Fast solver for quasi-periodic 2D-Helmholtz scattering in layered media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2445-2472

We present a fast spectral Galerkin scheme for the discretization of boundary integral equations arising from two-dimensional Helmholtz transmission problems in multi-layered periodic structures or gratings. Employing suitably parametrized Fourier basis and excluding cut-off frequencies (also known as Rayleigh-Wood frequencies), we rigorously establish the well-posedness of both continuous and discrete problems, and prove super-algebraic error convergence rates for the proposed scheme. Through several numerical examples, we confirm our findings and show performances competitive to those attained via Nyström methods.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021053
Classification : 65N35, 65N38, 45M15, 78A45
Keywords: Boundary integral equations, quasi-periodic scattering, spectral elements, gratings, multi-layered domain
@article{M2AN_2021__55_5_2445_0,
     author = {Pinto, Jos\'e and Aylwin, Ruben and Jerez-Hanckes, Carlos},
     title = {Fast solver for quasi-periodic {2D-Helmholtz} scattering in layered media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2445--2472},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021053},
     mrnumber = {4329968},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021053/}
}
TY  - JOUR
AU  - Pinto, José
AU  - Aylwin, Ruben
AU  - Jerez-Hanckes, Carlos
TI  - Fast solver for quasi-periodic 2D-Helmholtz scattering in layered media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2445
EP  - 2472
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021053/
DO  - 10.1051/m2an/2021053
LA  - en
ID  - M2AN_2021__55_5_2445_0
ER  - 
%0 Journal Article
%A Pinto, José
%A Aylwin, Ruben
%A Jerez-Hanckes, Carlos
%T Fast solver for quasi-periodic 2D-Helmholtz scattering in layered media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2445-2472
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021053/
%R 10.1051/m2an/2021053
%G en
%F M2AN_2021__55_5_2445_0
Pinto, José; Aylwin, Ruben; Jerez-Hanckes, Carlos. Fast solver for quasi-periodic 2D-Helmholtz scattering in layered media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2445-2472. doi: 10.1051/m2an/2021053

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. In: Vol. 55 Courier Corporation (1965). | MR | Zbl

[2] H. Ammari, Scattering of waves by thin periodic layers at high frequencies using the on-surface radiation condition method. IMA J. Appl. Math. 60 (1998) 199–214. | MR | Zbl | DOI

[3] H. Ammari and J. C. Nédélec, Analysis of the Diffraction from Chiral Gratings. In: Mathematical Modeling in Optical Science. SIAM (2001) 179–206. | MR | Zbl | DOI

[4] H. Ammari and G. Bao, Coupling of finite element and boundary element methods for the scattering by periodic chiral structures. J. Comput. Math. 26 (2008) 261–283. | MR | Zbl

[5] R. Aylwin, C. Jerez-Hanckes and J. Pinto, On the properties of quasi-periodic boundary integral operators for the Helmholtz equation. Integral Equ. Oper. Theory 92 (2020) 17. | MR | DOI

[6] R. Aylwin, G. Silva-Oelker, C. Jerez-Hanckes and P. Fay, Optimization methods for achieving high diffraction efficiency with perfect electric conducting gratings. J. Opt. Soc. Am. A 37 (2020) 1316–1326. | DOI

[7] G. Bao, Variational approximation of Maxwell’s equations in biperiodic structures. SIAM J. Appl. Math. 57 (1997) 364–381. | MR | Zbl | DOI

[8] G. Bao, Recent mathematical studies in the modelling of optics and electromagnetics. J. Comput. Appl. Math. 22 (2004) 148–155. | MR | Zbl

[9] G. Bao and D. C. Dobson, On the scattering by a biperiodic structure. Proc. Am. Math. Soc. 128 (2000) 2715–2723. | MR | Zbl | DOI

[10] G. Bao, D. C. Dobson and J. A. Cox, Mathematical studies in rigorous grating theory. J. Opt. Soc. Am. A 12 (1995) 1029–1042. | MR | DOI

[11] A. Barnett and L. Greengard, A new integral representation for quasi-periodic scattering problems in two dimensions. BIT Numer. Math. 51 (2011) 67–90. | MR | Zbl | DOI

[12] Y. Boubendir, V. Dominguez and C. Turc, High-order Nyström discretizations for the solution of integral equation formulations of two-dimensional Helmholtz transmission problems. IMA J. Numer. Anal. 36 (2014). | MR

[13] O. P. Bruno, M. C. Haslam, Efficient high-order evaluation of scattering by periodic surfaces: deep gratings, high frequencies, and glancing incidences. JOSA A 26 (2009) 658–668. | MR | DOI

[14] O. P. Bruno and B. Delourme, Rapidly convergent two-dimensional quasi-periodic Green’s function throughout the spectrum – including Wood anomalies. J. Comput. Phys. 262 (2014) 262–290. | DOI

[15] O. P. Bruno and A. G. Fernandez-Lado, Rapidly convergent quasi-periodic Green’s functions for scattering by arrays of cylinders – including Wood anomalies. Proc. R. Soc. A 473 (2017) 20160802. | MR | DOI

