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FAST SOLVER FOR QUASI-PERIODIC 2D-HELMHOLTZ SCATTERING IN
LAYERED MEDIA

JOSE PINTO®, RUBEN AYLWIN® AND CARLOS JEREZ-HANCKES*

Abstract. We present a fast spectral Galerkin scheme for the discretization of boundary integral equa-
tions arising from two-dimensional Helmholtz transmission problems in multi-layered periodic struc-
tures or gratings. Employing suitably parametrized Fourier basis and excluding cut-off frequencies (also
known as Rayleigh-Wood frequencies), we rigorously establish the well-posedness of both continuous
and discrete problems, and prove super-algebraic error convergence rates for the proposed scheme.
Through several numerical examples, we confirm our findings and show performances competitive to
those attained via Nystrom methods.
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1. INTRODUCTION

A vast number of scientific and engineering applications rely on harnessing acoustic and electromagnetic
wave diffraction by periodic and/or multilayered domains. Current highly demanding operation conditions
for such devices require solving thousands of specific settings for design optimization or the quantification
of shape or parameter uncertainties in the relevant quantities of interest, challenging the scientific computing
community to continuously develop ever more efficient, fast and robust solvers (¢f. [8,18,31,39,40] and references
therein). Assuming impinging time-harmonic plane waves, scattered and transmitted fields have been solved by
a myriad of mathematical formulations and associated solution schemes. These range from volume variational
formulations to various boundary integral representations and equations (cf. [2,3,9,11,21,33]), pure or coupled
implementations of finite and boundary element methods (cf. [3,4,22,34,40] or [36], Chap. 5) and Nystrom
methods [13,16,19, 24, 30].

In this work, we build upon our theoretical review [5] and present a spectral Galerkin method for solv-
ing second-kind direct boundary integral equations (BIEs) for the Helmholtz transmission problem for two-
dimensional, periodic multi-layered gratings with smooth interfaces. Contrary to the low-order local basis
functions used in the standard boundary element method, spectral bases are composed of high-order poly-
nomials whose support lie on the whole scatterer boundary or on large portions of it. Successfully employed on
two- and three-dimensional scattering problems [23, 25, 26], the main advantage of a spectral discretization is
the ability to converge at a super-algebraic rate whenever solutions are smooth enough. Hence, our proposed
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method can in practice compete with Nystréom methods while simultaneously inheriting all of the theoretical
aspects of classical Galerkin methods.

In two dimensions, spectral methods are closely related to the theory of periodic pseudo-differential operators
[37], since the discretization through spectral elements can be interpreted as a truncation of the associated
Fourier series where the action of the operators is well understood. We show that wave scattering by periodic
domains is closely connected to the bounded domain case, making it possible to reuse almost all the pseudo-
differential operator theory for our analysis. Key to our analysis are the results in [22,34,41] regarding the unique
solvability and eigenvalues of the associated volume problem. From here, we deduce that our BIE is uniquely
solvable except at a countable set of wavenumbers composed of cut-off frequencies — wavenumbers for which the
series defining the quasi-periodic Green’s function is not convergent, also known as Rayleigh-Wood frequencies
— and of eigenvalues of the Helmholtz transmission problem. Mindless of the several remedies developed to
tackle cut-off frequencies through BIEs [14,15,17,19], we choose to avoid them as they are not captured by our
previous analysis in [5].

Our discretization method employs a quasi-periodic basis so that techniques forcing the quasi-periodicity of
the discrete solutions are not necessary (cf. [24,46]). Instead, an accurate approximation of the quasi-periodic
Green’s function is required in order to extract its Fourier coefficients through the fast Fourier transform (FFT).
Moreover, we prove that the chosen discretization basis enjoys a super-algebraic convergence rate on the degrees
of freedom, which we then confirm through numerical experiments. In [35], a similar quasi-periodic exponential
basis was employed to approximate solutions of a volume integral formulation.

The article is structured as follows. Section 2 presents the notation used throughout as well as the required
quasi-periodic Sobolev spaces setting following [5]. In Section 3 we state the Helmholtz transmission problem
for a multi-layered grating and study its solvability. Section 4 is concerned with the properties of quasi-periodic
boundary integral operators (BIOs) along with an existence and uniqueness result for our BIEs. Section 5
provides rigorous error convergence rates of the spectral method and briefly describes the numerical algorithm
used to compute the matrix entries associated with each integral operator. Numerical results are discussed in
Section 6, followed by concluding remarks on Section 7.

2. NOTATION AND FUNCTIONAL SPACE SETTING

2.1. General notation

We denote the imaginary unit 2. Boldface symbols signal vectorial quantities while greek and roman letters
indicate data over boundaries and volumes, respectively. Canonical vectors in R? are denoted eq, e respectively.
Also, we make use of the symbols <, 2 and 2 to avoid specifying constants irrelevant for the corresponding
analysis.

Let H be a given Banach space. We shall denote its norm as ||-||; and its dual space by H’ (set of antilinear
functionals over H) with dual product denoted by (-,-). If H is a Hilbert space, the inner product between two
of its elements, = and y, is written as (z,y) . Moreover, if H is a Hilbert space over the complex field, the inner
product will be understood in the anti-linear sense.

For an open domain © C R2?, its boundary shall be denoted as 9. Moreover, for any @ C R? such that
Q) C O, we introduce the closure of 2 relative to O as ﬁo := QN O and the boundary of Q relative to O as
990 := 07\ Q.

For n € Ny := NU {0}, we denote by C™"(Q2) the set of scalar functions over  with complex values and
continuous derivatives up to order n. C*>(2) refers to the space of functions with infinite continuous derivatives
over ). We shall also make use of the following subset of C>(£2):

D) :={ueC>®(Q) : supp u CC Q}.

The space of p-integrable functions (for p > 1) with complex values over € is denoted as LP(f).
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We say that a one-dimensional curve I' is a periodic boundary of class C™ Lforre N, if it is the restriction
of a xp-periodic curve [ that may be parametrized by a periodic function z : R — I" which has r Lipschitz-
continuous derivatives and a non-vanishing tangential vector. The first derivative of the parametrization is
denoted as z. Moreover, we say that I' is a periodic boundary of class C™ if it is of class C™! for every r € Ny
— we will also use the notation C>! to refer same class, i.e. C>! = C>.

Throughout, we will consider periodic geometries along e; with a fixed period of 27. Moreover, we say that
a continuous function f is a f-quasi-periodic function if

f(x+2me;) =™ f(x) VaxeR?

where the quasi-periodic shift € is always assumed to be in [0, 1). Finally, we define the canonic periodic cell on
R? as G := (0,27) x R (see Fig. 1).

2.2. Quasi-periodic Sobolev spaces

We denote by Dy (R?) the space of #-quasi-periodic functions in C*°(R?) that vanish for large |22/, and denote
by Dj(R?) the space of f-quasi-periodic distributions, which can be seen as the dual space of Dy(R?) (cf. [5],
Prop. 2.4). For G as before, we introduce Dy(G) the space of restrictions to G of elements in Dy (R?). Moreover,
for any open domain 2 C G we define Dy(£2) as the set of elements of Dy(G) with compact support on Q and
D, () as the space of elements of Dj(G) restricted to Dy(12). In what follows, for all j € Z we define jg := j+6.

Proposition 2.1 ([5, Prop. 2.6]). Every u € Dp(R?) can be represented as a Fourier series, i.e.,

, 1 [
u(x) = Zuj(xg)e”exl with  u;(x2) = —/O e~ oty (x) day,

£ 27
JEZ

so that u; € D(R). On the other hand, every element F € Djy(R?) can be identified with a formal Fourier series
given by

P D(R
ST Fjetion with  Fj o= ®) —C o
= v — F(v(zq)eo™1)

where F; € D'(R) for all j € Z and F(u) = Y Fj(u;).
JEL

Let s € R. We define the 6-quasi-periodic Sobolev space of order s on G as follows,

Hj(G) = F € Dy(R?)

> [ i+ iery

JEZ

o] dg < oot

wherein ﬁj is the Fourier transform (in distributional sense [42], Sect. 2.4) of F}, defined as in Proposition 2.1.
Additionally, we introduce the common notation LZ(G) := Hg(G) and note that, as in the standard case, Hj(G)
is a Hilbert space ([5], Prop. 2.8). Furthermore, for an open proper subset 2 of G, we define Hj () as the Hilbert
space of restrictions to 2 of elements of Hj(G) (see [5], Sect. 2 and [32], Chap. 3.6). Finally, local Sobolev spaces
on () are defined as

Hj 1o () :={ueDy() : ue Hy(QN{x e : |22l <R}) Y R>0}.



