛼𝜅2

𝜌
∆𝑡− 2𝛾𝜅2

𝜌
∆𝑡2, (3.19)

we introduce the roots of this polynomial

𝜆1 :=
𝛼

4𝛾

(︃√︂
1 +

8𝜌𝛾

𝜅2𝛼2
− 1

)︃
, −𝜆2 := − 𝛼

4𝛾

(︃√︂
1 +

8𝜌𝛾

𝜅2𝛼2
+ 1

)︃
(3.20)

with, for the sake of convenience, 𝜆𝑖 > 0. Then we get

𝑃 (∆𝑡) =
2𝛾𝜅2

𝜌
(𝜆1 −∆𝑡)(𝜆2 + ∆𝑡) ≥ 1− ∆𝑡

𝜆1
. (3.21)

As a consequence, we obtain

𝜌

2

(︂
1− ∆𝑡

𝜆1

)︂
‖u𝑛+1‖2𝐿2(Ω) +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2 +
𝛽

2
(𝑄𝑛+1)2

≤ 𝜌

2

(︂
1 +

𝛼𝜅2

𝜌
∆𝑡

)︂
‖u𝑛‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(︂
1 +

2∆𝑡2

𝜏2

)︂
(𝑉 𝑛+1

exp )2

2
+

𝛽

2
(𝑄𝑛)2 +

𝐶2
Γ

2𝜇
∆𝑡(P𝑛)2.

Using the discrete Gronwall lemma [30] and under the condition 0 < ∆𝑡 < 𝜆1, this provides the following
stability estimate

𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
+

𝜇∆𝑡

2

𝑛+1∑︁
𝑘=1

‖∇u𝑘‖2𝐿2(Ω) +
𝛾∆𝑡

𝜏

𝑛+1∑︁
𝑘=1

(𝑉 𝑘
exp)2 +

𝛽

2
(𝑄𝑛+1)2 +

𝛾

2𝛿Δ𝑡
(𝑉 𝑛+2

exp )2

≤ e𝐶S
Δ𝑡𝑇 e

𝑇
𝜆1−Δ𝑡

(︃
𝐸0 +

𝐶2
Γ

2𝜇
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2
)︃

,

where 𝐸0 is a constant that only depends on the energy norm of the initial conditions and

𝐶S
Δ𝑡 =

𝛼𝜅2

𝜌
+

2∆𝑡

𝜏2
.

∙ Assume now that 𝛽 > 0. In that case the terms

𝛼∆𝑡

2
(𝑄𝑛)2,

𝛼∆𝑡

2
(𝑄𝑛+1)2,

𝛾

𝛿Δ𝑡
∆𝑡2𝛿2

Δ𝑡(𝑄
𝑛+1)2

in the right-hand side of (3.18) can be controlled by the inertia of the 0D model. The estimate (3.18) yields

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛽

2

(︂
1− 𝛼

𝛽
∆𝑡− 2𝛾

𝛽
∆𝑡2

)︂
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝛽

2

(︂
1 +

𝛼

𝛽
∆𝑡

)︂
(𝑄𝑛)2 +

𝛾

𝛿Δ𝑡

(︂
1 +

2∆𝑡2

𝜏2

)︂
(𝑉 𝑛+1

exp )2

2
+

𝐶2
Γ

2𝜇
∆𝑡(P𝑛)2.

Defining 𝑃 (∆𝑡) := 1− 𝛼

𝛽
∆𝑡− 2𝛾

𝛽
∆𝑡2, we introduce the roots of this polynomial

𝜆̃1 :=
𝛼

4𝛾

(︃√︂
1 +

8𝛽𝛾

𝛼2
− 1

)︃
, −𝜆̃2 := − 𝛼

4𝛾

(︃√︂
1 +

8𝛽𝛾

𝛼2
+ 1

)︃
,
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with, for the sake of convenience, 𝜆̃𝑖 > 0. Then we get

𝑃 (∆𝑡) =
2𝛾

𝛽
(𝜆̃1 −∆𝑡)(𝜆̃2 + ∆𝑡) ≥ 1− ∆𝑡

𝜆̃1

.

As a consequence, we obtain

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛽

2

(︂
1− ∆𝑡

𝜆̃1

)︂
(𝑄𝑛+1)2 +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝛽

2

(︂
1 +

𝛼

𝛽
∆𝑡

)︂
(𝑄𝑛)2 +

𝛾

𝛿Δ𝑡

(︂
1 +

2∆𝑡2

𝜏2

)︂
(𝑉 𝑛+1

exp )2

2
+

𝐶2
Γ

2𝜇
∆𝑡(P𝑛)2.

Under the condition 0 < ∆𝑡 < 𝜆̃1, the discrete Gronwall lemma [30], implies that

𝜌

2

⃦⃦
u𝑛+1

⃦⃦2

𝐿2(Ω)
+

𝜇∆𝑡

2

𝑛+1∑︁
𝑘=1

‖∇u𝑘‖2𝐿2(Ω) +
𝛾∆𝑡

𝜏

𝑛+1∑︁
𝑘=1

(𝑉 𝑘
exp)2 +

𝛽

2
(𝑄𝑛+1)2 +

𝛾

2𝛿Δ𝑡
(𝑉 𝑛+2

exp )2

≤ e𝐶S
Δ𝑡𝑇 e

𝑇
𝜆1−Δ𝑡

(︃
𝐸0 +

𝐶2
Γ

2𝜇
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2
)︃

,

where 𝐸0 is a constant that only depends on the energy norm of the initial conditions and

𝐶S
Δ𝑡 =

𝛼

𝛽
+

2∆𝑡

𝜏2
.

Note that alternate estimates can be derived following the continuous case that have been developed in
Remark 3.3. �

Remark 3.10 (Case 𝛾 = 0). In this case, no auxiliary volume is required to derive discrete energy estimates.
The sufficient conditions that guarantee the stability of the explicit scheme become:

∆𝑡 ≤
max

(︁ 𝜌

𝜅2
, 𝛽
)︁

𝛼
.

This condition involves the ratio of the inertance of the 3D or 0D system to the resistance of the 0D model.
Moreover the exponential growth constants are modified as follows:

𝐶S
Δ𝑡 :=

𝛼𝜅2

𝜌
, 𝐶S

Δ𝑡 =
𝛼

𝛽
.

Remark 3.11 (Influence of the inertia). When the inertia parameters of the problem, namely 𝜌 and 𝛽, tend to
+∞, so do the critical times 𝜆1 and 𝜆̃1 which implies that in practice no condition on the time step is required to
ensure stability. Moreover, the exponential growth remains bounded. Let us discuss the influence of the inertance
parameter 𝛽 on the critical time 𝜆̃1:

𝜆̃1 ∼𝛽→+∞

√︃
𝛽

2𝛾
, 𝐶S

Δ𝑡 ∼𝛽→+∞
2∆𝑡

𝜏2
,

and
𝜆̃1 ∼𝛽→0

𝛽

𝛼
, 𝐶S

Δ𝑡 ∼𝛽→0
𝛼

𝛽
.

When the inertance of the 0D model is small, so is the critical time 𝜆̃1; nevertheless in this case it is sufficient
to impose ∆𝑡 ≤ 𝜆1 that may be less restrictive to ensure the stability of the explicit scheme.
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Remark 3.12. Let us discuss the influence of the characteristic relaxation time 𝜏 on the obtained stability
estimates and smallness assumption on the time step:

∙ the sufficient conditions on the time step do not depend on the parameter 𝜏 .
∙ when 𝜏 → +∞, the contribution e2Δ𝑡𝑇/𝜏2

to the exponential growth goes to 1 and thus is uniformly bounded.
∙ when 𝜏 ≪ 𝑇 , the exponential bound e2Δ𝑡𝑇/𝜏2

hides an effective restriction on the time-step. Indeed in order
to obtain a uniform bound of the exponential growth, this requires a severe restriction on the time step by
choosing ∆𝑡 such that ∆𝑡𝑇/𝜏2 = O(1), namely ∆𝑡 = O( 𝜏2

𝑇 ).

Remark 3.13 (Influence of the resistance parameter 𝛼). When 𝛼 becomes large then the critical times 𝜆1 and
𝜆̃1 behave as

𝜆1 ∼𝛼→+∞
𝜌

𝜅2𝛼
, 𝜆̃1 ∼𝛼→+∞

𝛽

𝛼
.

Thus the larger 𝛼 is (which corresponds to the resistive parameter of the 0D model), the more severe is the
constraint on the time step together with the exponential growth.

4. Study of the Navier–Stokes–Windkessel coupled system

4.1. Estimates for the continuous system

Let us consider the Navier–Stokes system and underline the standard difficulties met when one is interested in
analyzing the energy balance when adding nonlinearities to the problem. Note that the estimates we will derive
hereafter lead to the existence of strong solution for small time or for small enough data. Let us first review
the difficulties coming from the convection term. To fix the idea we consider the Navier–Stokes system (2.7)
coupled with a R model (𝐹 (𝑄(𝑠), 0 ≤ 𝑠 ≤ 𝑡) = 𝛼𝑄(𝑡)). Proceeding as in the linear case, we derive the following
energy equality:

𝜌

2
d
d𝑡

∫︁
Ω

|u|2 + 𝜌

∫︁
Γ0∪Γ𝑊

|u|2

2
u · n + 𝜇

∫︁
Ω

|∇u|2 + 𝛼

(︂∫︁
Γ𝑊

u · n
)︂2

= P(𝑡)
∫︁

Γ𝑊

u · n.

Here we are considering the coupling with the R model only and have used the divergence free property of the
fluid velocity. We see a term 𝜌

∫︀
Γ𝑊

|u|2
2 u ·n that represents the flux of kinetic energy at the artificial boundary,

whose sign is not known a priori. Consequently unlike for the Stokes system one can not derive easily an energy
estimate. To obtain a satisfactory energy estimate and existence theorems, one has to be able to control this
kinetic energy flux at the interface where Neumann boundary conditions are prescribed. Note that in dimension
three we can prove the following bound (see [31])⃒⃒⃒⃒

𝜌

∫︁
Γ𝑊

|u|2

2
u · n

⃒⃒⃒⃒
≤ 𝐶‖u‖5/2

𝐿2(Ω)‖∇u‖1/2
𝐿2(Ω),

which does not allow to obtain an energy estimate. Nevertheless existence of a unique strong solution can be
proven. In particular, in [2], the existence of a unique strong solution (locally in time or for small data) is
derived, based on the same ideas developped in [31] and on regularity results of the solution of the stationary
Stokes system with mixed Dirichlet–Neumann boundary conditions in polyhedral domains [41].

Regarding the existence of solutions for the Navier–Stokes system with mixed Dirichlet–Neumann boundary
conditions, we refer to [31]: the authors prove the existence of a unique smooth solution which is local in time;
under an additional assumption on the smallness of the data, the smooth solution is proven to be global-in-
time. Note that the existence of global weak solutions can be derived by choosing appropriate outflow boundary
conditions that control the flux of incoming kinetic energy and thus stabilize the system [12]. The case of Robin-
type boundary conditions which involve the modelling of a local-in-space resistive contribution is analyzed in
[47]: existence of a strong solution is obtained under the assumption that the resistance is small enough. In [2]
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a RC-like model is studied: the existence of a unique local-in-time strong solution for any data is proven; the
particular case of a single R model is also investigated, leading to the existence and uniqueness of a global-in-
time smooth solution for small data even if the resistance is large. Finally in [47], existence of a local-in-time
strong solution for the RCR model is proven for small data. Proofs of the above results are all based upon
Galerkin approximations with special bases. Note moreover that they all require that in/outlet meet the lateral
boundary with right angles. This framework will be used in the analysis of the semi-discretized Navier–Stokes
systems. We point out that the main difficulty in the above references relies on the estimate of the convective
term of the Navier–Stokes system.

Let us now focus on the more general 0D model we study here and introduce key tools for the derivation of
suitable estimates of the solution of the coupled system. In particular we introduce a new Stokes-like operator
adapted to our coupled Navier–Stokes–Windkessel model.

Definition 4.1 (Stokes operator). The space H is endowed with the scalar product

(v,w)𝜌,𝛽 := 𝜌

∫︁
Ω

v ·w + 𝛽

(︂∫︁
Γ𝑊

v · n
)︂(︂∫︁

Γ𝑊

w · n
)︂

,

and we denote ‖·‖𝜌,𝛽 the norm associated to this scalar product. Then we define the bilinear form 𝑎𝜇,𝛼 as

𝑎𝜇,𝛼 : V ×V → R

(v,w) ↦→ 𝜇

∫︁
Ω

∇v · ∇w + 𝛼

(︂∫︁
Γ𝑊

v · n
)︂(︂∫︁

Γ𝑊

w · n
)︂

.

Finally we introduce the operator 𝐴𝜇,𝛼 : D(𝐴𝜇,𝛼) → H associated to the bilinear form 𝑎𝜇,𝛼 by

(𝐴𝜇,𝛼v,w)𝜌,𝛽 = 𝑎𝜇,𝛼(v,w)

with
D(𝐴𝜇,𝛼) = {u ∈ V, |𝑎𝜇,𝛼(u,v)| ≤ 𝐶 ‖v‖H , ∀v ∈ V}.

Proposition 4.2 (Properties of the Stokes operator). The operator 𝐴𝜇,𝛼 has the following properties:

∙ 𝐴𝜇,𝛼 ∈ L(D(𝐴𝜇,𝛼),H) is invertible and its inverse is compact on H;
∙ 𝐴𝜇,𝛼 is self-adjoint.

As a consequence, 𝐴𝜇,𝛼 admits a family of eigenfunctions {𝜑𝑗}

𝐴𝜇,𝛼𝜑𝑗 = 𝜈𝑗𝜑𝑗 , with 0 < 𝜈1 ≤ 𝜈2 ≤ ... ≤ 𝜈𝑗 →𝑗→+∞ +∞

which is complete and orthogonal in both H and V.

Proof. The proof of this proposition relies on classical arguments, see for instance [10] for general arguments
and [27] for a direct proof in a similar context. �

Lemma 4.3. The following estimates hold:

1. There exists L > 0 such that

∀v ∈ D(𝐴𝜇,𝛼), ‖∇v‖𝐿2(Ω) ≤ L ‖𝐴𝜇,𝛼v‖𝐿2(Ω) . (4.1)

The constant L depends on the parameters as L := 𝐶𝑃
𝜌 + 𝛽𝜅2

𝜇
, where 𝐶𝑃 denotes the Poincaré constant.
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2. If furthermore the artificial boundaries Γ0 and Γ𝑊 meet the lateral boundaries Γℓ at angle 𝜋
2 and each

boundary is smooth enough, then there exist 𝜖 > 0 and M > 0, such that

∀v ∈ D(𝐴𝜇,𝛼), ‖v‖
𝐻

3
2 +𝜖(Ω)

≤ M‖𝐴𝜇,𝛼v‖𝐿2(Ω). (4.2)

The constant M depends on the parameters as:

M := 𝐶
(2)
Ω

(︂
𝜌

𝜇
+ 𝐶

(1)
Ω 𝜅

𝛽

𝜇
+ 𝐶

(1)
Ω 𝐶Γ

𝛼

𝜇
L

)︂
, (4.3)

where 𝐶
(𝑖)
Ω are constants which only depend on the domain.

Remark 4.4. Both constants L and M are proportional to the ratio of a density to a viscosity.

