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FAST SOLVER FOR QUASI-PERIODIC 2D-HELMHOLTZ SCATTERING IN
LAYERED MEDIA

José Pinto , Ruben Aylwin and Carlos Jerez-Hanckes*

Abstract. We present a fast spectral Galerkin scheme for the discretization of boundary integral equa-
tions arising from two-dimensional Helmholtz transmission problems in multi-layered periodic struc-
tures or gratings. Employing suitably parametrized Fourier basis and excluding cut-off frequencies (also
known as Rayleigh-Wood frequencies), we rigorously establish the well-posedness of both continuous
and discrete problems, and prove super-algebraic error convergence rates for the proposed scheme.
Through several numerical examples, we confirm our findings and show performances competitive to
those attained via Nyström methods.
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1. Introduction

A vast number of scientific and engineering applications rely on harnessing acoustic and electromagnetic
wave diffraction by periodic and/or multilayered domains. Current highly demanding operation conditions
for such devices require solving thousands of specific settings for design optimization or the quantification
of shape or parameter uncertainties in the relevant quantities of interest, challenging the scientific computing
community to continuously develop ever more efficient, fast and robust solvers (cf. [8,18,31,39,40] and references
therein). Assuming impinging time-harmonic plane waves, scattered and transmitted fields have been solved by
a myriad of mathematical formulations and associated solution schemes. These range from volume variational
formulations to various boundary integral representations and equations (cf. [2,3,9,11,21,33]), pure or coupled
implementations of finite and boundary element methods (cf. [3, 4, 22, 34, 40] or [36], Chap. 5) and Nyström
methods [13,16,19,24,30].

In this work, we build upon our theoretical review [5] and present a spectral Galerkin method for solv-
ing second-kind direct boundary integral equations (BIEs) for the Helmholtz transmission problem for two-
dimensional, periodic multi-layered gratings with smooth interfaces. Contrary to the low-order local basis
functions used in the standard boundary element method, spectral bases are composed of high-order poly-
nomials whose support lie on the whole scatterer boundary or on large portions of it. Successfully employed on
two- and three-dimensional scattering problems [23, 25, 26], the main advantage of a spectral discretization is
the ability to converge at a super-algebraic rate whenever solutions are smooth enough. Hence, our proposed

Keywords and phrases. Boundary integral equations, quasi-periodic scattering, spectral elements, gratings, multi-layered domain.

Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile.
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method can in practice compete with Nyström methods while simultaneously inheriting all of the theoretical
aspects of classical Galerkin methods.

In two dimensions, spectral methods are closely related to the theory of periodic pseudo-differential operators
[37], since the discretization through spectral elements can be interpreted as a truncation of the associated
Fourier series where the action of the operators is well understood. We show that wave scattering by periodic
domains is closely connected to the bounded domain case, making it possible to reuse almost all the pseudo-
differential operator theory for our analysis. Key to our analysis are the results in [22,34,41] regarding the unique
solvability and eigenvalues of the associated volume problem. From here, we deduce that our BIE is uniquely
solvable except at a countable set of wavenumbers composed of cut-off frequencies – wavenumbers for which the
series defining the quasi-periodic Green’s function is not convergent, also known as Rayleigh-Wood frequencies
– and of eigenvalues of the Helmholtz transmission problem. Mindless of the several remedies developed to
tackle cut-off frequencies through BIEs [14,15,17,19], we choose to avoid them as they are not captured by our
previous analysis in [5].

Our discretization method employs a quasi-periodic basis so that techniques forcing the quasi-periodicity of
the discrete solutions are not necessary (cf. [24, 46]). Instead, an accurate approximation of the quasi-periodic
Green’s function is required in order to extract its Fourier coefficients through the fast Fourier transform (FFT).
Moreover, we prove that the chosen discretization basis enjoys a super-algebraic convergence rate on the degrees
of freedom, which we then confirm through numerical experiments. In [35], a similar quasi-periodic exponential
basis was employed to approximate solutions of a volume integral formulation.

The article is structured as follows. Section 2 presents the notation used throughout as well as the required
quasi-periodic Sobolev spaces setting following [5]. In Section 3 we state the Helmholtz transmission problem
for a multi-layered grating and study its solvability. Section 4 is concerned with the properties of quasi-periodic
boundary integral operators (BIOs) along with an existence and uniqueness result for our BIEs. Section 5
provides rigorous error convergence rates of the spectral method and briefly describes the numerical algorithm
used to compute the matrix entries associated with each integral operator. Numerical results are discussed in
Section 6, followed by concluding remarks on Section 7.