2448 J. PINTO ET AL.

2.3. Quasi-periodic Sobolev spaces on boundaries and traces

We begin by considering spaces of periodic functions over R. As in Definition 8.1 of [28], Section 5.3 of [37],
we define Sobolev spaces on [0, 27] of order s > 0 as follows,

H[0,27] :={ ¢ € L2((0,2m)) + > (1453 |¢|* <0 ¢,
JEL

where {¢;};cz are the Fourier coefficients of ¢. Quasi-periodic spaces of order s > 0 over (0,27) are defined
from H®[0, 27| straightforwardly, i.e.,

H[0,27] := {¢ € L*((0,2m)) : e "*'¢(t) € H®[0,27]}.

Both H*®[0,27] and Hj|[0,2n] are Hilbert spaces, as are their respective dual spaces, denoted respectively
H~*[0,2n] and H, *[0,27] (see [28], Thm. 8.10 and [5], Thm. 2.20). Moreover, for s € R, the inner product and
norm of H[0,27] are given by:

1
(U7U)Hg[07271'] = Z(l +3j)°uj0059 and ||U||Hg[o,27r] = (Uau)ir;[o,zw]v
JEL

wherein, for positive s, we define
e 1 ). eWet
Uj.0 = % (U( ),6 )LQ((O,QTF)) )

and the product is extended through duality to negative s (¢f. [5], Thms. 2.16 and 2.20).
Let T be a periodic boundary of class C* and let z : (0,27) — I' be a C* parametrization of I'. Then, for
any s > 0, we define the #-quasi-periodic Sobolev space of order s on I' as

Hi(T) :={ue L§(T) | (uoz)(t) € H;[0,27]},
with norm,
||U||Hg(1“) = [luo zHHg[o,er] :
We define H, *(T') as the completion of L2(T') under the norm given by
||UHH;°‘(F) = [|(u o 2) [|Z]|ge ||H;°‘[o,2ﬂ]'

Norms and inner products for these spaces are given through their respective pullbacks to Hj[0,2n] and
H,*[0,2r]. Moreover, H, *(T") is identified with the dual space of Hj(T') ([5], Thm. 2.26) where the duality
is given by the extension of the following anti-linear form:

(N D) = ()‘719)L3(F) . N9 € LE(D). (2.1)
We also define the following space of smooth functions over T,
n .
Dy(l):={¢:T —=C ‘ (poz)(t) = Z p;eet, for somen € N 3,
Jj=—n

which is dense in Hj(T') for any s € R.
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FIGURE 1. Example of a domain 2 C G with 990 =T.¢ encompasses the unbounded area
between dashed lines, while Q2 and G \ﬁg correspond to the shaded and unshaded portions,

respectively. Trace operators v and +¢ act from 2 and G \ﬁg towards I', respectively.

Finally, we introduce trace operators acting on quasi-periodic Sobolev spaces. Let 2 be a proper, open subset
of G such that 99Q =T, we define the following operators for s > %:
s s—% e s a9 s—3
v : Hy(Q2) — Hg (), ~vp:Hg(G\Q) — He 2(I),

that extend the notion of the restriction operator u — u|r to quasi-periodic Sobolev spaces ([5], Thm. 2.29). In
this context, vp and 75, are, respectively, the interior and exterior Dirichlet traces. Analogously, for s > %, we
denote the interior and exterior Neumann traces on {2 as

S

ync HY(Q) — Hy 3(T), A& Hy(G\ Q%) — Hy (),

extending the normal derivative u — Vu|r - n, where n is — for both traces — the unitary normal exterior to 2.
Moreover, introducing the subspace of elements of H, 01 (2) with integrable Laplacian,

HiA(Q):={ue Hj(Q) : Aue L)},
the Neumann trace may be extended as
1 . —g 1
I Hga(Q) = Hy * (D), 2% Hga(G\ Q) — Hy * (1),

through integration by parts (cf. [5], Sect. 2). All the previous results concerning trace operators follow analo-
gously (with obvious modifications) for both local spaces — in the case that  is unbounded — and if € is the
bounded space between two non-intersecting periodic curves I'; and I's. Finally, we denote the following vector
operators

yu = (ypu, W), You = (vhu,vxw)’ and  [yulr = you —yu,

as interior, exterior and jump trace vectors on I', respectively. Figure 1 exemplifies the aforementioned setting
as well as the action of the trace operators.

3. HELMHOLTZ PROBLEM IN PERIODIC LAYERED MEDIA

3.1. Geometric setting

We seek to establish a boundary integral representation for scattered and transmitted acoustic or electromag-
netic fields resulting from plane waves impinging a multi-layered grating. The domain is described by M € N
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9 o
o Iy
0 '

FI1GURE 2. Example of a multi-layered grating. G is highlighted and the dashed lines represent
its boundaries at 0 and 2.

finite non-intersecting periodic surfaces {F }1  — ordered downwards — separating M + 1 periodic domains
{Q M ) such that for 0 < i < M it holds (’99 = f U I‘ZH, GQO = I‘1 and 8QM FM (see Fig. 2). Moreover,
while all domains {Qz}i:o are unbounded along e; — due to their periodicity — only two of them, namely Qo and
Q M, are unbounded in the second spatial dimension (along e3). The restrictions of the aforementioned domains

and surfaces to the periodic cell G are denoted by:
Q:=0NG Vie{0,....M}, T;:=0,nG VYje{l,...,M}.

Additionally, we choose H > 0 so that

M—1
Q C{zxeG : |z < H}
i=1
holds. We will assume that the interfaces I'; , i € {1,..., M}, are all periodic boundaries of class C*°. Further-
more, for each i € {1,..., M}, the exterior and interior trace operators on I'; are understood as

1 1
V6 Hg(Qim1) — Hg (Ty), o : Hy () — Hg (Ty),
1 _1
W Hoa(Qio1) — Hy *(Ty) and w: Hy A(Q) — Hy 2 (1),

and the normal vector on I'; is chosen to point towards €2;_1.

3.2. Helmholtz transmission problem on periodic media

For a time-dependence e~** for some frequency w > 0, let the previously described grating be illuminated
by an incident plane wave,

u(inc) (13) — ezk0~a: — ez(ko,1w1+ko,2x2)7
where ko = (ko 1, ko 2) € R?. Furthermore, we denote kg := |ko|.

For ¢+ = 0,..., M, the material filling each domain €2; is assumed to be homogeneous and isotropic with
refraction index 7; — we assume 79 = 1 — and wavenumber k; := wc{l = n;ko, where ¢; is the wave speed in €);.
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Throughout this section, we fix 6 as the unique real in [0,1) such that § = kg 1 + n for some integer n and, for
all j € Z, we define

g . [VRZ3F ik -3i 20 san _ [VR,—05 k-3 20 51)
Jo Wiz -k ifkg—jg <0’ I Wiz — k3, ifki —ji <0’ ’

where as before jp = j + 0. With these definitions, we can state our volume problem as follows.

Problem 3.1 (Helmholtz transmission problem). We seek u(*°) defined as

u(tot) — u(inc) +wup in QOa
T in Q; forie{1,..., M},

where ug € H917100(Qo), upy € H91710C(QM) and u; € Hel(Ql) forall 1 <i < M — 1, such that

—(A+EHU) =0 inQNn{xeq : | <H}, Vie{0,...,M}, (3.2a)
['yu(t‘)t)] —0 only, Viel{l,... M), (3.2b)
©) (o FV i
uo(x) = Zugo)el(ﬁj (2 =H)+jom ) for zo > H, (3.2¢)
JEL
—gM T jox
up () = ZUE-M)J( G5 (@2t H) +joas ) for o < —H. (3.2d)
JEL

Equation (3.2b) represents the continuity of Dirichlet and Neumann traces across each interface. This condi-
tion can be generalized to include different transmission coefficients without much effort. The last two conditions,
namely (3.2¢) and (3.2d), correspond to radiation conditions for ug and uyy, also known as the Rayleigh-Bloch
expansions (cf. [34] for a detailed discussion), where {ugo)}jez and {u§kl)}jez are the corresponding Rayleigh
coefficients.

Through an analogous analysis to that presented in ([22], Sect. 3), one finds that — for a fixed choice of
geometries {I';}M, and refraction indices {n;}}4, — Problem 3.1 has a unique solution for all but a countable
number of wavenumbers kg as all wavenumbers k; for ¢ € {1,..., M} depend on k.

Assumption 3.2. The wavenumber kg is such that Problem 3.1 has a unique solution.

We shall make no further analysis of the volume problem as stated above, and limit ourselves to [7,10,22,27,
34,41,45] and references therein for more detailed analyses of the radiation condition of similar problems.

Remark 3.3. The restriction of the Helmholtz transmission problem in an infinite x;-periodic domain to a
single period is made possible by the quasi-periodicity of the plane wave ("), However, the same restriction,
as well as the forthcoming analysis, holds for any quasi-periodic boundary data.