Proof. Both estimates rely on the properties of the Stokes operator. Using the definition of the scalar product
on H, we obtain

(𝐴𝜇,𝛼v,v)𝜌,𝛽 = 𝜌

∫︁
Ω

𝐴𝜇,𝛼v · v + 𝛽

(︂∫︁
Γ𝑊

𝐴𝜇,𝛼v · n
)︂(︂∫︁

Γ𝑊

v · n
)︂

≤ 𝜌 ‖𝐴𝜇,𝛼v‖𝐿2(Ω) ‖v‖𝐿2(Ω) + 𝛽𝜅2 ‖v‖𝐿2(Ω) ‖𝐴𝜇,𝛼v‖𝐿2(Ω)

≤ 𝐶𝑃 (𝜌 + 𝛽𝜅2) ‖𝐴𝜇,𝛼v‖𝐿2(Ω) ‖∇v‖𝐿2(Ω) ,

where we have used Lemma 2.4 and Poincaré inequality. Besides, by definition of the operator 𝐴𝜇,𝛼, we have

(𝐴𝜇,𝛼v,v)𝜌,𝛽 = 𝑎𝜇,𝛼(v,v) = 𝜇 ‖∇v‖2𝐿2(Ω) + 𝛼

(︂∫︁
Γ𝑊

v · n
)︂2

≥ 𝜇 ‖∇v‖2𝐿2(Ω) ,

thus
𝜇 ‖∇v‖2𝐿2(Ω) ≤ 𝐶𝑃 (𝜌 + 𝛽𝜅2) ‖𝐴𝜇,𝛼v‖𝐿2(Ω) ‖∇v‖𝐿2(Ω) ,

which, by simplification, concludes the proof of (4.1). The proof of estimate (4.2) is based upon a regularity
result for the Stokes problem with homogeneous mixed boundary conditions, see [41], for which we need the
geometric angular assumption. The problem 𝐴𝜇,𝛼v = f ∈ H can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆v +∇
(︂

𝑝

𝜇

)︂
=

𝜌

𝜇
f , in Ω,

div(v) = 0, in Ω,
v = 0, on Γℓ,

∇v · n− 𝑝

𝜇
n = 0, on Γ0,

∇v · n− 𝑝

𝜇
n = −𝛽

𝜇

(︂∫︁
Γ𝑊

f · n
)︂

n− 𝛼

𝜇

(︂∫︁
Γ𝑊

v · n
)︂

n, on Γ𝑊 .

(4.4)

We consider the auxiliary pressure defined by⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆𝑝 = 0, in Ω,
∇𝑝 · n = 0, on Γℓ,

𝑝 = 0, on Γ0,

𝑝 = −𝛽

(︂∫︁
Γ𝑊

f · n
)︂
− 𝛼

(︂∫︁
Γ𝑊

v · n
)︂

, on Γ𝑊 .

By standard arguments and using Lemma 2.4 and Equation (2.6), we have

‖∇𝑝‖𝐿2(Ω) ≤ 𝐶
(1)
Ω

(︁
𝛼𝐶Γ ‖∇v‖𝐿2(Ω) + 𝛽𝜅 ‖f‖𝐿2(Ω)

)︁
, (4.5)
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where 𝐶
(1)
Ω is a constant which only depends on Ω. Using this auxiliary pressure, the problem defined by (4.4)

can be rewritten as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆v +∇
(︂

𝑝− 𝑝

𝜇

)︂
=

𝜌

𝜇
f − ∇𝑝

𝜇
, in Ω,

div(v) = 0, in Ω,
v = 0, on Γℓ,

∇v · n− 𝑝− 𝑝

𝜇
n = 0, on Γ0,

∇v · n− 𝑝− 𝑝

𝜇
n = 0, on Γ𝑊 .

As a consequence, from regularity results that can be found in [41] in the case of right angles, there exists 𝜖 > 0
such that

‖v‖
𝐻

3
2 +𝜖(Ω)

≤ 𝐶
(2)
Ω

(︃
𝜌

𝜇
‖f‖𝐿2(Ω) +

‖∇𝑝‖𝐿2(Ω)

𝜇

)︃
,

where 𝐶
(2)
Ω is a constant which only depends on Ω. Using estimate (4.5), we get

‖v‖
𝐻

3
2 +𝜖(Ω)

≤ 𝐶
(2)
Ω

(︂
𝜌

𝜇
+ 𝐶

(1)
Ω 𝜅

𝛽

𝜇

)︂
‖f‖𝐿2(Ω) + 𝐶

(2)
Ω 𝐶

(1)
Ω 𝐶Γ

𝛼

𝜇
‖∇v‖𝐿2(Ω) .

By (4.1) and since f = 𝐴𝜇,𝛼v, we obtain

‖v‖
𝐻

3
2 +𝜖(Ω)

≤
[︂
𝐶

(2)
Ω

(︂
𝜌

𝜇
+ 𝐶

(1)
Ω 𝜅

𝛽

𝜇

)︂
+ 𝐶

(2)
Ω 𝐶

(1)
Ω 𝐶Γ

𝛼

𝜇
L

]︂
‖𝐴𝜇,𝛼v‖𝐿2(Ω) ,

which concludes the proof of (4.2). �

Remark 4.5. If we impose only the normal component of the velocity to be free, namely u·𝜏 = 0 and (𝜎 ·n)·n =

0, then the Stokes-like operator has to be slightly adapted and it will be defined on H𝜏 = V
𝐿2

𝜏 with

V𝜏 = {v ∈ 𝐿2(Ω), div(v) = 0, v · n = 0 on Γℓ, v · 𝜏 = 0 on Γ0 ∪ Γ𝑊 }.

The only difference concerns Lemma 4.3 and lies in the regularity properties associated to this operator. In
particular in this case, due to the symmetry properties of the Stokes solution, D(𝐴𝜇,𝛼) ⊂ 𝐻2(Ω) and not only
in 𝐻

3
2+𝜖(Ω). Consequently the solution velocity u will then belong to 𝐿2(0, 𝑇 ; D(𝐴𝜇,𝛼)) ⊂ 𝐿2(0, 𝑇 ; 𝐻2(Ω)).

Now that we have introduced an appropriate Stokes-like operator adapted to our coupled Navier–Stokes–
Windkessel system we can derive estimates in suitable norms for this system. The idea relies on the formal
choice of u and 𝐴𝜇,𝛼u as test functions and then a linear combination of the obtained inequalities. We will
consider two cases.

∙ the so-called general case for which we prove an estimate valid for small time;
∙ the so-called dissipative case, with 𝜏 < +∞, for which we prove that, if the initial data and applied pressures

are small enough, an “energy” decrease can be established.

Theorem 4.6 (Estimates for the Navier–Stokes system). Let 𝜇 > 0. Assume that the artificial boundaries Γ0

and Γ𝑊 meet the lateral boundaries Γℓ at angle 𝜋
2 and that each boundary is smooth enough. Assume that 𝛼 ≥ 0,

𝛽 ≥ 0, 𝛾 > 0.

∙ General case: local-in-time “energy” bound for any data. Assume that 0 < 𝜏 ≤ +∞. For any smooth
solution u of the Problem (2.7), there exists 𝑇 * > 0 and 𝑡 ↦→ 𝐺𝑟(𝑡) which depend on the data such that, for
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all 𝑡 ∈ (0, 𝑇 *):

𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

4

∫︁ 𝑡

0

‖∇u(𝑠, ·)‖2𝐿2(Ω) d𝑠 +
𝛽

2
𝑄2(𝑡) + 𝛼

∫︁ 𝑡

0

𝑄2(𝑠) d𝑠 +
𝛾

2
𝑉 2(𝑡) +

𝛾

𝜏

∫︁ 𝑡

0

𝑉 2(𝑠) d𝑠

+𝑟𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)) +
𝑟

2

∫︁ 𝑡

0

‖𝐴𝜇,𝛼u(𝑠, ·)‖2𝜌,𝛽 d𝑠 ≤ 𝐺𝑟(𝑡), (4.6)

where 𝑟 is any positive homogeneity constant.
∙ Dissipative case: global-in-time “energy” bound for small data. Assume furthermore that 𝜏 < +∞.

Let 𝛿 > 0 and 𝜂 > 0 such that

𝛿 +
𝜅2𝜏𝛾

2𝜌
𝜂 =

1
2
.

Define

𝐻(𝑡) :=
(︂

𝐶2
Γ

2𝜇
+

𝜂𝜅2

4𝛿𝜌

)︂
P2(𝑡).

There exists a dissipation parameter D > 0 (defined by (4.28)) such that, if the initial data and external
forces are small enough, namely

𝜌

2
‖u0‖2𝐿2(Ω) +

𝜂𝜇

2
‖∇u0‖2𝐿2(Ω) +

𝜂𝛼 + 𝛽

2
𝑄2(0) ≤ E :=

𝜇𝜂3

32
(︁
𝜂M + 𝐶

(3)
Ω L2

)︁2 ,

and
‖𝐻‖∞ ≤ DE,

then the solution satisfies a stability estimate:

𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝛼 + 𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡) ≤ E. (4.7)

Moreover 𝑡 ↦→
∫︀ 𝑡

0
‖𝐴𝜇,𝛼u(𝑠, ·)‖2𝜌,𝛽 d𝑠 is also bounded on any time interval [0, 𝑇 ].

Proof. Let us derive the estimates in the general case, then in the so-called dissipative case. Note that all the
following formal calculations can be justified by using Galerkin approximation with a special basis associated
to the eigenfunctions of the operator 𝐴𝜇,𝛼, see Proposition 4.2.

General case. Taking u as a test function in the variational formulation (2.7), we proceed as for the Stokes–
Windkessel system and obtain estimate (3.6) with an additional term 𝜌

∫︀
Ω

(u∇)uu that we bound as follows:⃒⃒⃒⃒
𝜌

∫︁
Ω

[(u · ∇)u] · u
⃒⃒⃒⃒
≤ 𝜌 ‖∇u‖𝐿2(Ω) ‖u‖

2
𝐿4(Ω) ≤ 𝐶

(3)
Ω 𝜌 ‖∇u‖3𝐿2(Ω) , (4.8)

where 𝐶
(3)
Ω is a constant related to the continuous embedding of 𝐻1(Ω) onto 𝐿4(Ω). The estimate writes

𝜌

2
d
d𝑡
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛽

2
d
d𝑡

𝑄2(𝑡) + 𝛼𝑄2(𝑡) +
𝛾

2
d
d𝑡

𝑉 2(𝑡) +
𝛾

𝜏
𝑉 2(𝑡)

≤ 𝐶2
Γ

2𝜇
P2(𝑡) + 𝐶

(3)
Ω 𝜌 ‖∇u(𝑡, ·)‖3𝐿2(Ω) . (4.9)

To control the last term in (4.9), we need to control u in 𝐿∞(0, 𝑇 ; 𝐻1(Ω)). Thus we take 𝐴𝜇,𝛼u as a test function
in the variational formulation (2.7). By definition of the operator 𝐴𝜇,𝛼, see Definition 4.1, we have

1
2

d
d𝑡

𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)) + ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽

= −𝜌

∫︁
Ω

(u∇)u(𝑡, ·) 𝐴𝜇,𝛼u(𝑡, ·)− 𝛾𝑉 (𝑡)
(︂∫︁

Γ𝑊

𝐴𝜇,𝛼u(𝑡, ·) · n
)︂
− P(𝑡)

∫︁
Γ𝑊

𝐴𝜇,𝛼u(𝑡, ·) · n. (4.10)
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The convection term can be estimated as follows⃒⃒⃒⃒
𝜌

∫︁
Ω

(u∇)u𝐴𝜇,𝛼u
⃒⃒⃒⃒
≤ 𝜌 ‖u‖𝐿∞(Ω) ‖∇u‖𝐿2(Ω) ‖𝐴𝜇,𝛼u‖𝐿2(Ω) .

Thanks to the continuous embedding of 𝐻
3
2+𝜖′(Ω) in 𝐿∞(Ω), we have, for every 𝜖′ > 0,

‖u‖𝐿∞(Ω) ≤ 𝐶
(4)
Ω ‖u‖

𝐻
3
2 +𝜖′ (Ω)

.

Then, choosing 𝜖′ < 𝜖 where 𝜖 is defined in Lemma 4.3, by a Hilbert interpolation combined with Lemma 4.3
there exists 𝜃 ∈ (0, 1) such that

‖u‖𝐿∞(Ω) ≤ 𝐶
(5)
Ω M1−𝜃 ‖𝐴𝜇,𝛼u‖1−𝜃

𝐿2(Ω) ‖∇u‖𝜃
𝐿2(Ω) .

Consequently, ⃒⃒⃒⃒
𝜌

∫︁
Ω

(u∇)u𝐴𝜇,𝛼u
⃒⃒⃒⃒
≤ 𝐶

(5)
Ω 𝜌M1−𝜃 ‖𝐴𝜇,𝛼u‖2−𝜃

𝐿2(Ω) ‖∇u‖1+𝜃
𝐿2(Ω) .

Using Young’s inequality, we get⃒⃒⃒⃒
𝜌

∫︁
Ω

(u∇)u𝐴𝜇,𝛼u
⃒⃒⃒⃒
≤ 𝛿𝜌 ‖𝐴𝜇,𝛼u‖2𝐿2(Ω) + 𝐶Ω,𝛿𝜌M

2(1−𝜃)
𝜃 ‖∇u‖

2(1+𝜃)
𝜃

𝐿2(Ω)

≤ 𝛿 ‖𝐴𝜇,𝛼u‖2𝜌,𝛽 + 𝐶Ω,𝛿𝜌M
2(1−𝜃)

𝜃 ‖∇u‖
2(1+𝜃)

𝜃

𝐿2(Ω) ,

(4.11)

where 𝛿 > 0 will be chosen later on and 𝐶Ω,𝛿 is a constant which depends on 𝛿−1 and Ω only. Let us now
deal with terms like 𝛾𝑉 (𝑡)(

∫︀
Γ𝑊

𝐴𝜇,𝛼u(𝑡, ·) · n), for which we need a control of the auxiliary volume 𝑉 defined
by (3.2). This control will be provided by estimate (4.9). By using Lemma 2.4, the definition of ‖·‖𝜌,𝛽 and
Young’s inequality, we have⃒⃒⃒⃒

𝛾𝑉

∫︁
Γ𝑊

𝐴𝜇,𝛼u · n
⃒⃒⃒⃒
≤ 𝜅 |𝛾𝑉 |

√
𝜌

‖𝐴𝜇,𝛼u‖𝜌,𝛽 ≤
𝜅2

4𝛿𝜌
(𝛾𝑉 )2 + 𝛿 ‖𝐴𝜇,𝛼u‖2𝜌,𝛽 . (4.12)

The linear forcing terms can be treated similarly:⃒⃒⃒⃒
P

∫︁
Γ𝑊

𝐴𝜇,𝛼u · n
⃒⃒⃒⃒
≤ 𝜅 |P|

√
𝜌
‖𝐴𝜇,𝛼u‖𝜌,𝛽 ≤

𝜅2

4𝛿𝜌
P2 + 𝛿 ‖𝐴𝜇,𝛼u‖2𝜌,𝛽 . (4.13)

Thus, from (4.10) and thanks the previous estimates (4.11), (4.12), (4.13), we obtain

1
2

d
d𝑡

𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·))+(1− 3𝛿) ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ≤ 𝐶Ω,𝛿𝜌M
2(1−𝜃)

𝜃 ‖∇u(𝑡, ·)‖
2(1+𝜃)

𝜃

𝐿2(Ω) +
𝜅2

4𝛿𝜌
(𝛾𝑉 )2(𝑡)+

𝜅2

4𝛿𝜌
P2(𝑡).