[16] O. P. Bruno, S. P. Shipman, C. Turc and S. Venakides, Superalgebraically convergent smoothly windowed lattice sums for doubly periodic green functions in three-dimensional space. Proc. R. Soc. A 472 (2016) 20160255. | MR | DOI

[17] O. P. Bruno, S. P. Shipman, C. Turc and V. Stephanos, Three-dimensional quasi-periodic shifted Green’s function throughout the spectrum, including Wood anomalies, Proc. R. Soc. A 473 (2017) 20170242. | MR | DOI

[18] Y. B. Chen and Z. Zhang, Design of tungsten complex gratings for thermophotovoltaic radiators. Opt. Commun. 269 (2007) 411–417. | DOI

[19] M. H. Cho and A. H. Barnett, Robust fast direct integral equation solver for quasi-periodic scattering problems with a large number of layers. Opt. Express 23 (2015) 1775–1799. | DOI

[20] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). | MR | Zbl | DOI

[21] D. C. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure. J. Math. Anal. Appl. 166 (1992) 507–528. | MR | Zbl | DOI

[22] J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. Part i: direct problems and gradient formulas. Math. Methods Appl. Sci. 21 (1998) 1297–1342. | MR | Zbl | DOI

[23] I. G. Graham and I. H. Sloan, Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ℝ3. Numer. Math. 92 (2002) 289–323. | MR | Zbl | DOI

[24] L. Greengard, K. L. Ho and J. Y. Lee, A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions. J. Comput. Phys. 258 (2014) 738–751. | MR | DOI

[25] F. Q. Hu, A spectral boundary integral equation method for the 2D Helmholtz equation. J. Comput. Phys. 120 (1995) 340–347. | MR | Zbl | DOI

[26] C. Jerez-Hanckes and J. Pinto, High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs. ESAIM: M2AN 54 (2020) 975–2009. | MR | Numdam | DOI

[27] A. Kirsch, Diffraction by Periodic structures. In: Inverse Problems in Mathematical Physics. Springer (1993) 87–102. | MR | Zbl | DOI

[28] R. Kress, Linear Integral Equations, 3rd edition. In: Applied Mathematical Sciences (2014). | MR | Zbl

[29] C. M. Linton, The Green’s function for the two-dimensional Helmholtz equation in periodic domains. J. Eng. Math. 33 (1998) 377–401. | MR | Zbl | DOI

[30] Y. Liu and A. Barnett, Efficient numerical solution of acoustic scattering from doubly-periodic arrays of axisymmetric objects. J. Comput. Phys. 324 (2016) 226–245. | MR | DOI

[31] E. G. Loewen and E. Popov, Diffraction Gratings and Applications. CRC Press (2018). | DOI

[32] W. C. H. Mclean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). | MR | Zbl

[33] Y. Nakata and M. Koshiba, Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings. JOSA A 7 (1990) 1494–1502. | DOI

[34] J. C. Nédélec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations. SIAM J. Math. Anal. 22 (1991) 1679–1701. | MR | Zbl | DOI

[35] D. Nguyen, Spectral methods for direct and inverse scattering from periodic structures. Ph.D. thesis, École Polytechnique (2012).

[36] E. Popov, Gratings: Theory and Numeric Applications. Popov, Institut Fresnel (2012).

[37] J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer Science & Business Media (2013). | MR | Zbl

[38] S. A. Sauter and C. Schwab, Boundary Element Methods. In: Vol. 39 Springer Series in Computational Mathematics (2011). | MR | Zbl | DOI

[39] G. Silva, C. Jerez-Hanckes and P. Fay, High-temperature tungsten-hafnia optimized selective thermal emitters for thermophotovoltaic applications. J. Quant. Spectrosc. Radiat. Transf. 231 (2019) 61–68. | DOI

[40] G. Silva-Oelker, R. Aylwin, C. Jerez-Hanckes and P. Fay, Quantifying the impact of random surface perturbations on reflective gratings. IEEE Trans. Antennas Propag. 66 (2018) 838–847. | MR | DOI

[41] F. Starling and A. S. Bonnet-Bendhia, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Methods Appl. Sci. 17 (1994) 305–338. | MR | Zbl | DOI

[42] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer Science & Business Media (2007). | MR | Zbl

[43] M. Taibleson, Fourier coefficients of functions of bounded variation. In: Vol. 18 Proc. Amer. Math. Soc. (1967). | MR | Zbl

[44] L. N. Trefethen, Spectral Methods in Matlab. In: Society for Industrial and Applied Mathematics, USA (2000). | MR | Zbl

[45] B. Zhang and S. N. Chandler-Wilde, A uniqueness result for scattering by infinite rough surfaces. SIAM J. Appl. Math. 58 (1998) 1774–1790. | MR | Zbl | DOI

[46] Y. Zhang and A. Gillman, A fast direct solver for two dimensional quasi-periodic multilayered medium scattering problems. Preprint (2019). | arXiv | MR

Cité par Sources :