4. BOUNDARY INTEGRAL EQUATIONS

Following our previous work [5], we introduce the quasi-periodic Green’s function and recall some relevant
properties. We then define the quasi-periodic single and double layer potentials and boundary integral operators
(BIOs) arising from taking their respective traces on the periodic boundaries {I';}}£,. To conclude this section,
we present an integral representation for the fields {u;}M, and a proof of unisolvency for the corresponding
BIE. As before, 6 € [0,1) will denote the quasi-periodic shift.
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4.1. Quasi-periodic fundamental solution
Consider a positive wavenumber k € R, we recall the definition of the cut-off frequencies.

Definition 4.1. We say k > 0 is a cut-off frequency, if there is j € Z, such that
lj+0] =k, (4.1)
where 6 is the previously fixed quasi-periodic shift.

These frequencies correspond to values where the quasi-periodic Green’s function can not be represented
in a traditional manner. While a number of alternatives have been developed to circumvent this issue, e.g.,
[15,17,19], their analysis is out of the scope of our present work. Hence, in what follows, we make the next
assumption.

Assumption 4.2. The wavenumber k > 0 is not a cut-off frequency for the given 6 € [0,1).
Under Assumption 4.2 we can define the §-quasi-periodic Green’s function as (cf. [29,34] and references therein)
GE(x,y) = lim Z e 2mOGR (z + 2mney, y), (4.2)

m—00
n=—m

for all x, y in R? such that © — y # 2mne; for all n € Z, wherein G*(x, y) is the fundamental solution for the
Helmholtz equation with wavenumber k, namely,

2
GHa.y) = [Hy" (k|2 — yllze).

where Hél)(-) denotes the zeroth-order first kind Hankel function. Moreover, the quasi-periodic Green’s function
is a fundamental solution of the Helmholtz equation in the following sense:

—(Ay+EH)GE(z,y) = Z §(x + 2mne; )er?™?
nez
for all x € R?, satisfying the radiation condition specified in the preceding section (cf. [34], Prop. 3.1).

Remark 4.3. If Assumption 4.2 is not met, the sum in (4.2) fails to converge for any pair of x, y € R.

4.2. Layer potentials and boundary integral operators
In this section, we will assume a given boundary I' satisfying the following assumption.
Assumption 4.4. Given r € [0,00], the interface T is a periodic boundary of class C™*.

We denote by Q the part of G below I' (see Fig. 2). For ¢ € Dy(T'), one can define the single and double layer
potentials as

SLg ro(a) = /F G(z,y)¢(y)dy, DL o(x) = /F wGh(z, y)o(y) dy, (4.3)

where v, , denotes the interior (with respect to 2) Neumann trace operator acting on functions with argument
Y.

Lemma 4.5 ([5], Thms. 4.7 and 4.10). Let k and T satisfy Assumptions 4.2 and 4.4 with r > 0, respectively.
Then, the single and double layer potentials can be extended as continuous operators acting on Sobolev spaces
as follows

s—1 sl 1
SLyr: Hy *(I) = H1,.(G) and DLy :Hy *(T) — Hyf(G\T). fors< g
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We then define BIOs by taking traces of the layer potentials:

1
Vg,r :=pSLor Kgfp = SLor + il’
1 (4.4)
Wg,r = — DLy K’g,p :=vpDLyr — 5I~

Moreover, due to the jump properties of the layer potentials ([5], Lem. 4.11), the following relations hold:

1
Vlg,r = ’YIE)SLO,F, Kle]fr = ’YﬁSLe,F - 5'»

1
Wir = —1§DLor. Kip=15DLor + o1

(4.5)

Remark 4.6. When considering interior and exterior traces acting on layer potentials, note that the normal
vector on I' is fized so that the only difference between exterior and interior traces is the direction from which
we approach I'. Additionally, note that, having fixed the normal vector to I', the choice of trace taken in the
definition of WQF is arbitrary and makes no difference.

Lemma 4.7 ([5], Thm. 4.10). Let k and T be as in Assumptions 4.2 and 4.4 with r > 0, respectively. Then,
for|s|] < %, the BIOs satisfy the following continuity conditions

VE L HYTE(D) = HYTE(D), WAL HITE(D) — H (D),
K Hy ?(T) — Hy (1), Kb Hy 2(D) — Hy 2(D).

4.2.1. Compacteness Properties

Until this point, we have established continuity properties of the four BIOs defined in (4.4). However, the
BIEs we consider in the coming section require the subtraction of two instances of the same BIO with different
wavenumbers. This requires a number of results from pseudo-differential operator theory [37] as well as a version
of the Rellich theorem on quasi-periodic Sobolev spaces on boundaries. We show that the difference between
any two of the operators in (4.4) — with different wavenumbers — will result in a compact operator.

Theorem 4.8 (Rellich Theorem for quasi-periodic Sobolev spaces). Let s1, s2 be real numbers such that s1 < $o
and 0 € [0,1). Then, Hy*(I") is compactly embedded in H,* (T').

Proof. Follows directly from the definition of the quasi-periodic spaces and the result for standard Sobolev
spaces (see [28], Thm. 8.3). O

Remark 4.9. No smoothness assumptions are needed for the proof of the previous theorem. Thus, it can be
extended to Lipschitz boundaries for any pair of real numbers s1, so < 1, and potentially less regular cases if
we restrict s1, s to be non-negative.

Theorem 4.10 ([37], Thm. 6.1.1). Let a : R x R — C be a 2w-bi-periodic function of class C* and S be a
2m-periodic distribution in R. Consider the following formal operator acting on a 2mw-periodic smooth function
u € C®(R):

2m
Au(s) = S(s —t)a(s,t)u(t)dt VY seR, (4.6)
0
where integration is to be understood as a duality pairing. Furthermore, let us assume the Fourier coefficients
of S to behave as
1Sn] < Inf?,
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for some p € R. Then, for any s € R, A in (4.6) may be continuously extended as an operator mapping from
H?[0,2n] to H*~P[0,27], i.e.,
A: H?[0,2n] — H®7P[0,27].

We also recall a classical result from Fourier analysis (cf. [43]).

Lemma 4.11. Let m € N, f: R — C be a periodic C™-class function such that its distributional derivative of
order m + 1 belongs to L'((0,27)). Then, its Fourier coefficients { fn}nez are such that

—m—1
[fal SInI7"

In order to employ Theorem 4.10 we will need to express the quasi-periodic BIOs in a convenient way: with
periodic functions as kernels. Let k& and I" be as in Assumptions 4.2 and 4.4, respectively. We begin by considering
a periodic version of the fundamental solution in (4.2) and its derivatives on I" as

G(s,t) = e DGR (2(s), 2(1)), (4.7)
which may be expressed as
Gh(s,t) = S(t — s)JF(s,t) + RE(s,1), (4.8)
with
S(t) == —% log QSin% ) (4.9)
JE(s,t) = ¢80 i Jo(k||z(s) + 2mjes — z(t)]))e ™2™ x (s — t + 2m)), (4.10)
j=—o00

where Jy(+) is the zeroth-first kind Bessel function, € € (0,27) and x.(-) is a smooth function satisfying
Xe(s) =0 if |s|>e and x.(s)=1 if |s|< %6,
and
RE(s,t) = G(s,t) — S(t — s)Jk (s, 1).
Using known expansions of Hankel functions (see [1], 9.1.12-9.1.13) one can check that RE belongs to C*°(R x R).

Before we proceed any further, it is necessary to introduce a second wavenumber. We will denote k>0a
wavenumber (not necessarily different from k) that also satisfies Assumption 4.2.

Proposition 4.12. Let k and k satisfy Assumption 4.2, and let T satisfy Assumption 4.4 with r = co. Consider

V& and VE the weakly singular BIOs on T defined in (4.4) and where we have dropped the T subscript for brevity.
Both operators may be considered as pseudo-differential operators of order —1, whence

Vi : Hj (D) — Hg*' (), Vg : Hj (D) — Hy™(I).
Moreover, the operator V’g’% =V — Vg can be extended to
Vit H(T) — H D),

as a bounded linear operator for every s € R.
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Proof. That V’g (and Vg) may be extended as claimed follows directly from Theorem 4.10, the kernel represen-
tation (4.8) and the decay of the Fourier coefficients of S(t) in (4.9) (¢f. [37], Exam. 5.6.1). Take p € Dy(T"), we
have that

~ 2m ~
(it ez) () = e / (Ghs.t) = Gh(s,t)) e (o )02/ (1) ]t
as a Lebesgue integral. Furthermore, one has
Gl(s,t) = Gh(s,t) = S(t = 5) (J5(s,6) = T (s.)) + (Rb(s,0) ~ RE(s,1)) (4.11)

Employing Lemma 4.11, Theorem 4.10 and ([1], Eq. 9.1.13) we see that the second term of the right-hand side
of (4.11) gives rise to a bounded operator from H*[0, 27| to H*?[0,27] for any p > 0. On the other hand, the
first term in the right-hand side of (4.11) may be decomposed as

_ k(g 4) — T 5
S(t—s) (Jé“(s,t) *Jéc(s,t)> — (|Sin(t—s)|2 S(t—S)) (Je( 1) — Jg( 7t)> )

lsin(t — s)[?