(4.14)

We next choose 𝛿 > 0 such that 1− 3𝛿 > 0, for instance

1− 3𝛿 =
1
2
, (4.15)

i.e. 𝛿 = 1
6 and we denote 𝐶

(6)
Ω := 𝐶Ω, 1

6
. Using (4.15), we add (4.9) and (4.14) that has been multiplied by a

positive homogeneity constant 𝑟 to obtain:

𝜌

2
d
d𝑡
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛽

2
d
d𝑡

𝑄2(𝑡) + 𝛼𝑄2(𝑡) +
𝛾

2
d
d𝑡

𝑉 2(𝑡) +
𝛾

𝜏
𝑉 2(𝑡)

+
𝑟

2
d
d𝑡

𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)) +
𝑟

2
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽

≤
(︂

𝐶2
Γ

2𝜇
+

3𝑟𝜅2

2𝜌

)︂
P2(𝑡) + 𝐶

(3)
Ω 𝜌 ‖∇u(𝑡, ·)‖3𝐿2(Ω) + 𝑟𝐶

(6)
Ω 𝜌M

2(1−𝜃)
𝜃 ‖∇u(𝑡, ·)‖

2(1+𝜃)
𝜃

𝐿2(Ω) +
3𝑟𝜅2

2𝜌
(𝛾𝑉 )2(𝑡). (4.16)
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Thus we can apply a nonlinear Gronwall lemma by setting

𝜙(𝑡) =
𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡) +

𝑟

2
𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)),

which, by (4.16) and since ‖∇u(𝑡, ·)‖2𝐿2(Ω) ≤
1
𝜇𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)), satisfies the following inequality:

d
d𝑡

𝜙(𝑡) ≤ 𝐹 (𝑡) +
3𝜅2𝛾

𝜌𝑟
𝜙(𝑡) + 𝐶

(3)
Ω

2
3
2 𝜌

(𝑟𝜇)
3
2
𝜙3/2(𝑡) + 𝐶

(6)
Ω

2
1+𝜃

𝜃 𝜌

𝑟
1
𝜃 𝜇

(1+𝜃)
𝜃

M
2(1−𝜃)

𝜃 𝜙
(1+𝜃)

𝜃 (𝑡),

with

𝐹 (𝑡) =
(︂

𝐶2
Γ

2𝜇
+

3𝑟𝜅2

2𝜌

)︂
P2(𝑡).

Consequently, we obtain a stability estimate at least for a small time 𝑇 * (depending on the data of the problem).
From this bound on 𝜙 one can deduce that ∫︁ 𝑡

0

‖𝐴𝜇,𝛼u(𝑠, ·)‖2𝜌,𝛽 d𝑠

is also bounded on (0, 𝑇 *).

∙ Dissipative case 𝜏 < +∞.

Next we further investigate the case 𝜏 < +∞. In this case, as already underlined for the Stokes system,
the auxiliary volume 𝑉 , defined by (3.2), is dissipated by the system. We take advantage of this to derive a
stability estimate for any time but for small enough data. When taking u as a test function in the variational
formulation (2.7), we bound the convective term in a coarser way than we did previously: using inequality (4.1)
in Lemma 4.3 and the definition of ‖·‖𝜌,𝛽 we get⃒⃒⃒⃒

𝜌

∫︁
Ω

(u∇)uu
⃒⃒⃒⃒
≤ 𝜌 ‖∇u‖𝐿2(Ω) ‖u‖

2
𝐿4(Ω)

≤ 𝐶
(3)
Ω 𝜌L2 ‖𝐴𝜇,𝛼u‖2𝐿2(Ω) ‖∇u‖𝐿2(Ω)

≤ 𝐶
(3)
Ω L2 ‖𝐴𝜇,𝛼u‖2𝜌,𝛽 ‖∇u‖𝐿2(Ω) , (4.17)

where, as in inequality (4.8), constant 𝐶
(3)
Ω is related to the continuous embedding of 𝐻1(Ω) onto 𝐿4(Ω). The

estimate now writes

𝜌

2
d
d𝑡
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛽

2
d
d𝑡

𝑄2(𝑡) + 𝛼𝑄2(𝑡) +
𝛾

2
d
d𝑡

𝑉 2(𝑡) +
𝛾

𝜏
𝑉 2(𝑡)

≤ 𝐶2
Γ

2𝜇
P2(𝑡) + 𝐶

(3)
Ω L2 ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ‖∇u(𝑡, ·)‖𝐿2(Ω) . (4.18)

Next we take 𝐴𝜇,𝛼u as a test function in the variational formulation (2.7). First the convective term can be
bounded as follows⃒⃒⃒⃒

𝜌

∫︁
Ω

(u∇)u𝐴𝜇,𝛼u
⃒⃒⃒⃒
≤ 𝜌 ‖u‖𝐿∞(Ω) ‖∇u‖𝐿2(Ω) ‖𝐴𝜇,𝛼u‖𝐿2(Ω) ≤ 𝜌M ‖𝐴𝜇,𝛼u‖2𝐿2(Ω) ‖∇u‖𝐿2(Ω)

≤ M ‖𝐴𝜇,𝛼u‖2𝜌,𝛽 ‖∇u‖𝐿2(Ω) , (4.19)
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where we have used the continuity of the embedding 𝐻
3
2+𝜖(Ω) →˓ 𝐿∞(Ω) together with estimate (4.2) of

Lemma 4.3 and the definition of ‖·‖𝜌,𝛽 . Let us now deal with the term 𝛾𝑉 (
∫︀
Γ𝑊

𝐴𝜇,𝛼u · n). Using Lemma 2.4,
Young’s inequality and the definition of ‖·‖𝜌,𝛽 , and taking advantage of 𝜏 < +∞, leads to

𝛾

⃒⃒⃒⃒
𝑉

(︂∫︁
Γ𝑊

𝐴𝜇,𝛼u · n
)︂⃒⃒⃒⃒
≤ 𝛾𝜅 |𝑉 | ‖𝐴𝜇,𝛼u‖𝐿2(Ω) ≤

1
2

𝛾

𝜂𝜏
𝑉 2 +

𝜂𝜏𝜅2

2
𝛾 ‖𝐴𝜇,𝛼u‖2𝐿2(Ω)

≤ 𝛾

2𝜂𝜏
𝑉 2 +

𝜏𝜅2𝛾

2𝜌
𝜂 ‖𝐴𝜇,𝛼u‖2𝜌,𝛽 , (4.20)

where 𝜂 > 0 will be chosen later on. The linear forcing terms are bounded as in the general case, see (4.13).
Thus, by (4.10), (4.19), (4.20) and (4.13), we obtain

1
2

d
d𝑡

𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)) + ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽

≤ M ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ‖∇u(𝑡, ·)‖𝐿2(Ω) +
𝛾

2𝜂𝜏
𝑉 2(𝑡) +

𝜅2

4𝛿𝜌
P2(𝑡) +

(︂
𝛿 +

𝜅2𝜏𝛾

2𝜌
𝜂

)︂
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 . (4.21)

By choosing 𝛿 and 𝜂 sufficiently small such that

𝛿 +
𝜅2𝜏𝛾

2𝜌
𝜂 =

1
2
, (4.22)

we obtain

1
2

d
d𝑡

𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)) +
1
2
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽

≤ M ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ‖∇u(𝑡, ·)‖𝐿2(Ω) +
𝛾

2𝜂𝜏
𝑉 2(𝑡) +

𝜅2

4𝛿𝜌
P2(𝑡). (4.23)

We multiply (4.23) by 𝜂 and add (4.18) to obtain:

d
d𝑡

(︂
𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜂

2
𝑎𝜇,𝛼(u(𝑡, ·),u(𝑡, ·)) +

𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡)

)︂
+

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) + 𝛼𝑄2(𝑡) +

𝛾

2𝜏
𝑉 2(𝑡)

+
(︁𝜂

2
− (𝜂M + 𝐶

(3)
Ω L2) ‖∇u(𝑡, ·)‖𝐿2(Ω)

)︁
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ≤

(︂
𝐶2

Γ

2𝜇
+

𝜂𝜅2

4𝛿𝜌

)︂
P2(𝑡).

Recalling the definition of 𝑎𝜇,𝛼(·, ·) (see Def. 4.1) we get

d
d𝑡

(︂
𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝛼 + 𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡)

)︂
+

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) + 𝛼𝑄2(𝑡) +

𝛾

2𝜏
𝑉 2(𝑡)

+
(︁𝜂

2
− (𝜂M + 𝐶

(3)
Ω L2) ‖∇u(𝑡, ·)‖𝐿2(Ω)

)︁
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ≤

(︂
𝐶2

Γ

2𝜇
+

𝜂𝜅2

4𝛿𝜌

)︂
P2(𝑡).

Next we want to make appear some dissipation of

𝛹(𝑡) :=
𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝛼 + 𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡),

even in the case 𝛼 = 0 and 𝛽 > 0. Since |𝑄| ≤ 𝐶Γ ‖∇u‖𝐿2(Ω), we have that

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) ≥

𝜇

4
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

4𝐶2
Γ

𝑄2(𝑡)
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and thus

d
d𝑡

(︂
𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝛼 + 𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡)

)︂
+

𝜇

4
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

(︂
𝛼 +

𝜇

4𝐶2
Γ

)︂
𝑄2(𝑡)

+
𝛾

2𝜏
𝑉 2(𝑡) +

(︁𝜂

2
− (𝜂M + 𝐶

(3)
Ω L2) ‖∇u(𝑡, ·)‖𝐿2(Ω)

)︁
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ≤

(︂
𝐶2

Γ

2𝜇
+

𝜂𝜅2

4𝛿𝜌

)︂
P2(𝑡).

Then, since ‖u‖𝐿2(Ω) ≤ 𝐶𝑃 ‖∇u‖𝐿2(Ω) by Poincaré inequality,

𝜇

4
‖∇u(𝑡, ·)‖2𝐿2(Ω) ≥

𝜇

8
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜇

8𝐶2
𝑃

‖u(𝑡, ·)‖2𝐿2(Ω) ,

we thus obtain

d
d𝑡

(︂
𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝛼 + 𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡)

)︂
+

𝜇

8𝐶2
𝑃

‖u(𝑡, ·)‖2𝐿2(Ω) +
𝜇

8
‖∇u(𝑡, ·)‖2𝐿2(Ω)

+
(︂

𝛼 +
𝜇

4𝐶2
Γ

)︂
𝑄2(𝑡) +

𝛾

2𝜏
𝑉 2(𝑡) +

(︁𝜂

2
− (𝜂M + 𝐶

(3)
Ω L2) ‖∇u(𝑡, ·)‖𝐿2(Ω)

)︁
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽

≤
(︂

𝐶2
Γ

2𝜇
+

𝜂𝜅2

4𝛿𝜌

)︂
P2(𝑡). (4.24)

Estimate (4.24) can be rewritten as

d
d𝑡

𝛹(𝑡) + D𝛹(𝑡) +
(︁
A−B ‖∇u(𝑡, ·)‖𝐿2(Ω)

)︁
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ≤ 𝐻(𝑡), (4.25)

with
A :=

𝜂

2
, B := 𝜂M + 𝐶

(3)
Ω L2, (4.26)

𝐻(𝑡) :=
(︂

𝐶2
Γ

2𝜇
+

𝜂𝜅2

4𝛿𝜌

)︂
P2(𝑡), (4.27)

and a dissipation coefficient defined as

D := min

(︃
1
𝜏

,
𝜇

4𝜌𝐶2
𝑃

,
1
4𝜂

,
2𝛼 + 𝜇

2𝐶2
Γ

𝜂𝛼 + 𝛽

)︃
. (4.28)

The constant D stands for the dissipation of the system. In particular, assuming that 𝜏 < +∞ ensures that
the 0D model is indeed dissipative with respect to the volume 𝑉 if the data are small enough. Assuming that
A−B ‖∇u(𝑡, ·)‖𝐿2(Ω) ≥ 0, we obtain by Gronwall lemma:

𝛹(𝑡) ≤ 𝛹(0)e−D𝑡 +
∫︁ 𝑡

0

|𝐻(𝑠)| eD(𝑠−𝑡) d𝑠 ≤ 𝛹(0)e−D𝑡 +
‖𝐻‖∞

D
(1− e−D𝑡). (4.29)

Consequently if

𝛹(0) ≤ 𝜂𝜇

8
A2

B2
,

‖𝐻‖∞
D

≤ 𝜂𝜇

8
A2

B2
, (4.30)

which implies that ‖∇u0‖𝐿2(Ω) ≤
A
2B , then we obtain the following estimate for all time:

∀𝑡 ≥ 0, 𝛹(𝑡) ≤ 𝜂𝜇

8
A2

B2
.
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To conclude, provided that the initial data and the source term are small enough (see conditions (4.30)), the
solution satisfies a stability estimate in suitable norms, namely

𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝜂𝛼 + 𝛽

2
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡) ≤ E =

𝜇𝜂3

32
(︁
𝜂M + 𝐶

(3)
Ω L2

)︁2 .

Finally, combining this estimate with (4.25) allows us to conclude that∫︁ 𝑡

0

‖𝐴𝜇,𝛼u(𝑠, ·)‖2𝜌,𝛽 d𝑠

is also bounded on any time interval [0, 𝑇 ]. �

Remark 4.7. This theorem shows as for the Stokes–Windkessel system that typical 0D models used in blood
flows and in airflows modeling behave in a different way. Indeed for the RCR model for instance we obtain global-
in-time estimates provided the data are small enough whereas for the RC model we obtain only local-in-time
estimates.

Remark 4.8. In the dissipative case, parameters 𝛿 and 𝜂 may be specified, for instance as follows:

𝛿 =
1
4
, 𝜂 =

𝜌

2𝜅2𝜏𝛾
.

As a consequence, updating the constants and source terms as

A :=
𝜌

4𝜅2𝜏𝛾
, B :=

𝜌

2𝜅2𝜏𝛾
M+𝐶

(3)
Ω L2, D := min

(︃
1
𝜏

,
𝜅2𝜏𝛾

2𝜌
,

𝛼 + 𝜇
4𝐶2

Γ

𝜌𝛼
4𝜅2𝜏𝛾 + 𝛽

2

,
𝜇

4𝜌𝐶2
𝑃

)︃
, 𝐻(𝑡) :=

(︂
𝐶2

Γ

2𝜇
+

1
2𝜏𝛾

)︂
P2(𝑡),

we deduce that, if

𝛹(0) ≤ 𝜌𝜇

16𝜅2𝜏𝛾

A2

B2
,

‖𝐻‖∞
D

≤ 𝜌𝜇

16𝜅2𝜏𝛾

A2

B2
,

the estimate now reads:

𝜌

2
‖u(𝑡, ·)‖2𝐿2(Ω) +

𝜌𝜇

4𝜅2𝜏𝛾
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝜌𝛼

4𝜅2𝜏𝛾

)︂
𝑄2(𝑡) +

𝛾

2
𝑉 2(𝑡) ≤ 𝜌𝜇

64𝜅2𝜏𝛾

1(︃
M +

2𝐶
(3)
Ω L2𝜅2𝜏𝛾

𝜌

)︃2 .

Note that the behaviour of the required bound on the initial velocity, namely A
B , as well as the upper bound in

the estimate (4.7), namely

E :=
𝜌𝜇

16𝜅2𝜏𝛾

A2

B2
,

can be described more precisely with respect to the parameters: A
2B and E tend to 0 when 𝜇 → 0, 𝜌 → +∞,

𝛽 → +∞, 𝛾 → +∞ or 𝜏 → +∞. In particular the less the 0D model dissipates energy with respect to the
auxiliary volume 𝑉 , the more restrictive is the smallness condition on the data.

Remark 4.9 (Case 𝛾 = 0). Note that, in that case, an estimate can be derived by choosing only 𝐴𝜇,𝛼u as a
test function. Indeed no control on the auxiliary volume 𝑉 (𝑡) defined by (3.2), is required. More precisely, we
easily derive the following estimate

d
d𝑡

(︁𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛼

2
𝑄2(𝑡)

)︁
+
(︂

1
2
−M ‖∇u(𝑡, ·)‖𝐿2(Ω)

)︂
‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ≤

𝜅2

2𝜌
P2(𝑡). (4.31)
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In this case the dissipation comes from the term ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽. Assuming that

‖∇u‖𝐿2(Ω) ≤
1

4M

and since ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝜌,𝛽 ≥ 𝜌 ‖𝐴𝜇,𝛼u(𝑡, ·)‖2𝐿2(Ω) ≥
𝜌

L2 ‖∇u‖2𝐿2(Ω) estimate (4.31) can be rewritten as

d
d𝑡

(︁𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛼

2
𝑄2(𝑡)

)︁
+

𝜌

4L2
‖∇u‖2𝐿2(Ω) ≤

𝜅2

2𝜌
P2(𝑡).

Moreover since ‖∇u(𝑡, ·)‖2𝐿2(Ω) ≥
1
2 ‖∇u(𝑡, ·)‖2𝐿2(Ω) + 1

2𝐶2
Γ
𝑄2(𝑡), we obtain

d
d𝑡

(︁𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛼

2
𝑄2(𝑡)

)︁
+

𝜌

8L2
‖∇u‖2𝐿2(Ω) +

𝜌

8𝐶2
ΓL2

𝑄2(𝑡) ≤ 𝜅2

2𝜌
P2(𝑡). (4.32)

Thus the analogue of the dissipation coefficient D is, in this case,

D0 = min
(︂

𝜌

4𝜇L2
,

𝜌

4𝜇𝐶2
ΓL2

)︂
.

Consequently,

d
d𝑡

(︁𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛼

2
𝑄2(𝑡)

)︁
+ D0

(︁𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛼

2
𝑄2(𝑡)

)︁
≤ 𝜅2

2𝜌
P2(𝑡).

Proceeding as in the proof of Theorem 4.6, we obtain that if the initial data are small, namely

𝜇

2
‖∇u0‖2𝐿2(Ω) +

𝛼

2
𝑄2(0) ≤ 𝜇

32M2
,

and if the external pressure satisfies
𝜅2

2𝜌

⃦⃦
P2
⃦⃦
∞ ≤ D0𝜇

32M2
,

then the solution satisfies the following stability estimate

𝜇

2
‖∇u(𝑡, ·)‖2𝐿2(Ω) +

𝛼

2
𝑄2(𝑡) ≤ 𝜇

32M2
. (4.33)

Here we recover the results obtained in [31] for the Navier–Stokes system with Neumann boundary conditions
as a particular case of this result by setting 𝛼 = 𝛽 = 0. Note also that the behaviour of the required bound on
the initial velocity, namely 1

M , as well as the upper bound 𝜇
M2 in estimate (4.33) can be described more precisely

with respect to the parameters: D0, 1
M and 𝜇

M2 tend to 0 when 𝜇 → 0, 𝜌 → +∞, 𝛽 → +∞.

Remark 4.10. We could have kept (4.9) instead of (4.18) and, following nearly the same lines, obtain a stability
estimate for small enough data. But it leads to slightly more tedious calculations we choose not to present here
for the sake of simplicity.

Remark 4.11. In the case 𝛽 > 0, estimates (4.13) and (4.20) can be adapted by using the property ‖v‖2𝜌,𝛽 ≥

𝛽
(︁∫︀

Γ𝑊
v · n

)︁2

. In that way similar estimates can be derived by using the 0D inertia instead of the fluid intertia,
leading to a possibly less restrictive condition on the smallness assumption on the data.

As for the Stokes case we can state the following existence result
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Theorem 4.12. Let 𝑇 > 0, u0 ∈ 𝑉 , P ∈ 𝐿2(0, 𝑇 ), in the general case there exists a time 𝑇 * ≤ 𝑇 and a unique
“strong” solution u ∈ 𝐿2(0, 𝑇 *; 𝐷(𝐴𝜇,𝛼)) ∩ 𝐿∞(0, 𝑇 *; 𝑉 ) ∩ 𝐻1(0, 𝑇 *; 𝐻) solution of (2.7) with 𝜀 = 1. In the
dissipative case (𝜏 < ∞), assuming the data (initial data and applied pressure) to be small enough this solution
is global in time.

Proof. This proof is standard and can be done thanks to a Galerkin approximation with the eigenvectors of
operator 𝐴𝜇,𝛼 as a Galerkin basis. The addtional bound on 𝜕𝑡u in 𝐿2(0, 𝑇 ; 𝐿2(Ω) is obtained by taking 𝜕𝑡u as
a test function. The strong convergence in 𝐿2 of the velocity is thus deduced from the Aubin-Lions Lemma and
the fact that 𝑢 is bounded at least in 𝐿2(0, 𝑇 ; 𝐻1(Ω)) and 𝜕𝑡u is bounded in 𝐿2(0, 𝑇 ; 𝐿2(Ω)). We refer to [2,31]
for similar proofs. �

4.2. Estimates for the semi-discretized system

4.2.1. Implicit coupling

We now focus on the semi-discrete Navier–Stokes system implicitly coupled to the Windkessel model which
corresponds to the variational formulation (2.11) with 𝜀 = 1 and 𝑚 = 𝑛 + 1. We consider a semi-implicit
treatment of the convective term, namely 𝐼 = 0.

Theorem 4.13 (Implicit coupling with the Navier–Stokes system). Let 𝜇 > 0. Assume that the artificial
boundaries Γ0 and Γ𝑊 meet the lateral boundaries Γℓ at angle 𝜋

2 and that each boundary is smooth enough.
Assume that 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 > 0.

∙ Dissipative case: global-in-time bound for small data. Assume that 𝜏 < +∞. Let us consider the
constants 𝛿, 𝜂, D and the function 𝐻 as in Theorem 4.6. If the initial data and external forces are small
enough, namely

𝜌

2
‖u0‖2𝐿2(Ω) +

𝜂𝜇

2

⃦⃦
∇u0

⃦⃦2

𝐿2(Ω)
+

𝜂𝛼 + 𝛽

2
(𝑄0)2 ≤ ̃︀E :=

𝜇𝜂3

32
(︁
𝜂𝐶

(7)
Ω M + 𝐶

(3)
Ω L2

)︁2 ,

and
‖𝐻‖∞ ≤ D̃︀E,

then the solution of (2.11) with 𝜀 = 1, 𝑚 = 𝑛 + 1 and 𝐼 = 0 satisfies the following estimate:

𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝜇𝜂

2
‖∇u𝑛‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝛼

2
𝜂

)︂
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2 ≤ ̃︀E, (4.34)

for all 𝑛 ∈ {0, ..., 𝑁} Moreover ∆𝑡
∑︀𝑁

𝑛=0 ‖𝐴𝜇,𝛼u𝑛‖2𝜌,𝛽 is also bounded independently on 𝑁 .
∙ Case 𝜏 = +∞: local-in-time bound for small data. Assume that the time step is such that

∆𝑡 <
𝜌

8𝑟𝜅2𝛾
=: ∆𝑡𝑟,

where 𝑟 is a positive homogeneity constant. Assume furthermore that the initial data, external forces and
final time 𝑇 = 𝑁∆𝑡 satisfy

𝜌

2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2

)︂
(𝑄0)2 +

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2

≤ 𝜇 e−
𝑇

Δ𝑡𝑟−Δ𝑡

32
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M

)︁2 , (4.35)
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then

𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2

)︂
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2 +
𝑟

4
∆𝑡

𝑛∑︁
𝑘=0

⃦⃦
𝐴𝜇,𝛼u𝑘

⃦⃦2

𝜌,𝛽

≤ e
𝑇

Δ𝑡𝑟−Δ𝑡

(︁𝜌

2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2

)︂
(𝑄0)2 +

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2
)︁
.

Proof. All the forthcoming calculations can be rigorously justified by using a Galerkin method with a special
basis associated to the Stokes-like operator 𝐴𝜇,𝛼, see Proposition 4.2. Moreover existence of a solution (for which
uniqueness could be also proven) can be also derived thanks to the previous estimates by the same Galerkin
approximation.

∙ Dissipative case: 𝜏 < +∞.

We consider the system (2.8) with 𝐼 = 0 for which the convection term is semi-explicit. We prove esti-
mate (4.34) by induction. We follow the steps of the continuous case by taking u𝑛+1 and 𝐴𝜇,𝛼u𝑛+1 as test
functions in the variational formulation (2.11). Note that the only difference with the continuous case concerns
the estimate of the convection term. The discrete analogue of (4.17) should be read as⃒⃒⃒⃒

𝜌

∫︁
Ω

(u𝑛∇)u𝑛+1 u𝑛+1

⃒⃒⃒⃒
≤ 𝜌 ‖u𝑛‖𝐿4(Ω)

⃦⃦
∇u𝑛+1

⃦⃦
𝐿2(Ω)

⃦⃦
u𝑛+1

⃦⃦
𝐿4(Ω)

≤ 𝐶
(3)
Ω L2 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
.

The discrete stability estimate can thus be written as follows

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
∆𝑡‖∇u𝑛+1‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛+1)2 + 𝛼∆𝑡(𝑄𝑛+1)2 +

𝛾

2
(𝑉 𝑛+1

imp )2 +
𝛾∆𝑡

𝜏
(𝑉 𝑛+1

𝑖𝑚𝑝 )2

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2 +
𝐶2

Γ

2𝜇
∆𝑡(P𝑛+1)2 + 𝐶

(3)
Ω L2∆𝑡 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
. (4.36)

We take 𝐴𝜇,𝛼u𝑛+1 as a test function in the variational formulation (2.11) for 𝜀 = 1, 𝐼 = 0 and 𝑚 = 𝑛 + 1:

𝜌

∫︁
Ω

(u𝑛+1 − u𝑛) ·𝐴𝜇,𝛼u𝑛+1 + 𝜌∆𝑡

∫︁
Ω

(u𝑛∇)u𝑛+1 𝐴𝜇,𝛼u𝑛+1 + 𝜇 ∆𝑡

∫︁
Ω

∇u𝑛+1 · ∇𝐴𝜇,𝛼u𝑛+1

+ 𝛼 ∆𝑡 𝑄𝑛+1

(︂∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
)︂

+ 𝛽
(︀
𝑄𝑛+1 −𝑄𝑛

)︀(︂∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
)︂

+ 𝛾∆𝑡𝑉 𝑛+1
imp

(︂∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
)︂

= −P𝑚 ∆𝑡

(︂∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
)︂

.

By definition of operator 𝐴𝜇,𝛼, we have

𝜌

∫︁
Ω

(u𝑛+1 − u𝑛) ·𝐴𝜇,𝛼u𝑛+1 + 𝛽
(︀
𝑄𝑛+1 −𝑄𝑛

)︀(︂∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
)︂

= 𝑎𝜇,𝛼(u𝑛+1 − u𝑛,u𝑛+1)
=

𝜇

2

⃦⃦
∇u𝑛+1

⃦⃦2
+

𝜇

2
‖∇u𝑛‖2 +

𝜇

2

⃦⃦
∇u𝑛+1 −∇u𝑛

⃦⃦2
+

𝛼

2
(𝑄𝑛+1)2 +

𝛼

2
(𝑄𝑛)2 +

𝛼

2
(𝑄𝑛+1 −𝑄𝑛)2.

Using again the definition of 𝐴𝜇,𝛼, we have also

𝜇 ∆𝑡

∫︁
Ω

∇u𝑛+1 · ∇𝐴𝜇,𝛼u𝑛+1 + 𝛼 ∆𝑡 𝑄𝑛+1

(︂∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
)︂

= ∆𝑡
⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
.
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Now we have to estimate 𝜌
∫︀
Ω

(u𝑛∇)u𝑛+1 𝐴𝜇,𝛼u𝑛+1. We do not follow exactly the same lines as for the continuous
case in particular since the convective term is treated in a semi-implicit way:⃒⃒⃒⃒

𝜌

∫︁
Ω

(u𝑛∇)u𝑛+1 𝐴𝜇,𝛼u𝑛+1

⃒⃒⃒⃒
≤ 𝜌 ‖u𝑛‖𝐿6(Ω)

⃦⃦
∇u𝑛+1

⃦⃦
𝐿3(Ω)

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦
𝐿2(Ω)

≤ 𝐶
(7)
Ω 𝜌 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
u𝑛+1

⃦⃦
𝐻

3
2 +𝜖(Ω)

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦
𝐿2(Ω)

≤ 𝐶
(7)
Ω M ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
, (4.37)

where 𝐶
(7)
Ω comes from the continuous embeddings 𝐻

3
2+𝜖(Ω) →˓ 𝑊 1,3(Ω) and 𝐻1(Ω) →˓ 𝐿6(Ω). Then using

(4.13) for the forcing term, (4.20) for the term involving the volume and estimate (4.37) for the convection
term, the discrete analogue of estimate (4.23) reads

𝜇

2

⃦⃦
∇u𝑛+1

⃦⃦2

𝐿2(Ω)
+

𝛼

2
(𝑄𝑛+1)2 +

∆𝑡

2

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

𝛼

2
(𝑄𝑛)2 +

𝛾

2𝜂𝜏
∆𝑡(𝑉 𝑛+1

imp )2 +
𝜅2

4𝛿𝜌
∆𝑡(P𝑛+1)2 + 𝐶

(7)
Ω M∆𝑡 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
,

(4.38)

with (𝛿, 𝜂) satisfying (4.22). By multiplying estimate (4.38) by 𝜂 and adding (4.36), we obtain

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
(𝜂 + ∆𝑡)‖∇u𝑛+1‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝛼

2
𝜂 + 𝛼∆𝑡

)︂
(𝑄𝑛+1)2

+
(︂

𝛾

2
+

𝛾∆𝑡

2𝜏

)︂
(𝑉 𝑛+1

imp )2 +
(︁𝜂

2
−
(︁
𝐶

(3)
Ω L2 + 𝐶

(7)
Ω M𝜂

)︁
‖∇u𝑛‖𝐿2(Ω)

)︁
∆𝑡
⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝜇

2
𝜂 ‖∇u𝑛‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝛼

2
𝜂

)︂
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2 +
(︂

𝐶2
Γ

2𝜇
+

𝜅2

4𝛿𝜌
𝜂

)︂
∆𝑡(P𝑛+1)2. (4.39)