One can see (cf. [1], Eq. 9.1.12) that the term (JF(s,t) — J(,E(s,t)) |sin(t — s)| 2 belongs to C*®(R x R), whereas
the term |sin(t — s)|* S(t — s) give rise to an operator of order —3. In fact, its Fourier transform is

27 2w
t 1

eMtdt = —— log
2 2 0

t
sin(t)? log [2sin = 2sin 3 (e H2t 4 (=2t _ 9ty g < 73,

,%0

where the last equality follows from ([37], Exam. 5.6.1). Finally, define
VEE(u)(s) 1= eV () 0 2(s).
Then,

k. ~ Rk Ok.k
VG ™ (1) a1z ry 2= IVG™ (1) © 2l s1510,27) = IV ™ (1) (8) | 210,25 (4.12)
We may now bound the last term in (4.12) by Theorem 4.10:

Gkl
Vo™ ()l s +3p0,20) S Nl 25 ()
The proof is completed by the density of Dy(T") in the corresponding Sobolev space. O

For the hyper-singular BIO, a similar result requires a technical lemma. To this end, let us define the tangential
curl operator:

1 d

curlp ¢ 1= m&(@ o z)(t).

for any ¢ € Dp(T") and where z is a suitable (arbitrary) parametrization of T'.

Lemma 4.13. Let k and T" satisfy Assumptions 4.2 and 4.4 for r = 0, respectively, and let X and ¢ belong to
Dy(T). Then,

<W§()\), (p>F = <V§(curlp A), curlp <p>F + <V:()\), <p>F ,

where (-, ) represents the duality product between Hy(T') and H, *(T) for any s > 0 and V& is the extension by
density of the operator given by

(Vo0.0), == [ [ (@) - n()Gh(a AP dyda.
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Proof. Notice that for A, ¢ in Dy(T"), it holds that

27 oz - 27 oz
(curlp A\, ) = /0 W(gp oz)(t)dt = —/ W()\ o z)(t)dt,

0

where the border terms cancel each other out due to the quasi-periodicity of A and ¢. Hence, the result for
quasi-periodic functions follows verbatim from the standard case (cf. [42], Thm. 6.15). O

Corollary 4.14. Under the assumptions of Proposition 4.12, consider Wg, and Wg, the hyper-singular opera-

tors defined as in (4.4) and where again we drop the I' subscript. The operator ng’k = W’g fwg can be extended
to

Wy Hj (I) — H (),
as a bounded linear operator for every s € R.
Proof. Let A, ¢ in Dy(T"). By Lemma 4.13, we have that
<k

(WiFO)e) = (Vi (ewrte ), curle )+ <(V§ = Vo)), 90>F :

Using Proposition 4.12, one obtains
k.k
‘<W0 ()‘)780>F‘ < | curlp )‘HH;'*(F)H curlp SOHH;S’Z(F) + H)‘HHg(F)H%OHH;S’l(F)'

Where the inequality for the second term of the right-hand side is obtained using that both (V&, Vg) are operators
of order —1 by Theorem 4.10 and ([37], Exam. 5.6.1). Then, since curly is a first-order differential operator, it
holds that

‘<W’5’k(k)7<ﬁ>r‘ S Mz 1ol o= -

The result then follows by a duality argument and recalling the density of Dy(T") in our quasi-periodic Sobolev
spaces. O

We now consider Dirichlet traces of the double layer potential and its adjoint, defined in Section 4.2 as the
principal value integrals

2w

(Kg () or)(s) = g K'g(s,t) (o 2)(8)]| ()| dt,

27
(K§(N) o7)(s) :]€ Kg(s,t)(Ao 2)(1)[[2(t)] dt,
for which we have dropped the I" index momentarily, and where the kernels are given by ([14], Sect. 3):

Ky S~ (D (RE6) + 2mjer = 2O rgo
1 [2(s) +2mjer — =(0)]

j=—o00

x (z(s) + 2mjer — z(t)) n(z(s)))7

Kot = K 5 (Kl + 2mies — 2O ane
0 S,t) = — - e
1 () +2njer —2(0)]

j=—00

X (2(s) + 2mjes — 2(1)) - n(z(t»).
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where n denotes the unitary normal vector exterior to Q — recall that T' := 99€). These can be written as ([1],
Eq. 9.1.11)

K'g(s,t) = S1(t — 8)JE o(s,8) + RE o(s,1)

K§(s.1) = S1(t = )5 (s, 8) + R 4(5.0), -
wherein
Si(t—s):= —% log (2 sin <;|t - s|)> |sin(t — )%,
[ Dilklz(s) + 2mjes — 2O oy
Tale:!) _kj;m ( 2G)+ 2mjer =01 ¢
= [Alkls) + 2mjer = 2(O]) e
otk 2, ( =) + oz —z0l ©
and

RE (s, 1) := K'g (s, 8) — Si(t — 8)TF (s, 1),
R’S)@(s,t) = K’g(s,t) —S(t— S)JQkﬁ(S,t).

As in the proof of Proposition 4.12, we have that |S1 ,,| < n~3, whence, arguing as in Proposition 4.12, we have
the following result.

Proposition 4.15. For k and T as in Assumptions 4.2 and 4.4 with r = oo, respectively, and for any s € R,
it holds that

Ky - H(D) — Hy (1), Kf: Hy(T) — Hy (D),
are bounded and linear operators.

As in the case of the weakly and hyper-singular BIO, we define:

Ky =Ky — K, KEF—KE— Kb
Finally, we obtain our compactness result.

Proposition 4.16. Let k and k satisfy Assumption 4.2, let T’ be as in Assumption 4.4 with r = oco. Then, for
s € R, the following operators

k,% s s+3—e k;]; s s+1—e
Vot Hg(T') — H9+3 (), Wyg":Hg([T) — He“ (I),
Ky"  Hy(T) — H ™~ (T),  K'g": Hy(T) — Hy*(T)

7

are compact for every € > 0.
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Proof. The result is direct from the mapping properties shown and Theorem 4.8. (]

Lastly, we require the compactness of the operator resulting from taking traces of the single and double layer
operators acting on densities lying on a boundary I'y over another zi-periodic curve, say I's, that does not
intersect with I'y. Let us denote by 'yfl,*y,% Dirichlet and Neumann traces over I's, respectively. Then, by an
application of Lemma 4.11, Theorem 4.8 and Theorem 4.10, we obtain the following result.

Proposition 4.17. Let k satisfy Assumption 4.2. If T'y and T's are periodic boundaries of class C*°, then the
application of the following traces to the layer potentials:

¥SLer, : Hy (1) — Hy*(D2), 2RSLyr, « Hy'(I1) — Hy*(La),
¥DLGr, : Hy'(T1) — Hz*(L2), ARXDLgp, : Hy'(Ih) — Hy?(D2),

are compact operators for any choice of s1, sa € R. The result holds regardless of the direction from which the
traces are taken.

Remark 4.18. For the main results in this section, we have assumed the interfaces to be of class C*°. While
this simplifies the analysis, we could obtain similar results with less stringent regularity requirements. Consider
k and k satisfying Assumption 4.2 and I" as in Assumption 4.4 with r € [1, 00), and the weakly-singular operator
V¥ (where we have omitted the I' sub-index momentarily). The expression in (4.8) still holds for the kernel of
VE, but R and JF would be only of class C™, instead of arbitrarily smooth. Corollary 6.1.1 and Lemma 6.1.3
in [37] imply the same results of Propositions 4.12 and 4.16 for s in a range limited by 7.

Remark 4.19. As aforementioned, we have limited ourselves to extending the classical mapping results of the
BIOs to the context of quasi-periodic spaces. For the classical result see, for example, ([12], Thm. 2.1).
4.3. Boundary integral formulation

We recall the notation and geometry configuration introduced in Section 3, that is:

1. u(9) denotes a plane incident wave with wavenumber ko, which is assumed to be quasi-periodic with shift
6 €10,1).

2. {T;}M, denotes a set of M € N non-intersecting periodic boundaries of class C"!, with r € [1, 00|, ordered
downwards.

3. {Q}M, denotes a set of M + 1 open domains, ordered downwards with boundaries

agﬂozrl, 3gﬂi:FiUF¢+1 ViE{l,...,Mfl}, 3QQM:I‘M
4. {n;}M, denotes a parameter set such that the wavenumber in €2; is given by k; = n;ko for i € {1,..., M}.

Assumption 4.20. For a given shift, 0, the wavenumber ko and the parameters {n;}}, are such that neither
ko nor the wavenumbers k; = n;kg are cut-off frequencies.

Following the notation of Problem 3.1, the scattered field — defined as the total field «(***) minus the incident
field (") — is written as

uB) = w; in Q, forie{0,...,M}.
Under Assumption 4.20, we make the following representation Ansatz for the scattered field:

SL§%, (11) — DL, (A1) in Qo,
u(bc) _ SL]g?Fl (Ml) - DngFl ()‘1)

+ SLZTF:'H ('ui"'l) - DLZ?HH (/\H‘l)

SLg%,, (uar) = DLy (Anr) in Qu,

in Q, forie{l,...,M—1},



FAST SOLVER FOR QUASI-PERIODIC 2D-HELMHOLTZ SCATTERING IN LAYERED MEDIA 2459

where, for each ¢ € {1,..., M}, the boundary data \; and p; are assumed to belong to Hj(T';) for some possibly

different values of s € R, i.e., s may be different for each boundary datum. SLZfFi and DLZ,jn are, respectively,
the single and double layer potentials of wavenumber k; on I';.
As shorthand, in what follows, we denote, for each i € {1,..., M},

Ay = (M)’ Lgp, Ay = SLg () — DL, (Na), (4.14)

where \; and p; are defined over I';. For s1,s5 € R, we define the Cartesian product spaces:
M
Vot = Hy (Ty) x Hp?(Ty) fori=0,...,M, and  Vj*2 =]V,
i=1

where all of these spaces are equipped with their natural graph inner products. For each i € {1,..., M}, let us
define the following operators:

ki—1,kq ki—1,kq

AN — _Ke,l“il (Ai) + Ve,ri (1) 415

v ki—1,k; rki—1,ki ’ ( . )
Wo'n 7 (Ai) + Kg'p 7 (1)

corresponding to self-interactions between the potentials defined over each I'; with themselves. Analogously, for
i,j€{l,..., M}, we define the following operators:

i Kmin{s,j 7 Fmin{i,j
Bi,jAj = _,Vlz\IDLg}!:{z,J} ()‘J) 4 ,ylz\ISLe}l;{m} (N]) (416)
0 a.0.C.

corresponding to interactions between potentials defined over I'; with those defined over I';.

Proposition 4.21. Let Assumption 4.20 hold and let interfaces {I';}M, be of class C>®. Then, the self-
interaction operators defined in (4.15)

Ai . Vglf82 N V;1f82
are compact operators for any s1, so € R with sa < s1 < sa + 2. Furthermore, the cross-interaction operators
(4.16)

A PLI L S1,82
Bij 'Ve,rj — Vor,
are compact for any choice of s1, so € R.

Proof. The first result is directly found using Proposition 4.16, whereas the second one follows from
Proposition 4.17. ([l

With the above definitions and using the jump properties of the BIOs, it holds that

{yu(sc)]p =B i—1Ai—1 + (A — Li)A; — B i1 A, (4.17)
for each 7 € {1,..., M}, where |; corresponds to the identity map over V;}F"jz, with s1, so € R. We now introduce
the following operator matrix over Vp'**:

Ai—li =B, 0 0 0 0
8271 AQ — |2 78273 0 0 R 0
M= 0 z | (4.18)
0 0 oo 0By—i,m—2 Av—1 — ly—1 Byr—m
0 0 ... 0 0 Byvmv-1 Av—Im

Imposing the boundary conditions of Problem 3.1 to u®®) leads to the following system of BIEs.
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Problem 4.22. Let Assumption 4.20 hold and let s € R. Set s1 = s+ % and sg = s — % We seeck A € V"2
such that

(inc)

77e,lu

where M corresponds to the operator matrix in (4.18) and v*! corresponds to the exterior trace vector on I';.
In order to ensure the well-posedness of Problem 4.22; we introduce the following set of auxiliary problems.

Problem 4.23 (Auxiliary problems). We seek {v;}} such that v; € Hj (G \T;) and

—(A+E)vi(x) =0 in Qi,lLJUKTjQ N{xeg : |z < H},

M
—(A4E2 Dvi(x) =0 in QU U (TJg N{xeg : |z < H},
= (4.19)
[yvilr, =0 onT;, '

Q)
Zv(z 5 (wa— H)‘”‘”“) for all o > H,
JEL

(=1
ZU(Z ﬁ 12+H)+jezl) for all zo < —H,
JEZL
with
g [VR g iR =g 20 g
T\ WrE -k k-3 <0 J ’
for each i € {1,..., M}, and where H > 0 is as in Section 3.1 and {k; } M are the wavenumbers in each {€;}M .
as introduced in Sectlon 3.

By a similar analysis to the one presented in ([41], Sect. 3.4), each interface T';, i € {1,..., M}, potentially
adds a countable set of wavenumbers, ko, such that Problem 4.23 is unsolvable. This justifies the following
Assumption — recall k; = n;ko for all i € {1,..., M}.

Assumption 4.24. Given {n;}}L,, the wavenumber ko is such that the auziliary Problem 4.23 has only one
solution {v;}M | given by v; :== 0 for all i € {1,...,M}.

Assumption 4.24 will force us to discard yet more wavenumbers, but the set of wavenumbers neglected by
Assumptions 3.2 and 4.24 is still countable.

Theorem 4.25. Let parameters ko and {n;}}, satisfy Assumption 4.20 and let interfaces {T';}}L, be periodic
boundaries of class C*°. Under Assumptions 3 2 and 4.24, Problem 4.22 is well posed for any s € R

Proof. Note that the operator matrix M may be written as

Ai =Bix 0 0 0 0 L0 0O 0
Bax Ay —Bas0 0 0 01y 00 0
M= : Do : : : ol R A
0 0 ... OBy_1m—2 Am—1 Bu1m 00...00y_q 0
0 0 ...0 0 Buywma Ay 00...0 0 Iy
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By the Fredholm alternative, we need only show uniqueness of Problem 4.22, as the above tridiagonal block is
compact by Proposition 4.21. The proof is similar to the one found for the classical problem of scattering by a
bounded object in free space (cf. [20], Thm. 3.41).

Let A € V"2, with s; = s+ § and s3 = s — 3, be such that MA = 0. We define

To(z) == (L’;frl(/\l)) () Vaeg\I,
i(x) = (L{;';Fi (Ai)) (z) + (L’gjrm(AiH)) () YaxeG\ ([ Uluy), Vie{l,...,M—1},
() = (L’gfgm (Am)) () Vaeg\Tn,

where L is defined as in (4.14). We further define
u(x) =u(x) YVeeQ;, Vie{0,...,M},

which is well defined in each ;. Moreover, MA = 0 implies [yu|r, = 0 on each I';, and thus, @ solves the
Helmholtz equation with wavenumber k; in each §2; and satisfies appropriate radiation conditions at infinity
([5], Sect. 4). Hence, @ solves Problem 3.1, and Assumption 3.2 implies u = 0.

Let us now define the following auxiliary functions:

Mg\
—ﬂi,l(w) Ve € Q; U U Qj

j=i+1

It is clear from this definition that

i—2
~ . a9
(—A — kf)vl(m) = 0, m QZ',1 @] U Q] 5
Jj=0

M
(A -k @) =0, mu| | o
j=i+1

Furthermore, each v; satisfies the appropriate radiation conditions at infinity. Using the jump relationships of
BIOs ([5], Lem. 4.11), we have that

Vo — Y= A, YU+ YT = A (4.20)
Since u = 0, we have that
[Y0ilr, = ’Yi’e@‘ - 71771' = Vi’eﬁz‘ - Vzﬂ - (’Yi’ea + Viii) =0,

from where it follows that {v;};2; solves Problem 4.23. Assumption 4.24 implies that v; = 0, for all ¢ in
{1,..., M}. Finally, (4.20) implies A = 0 as stated. O

Remark 4.26. Theorem 4.25 states that if all interfaces are of arbitrary smoothness, the solution A is also
arbitrarily smooth. This result can be generalized to geometries of limited regularity by following the ideas
presented in Remark 4.18, obtaining a solution of limited regularity.
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5. SPECTRAL GALERKIN METHOD

We now provide a numerical method to approximate solutions of Problem 4.22 along with its corresponding
error estimates. We restrict ourselves to cases where the interfaces {I';}}, are periodic boundaries of class
C*. By Theorem 4.25, the solution is of arbitrary smoothness and a spectral method should converge at a
super-algebraic rate (cf. [37], Chap. 9 and [25,26]).