Recalling that A is defined by (4.26) and defining B̃ by

B̃ = 𝐶
(3)
Ω L2 + 𝐶

(7)
Ω M𝜂, (4.40)

since
⃒⃒
𝑄𝑛+1

⃒⃒
≤ 𝐶Γ

⃦⃦
∇u𝑛+1

⃦⃦
𝐿2(Ω)

, and
⃦⃦
u𝑛+1

⃦⃦
𝐿2(Ω)

≤ 𝐶𝑃

⃦⃦
∇u𝑛+1

⃦⃦
𝐿2(Ω)

by Poincaré inequality, we proceed as
in the continuous case in order to derive the discrete analogue of estimate (4.25):(︂

𝜌

2
+

𝜇

8𝐶2
𝑃

∆𝑡

)︂
‖u𝑛+1‖2𝐿2(Ω) +

(︁𝜇𝜂

2
+

𝜇

8
∆𝑡
)︁
‖∇u𝑛+1‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝛼

2
𝜂 +

(︂
𝛼 +

𝜇

4𝐶2
Γ

)︂
∆𝑡

)︂
(𝑄𝑛+1)2

+
(︂

𝛾

2
+

𝛾∆𝑡

2𝜏

)︂
(𝑉 𝑛+1

imp )2 + ∆𝑡
(︁
A− B̃ ‖∇u𝑛‖𝐿2(Ω)

)︁ ⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝜇

2
𝜂 ‖∇u𝑛‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝛼

2
𝜂

)︂
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2 +
(︂

𝐶2
Γ

2𝜇
+

𝜅2

4𝛿𝜌
𝜂

)︂
∆𝑡(P𝑛+1)2. (4.41)

Recalling the definition of D, see (4.28), and introducing the approximation of 𝛹(𝑡𝑛) defined by

𝛹𝑛 :=
𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝜇𝜂

2
‖∇u𝑛‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝛼

2
𝜂

)︂
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2,

we obtain
𝛹𝑛+1 (1 + D∆𝑡) + ∆𝑡

(︁
A− B̃ ‖∇u𝑛‖𝐿2(Ω)

)︁ ⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
≤ 𝛹𝑛 + ∆𝑡𝐻𝑛+1,
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where 𝐻𝑛+1 = 𝐻(𝑡𝑛+1), 𝐻 being defined by (4.27). Then, if
⃦⃦
∇u𝑘

⃦⃦
𝐿2(Ω)

≤ A
2B̃

, for all 𝑘 ∈ {0, ..., 𝑛}, we get

𝛹𝑛+1 ≤ 𝛹0

(1 + D∆𝑡)𝑛+1
+

max
𝑘∈{0,...,𝑛+1}

𝐻𝑘

D

(︂
1− 1

(1 + D∆𝑡)𝑛+1

)︂
. (4.42)

Assuming that

𝛹0 ≤ 𝜂𝜇

8
A2

B̃2
,

max
𝑘∈{0,...,𝑛+1}

𝐻𝑘

D
≤ 𝜂𝜇

8
A2

B̃2
,

we conclude that

𝛹𝑛+1 ≤ 𝜂𝜇

8
A2

B̃2
, and

⃦⃦
∇u𝑛+1

⃦⃦
𝐿2(Ω)

≤ A

2B̃
. (4.43)

Consequently, by induction, we can prove that the solution stays at each time iteration in the same ball defined
by estimate (4.43).

∙ Case 𝜏 = +∞.

In this case we cannot take advantage of the dissipitation with respect to the volume 𝑉 𝑛
imp. Taking u𝑛+1 as a

test function, we obtain

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
∆𝑡‖∇u𝑛+1‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛+1)2 + 𝛼∆𝑡(𝑄𝑛+1)2 +

𝛾

2
(𝑉 𝑛+1

imp )2

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝛽

2
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2 +
𝐶2

Γ

2𝜇
∆𝑡(P𝑛+1)2 + 𝐶

(3)
Ω L2∆𝑡 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
. (4.44)

Next, once again we take 𝐴𝜇,𝛼u𝑛+1 as a test function. Here we have to control the term

𝛾∆𝑡

⃒⃒⃒⃒
𝑉 𝑛+1

imp

∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
⃒⃒⃒⃒

without using the dissipative term 𝛾Δ𝑡
𝜏 (𝑉 𝑛+1

imp )2 of (4.36) that is equal to zero in the case 𝜏 = +∞. We have, by
using Lemma 2.4 and the definition of ‖·‖𝜌,𝛽 :

𝛾∆𝑡

⃒⃒⃒⃒
𝑉 𝑛+1

imp

∫︁
Γ𝑊

𝐴𝜇,𝛼u𝑛+1 · n
⃒⃒⃒⃒
≤ 𝛾𝜅
√

𝜌
∆𝑡|𝑉 𝑛+1

imp |
⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦
𝜌,𝛽

≤ 𝜅2𝛾2

𝛿𝜌
∆𝑡(𝑉 𝑛+1

imp )2 + 𝛿∆𝑡
⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽
, (4.45)

for 𝛿 > 0 that will be chosen latter. Remembering estimate (4.13) of the linear forcing terms and estimate (4.37)
of the convection term, we obtain

𝜇

2

⃦⃦
∇u𝑛+1

⃦⃦2
𝐿2(Ω)

+
𝛼

2
(𝑄𝑛+1)2 + Δ𝑡

⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2
𝜌,𝛽

≤ 𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

𝛼

2
(𝑄𝑛)2 +

𝜅2𝛾2

𝛿𝜌
Δ𝑡(𝑉 𝑛+1

imp )2 +
𝜅2

4𝛿𝜌
Δ𝑡(P𝑛+1)2 +

(︁
2𝛿Δ𝑡 + 𝐶

(7)
Ω MΔ𝑡 ‖∇u𝑛‖𝐿2(Ω)

)︁ ⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2
𝜌,𝛽

.

Consequently by choosing 2𝛿 = 1
2 , we have

𝜇

2

⃦⃦
∇u𝑛+1

⃦⃦2

𝐿2(Ω)
+

𝛼

2
(𝑄𝑛+1)2 +

(︂
1
2
− 𝐶

(7)
Ω M ‖∇u𝑛‖𝐿2(Ω)

)︂
∆𝑡
⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

𝛼

2
(𝑄𝑛)2 + 4

𝜅2𝛾2

𝜌
∆𝑡(𝑉 𝑛+1

imp )2 +
𝜅2

𝜌
∆𝑡(P𝑛+1)2. (4.46)
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Multiplying (4.46) by a homogeneity coefficient 𝑟 and adding (4.44) yields

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
(𝑟 + ∆𝑡)‖∇u𝑛+1‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2
+ 𝛼∆𝑡

)︂
(𝑄𝑛+1)2 +

(︂
𝛾

2
− 4

𝑟𝜅2𝛾2

𝜌
∆𝑡

)︂
(𝑉 𝑛+1

imp )2

+
(︁𝑟

2
−
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M

)︁
‖∇u𝑛‖𝐿2(Ω)

)︁
∆𝑡
⃦⃦
𝐴𝜇,𝛼u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜌

2
‖u𝑛‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2

)︂
(𝑄𝑛)2 +

𝛾

2
(𝑉 𝑛

imp)2 +
(︂

𝐶2
Γ

2𝜇
+

𝑟𝜅2

𝜌

)︂
∆𝑡(P𝑛+1)2. (4.47)

Thus, if we impose
∆𝑡 <

𝜌

8𝑟𝜅2𝛾
= ∆𝑡𝑟,

and assuming that ⃦⃦
∇u𝑘

⃦⃦
𝐿2(Ω)

≤ 𝑟

4
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M

)︁ , ∀𝑘 ∈ {0, ..., 𝑛}, (4.48)

we obtain, thanks to discrete Gronwall Lemma, the following discrete stability estimate

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u𝑛+1‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2

)︂
(𝑄𝑛+1)2 +

𝛾

2
(𝑉 𝑛+1

imp )2 +
𝑟

4
∆𝑡

𝑛+1∑︁
𝑘=0

⃦⃦
𝐴𝜇,𝛼u𝑘

⃦⃦2

𝜌,𝛽

≤ e
𝑇

Δ𝑡𝑟−Δ𝑡

(︃
𝜌

2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2

)︂
(𝑄0)2 +

(︂
𝐶2

Γ

2𝜇
+

𝑟𝜅2

𝜌

)︂
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2
)︃

. (4.49)

Consequently to satisfy (4.48) for 𝑘 = 𝑛 + 1 and obtain the desired result by induction, the data have to
verify

e
𝑇

Δ𝑡𝑟−Δ𝑡

[︁𝜌
2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

(︂
𝛽

2
+

𝑟𝛼

2

)︂
(𝑄0)2 +

(︂
𝐶2

Γ

2𝜇
+

𝑟𝜅2

𝜌

)︂
∆𝑡

𝑁∑︁
𝑘=0

(P𝑘)2
]︁

≤ 𝑟3𝜇

32
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M

)︁2 . (4.50)

The above condition requires that the initial conditions, the forcing term as well as the final time 𝑇 are small
enough. �

Note that a standard fixed point argument [31, 49] allows us to obtain the same kind of stability bound for
the solution of system (2.11) with 𝐼 = 1 together with the existence of a strong solution.

Remark 4.14. Let us comment the dependency on the homogeneity constant 𝑟. The upper bounds defined by
(4.48) and (4.50) are increasing with respect to 𝑟, are equal to zero for 𝑟 = 0 and have a finite limit as 𝑟 goes
to +∞. Moreover, at the same time, the critical time step ∆𝑡𝑟 goes to zero as 𝑟 goes to +∞ and so does the
exponential growth. Thus, large values for 𝑟 induce restrictive smallness conditions on the time step and on the
data. For small values for 𝑟 the condition on the time step is dropped but the upper bound on the data goes to 0.

Remark 4.15. We can already note that for typical Windkessel model in blood flow for which 𝜏 < +∞, we
can ensure global-in-time stability of the semi-discrete solution for small enough initial data and external forces,
whereas for typical Windkessel model in airflow for which 𝜏 = +∞ we exhibit restrictive sufficient conditions
on the time step and on the data (initial data, external forces, final time). In this case, the restriction on the
time step writes ∆𝑡 < 𝜌

8𝑟𝜅2𝛾 . In particular the smaller the Windkessel compliance is, the more restrictive the
conditions on the data and the time step are. Thus when 𝜌 goes to zero or when 𝛾 goes to infinity the time step
goes to zero.
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Remark 4.16. Note that we cannot extend easily the proof of Theorem 4.13 to the fully-discretized system,
unlike for the Stokes system. To do so one should introduce the finite element discrete analogue of 𝐴𝜇,𝛼, see
[29] in which this type of analysis is done for the Navier–Stokes system with homogeneous Dirichlet boundary
conditions.

Remark 4.17 (Case 𝛾 = 0). As for the continuous case, it is sufficient to choose 𝐴𝜇,𝛼u𝑛+1 as a test function
in order to derive a stability estimate, as in Remark 4.9. In this case the system is also dissipative and no
condition on the time step is required for the stability.

4.2.2. Explicit coupling

We now focus on the semi-discretized Navier–Stokes–Windkessel model with explicit coupling. More precisely,
as for the Stokes–Windkessel model with explicit coupling, the inertia of the 0D model associated to the
parameter 𝛽 is treated implicitly whereas the terms related to the parameters 𝛼 and 𝛾 are treated explicitly.
Moreover we consider a semi-implicit treatment of the convective term. It thus corresponds to the problem
(2.11) with 𝜀 = 1, 𝑚 = 𝑛 and 𝐼 = 0. We have all the ingredients to study this case, since it will be a mix of the
study done for the Stokes system with explicit coupling and the study of the Navier–Stokes system.

Theorem 4.18. Let 𝜇 > 0. Assume that the artificial boundaries Γ0 and Γ𝑊 meet the lateral boundaries Γℓ at
angle 𝜋

2 and that each boundary is smooth enough. Assume that 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 > 0 and 0 < 𝜏 ≤ +∞. The
discrete solution of (2.11) with 𝜀 = 1, 𝐼 = 0 and 𝑚 = 𝑛 satisfies a discrete stability estimate, under restrictive
condition on the data (final time, initial data and external forces) and on the time step. More precisely, let 𝑟 be
a positive homogeneity constant, assuming that ∆𝑡 < 𝜆1 (where 𝜆1 is defined by (3.20)) and that

𝜌

2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 1
exp)2

2
+

𝛽

2
(𝑄0)2 + ∆𝑡

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂ 𝑁∑︁
𝑘=0

(P𝑘)2 ≤ 𝑟3𝜇e−𝐶NS
Δ𝑡,𝑟𝑇 e−

𝑇
𝜆1−Δ𝑡

32
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M0

)︁2

with

𝐶NS
Δ𝑡,𝑟 = 𝐶S

Δ𝑡 + 𝑟

(︂
2𝛼2𝜅4

𝜌2
+

8𝜅2𝛾𝛿Δ𝑡

𝜌

)︂
, (4.51)

(the constant 𝐶S
Δ𝑡 being defined in Thm. 3.9) and

M0 := 𝐶
(2)
Ω

(︂
𝜌

𝜇
+ 𝐶

(1)
Ω 𝜅

𝛽

𝜇

)︂
, (4.52)

then the following discrete estimate holds true

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛽

2
(𝑄𝑛+1)2 +

𝑟

4
∆𝑡

𝑛+1∑︁
𝑘=0

⃦⃦
𝐴𝜇,0u𝑘

⃦⃦2

𝜌,𝛽

≤ e𝐶NS
Δ𝑡,𝑟𝑇 e

𝑇
𝜆1−Δ𝑡

(︃
𝜌

2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 1
exp)2

2
+

𝛽

2
(𝑄0)2 +

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂
∆𝑡

𝑛∑︁
𝑘=0

(P𝑘)2
)︃

.

Note that here the discrete estimates are derived on the system with a semi-implicit treatment of the convection
term. Nevertheless a fixed point procedure could enable to prove a similar estimate in the case of an implicit
treatment of this term, namely in the case 𝐼 = 1.

Proof. By taking u𝑛+1 as a test function in the variational formulation (2.11) with 𝜀 = 1, 𝐼 = 0 and 𝑚 = 𝑛
following the same lines as in the proof of Theorem 3.9 in the case 𝛽 ≥ 0 and using moreover the following
estimate of the convection term⃒⃒⃒⃒

𝜌

∫︁
Ω

(u𝑛∇)u𝑛+1 u𝑛+1

⃒⃒⃒⃒
≤ 𝜌 ‖u𝑛‖𝐿4(Ω)

⃦⃦
∇u𝑛+1

⃦⃦
𝐿2(Ω)

⃦⃦
u𝑛+1

⃦⃦
𝐿4(Ω)

≤ 𝐶
(3)
Ω L2 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽
,
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we get

𝜌

2

(︂
1− 𝛼𝜅2

𝜌
∆𝑡− 2𝛾𝜅2

𝜌
∆𝑡2

)︂
‖u𝑛+1‖2𝐿2(Ω) +

𝜇∆𝑡

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2 +
𝛽

2
(𝑄𝑛+1)2

≤ 𝜌

2

(︂
1 +

𝛼𝜅2

𝜌
∆𝑡

)︂
‖u𝑛‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(︂
1 +

2∆𝑡2

𝜏2

)︂
(𝑉 𝑛+1

exp )2

2
(4.53)

+
𝛽

2
(𝑄𝑛)2 +

𝐶2
Γ

2𝜇
∆𝑡(P𝑛)2 + 𝐶

(3)
Ω L2 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽
,

where 𝛿Δ𝑡 have been previously defined in the proof of Theorem 3.9 (see (3.12)). As the coupling is explicit the
next test function to consider is 𝐴𝜇,0u𝑛+1. Note that the constant L appearing in the previous estimate (4.53)
does not depend on the parameter 𝛼. Following the same lines as in the proof of Theorem 4.13 leads to

𝜇

2

⃦⃦
∇u𝑛+1

⃦⃦2
𝐿2(Ω)

+ Δ𝑡
⃦⃦
𝐴𝜇,0u

𝑛+1
⃦⃦2

𝜌,𝛽
≤ 𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

𝜅2

4𝛿𝜌
Δ𝑡(P𝑛+1)2 + 𝐶

(7)
Ω M0Δ𝑡 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,0u

𝑛+1
⃦⃦2

𝜌,𝛽

+ 𝛼Δ𝑡

⃒⃒
⃒⃒𝑄𝑛

∫︁

Γ𝑊

𝐴𝜇,0u
𝑛+1 · n

⃒⃒
⃒⃒+ 𝛾Δ𝑡

⃒⃒
⃒⃒𝑉 𝑛+1

exp

∫︁

Γ𝑊

𝐴𝜇,0u
𝑛+1 · n

⃒⃒
⃒⃒ . (4.54)

Here the constant M0 is associated to the operator 𝐴𝜇,0 and thus is defined by (4.3) with 𝛼 = 0 (see (4.52)). We
next have to estimate the last two terms of the right hand side of (4.54) corresponding to the explicit coupling.
Let us first consider 𝛼∆𝑡

⃒⃒⃒
𝑄𝑛
∫︀
Γ𝑊

𝐴𝜇,0u𝑛+1 · n
⃒⃒⃒
. By Lemma 2.4 and Young’s inequality, we have

𝛼∆𝑡

⃒⃒⃒⃒
𝑄𝑛

∫︁
Γ𝑊

𝐴𝜇,0u𝑛+1 · n
⃒⃒⃒⃒
≤ 𝛼𝜅2

√
𝜌

∆𝑡 ‖u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦
𝜌,𝛽

≤ 𝛼2𝜅4

4𝛿𝜌
∆𝑡 ‖u𝑛‖2𝐿2(Ω) + 𝛿∆𝑡

⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽
, (4.55)

where 𝛿 > 0 will be chosen later. Next we estimate 𝛾∆𝑡
⃒⃒⃒
𝑉 𝑛+1

exp

∫︀
Γ𝑊

𝐴𝜇,0u𝑛+1 · n
⃒⃒⃒

using once again Lemma 2.4:

𝛾∆𝑡

⃒⃒⃒⃒
𝑉 𝑛+1

exp

∫︁
Γ𝑊

𝐴𝜇,0u𝑛+1 · n
⃒⃒⃒⃒
≤ 𝛾𝜅
√

𝜌
∆𝑡
⃒⃒
𝑉 𝑛+1

exp

⃒⃒ ⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦
𝜌,𝛽

At this stage we do not distinghish two cases as we did previoulsly. In the general case we can not take advantage
of the dissipation of the volume, thus we estimate 𝛾∆𝑡

⃒⃒⃒
𝑉 𝑛+1

exp

∫︀
Γ𝑊

𝐴𝜇,0u𝑛+1 · n
⃒⃒⃒

as we did in the implicit coupling,
see (4.45):

𝛾∆𝑡

⃒⃒⃒⃒
𝑉 𝑛+1

exp

∫︁
Γ𝑊

𝐴𝜇,0u𝑛+1 · n
⃒⃒⃒⃒
≤ 𝜅2𝛾2

𝛿𝜌
∆𝑡(𝑉 𝑛+1

exp )2 + 𝛿∆𝑡
⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽
. (4.56)

Thus from (4.54) multiplied by a homogeneity coefficient 𝑟 > 0, using (4.55), choosing 𝛿 = 1
4 , and adding (4.53)

we obtain

𝜌

2

(︂
1− 𝛼𝜅2

𝜌
Δ𝑡− 2𝛾𝜅2

𝜌
Δ𝑡2
)︂

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
(𝑟 + Δ𝑡)‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾Δ𝑡

𝜏
(𝑉 𝑛+1

exp )2 +
𝛽

2
(𝑄𝑛+1)2

+
(︁ 𝑟

2
−
(︁
𝐶

(3)
Ω L

2 + 𝑟𝐶
(7)
Ω M0

)︁
‖∇u𝑛‖𝐿2(Ω)

)︁
Δ𝑡
⃦⃦
𝐴𝜇,0u

𝑛+1
⃦⃦2

𝜌,𝛽

≤ 𝜌

2

(︂
1 +

(︂
𝛼𝜅2

𝜌
+

2𝑟𝛼2𝜅4

𝜌2

)︂
Δ𝑡

)︂
‖u𝑛‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u𝑛‖2𝐿2(Ω)

+
𝛾

𝛿Δ𝑡

(︂
1 +

8𝑟𝜅2𝛾𝛿Δ𝑡

𝜌
Δ𝑡 +

2

𝜏2
Δ𝑡2
)︂

(𝑉 𝑛+1
exp )2

2
+

𝛽

2
(𝑄𝑛)2 +

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂
Δ𝑡(P𝑛)2. (4.57)
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Next remembering the definition of the polynomial function 𝑃 (see (3.19)) and its positive root 𝜆1 (see (3.20))
and using the lower bound (3.21), we have

𝜌

2

(︂
1− ∆𝑡

𝜆1

)︂
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
(𝑟 + ∆𝑡)‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

𝜏
(𝑉 𝑛+1

exp )2 +
𝛽

2
(𝑄𝑛+1)2

+
(︁𝑟

2
−
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M0

)︁
‖∇u𝑛‖𝐿2(Ω)

)︁
∆𝑡
⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜌

2

(︂
1 +

(︂
𝛼𝜅2

𝜌
+

2𝑟𝛼2𝜅4

𝜌2

)︂
∆𝑡

)︂
‖u𝑛‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u𝑛‖2𝐿2(Ω)

+
𝛾

𝛿Δ𝑡

(︂
1 +

8𝑟𝜅2𝛾𝛿Δ𝑡

𝜌
∆𝑡 +

2
𝜏2

∆𝑡2
)︂

(𝑉 𝑛+1
exp )2

2
+

𝛽

2
(𝑄𝑛)2 +

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂
∆𝑡(P𝑛)2. (4.58)

Thus assuming that ⃦⃦
∇u𝑘

⃦⃦
𝐿2(Ω)

≤ 𝑟

4
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M0

)︁ , ∀𝑘 ∈ {0, ..., 𝑛}, (4.59)

and if we moreover impose ∆𝑡 < 𝜆1, we obtain thanks to the discrete Gronwall Lemma that

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛽

2
(𝑄𝑛+1)2 +

𝑟

4
∆𝑡

𝑛+1∑︁
𝑘=0

⃦⃦
𝐴𝜇,0u𝑘

⃦⃦2

𝜌,𝛽

≤ e𝐶NS
Δ𝑡,𝑟𝑇 e

𝑇
𝜆1−Δ𝑡

(︁𝜌

2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 1
exp)2

2
+

𝛽

2
(𝑄0)2 +

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂
∆𝑡

𝑛∑︁
𝑘=0

(P𝑘)2
)︁
,

with 𝐶NS
Δ𝑡,𝑟 defined by (4.51). Consequently if the data satisfy

𝜌

2
‖u0‖2𝐿2(Ω) +

𝑟𝜇

2
‖∇u0‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 1
exp)2

2
+

𝛽

2
(𝑄0)2 +∆𝑡

(︂
𝐶2

Γ

2𝜇
+

2𝑟𝜅2

𝜌

)︂ 𝑁∑︁
𝑘=0

(P𝑘)2 ≤ 𝑟3𝜇e−𝐶NS
Δ𝑡,𝑟𝑇 e−

𝑇
𝜆1−Δ𝑡

32
(︁
𝐶

(3)
Ω L2 + 𝑟𝐶

(7)
Ω M0

)︁2 ,

we obtain the desired result by induction. �

Remark 4.19. Let us discuss the so called dissipative case, namely 𝜏 < +∞ for which we could have tried to
take advantage of the volume dissipation. In this case we can reproduce (4.20) to obtain

𝛾∆𝑡

⃒⃒⃒⃒
𝑉 𝑛+1

exp

∫︁
Γ𝑊

𝐴𝜇,0u𝑛+1 · n
⃒⃒⃒⃒
≤ 𝛾

2𝜂𝜏
∆𝑡(𝑉 𝑛+1

exp )2 +
𝜂𝜏𝜅2𝛾

2𝜌
∆𝑡
⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽
(4.60)

Thus by (4.55) and (4.60), the bound (4.54) becomes

𝜇

2

⃦⃦
∇u𝑛+1

⃦⃦2
𝐿2(Ω)

+ Δ𝑡
⃦⃦
𝐴𝜇,0u

𝑛+1
⃦⃦2

𝜌,𝛽
≤ 𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

𝜅2

4𝛿𝜌
Δ𝑡(P𝑛+1)2 + 𝐶

(7)
Ω M0Δ𝑡 ‖∇u𝑛‖𝐿2(Ω)

⃦⃦
𝐴𝜇,0u

𝑛+1
⃦⃦2

𝜌,𝛽

+
𝛼2𝜅4

4𝛿𝜌
Δ𝑡 ‖u𝑛‖2𝐿2(Ω) +

𝛾

2𝜂𝜏
Δ𝑡(𝑉 𝑛+1

exp )2 +

(︂
𝛿 +

𝜂𝜏𝜅2𝛾

2𝜌

)︂
Δ𝑡
⃦⃦
𝐴𝜇,0u

𝑛+1
⃦⃦2

𝜌,𝛽
. (4.61)

By choosing 𝛿 and 𝜂 satisfying (4.22), the previous estimate (4.61) writes

𝜇

2

⃦⃦
∇u𝑛+1

⃦⃦2

𝐿2(Ω)
+
(︂

1
2
− 𝐶

(7)
Ω M0 ‖∇u𝑛‖𝐿2(Ω)

)︂
∆𝑡
⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜇

2
‖∇u𝑛‖2𝐿2(Ω) +

𝜅2

4𝛿𝜌
∆𝑡(P𝑛+1)2 +

𝛼2𝜅4

4𝛿𝜌
∆𝑡 ‖u𝑛‖2𝐿2(Ω) +

𝛾

2𝜂𝜏
∆𝑡(𝑉 𝑛+1

exp )2 (4.62)
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By multiplying (4.62) by 𝜂 and adding (4.53), leads to

𝜌

2

(︂
1− 𝛼𝜅2

𝜌
∆𝑡− 2𝛾𝜅2

𝜌
∆𝑡2

)︂
‖u𝑛+1‖2𝐿2(Ω)+

𝜇

2
(𝜂+∆𝑡)‖∇u𝑛+1‖2𝐿2(Ω)+

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

2𝜏
(𝑉 𝑛+1

exp )2+
𝛽

2
(𝑄𝑛+1)2

+
(︁𝜂

2
−
(︁
𝐶

(3)
Ω L2 + 𝐶

(7)
Ω 𝜂M0

)︁
‖∇u𝑛‖𝐿2(Ω)

)︁
∆𝑡
⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜌

2

(︂
1 +

(︂
𝛼𝜅2

𝜌
+

𝜂𝛼2𝜅4

8𝛿𝜌2

)︂
∆𝑡

)︂
‖u𝑛‖2𝐿2(Ω) +

𝜇𝜂

2
‖∇u𝑛‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(︂
1 +

2∆𝑡2

𝜏2

)︂
(𝑉 𝑛+1

exp )2

2
+

𝛽

2
(𝑄𝑛)2

+
(︂

𝐶2
Γ

2𝜇
+

𝜂𝜅2

4𝛿𝜌

)︂
∆𝑡(P𝑛)2.

Let us define B0 by
B0 = 𝐶

(3)
Ω L2 + 𝐶

(7)
Ω 𝜂M0. (4.63)

Note that B0 corresponds to the constant B̃ defined by (4.40) with 𝛼 = 0. Next remembering the definition of the
polynomial function 𝑃 (see (3.19)) and its positive root 𝜆1 (see (3.20)) and using the the lower bound (3.21),
remembering also the definitions of A defined by (4.26) and of 𝐻 defined by (4.27), we have

𝜌

2

(︂
1− ∆𝑡

𝜆1

)︂
‖u𝑛+1‖2𝐿2(Ω) +

𝜇

2
(𝜂 + ∆𝑡)‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

2𝜏
(𝑉 𝑛+1

exp )2 +
𝛽

2
(𝑄𝑛+1)2

+
(︁
A−B0 ‖∇u𝑛‖𝐿2(Ω)

)︁
∆𝑡
⃦⃦
𝐴𝜇,0u𝑛+1

⃦⃦2

𝜌,𝛽

≤ 𝜌

2

(︂
1 +

(︂
𝛼𝜅2

𝜌
+

𝜂𝛼2𝜅4

8𝛿𝜌2

)︂
∆𝑡

)︂
‖u𝑛‖2𝐿2(Ω) +

𝜇𝜂

2
‖∇u𝑛‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(︂
1 +

2∆𝑡2

𝜏2

)︂
(𝑉 𝑛+1

exp )2

2
+

𝛽

2
(𝑄𝑛)2 +∆𝑡𝐻𝑛.

Thus, if
⃦⃦
∇u𝑘

⃦⃦
𝐿2(Ω)

≤ A
2B0

, for all 𝑘 ∈ {0, ..., 𝑛}, and assuming that ∆𝑡 < 𝜆1, we obtain thanks to the discrete
Gronwall Lemma

𝜌

2
‖u𝑛+1‖2𝐿2(Ω) +

𝜇𝜂

2
‖∇u𝑛+1‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 𝑛+2
exp )2

2
+

𝛾∆𝑡

2𝜏
(𝑉 𝑛+1

exp )2 +
𝛽

2
(𝑄𝑛+1)2 +

A

2
∆𝑡

𝑛+1∑︁
𝑘=0

⃦⃦
𝐴𝜇,0u𝑘

⃦⃦2

𝜌,𝛽

≤ e𝐶NS
Δ𝑡 𝑇 e

𝑇
𝜆1−Δ𝑡

(︃
𝜌

2
‖u0‖2𝐿2(Ω) +

𝜇𝜂

2
‖∇u0‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 1
exp)2

2
+

𝛽

2
(𝑄0)2 + ∆𝑡

𝑛∑︁
𝑘=0

𝐻𝑘

)︃
, (4.64)

where

𝐶NS
Δ𝑡 = 𝐶S

Δ𝑡 +
𝜂𝛼2𝜅4

8𝛿𝜌2
.

Consequently the desired discrete stability estimate can be proven by induction assuming that the data of the
problem satisfy

e𝐶NS
Δ𝑡 𝑇 e

𝑇
𝜆1−Δ𝑡

(︁𝜌

2
‖u0‖2𝐿2(Ω) +

𝜇𝜂

2
‖∇u0‖2𝐿2(Ω) +

𝛾

𝛿Δ𝑡

(𝑉 1
exp)2

2
+

𝛽

2
(𝑄0)2 + ∆𝑡

𝑁∑︁
𝑘=0

𝐻𝑘
)︁
≤ 𝜂𝜇

8
A2

B2
0

.