5.1. Discrete spaces

Let us define a suitable family of finite dimensional subspaces of V;"'**. From the definition of quasi-periodic

Sobolev spaces, it is natural to consider the following finite dlmensmnal functional spaces over (0, 27):
EYN = span{e}(t) := "t . e {—N,... N}}.

It is clear that &Y  EV*! for all N € N and that ycy &Y is dense in H[0,27] for any s € R. Denoting
z;: (0,27) — I'; a parametrization of I';, we define

gé\fri :=span{ey, :=e¢j oz ', : ne{-N,...,N}}, (5.1)
n : — _1~n
Eé\fpi = span{eeﬂ- = ||z2 °z; 1“]&2 eg; + nE{-N,.. ., N} (5.2)

We can see that 59 1, 1s the space spanned by finite Fourier basis parametrized on I'; and that 59 r, is constructed
from the previous space by dividing the basis by the norm of the tangential vector of the correspondlng interface.
The inclusion of the tangential vector norm in the definition of EGL, allows for a simplified implementation of
the discrete problem by factoring out the Jacobian of the parametrization given by z;. As before, it is clear
that both Jyen Sé\fri and Uyen Eé\fri are dense subspaces of Hj(I';) for s € R. Finally, we define the Cartesian
product of discrete spaces

gé\fri = gé\fn X gé\fri’

517

whose infinite union on N forms a dense subspace of V! 2 for any pair s1, s2 € R.

5.2. Discrete problem

We now consider the Galerkin discretization of Problem 4.22 on the finite dimensional product space
M
N .= Hc‘:é\f’i cCV,"? for N = {Ni}i]\i1 CN, s1,52€R.

Problem 5.1 (Discrete BIEs). Let parameters ko and {n;}}£, satisfy Assumption 4.20 along with interfaces
{T;}M, of class C*°. For some N = {N,;}M, C N, we seek AN € EYY such that

<MAN,EN>F - <g, EN>F, vaN cEN, (5.3)

where the duality product

M
>F = Z <\Ili7Ei>1"i v ‘II7 Ee v217825

=1

(@,

[

denotes the sum of two standard duality pairings in H (I';) and H, ?(I';), and @ accounts for the right-hand
side of Problem 4.22.
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Since this is a second-kind BIE, we can deduce a quasi-optimality approximation result for the Galerkin
discretization (cf. [38], Thm. 4.2.9), so that in order to establish error convergence rates for the discrete solution,
we need to bound those of the best approximation. From the definition of our discrete and continuous spaces,

the problem of bounding the best approximation on V,"** is equivalent to that of establishing bounds for the

best approximation of an element of H*®[0, 27| when approximated by elements of E}V with 6 = 0. This issue

was already addressed, for example, in ([37], Thm. 8.2.1). Specifically, for any pair r1, ro € R with ro > r; and
f € H"|0, 27], there holds

inf [|f —qllarijoer S N2 fllzm210,27] (5.4)
qef,‘é\’

Theorem 5.2. Let parameters ko and {n;}}L, satisfy Assumption /.20 along with interfaces {I';}}4, of class C*°.
Fors >0, let s; = s—i—% and sy = s—%, Then, under Assumptions 3.2 and 4.24, there exzists N* = {N}M, c N
such that for any N = {N;}M, C N with N; > N} for alli € {1,..., M}, Problem 5.1 is well posed and it holds
that

N

N —
HA —A Hv%ﬁ < (z‘e{rlnaXM}Ni S) el
) [RRE)

where A and AN are the solutions to Problems 4.22 and 5.1, respectively.
11
Proof. By ([38], Thm. 4.2.9), together with Proposition 4.21 and the density of E}Y in V2" 2, one can ensure

the existence of some N* = { N/}, C N such that, for any N = {N;}M, ¢ Nwith N; > N7, i€ {1,..., M},
Problem 5.1 is well posed and it holds that

: (5.5)

51,89 "~
vtz Y gNegN

where A and AN are the solutions to Problems 4.22 and 5.1, respectively.
We continue by bounding (5.5). For any 2~ € EN, write Ef\“ = (giNi,CiN'i)t foralli e {1,..., M}, so that

A_=N 2 M \ N2 N2
H -7 Hvé“%_;‘ im& Hé(ri)—F‘”i_Ci Hy Py
By definition of our continuous and discrete spaces together with (5.4), we see that for all ¢ € {1,..., M}, one
deduces
e ISy PO e S e P
1 [3 HE(FZ) ~ (2 K H;+§(Fi) ’ K3 7 H;é(ri) ~ 7 (2 H;ii(f‘i) bl

where the unspecified constant depends only on I';. Hence, it holds that

HA—ENH21 1 < max _]\/v472S ||AH251152.
vz 2~ \ie{t,.omy " Vo

Since the problem is well posed, we obtain

2
< —2s 2 s
\ -3 = (ie{rg}?éfM}Nl )IIgllvglﬂ 2,

where the unspecified constant now also depends on the wavenumbers {k;}. g
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Remark 5.3. Theorem 5.2 states that the proposed spectral Galerkin method has a similar performance to the
Nystrom one. Indeed, if interfaces belong to C*°, one obtains super-algebraic convergence for both methods (see
[46] for Nystrom). The super-algebraic convergence rate of the Nystrom method for the transmission problem on
a bounded object in two dimensions was rigorously proved in [12]. Similar convergence results for quasi-periodic
problems using the Nystrom scheme are, to the best of our knowledge, not available.

Remark 5.4. It follows from Remark 4.26 that, if the interfaces are of class C™! with 7 € [1,0), one attains
limited convergence orders.

5.3. Implementation

We continue with an overview of the procedure employed to compute the approximation A™N. For a given
N e Nand [, m € Z such that —N <[,m < N, the integrals

27 2w 27
I = f(t)e " dt and Ifm = / / F(s,t)e e dtds, (5.6)
0 o Jo
where f and F are smooth periodic and bi-periodic functions, respectively, are computed using the FFT to
construct trigonometric interpolations of the corresponding functions (cf. [37], Thm. 8.4.1). In particular, the
computation of block matrices B, ; in (4.18) is performed in this way. Moreover, we have the following result
regarding the accuracy of the integral procedure.

Lemma 5.5. For N' € N, let Ill’N/ denote the approzimation of I} computed through an interpolation of f
computed via FFT using 2N’ + 1 points. Then, it holds that

1N — 1 S (N

for alll € Z and p € N satisfying p < N' and |l| < N', wherein the unspecified constant depends on f but not
onl or N'. Similarly, let If;m denote the analogous approximation of IZQWIX . Then, it holds that

2,N’ —
|Il,m - Il2,m| S (N/) p’

for alll, m € Z and p € N satisfying p < N’ and |l|, |m| < N’, where the unspecified constant depends on f but
not on l, m or N'.

Proof. Follows directly from the aliasing properties of Fourier coefficients for smooth functions (cf. [44],
Chap. 4). O

Since one can choose N’ in Lemma 5.5 proportional! to N, approximating the set of integrals {Ill}l[i _N
involves O(2N + 1) evaluations of f and one application of the FFT to the corresponding vector. Thus, the
total cost® is O ((2N + 1)log(2N + 1)) arithmetic operations — plus O(2N + 1) function evaluations of f — to
approximate the 2N + 1 integrals. The approximation of the set of integrals {I? 1N _ . requires O((2N +1)?)
evaluations of the function F' and O(2(2N + 1)) applications of the FFT to the col"responding vectors, yielding
a cost of O ((2N + 1)?log(2N + 1)) arithmetic operations — plus O((2N + 1)?) function evaluations of F.

On the other hand, the block matrices A; in (4.18) consist of differences of self-interaction operators on T';
for the four BIOs. While the difference of two operators is compact — the resulting kernel is smoother than
that associated to a single evaluation of the same operator — the kernel is not arbitrarily smooth, even if the
geometry is. Consequently, a deeper analysis is required before applying classical algorithms for the computation
of Fourier transforms.

1The number of degrees of freedom is 2N + 1.
2This is the classical estimation of the computational cost for the FFT.
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Let us consider, as an illustrative example, the weakly singular operator. We are required to compute integrals
such as

2 2T
/ GE (s, t)e "™ dt ds,
o Jo
where é’g is as in (4.7). Decomposing @’g as shown in (4.8), we obtain two integrals,
27 27 27 27
1P, = / S(t—s)Jg (s, t)e et dtds, Iff, = / / R (s, t)e '™ dtds.
o Jo o Jo

Since R%(s,t) is smooth and periodic (see Section 4.2.1), Iﬁm may be computed via the FFT. To compute Ifm,
we use the expansion (cf. [25], Eq. 12):

S(t—s) = :Ow ﬁem(t*# (5.7)
0
Thus,
P = 3 L " 2Ter(s t)e IHm)sgmEn)t 4y ds. (5.8)
bm = Amn Jy Jo A
s

Since J§ (s,t) is smooth and periodic (cf. (4.10)), each of the integrals of the right-hand side is easy to compute.
Moreover, the terms in the series in (5.8) decay exponentially and the series may be truncated at the cost of a
small approximation error. Furthermore, the sum in (5.8) may be understood as a discrete convolution, allowing
it to be computed by multiplying the corresponding Fourier transforms (see [25] for details).