As a conclusion, in the case of the semi-discrete Navier–Stokes system coupled explicitly to the 0D model,
the obtained stability estimates are quite similar in both considered cases. In both proofs, we exhibit a similar
sufficient condition on the time step (which is the same as for the Stokes system) and restrictive assumptions on
the data imposing smallness of the initial data as well as on the applied forces but also on the global time 𝑇 . In
particular in the so called dissipative case, when explicitly coupled to the Navier–Stokes equation, the system
does not dissipate energy anymore.
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Remark 4.20. As in the proof of Theorem 3.9 we can adapt the previous calculations to the case where 𝛽 > 0
and take advantage of the inertia of the 0D model. For the sake of simplicity we do not reproduce the calculations
here.

Remark 4.21. For the case where 𝜏 < +∞ in order to control the exponential growth e
2Δ𝑡
𝜏2 𝑇 one could impose

to the time step to satisfy ∆𝑡 ≤ 2𝜏2

𝑇 which could be a rather restrictive condition in particular for large time 𝑇
or small relaxation time 𝜏 .

5. Numerical results

5.1. Numerical method for the implicit coupling

In this section we numerically illustrate some of the previous theoretical results. First, let us present the way
we choose to solve the Navier–Stokes–Windkessel model with the implicit coupling, since this case involves all
the numerical difficulties of the problems we are interested in. We focus on a 2D/0D coupled problem, for the
sake of simplicity and we use the software FreeFem++ which is a programming language and a free software
focused on solving PDEs using the finite element method, see https://freefem.org/.

Basically FreeFem++ is a finite element library which contains basic solvers for linear problems such as Stokes
problems (actually it builds the resulting linear system based upon the finite element approximation of a linear
variational problem and, if well-posed, proposes associated numerical solvers). The resolution of the Stokes
problems is done with classical inf-sup stable 𝑃2−𝑃1 finite elements. The scheme we use allows us to deal with
the nonlocal boundary condition by solving only standard Stokes problems with mixed Dirichlet–Neumann
boundary conditions. The method relies on a superposition principle that is proposed in [14] and which is
similar to what is proposed in [50]. It has the advantage not to alter the conditioning of the resulting matrix
with respect to the parameters of the 0D model. The main drawback of the method is its computational cost
in the case of a large number of outlets. The semi-discretized problem takes the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌

∆𝑡
u𝑛+1 + 𝜀(u𝑛 · ∇)u𝑛+1 − 𝜇∆u𝑛+1 +∇𝑝𝑛+1 =

𝜌

∆𝑡
u𝑛, on Ω,

div(u𝑛+1) = 0, on Ω,
u𝑛+1 = 0, on Γℓ

−𝜇∇u𝑛+1 · n + 𝑝𝑛+1n = 𝑔0 n, on Γ0

−𝜇∇u𝑛+1 · n + 𝑝𝑛+1n = 𝛼𝑄𝑛+1 n + 𝑔1 n, on Γ1

(5.1)

where 𝑔 := 𝑔𝑖 denote source terms that may depend to the solution at previous time steps. All the systems
we are interested in (such as R, RC, RCL, RCRL models) fall into the scope of this formalism, by choosing or
updating in a suitable manner the generalized parameters or functions 𝛼 and 𝑔𝑖.

The main difficulty relies on the nonlocal boundary condition located at Γ1 since

𝑄𝑛+1 =
∫︁

Γ1

u𝑛+1 · n.

We propose the following strategy, which allows us not to build the contribution of the nonlocal term in the
resulting matrix. The method is based on the construction of the solution of two linear systems at each time
step:

1. Define (w0, 𝜋0) as the solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌

∆𝑡
w0 + 𝜀(u𝑛 · ∇)w0 − 𝜇∆w0 +∇𝜋0 =

𝜌

∆𝑡
u𝑛, on Ω,

div(w0) = 0, on Ω,
w0 = 0, on Γℓ

−𝜇∇w0 · n + 𝜋0n = 𝑔0 n, on Γ0

−𝜇∇w0 · n + 𝜋0n = 𝑔1 n, on Γ1

(5.2)

https://freefem.org/
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Table 2. Stability results for the (Navier–)Stokes-R model with applied pressure 𝑔0 = 5×10+2.
Symbol � means that the simulation is stable whereas � means that it is unstable.

Time step Δ𝑡 0.05 0.10 0.20 0.40

Stokes (implicit) � � � �
Stokes (explicit) � � � �
Navier–Stokes (implicit) � � � �
Navier–Stokes (explicit) � � � �

2. Define (w1, 𝜋1) as the solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌

∆𝑡
w1 + 𝜀(u𝑛 · ∇)w1 − 𝜇∆w1 +∇𝜋1 = 0, on Ω,

div(w1) = 0, on Ω,
w1 = 0, on Γℓ

−𝜇∇w1 · n + 𝜋1n = 0, on Γ0

−𝜇∇w1 · n + 𝜋1n = 1 n, on Γ1

(5.3)

3. By linearity, define
(u𝑛+1, 𝑝𝑛+1) = (w0, 𝜋0) + 𝑘(w1, 𝜋1),

where 𝑘 has to be fixed. By means of construction, we have

−𝜇∇w0 · n + 𝜋0n + 𝑘(−𝜇∇w1 · n + 𝜋1n) = 𝑔0 n, on Γ0,
−𝜇∇w0 · n + 𝜋0n + 𝑘(−𝜇∇w1 · n + 𝜋1n) = (𝑘 + 𝑔1) n, on Γ1,

and 𝑘 has to be chosen such that 𝑘 = 𝛼
(︁∫︀

Γ1
w0 · n + 𝑘

∫︀
Γ1

w1 · n
)︁

i.e.

𝑘 =
𝛼
∫︀
Γ1

w0 · n
1− 𝛼

∫︀
Γ1

w1 · n
.

Note that if 𝜀 = 0 (in the case of the Stokes–Windkessel system), the computation of w1 is required only
once (this computation can be made offline).

5.2. Numerical results for the R model

We focus on a simple tubular geometry. The data are built upon some analogy in cgs units. The tubular
dimensions are set to 𝐿𝑥 = 2 and 𝐿𝑦 = 12 and the computational mesh is generated with 20 × 120 nodes.
Computations have been led for the R model with the following parameters:

𝜌 = 1.2× 10−3, 𝜇 = 2× 10−4, 𝛼 = 1× 10−1.

The initial velocity field is set to 0. Let ∆𝑡 be the computational time step and let us recall that 𝑔0 which
represents the applied pressure and it has still to be prescribed.

∙ Experiment 1. Results summarized in Table 2 correspond to an applied pressure 𝑔0 which is taken as a
constant function, i.e. 𝑔0 = 5× 10+2.
For ∆𝑡 = 0.10, the numerical solution of the Stokes-R model with the explicit scheme is stable and the
solution converges to a stationary Poiseuille profile, see Figure 4. Note that the stationary Poiseuille profile
corresponds to the stationary flow obtained in a tube whose length is equal to the sum of the length of the
original (truncated) tube plus the one corresponding to the resistive 0D model.
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Figure 4. Simulation of the Stokes-R model with explicit coupling with “small” time-step
(∆𝑡 = 0.10). Velocity field at time 𝑖∆𝑡 (for 𝑖 = 1, 2, 10).

For ∆𝑡 = 0.20, the numerical solution of the Stokes-R model with the explicit scheme is unstable: instability is
observed with spontaneous unphysical inversions of the flow between two time steps: flow reversal is observed
at each time step and the magnitude of the flux (at the inlet) exponentially increases, through the analysis
of the flux at the inlet (upper boundary), see Figure 5. This illustrates how the stability for the simulation
of the Stokes-R model with explicit coupling depends on the distance of the value of the time step from the
critical value 𝜌

𝛼𝜅2 .
The numerical solution of the Stokes-R model with the implicit scheme is unconditionally stable for any
value of the time step and it converges to the stationary Poiseuille profile that was previously observed with
the explicit coupling (stable case).
Then when considering the convective terms, the observations are quite different: the numerical solution
of the Navier–Stokes-R model is unstable for both implicit and explicit schemes, whatever the value of the
time-step is: blow up phenomena appear, see Figure 6. Instabilities presumably come from the smallness
assumption on the data which is not satisfied: this will be confirmed in the next series of numerical results.

∙ Experiment 2. In order to verify the argument related to the smallness assumption, we perform the very
same simulations as before except for the value of 𝑔0 which is now set to 𝑔0 = 5 × 10+0 (i.e. the applied
pressure is 100 times smaller as in the previous cases). Results are summarized in Table 3.
As expected, the stability results of the Stokes-R model are not affected by the modification of the applied
pressure. When focusing on the Navier–Stokes-R model with the implicit coupling, the results have turned
out to be stable due to the data reduction, as no restriction on the time step is required, see Remark 4.17.
When focusing on the Navier–Stokes-R model with the explicit coupling, the conditional stability ensured by
the smallness of the data (due to the convective term in the Navier–Stokes system) and time step restriction
(due to the explicit coupling) is illustrated by the numerical results.

∙ Experiment 3. Let us highlight the role of the threshold value 𝜌
𝛼𝜅2 for the time step on the stability of the

explicit scheme in the Stokes-R model. Fixing the fluid viscosity at 𝜇 = 2 × 10−4 and the applied pressure
at 𝑔0 = 5× 10+2, we exhibit the constraint on the time step in Table 4:
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Figure 5. Simulation of the Stokes-R model with explicit coupling with “large” time-step
(∆𝑡 = 0.20). Evolution of the flux at the upper boundary: 𝑡 ↦→ 𝑞(𝑡) := 𝐿𝑥

∫︀
Γ0

u(𝑡, ·) · n.
Oscillations are observed at each time step and the magnitude has an exponential behaviour.

Figure 6. Simulation of the Navier–Stokes-R model with explicit coupling with time-step
∆𝑡 = 0.10. Velocity field at time 𝑖∆𝑡 (for 𝑖 = 2, 6, 10). The numerical solution is unstable as
blow up occurs.
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Table 3. Stability results for the (Navier–)Stokes-R model with applied pressure 𝑔0 = 5×10+0.
Symbol � means that the simulation is stable whereas � means that it is unstable.

Time step Δ𝑡 0.05 0.10 0.20 0.40

Stokes (implicit) � � � �
Stokes (explicit) � � � �
Navier–Stokes (implicit) � � � �
Navier–Stokes (explicit) � � � �

Table 4. Stability results for the Stokes-R model with explicit coupling with applied pressure
𝑔0 = 5 × 10+2. Symbol � means that the simulation is stable whereas � means that it is
unstable.

Time step Δ𝑡 0.05 0.10 0.20 0.40

(*) 𝜌 = 1.2× 10−3, 𝛼 = 1× 10−1 � � � �
(a) 𝜌 = 2.4× 10−3, 𝛼 = 2× 10−1 � � � �
(b) 𝜌 = 2.4× 10−3, 𝛼 = 1× 10−1 � � � �
(c) 𝜌 = 1.2× 10−3, 𝛼 = 2× 10−1 � � � �

We may observe that, for the tubular geometry under consideration, for 𝜌 = 1.2× 10−3 and 𝛼 = 1× 10−1,
the critical value of the time step lies between 0.10 and 0.20, see Table 4 (*). From this situation,
– multiplying both the fluid density and the model resistance by a factor 2, see Table 4 (a), does not alter

this observation, which is expected since the critical time step 𝜌
𝛼𝜅2 is not modified;

– multiplying only the fluid density by a factor 2, see Table 4 (b), allows us to choose a time step which is
twice bigger as before: this is confirmed by the numerical simulations, as the critical time step now lies
between 0.20 and 0.40 (instead of 0.10 and 0.20);

– multiplying only the resistance by a factor 2, see Table 4 (c), reduces the stability region by a factor 2:
this is confirmed by the numerical simulations, as the critical time step now lies between 0.05 and 0.10
(instead of 0.10 and 0.20).

As a concluding remark, the previous observations do not depend on the applied pressure 𝑔0: the stability
results remain the same when considering 𝑔0 = 5 × 10+4 instead of 𝑔0 = 5 × 10+2, as the stability of the
explicit scheme for the Stokes-R model is not affected by the magnitude of the data 𝑔0.

5.3. Influence of the 0D inertance parameter on the numerical stability

We focus on the influence of the 0D inertance parameter 𝛽 on the stability results.
First we illustrate in Experiment 4 the instability occurring when the 0D inertia is treated explicitly and is

large enough compared to the fluid inertia in the linear regime. Second, In Experiments 5 and 6 we investigate
the stabilization effect of the 0D inertia when treated implicitly in the nonlinear regime.

5.3.1. In the Stokes regime

In Experiment 4, we consider the Stokes system coupled to a resistance and an inductance. We consider the
same parameter values as in Experiment 1 (with, in particular, a resistance value which is set to 𝛼 = 1× 10−1)
and we add some inductance 0D model (thus considering a RCL model with 𝐶−1 = 0). Parameter 𝛽 is identified
to 𝐿 and we solve the Stokes-RL system with an implicit coupling for the resistance and an implicit or explicit
coupling for the inductance. The time step is set to ∆𝑡 = 0.05 and the applied pressure is set to 𝑔0 = 5× 10+0.

When considering the implicit coupling for the inductance (with values 𝐿 = 10−1, 10+0, 10+1), numerical
simulations are stable, even if the time step and the applied pressure are increased.
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Table 5. Blow up of the numerical solution with respect to the 0D inertance parameter 𝛽 (all
other data taken from Experiment 1, in the Navier–Stokes regime with the implicit coupling).

𝛽 𝑇blow up

0 0.05
1× 10−1 0.10
1× 10+0 0.30
1× 10+1 2.80

Table 6. Stability of the numerical solution with respect to the applied pressure 𝑔0 and the 0D
inertance parameter 𝛽 (all other data taken from Experiment 1, in the Navier–Stokes regime
with the implicit coupling). Symbol � means that the simulation is stable whereas � means
that it is unstable.

𝛽 = 0.0 𝛽 = 10.0

𝑔0 = 5.0× 10+2 � �
𝑔0 = 1.5× 10+1 � �
𝑔0 = 5.0× 10+0 � �

When considering the explicit coupling for the inductance (with 𝐿 = 10−1), numerical simulations are uncon-
ditionnally unstable: we observe some unphysical flow reversal at each numerical time step along with a velocity
magnitude which tends to explode. Instability is unconditional as smaller values of the time step or applied
pressure lead to the very same phenomenon. Stable simulations are recovered for sufficiently small values of 𝐿 as,
for 𝐿 = 10−2, an oscillatory phenomenon is observed but no flow reversal occurs: in this regime the added-mass
effect is negligible with respect to the inertia of the fluid.

5.3.2. In the Navier–Stokes regime

In Experiment 5, we consider the Navier–Stokes system coupled to a resistance and an inductance. We consider
the same parameter values as in Experiment 1, and we add some inductance 0D model (thus considering a RCL
model with 𝐶−1 = 0). We solve the implicit coupling (for both 𝛼 and 𝛽) for the Navier–Stokes regime, with
∆𝑡 = 0.05. We observe, see Table 5, that the existence time increases with 𝛽.

In Experiment 6, we investigate the numerical stability with respect to the applied pressure 𝑔0 and the 0D
inertance parameter 𝛽, see Table 6. Let us recall that the small data assumption is necessary for the global
existence in the Navier–Stokes-R model (see Experiments 1 and 2 for the Navier–Stokes regime with the implicit
coupling, while choosing either 𝑔0 = 5 × 10+2 or 𝑔0 = 5 × 10+0). Selecting an intermediate applied pressure,
namely 𝑔0 = 1.5× 10+1 still leads to instabilities with the R model; but introducing some 0D inertance in the
system provides numerical stabilisation. Taking into account inertia in the 0D model may allow us to increase
the magnitude of the applied pressure in the simulations.

5.4. Influence of the geometry

Estimates that have been derived involve constants that depend on the geometry (such as Poincaré constant,
for instance). In this subsection we illustrate the influence of the domain on the stability issue. In Experiment 7,
we consider the Navier–Stokes system with

𝜌 = 1.2× 10−3, 𝜇 = 0.5× 10−3, 𝛼 = 𝛽 = 𝛾 = 0.

We report several simulations with the following domains:
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Table 7. Influence of the geometry on the stability results for the Navier–Stokes system.

𝑇1 𝑇2 𝐵1−2 𝑇1 𝑇5 𝐵1−5

𝑔0 = +2.0 � � � � � �
𝑔0 = −2.0 � � � � � �

∙ tubular domains (for which |Γ0| = |Γ1|) with dimensions

|Γ0| = |Γ1| = 𝐿𝑥 = 1, 2 or 5, 𝐿𝑦 = 12

respectively denoted 𝑇1, 𝑇2, 𝑇5.
∙ bottle-like domains (for which |Γ0| < |Γ1|) with 𝐿𝑦 = 12 and “upper” width |Γ0| = 1 and “lower” width
|Γ1| = 2 or 5; these domains are respectively denoted 𝐵1−2 and 𝐵1−5.

In each simulation the computational mesh is generated with 20 nodes per unit length and the time-step is set
to ∆𝑡 = 0.1. The boundary condition at Γ1 reduces to a free outlet condition (as the 0D model parameters are
set to 0) and the applied pressure at Γ0 is (still) denoted 𝑔0.

As expected A1 and A2 (resp.: B1 and B2; C1 and C2) give the very same results (Fig. 7). We see that
increasing the radius of the tube leads to instable Navier–Stokes simulations for the same applied pressure. This
is due to the fact that resistance of the tube 𝑇5 is much smaller than the one of 𝑇1 𝑇2 and thus the Reynolds
number is higher in this case. When considering a bottle, even for small values of the in/outlet surfaces (which
provides stable simulations in the case of a tube), instabilities appear but only when the flow enters through
the smaller inlet. It shows the influence of the ratio Γ0

Γ1
and more generally of the geometry on the stability for

the Navier–Stokes system with Neumann boundary conditions (and incoming flows) (Fig. 8).

5.5. On the backflow in the RCR model

In this subsection we illustrate the emergence of backflows in the context of RCR or RC models. In Experi-
ment 8, we consider the Stokes system with

𝜌 = 1.2× 10−3, 𝜇 = 2× 10−5, 𝛼 = 𝛽 = 𝛾 = 0.

We report several simulations in a tubular domain with dimensions 𝐿𝑥 = 2 and 𝐿𝑦 = 12. The boundary
condition at Γ1 is associated to a RCR model and the applied pressure at Γ0 is (still) denoted 𝑔0 = +1. The
RCR model is obtained with

𝛼 = 𝑅𝑝 · 𝐿𝑥, 𝛽 = 0, 𝛾 = 𝐶−1 · 𝐿𝑥, 𝜏 = 𝑅𝑑 · 𝐶

and we will use the following values for 𝑅𝑝 and 𝐶

𝑅𝑝 = 5× 10−2, 𝐶 = 0.2,

whereas we will make the magnitude of 𝑅𝑑 varies.
First let us deal with the implicit scheme. Using a time step ∆𝑡 = 0.1 and a distal resistance 𝑅𝑑 = 5 provides

a stable simulation which reveals at the beginning the emergence of a backflow phenomenon which vanishes as
the solution relaxes to steady state velocity. The backflow phenomenon is characterized at the boundaries by a
normal velocity distribution which is not signed. Several observations can be made:

∙ From the reference situation we increase the value of the distal resistance. We observe that the backflow is
enhanced by increasing values of 𝑅𝑑, see Figure 9 (actually, at 𝑡 = 0.5, the backflow phenomenon has nearly
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Figure 7. Velocity field for the Navier–Stokes model in a tube. A1) in the domain 𝑇1 with
pressure drop 𝑔0 = −2 at time 𝑡 = 15 (distribution close to a steady state). B1) in the domain
𝑇2 with pressure drop 𝑔0 = −2 at time 𝑡 = 15 (distribution close to a steady state). C1) in the
domain 𝑇5 with pressure drop 𝑔0 = −2 at time 𝑡 = 5 (the numerical solution is unphysical).
A2) in the domain 𝑇1 with pressure drop 𝑔0 = +2 at time 𝑡 = 15 (distribution close to a steady
state). B2) in the domain 𝑇2 with pressure drop 𝑔0 = +2 at time 𝑡 = 15 (distribution close to
a steady state). C2) in the domain 𝑇5 with pressure drop 𝑔0 = +2 at time 𝑡 = 5 (the numerical
solution is unstable).

vanished for 𝑅𝑑 = 5). In particular, the simulation remains stable even for large values of 𝑅𝑑 (including the
RC model for which 𝑅𝑑 = +∞) and the persistence time of the phenomenon is increased with increasing
values of 𝑅𝑑 until reaching a limit regime (which is rapidly obtained, as only minor distribution differences
are observed between 𝑅𝑑 = 50 and 𝑅𝑑 = 500).
Figure 10 presents a series of temporal snapshots exhibiting the backflow phenomenon for 𝑅𝑑 = 50.
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Figure 8. Velocity field for the Navier–Stokes model in a bottle-like geometry. A1) in the
domain 𝐵1−2 with pressure drop 𝑔0 = −2 at time 𝑡 = 15 (distribution close to a steady state).
B1) in the domain 𝐵1−5 with pressure drop 𝑔0 = −2 at time 𝑡 = 15 (distribution close to
a steady state). A2) in the domain 𝐵1−2 with pressure drop 𝑔0 = +2 at time 𝑡 = 12 (the
numerical solution is unphysical). B2) in the domain 𝐵1−5 with pressure drop 𝑔0 = +2 at time
𝑡 = 10 (the numerical solution is unstable).
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Figure 9. Numerical solution for the Stokes-RCR model with implicit coupling. Backflow
phenomenon at time 𝑡 = 0.5 for different values of the distal resistance: 𝑅𝑑 = 5, 10, 25, 50. The
velocity field is represented at different altitudes of the tube: 𝑦 = 0 (lower outlet), 𝑦 = 6 and
𝑦 = 12 (upper outlet) all over the width of the tube, i.e. 𝑥 ∈ (−1, 1).

∙ The previous simulation with 𝑅𝑑 = 50 and ∆𝑡 = 0.1 has led to the backflow phenomenon. If we now reduce
the distal resistance (e.g 𝑅𝑑 = 0.5) with the same time step ∆𝑡 = 0.1, then the backflow is skipped and not
observed anymore; if, in turn, we divide the time step (e.g 𝑅𝑑 = 0.5 with ∆𝑡 = 0.01), then the backflow
phenomenon is recovered: this illustrates the fact that the backflow is physically relevant and it is numerically
captured provided ∆𝑡 < 𝜏 .

Now let us deal with the explicit scheme. Simulation with ∆𝑡 = 0.1 and 𝑅𝑑 = 5 reveals unphysical oscillations
and it is to be noticed that these oscillations do not blow up but rather exponentially grow up in time (in a
similar way as what is described in Fig. 5). The oscillations are unphysical as they are directly driven by the
time step (flow reversal occurs at each numerical time step). For the same data except the time step, which is
now ∆𝑡 = 0.01 we observe that the numerical solution exhibits an oscillatory phenomenon (with a characteristic
time which is much greater than the time step) along with a backflow phenomenon; moreover the magnitude of
the oscillations tends to damp with time, see Figure 11.
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Figure 10. Numerical solution for the Stokes-RCR model with implicit coupling. Backflow
phenomenon at time 𝑡 = 0.2, 0.4, 0.6, 0.8, 1.0 and relaxation of the phenomenon at a longer
time 𝑡 = 5 for 𝑅𝑑 = 50 and ∆𝑡 = 0.1. The velocity field is represented at different altitudes of
the tube: 𝑦 = 0 (lower outlet), 𝑦 = 6 and 𝑦 = 12 (upper outlet) all over the width of the tube,
i.e. 𝑥 ∈ (−1, 1).
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Figure 11. Numerical solution for the Stokes-RCR model with explicit coupling at time 𝑡 =
0.05, 0.07, 0.09, 0.22, 0.28, 0.37 (with 𝑅𝑑 = 5 and ∆𝑡 = 0.01). At 𝑡 = 0.07, the backflow
phenomenon has appeared; at 𝑡 = 0.09, the compliance of the 0D model has led to a reversal
flow; at 𝑡 = 0.22, the flow has gone back to a classical Poiseuille-like situation; at 𝑡 = 0.28, a
backflow phenomenon has appeared again leading to a reversal flow (with smaller amplitude
than before); at 𝑡 = 0.37, the Poiseuille-like situation is recovered with a velocity magnitude
which is smaller than before.
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Figure 12. Simulation of the Stokes-RCR model with implicit coupling and a time-step ∆𝑡 =
0.01. Evolution of the flux at the upper boundary: 𝑡 ↦→ 𝑞(𝑡) := 𝐿𝑥

∫︀
Γ0

u(𝑡, ·) ·n. a) for moderate
to large values of 𝑅𝑑; b) for small to moderate values of 𝑅𝑑.
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Figure 13. Simulation of the Stokes-RCR model with a time-step ∆𝑡 = 0.01 with the explicit
and implicit schemes. Evolution of the flux at the upper boundary: 𝑡 ↦→ 𝑞(𝑡) := 𝐿𝑥

∫︀
Γ0

u(𝑡, ·) ·n
for different values of the distal resistance 𝑅𝑑.

Now let us investigate the influence of the distal resistance 𝑅𝑑 over the magnitude of the backflow phenomenon
and the flow reversals. Figure 12, obtained using the implicit coupling, shows that the distal resistance has an
impact on the phenomenon by focusing on the flux at the inlet with respect to time:

∙ for small values of 𝑅𝑑 (from 0 to 5 × 10−2 in the experiment), no flow reversal is observed as the flux is
negative, monotonic in time and converges in time to a stationary value.

∙ for moderate values of 𝑅𝑑 (from 1×10−1 to 1×10+0 in the experiment), the flux is not monotonic: backflow
phenomenon is identified even if it is not sufficient to generate flow reversal.

∙ for large values of 𝑅𝑑 (from 5× 10+0 to 5× 10+2 in the experiment), flow reversal is observed as the the flux
may become positive. Actually oscillations may occur, with damped amplitude and it is to be noticed that
both the (finite) number and the magnitude of flow reversals depend on the value of the distal resistance
𝑅𝑑.

Note that the asymptotic regime (𝑅𝑑 → +∞) corresponding to the RC model is nearly reached for 𝑅𝑑 = 50
or 500, as the two situations cannot be really distinguished in Figure 12a: flow reversal occurs around the
asymptotic flux whereas, for finite values of 𝑅𝑑, oscillations do not occur when time increases.

Finally let us observe how the scheme (implicit or explicit) captures the backflow phenomenon. Using a small
time-step ∆𝑡 = 0.01 (that guarantees the stability of the explicit scheme) for both schemes, Figure 13 presents
the evolution of the flux at the inlet for different values of 𝑅𝑑 with both schemes. It is to be noticed that the
backflow phenomenon is overestimated by the explicit scheme.

Concluding remarks can be done from simulations that are not presented here:
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∙ As a concluding observation with respect to the distal resistance for the explicit scheme, using 𝑅𝑑 ∈ {0.5−
500} with ∆𝑡 = 0.01 provides stable simulations leading to relaxation that may include both physical
oscillations and backflow phenomena whereas ∆𝑡 = 0.1 leads to unphysical oscillations with exponential
growth. Thus for the RCR model, the distal resistance does not seem to play a role in the stability of the
simulation with the explicit scheme.

∙ As a concluding observation with respect to 𝐶 for the explicit scheme (in the stable simulations), the higher
the compliance value is, the later the backflow phenomenon occurs. Note that this is conform with the fact
that, when 𝐶 increases, the relaxation time 𝜏 = 𝑅𝑑𝐶 also increases.

Finally note that test cases where the physical behaviour underlying 0D models has been investigated. In
particular some backflows have been obtained. Remark that we we not able to get simulations with backflows
which could induce instabilities for the Navier–Stokes system. Yet using stabilization techniques as in [1, 3, 4,
12,28] may kill these backflow phenomena which are however contained in the 0D model.

6. Conclusion

In this paper we derived energy or stability estimates and existence results for Stokes–Windkessel and Navier–
Stokes–Windkessel models, both in the continuous setting and in the semi-discrete one with implicit or explicit
coupling. One of the key ingredients in the derivation is the control of an auxiliary volume associated to the 0D
model. This property is obtained by taking the velocity field u as a test function in the variational formulation
for both Stokes and Navier–Stokes regimes. Nevertheless in the Navier–Stokes regime, it is not sufficient to
obtain a stability estimate; in this case we have to consider a combination of the previous estimate with another
one in which 𝐴𝜇,𝛼u is used as a test function, where 𝐴𝜇,𝛼 is a new Stokes-like operator adapted to our coupled
system. This enables us to control both the convective term and the auxiliary volume.

In particular, we have shown that for the standard Windkessel model used in blood flow modeling, namely
the RCR model (for which 𝛼 > 0, 𝛽 = 0, 𝛾 > 0 and 0 < 𝜏 < +∞), “energy” dissipation holds true and can be
also derived when considering the Navier–Stokes system under smallness assumptions on the data. Meanwhile
the standard Windkessel model used in airflow modeling (for which 𝛼 > 0, 𝛽 = 0, 𝛾 > 0 and 𝜏 = +∞) is
not dissipative, leading to restrictive conditions – on the time step, on the data, on the final time – for the
stability of the Navier–Stokes system even for the implicit coupling; this echoes the numerical simulations of
such coupled problems for which instabilities arise leading to the use of stabilization techniques that make it
possible to get away from smallness conditions on the data or, at least, give access to a larger range of data,
see [5] where benchmark tests are performed for various stabilization methods. When considering an explicit
coupling for the Navier–Stokes system, in both cases (RCR and RC models), “energy” dissipation does not hold
anymore; stability estimates are derived but they require the same type of restrictive conditions.

We also paid attention to the dependency on the various physical parameters. Even if some of these constants
are not explicit and depend on the geometry (such as the Poincaré constant, for instance) and thus on the
considered test case, the derived estimates and their related validity conditions give a good insight into the
behaviour of coupled systems according to the underlying fluid involved. For instance increasing the inertance
in the 0D model (namely taking greater values for 𝛽) which is always treated in an implicit way stabilizes the
semi-discretized system for the Stokes regime whereas it leads to a more restrictive smallness condition on the
data in the Navier–Stokes regime.
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