Lemma 5.6. For N’, N € N, let If;iV/’N denote the approximation of Ifm computed through a 2N’ + 1 point
interpolation of J§(s,t) via FFT and approzimating S(t — s) by approzimating the sum in (5.7) as

N

Z ﬁezn(tfs) )

n=—N
n#£0

Then, it holds that B
SN I8 | S (V) Plog N+ (N + N) 77,

foralll, m €Z and p € N satisfying p < N' and |l|, |m| < N’, where the unspecified constant depends only on
the kernel J§(s,t).

Proof. Notice that

N

I&N’,N_IS < Z 1 (IJ _IJ,N’ )|+ Z 1 I’

I,m Ilm| = 2 Amn l+n,m+n I+n,m+n -~ 4mn l+n,m+n|>
n=—-N In|>N
n#0

where ) )
Il{i-n m4n — / / Jg(s, t)e—z(l+n)sez(m+n)t dtds
’ o Jo
N

and I, .. is the approximation of Ilﬂ»n,m 4n Obtained as in Lemma 5.5. The result then follows from
Lemma 5.5 and the decay of Fourier coefficients of smooth functions ([44], Chap. 4). O
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The computational cost of approximating {I fm}{ym:_ n is dominated by the cost of the approximation of
IR A — N, since it involves (2N’ + 1)? evaluations of the quasi-periodic Green’s function, each of which

corresponds to 2N + 1 evaluations of a Hankel function (cf. [14]). Choosing N’ and N proportional to N leaves
the cost of evaluating the quasi-periodic Green’s function as O((2N + 1)3) evaluations of the Hankel function®.
Meanwhile, the total cost for Ifm is O((2N + 1) log(2N +1)).

For the operators K& and KJF, a similar technique can be applied using (4.13). The integrals corresponding to
the hyper-singular BIO are approximated by first using the integration-by-parts formula in Lemma 4.13, reducing
it to two different integrals which are then approximated as those corresponding to the weakly singular BIO.

Considering M > 1 interfaces, 2N + 1 degrees of freedom on each interface and N’ proportional to N
the total cost of the matrix assembly process can be estimated as O(N3M) Hankel function evaluations and
O(MN?log N) arithmetic operations. We point out that the cost could be reduced drastically by constructing
an accurate algorithm to approximate the Hankel functions by pre-computing some values. We then have the
following corollary of Theorem 5.2 and Lemmas 5.5 and 5.6.

Corollary 5.7. Let N C N be as in Theorem 5.2 and consider the fully discrete problem, where we seek a
<N

solution A € Eé\’ of Problem 5.1, and consider the approximation of the discrete operator and right-hand side

via FFT as in Lemmas 5.5 and 5.6. Then, the fully discrete problem is well posed and there exists N* € N such

that, for all N', N > N* defined as in Lemma 5.5 and 5.6, for which

~N

HA—A . 5( max N) lellysiies

1
va’ ie{1,...,M}

Proof. The result is an immediate consequence of Strang’s lemma ([38], Sect. 4.2.4), using Lemma 5.5, and 5.6
to bound the quadrature errors. O

6. NUMERICAL EXAMPLES

We now showcase computational experiments verifying the convergence estimates found in Theorem 5.2.
The implementation of the aforementioned algorithms was carried through a C++ cpu-only library. All the
experiments ran on a Intel 17-4770@3.4GHZ processor with 8 threads. The code was compiled with gcc 4.9.4,
openmp and O2 flags on. As in Section 5.3, we consider our discrete spaces with 2N + 1 bases per interface,
with N € N.

6.1. Code validation

We begin by considering the simple case of a grating with two media separated by a single horizontal line
segment acting as its layer. Hence, using the following expansion of the Green’s function ([5], Prop. 4.2):

1 .
Gh(z,y) = ﬁ Z Eelﬂj\zz—yz\—m(yl—zl) for all ,y € R?,
ez ™

it is possible to assemble the matrix analytically. The matrix M is then composed of only block diagonal
terms. Since the right-hand side only has two non-null components?, only the corresponding components for the
solution are non-zero, yielding a closed form for the solution.

In order to test the implementation, we consider an artificial (harder) problem by including ghost domains,
i.e., we add extra smooth (ghost) layers that separate domains with the same refraction index. Hence, the
solution is the same as if these additional domains did not exist and has a closed form, as before. The results
for different ghost layers are reported in Figure 3.

3The value of N has to be chosen depending of kg, but typically one can assume that it need not be greater than 2N, for N
large enough to ensure convergence.

40ne for the Dirichlet trace of the incident wave and another for the Neumann trace.
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the extra layer is C> and the
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TABLE 1. Value of refraction indices {ngl)}ﬁl and {n§2) 12, (corresponding to the two consid-
ered cases) for the grating in Figure 6 (counting downwards).

1 2 3 4 5 6 7 8 9 10 11 12
n |47 42 48 36 1.1 44 47 37 40 3.9 26 36
@ |47 84 48 72 11 88 47 74 40 78 26 7.2

7

We also display the convergence behaviour of the method for interfaces with limited regularity by repeating
the previous experiment (same incident field) with one ghost domain and an interface given by

z3(t) = (¢, a| sin(t)|P + b),

where a, b are real numbers that scale the interface, and p is an odd integer that determines the smoothness
degree of the interface. In particular, z3 is in C?~2! or, more precisely, CP~! with an integrable p-th derivative.
Results are reported in Figure 4.

For all experiments in this section, the frequency is chosen as ky = 1 and the incidence angle is 0.47 radians.

6.2. Convergence results

We now consider a smooth geometry composed of 12 layers with varying refraction indices. Two differ-
ent scenarios are employed, reported in Table 1, nl-(l) and 771(2), respectively. We also consider three different
wavenumbers for the incident wave, ky = 2.8, 14 and 28. Convergence results in the energy norm for the solu-
tion of Problem 5.1 for the different cases of parameters and wavenumbers are reported in Figure 5, where
exponential convergence is observed for all considered scenarios, as expected. All errors were computed with
respect to an overkill solution, with approximately 50 more bases per interface than the last plotted point for
each curve. The incidence angle is, again, 0.47 radians.

Finally, in Figure 6 we present an illustration of the total field corresponding to the refraction indices given
in Table 1 for case 1. The fields were obtained by using enough degrees of freedom so as to ensure an error of
order 1072 in the energy norm, i.e., N ~ 40, 130 and 250 for kg = 2.8, 14 and 28, respectively.

Remark 6.1. Though establishing the relation between the parameters — {n;}*£, and ko — and the number
of basis elements required to attain a certain desired accuracy is not straightforward, our experiments suggest
that NV should be chosen proportional to the maximum wavenumber kpyax := max;cyo,...pry Ki-

7. CONCLUSIONS

We have proposed a fast spectral method for the efficient representation, through surface potentials based
on the quasi-periodic Green’s function, for the solution of the Helmholtz equation with transmission boundary
conditions on a periodic domain. In Theorem 5.2, we obtained convergence estimates for the discrete approx-
imation of the corresponding boundary data, and found that discrete solutions converge at a super-algebraic
rate to continuous solutions of the considered BIE. Though we focused on the Helmholtz transmission problem,
our approximation results and convergence estimates can be easily extended to other BIEs on quasi-periodic
Sobolev spaces whenever the formulation is well posed. We avoided cut-off frequencies from our analysis since
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FIGURE 5. (a) Problem geometry with 12 layers. (b), (¢) and (d) Errors in the corresponding
energy norm for kg = 2.8,14.0,28.0. Each of these subfigures present error convergence curves
for the two scenarios of refraction indices considered and specified in Table 1. Notice that the
curves in red — corresponding to parameters 7]2(2) in Table 1 — display a longer preasymptotic
regime before convergence is observed for all considered values of kg, seemingly due the presence
of layers with higher wavenumbers (see Rem. 6.1).

the series in (4.2) fails to converge for said frequencies and, for the same reason, our previous results from [5]
exclude them as well.

Despite similar numerical results are known for the Nystrom Method, theoretical grounds for the observed
convergence rates are scarce [12]. In contrast, the Galerkin discretizations presented in this article lead to
provable convergence rates equal to those expected by Nystrém methods.

Future work considers: (i) including cut-off frequencies in our analysis, (ii) extending our results to three
dimensional Helmholtz equations and Maxwell’s equations on periodic domains and (iii) applications in uncer-
tainty quantification [40] and shape optimization [6].
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FIGURE 6. Real part of the total wave (u(*®) = 4 4 4(n¢)) for each different value of ko,
namely 2.8, 14 and 28. The refraction indices on each layer are those indicated on Table 1. The
incidence angle is again 0.47. (a) ko =2:8. (b) ko =14. (c) ko =28.



FAST SOLVER FOR QUASI-PERIODIC 2D-HELMHOLTZ SCATTERING IN LAYERED MEDIA 2471

Acknowledgements. This work was partially funded by Fondecyt Regular 1171491 and by grants Conicyt-
PFCHA /Doctorado Nacional/2017-21171791 and 2017-21171479.

(1]
2]
3]
(4]
(5]
[6]

[7]
(8]

(9]
(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
(21]
(22]
(23]
24]

[25]
[26]

27]
28]
(29]
(30]

31]
(32]

REFERENCES

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables.
In: Vol. 55 Courier Corporation (1965).

H. Ammari, Scattering of waves by thin periodic layers at high frequencies using the on-surface radiation condition method.
IMA J. Appl. Math. 60 (1998) 199-214.

H. Ammari and J.C. Nédélec, Analysis of the Diffraction from Chiral Gratings. In: Mathematical Modeling in Optical Science.
STAM (2001) 179-206.

H. Ammari and G. Bao, Coupling of finite element and boundary element methods for the scattering by periodic chiral
structures. J. Comput. Math. 26 (2008) 261-283.

R. Aylwin, C. Jerez-Hanckes and J. Pinto, On the properties of quasi-periodic boundary integral operators for the Helmholtz
equation. Integral Equ. Oper. Theory 92 (2020) 17.

R. Aylwin, G. Silva-Oelker, C. Jerez-Hanckes and P. Fay, Optimization methods for achieving high diffraction efficiency with
perfect electric conducting gratings. J. Opt. Soc. Am. A 37 (2020) 1316-1326.

G. Bao, Variational approximation of Maxwell’s equations in biperiodic structures. SIAM J. Appl. Math. 57 (1997) 364-381.
G. Bao, Recent mathematical studies in the modelling of optics and electromagnetics. J. Comput. Appl. Math. 22 (2004)
148-155.

G. Bao and D.C. Dobson, On the scattering by a biperiodic structure. Proc. Am. Math. Soc. 128 (2000) 2715-2723.

G. Bao, D.C. Dobson and J.A. Cox, Mathematical studies in rigorous grating theory. J. Opt. Soc. Am. A 12 (1995) 1029-1042.
A. Barnett and L. Greengard, A new integral representation for quasi-periodic scattering problems in two dimensions. BIT
Numer. Math. 51 (2011) 67-90.

Y. Boubendir, V. Dominguez and C. Turc, High-order Nystrom discretizations for the solution of integral equation formulations
of two-dimensional Helmholtz transmission problems. IMA J. Numer. Anal. 36 (2014).

O.P. Bruno and M.C. Haslam Efficient high-order evaluation of scattering by periodic surfaces: deep gratings, high frequencies,
and glancing incidences. JOSA A 26 (2009) 658-668.

O.P. Bruno and B. Delourme Rapidly convergent two-dimensional quasi-periodic Green’s function throughout the spectrum —
including Wood anomalies. J. Comput. Phys. 262 (2014) 262-290.

O.P. Bruno and A.G. Fernandez-Lado, Rapidly convergent quasi-periodic Green’s functions for scattering by arrays of cylinders
— including Wood anomalies. Proc. R. Soc. A 473 (2017) 20160802.

O.P. Bruno, S.P. Shipman, C. Turc and S. Venakides, Superalgebraically convergent smoothly windowed lattice sums for doubly
periodic green functions in three-dimensional space. Proc. R. Soc. A 472 (2016) 20160255.

O.P. Bruno, S.P. Shipman, C. Turc and V. Stephanos Three-dimensional quasi-periodic shifted Green’s function throughout
the spectrum, including Wood anomalies. Proc. R. Soc. A 473 (2017) 20170242.

Y.B. Chen and Z. Zhang, Design of tungsten complex gratings for thermophotovoltaic radiators. Opt. Commun. 269 (2007)
411-417.

M.H. Cho and A.H. Barnett, Robust fast direct integral equation solver for quasi-periodic scattering problems with a large
number of layers. Opt. Ezpress 23 (2015) 1775-1799.

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Society for Industrial and Applied Mathematics,
Philadelphia, PA (2013).

D.C. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure. J. Math. Anal. Appl.
166 (1992), 507-528.

J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. Part i: direct problems
and gradient formulas. Math. Methods Appl. Sci. 21 (1998) 1297-1342.

I.G. Graham and I.H. Sloan, Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed
surfaces in R3. Numer. Math. 92 (2002) 289-323.

L. Greengard, K.L. Ho and J.Y. Lee, A fast direct solver for scattering from periodic structures with multiple material interfaces
in two dimensions. J. Comput. Phys. 258 (2014) 738-751.

F.Q. Hu, A spectral boundary integral equation method for the 2D Helmholtz equation. J. Comput. Phys. 120 (1995) 340-347.
C. Jerez-Hanckes and J. Pinto, High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs.
ESAIM: M2AN 54 (2020) 975-2009.

A. Kirsch, Diffraction by Periodic structures. In: Inverse Problems in Mathematical Physics. Springer (1993) 87-102.

R. Kress, Linear Integral Equations, 3rd edition. In: vol. 82 Applied Mathematical Sciences (2014).

C.M. Linton, The Green’s function for the two-dimensional Helmholtz equation in periodic domains. J. Eng. Math. 33 (1998)
377-401.

Y. Liu and A. Barnett, Efficient numerical solution of acoustic scattering from doubly-periodic arrays of axisymmetric objects.
J. Comput. Phys. 324 (2016) 226-245.

E.G. Loewen and E. Popov, Diffraction Gratings and Applications. CRC Press (2018).

W.C.H. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000).



2472 J. PINTO ET AL.

[33] Y. Nakata and M. Koshiba, Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic
gratings. JOSA A 7 (1990) 1494-1502.

[34] J.C. Nédélec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s
equations. SIAM J. Math. Anal. 22 (1991) 1679-1701.

[35] D. Nguyen, Spectral methods for direct and inverse scattering from periodic structures, Ph.D. thesis, Ecole Polytechnique
(2012).

[36] E. Popov, Gratings: Theory and Numeric Applications. Popov, Institut Fresnel (2012).

[37] J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer
Science & Business Media (2013).

[38] S.A. Sauter and C. Schwab, Boundary Element Methods. In: Vol. 39 Springer Series in Computational Mathematics (2011).

[39] G. Silva, C. Jerez-Hanckes and P. Fay, High-temperature tungsten-hafnia optimized selective thermal emitters for thermopho-
tovoltaic applications. J. Quant. Spectrosc. Radiat. Transf. 231 (2019) 61-68.

[40] G. Silva-Oelker, R. Aylwin, C. Jerez-Hanckes and P. Fay, Quantifying the impact of random surface perturbations on reflective
gratings. IEEE Trans. Antennas Propag. 66 (2018) 838-847.

[41] F. Starling and A.S. Bonnet-Bendhia, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffrac-
tion problem. Math. Methods Appl. Sci. 17 (1994) 305-338.

[42] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer Science & Business Media
(2007).

[43] M. Taibleson, Fourier coefficients of functions of bounded variation. In: Vol. 18 Proc. Amer. Math. Soc. (1967).

[44] L.N. Trefethen, Spectral Methods in Matlab. In: Society for Industrial and Applied Mathematics. USA (2000).

[45] B. Zhang and S.N. Chandler-Wilde, A uniqueness result for scattering by infinite rough surfaces. SIAM J. Appl. Math. 58
(1998) 1774-1790.

[46] Y. Zhang and A. Gillman, A fast direct solver for two dimensional quasi-periodic multilayered medium scattering problems.
Preprint arXiv:1907.06223 (2019).

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme



https://arxiv.org/abs/1907.06223
mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Notation and functional space setting
	General notation
	Quasi-periodic Sobolev spaces
	Quasi-periodic Sobolev spaces on boundaries and traces

	Helmholtz problem in periodic layered media
	Geometric setting
	Helmholtz transmission problem on periodic media

	Boundary integral equations
	Quasi-periodic fundamental solution
	Layer potentials and boundary integral operators
	Compacteness Properties

	Boundary integral formulation

	Spectral Galerkin method
	Discrete spaces
	Discrete problem
	Implementation

	Numerical examples
	Code validation
	Convergence results

	Conclusions
	References