2. Notation and functional space setting

2.1. General notation

We denote the imaginary unit 𝚤. Boldface symbols signal vectorial quantities while greek and roman letters
indicate data over boundaries and volumes, respectively. Canonical vectors in R2 are denoted 𝑒1, 𝑒2 respectively.
Also, we make use of the symbols ., & and ∼= to avoid specifying constants irrelevant for the corresponding
analysis.

Let 𝐻 be a given Banach space. We shall denote its norm as ‖·‖𝐻 and its dual space by 𝐻 ′ (set of antilinear
functionals over 𝐻) with dual product denoted by ⟨·, ·⟩. If 𝐻 is a Hilbert space, the inner product between two
of its elements, 𝑥 and 𝑦, is written as (𝑥, 𝑦)𝐻 . Moreover, if 𝐻 is a Hilbert space over the complex field, the inner
product will be understood in the anti-linear sense.

For an open domain Ω ⊂ R2, its boundary shall be denoted as 𝜕Ω. Moreover, for any 𝒪 ⊂ R2 such that
Ω ⊆ 𝒪, we introduce the closure of Ω relative to 𝒪 as Ω

𝒪
:= Ω ∩ 𝒪 and the boundary of Ω relative to 𝒪 as

𝜕𝒪Ω := Ω
𝒪 ∖ Ω.

For 𝑛 ∈ N0 := N ∪ {0}, we denote by 𝒞𝑛(Ω) the set of scalar functions over Ω with complex values and
continuous derivatives up to order 𝑛. 𝒞∞(Ω) refers to the space of functions with infinite continuous derivatives
over Ω. We shall also make use of the following subset of 𝒞∞(Ω):

𝒟(Ω) := {𝑢 ∈ 𝒞∞(Ω) : supp 𝑢 ⊂⊂ Ω}.

The space of 𝑝-integrable functions (for 𝑝 ≥ 1) with complex values over Ω is denoted as 𝐿𝑝(Ω).
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We say that a one-dimensional curve Γ is a periodic boundary of class 𝒞𝑟,1, for 𝑟 ∈ N0, if it is the restriction
of a 𝑥1-periodic curve ̃︀Γ that may be parametrized by a periodic function 𝑧 : R → ̃︀Γ which has 𝑟 Lipschitz-
continuous derivatives and a non-vanishing tangential vector. The first derivative of the parametrization is
denoted as 𝑧̇. Moreover, we say that Γ is a periodic boundary of class 𝒞∞ if it is of class 𝐶𝑟,1 for every 𝑟 ∈ N0

– we will also use the notation 𝒞∞,1 to refer same class, 𝑖.𝑒. 𝒞∞,1 = 𝒞∞.
Throughout, we will consider periodic geometries along 𝑒1 with a fixed period of 2𝜋. Moreover, we say that

a continuous function 𝑓 is a 𝜃-quasi-periodic function if

𝑓(𝑥 + 2𝜋𝑒1) = 𝑒𝚤2𝜋𝜃𝑓(𝑥) ∀ 𝑥 ∈ R2,

where the quasi-periodic shift 𝜃 is always assumed to be in [0, 1). Finally, we define the canonic periodic cell on
R2 as 𝒢 := (0, 2𝜋)× R (see Fig. 1).

2.2. Quasi-periodic Sobolev spaces

We denote by 𝒟𝜃(R2) the space of 𝜃-quasi-periodic functions in 𝒞∞(R2) that vanish for large |𝑥2|, and denote
by 𝒟′𝜃(R2) the space of 𝜃-quasi-periodic distributions, which can be seen as the dual space of 𝒟𝜃(R2) (cf. [5],
Prop. 2.4). For 𝒢 as before, we introduce 𝒟𝜃(𝒢) the space of restrictions to 𝒢 of elements in 𝒟𝜃(R2). Moreover,
for any open domain Ω ⊂ 𝒢 we define 𝒟𝜃(Ω) as the set of elements of 𝒟𝜃(𝒢) with compact support on Ω and
𝒟′𝜃(Ω) as the space of elements of 𝒟′𝜃(𝒢) restricted to 𝒟𝜃(Ω). In what follows, for all 𝑗 ∈ Z we define 𝑗𝜃 := 𝑗 + 𝜃.

Proposition 2.1 ([5, Prop. 2.6]). Every 𝑢 ∈ 𝒟𝜃(R2) can be represented as a Fourier series, i.e.,

𝑢(𝑥) =
∑︁
𝑗∈Z

𝑢𝑗(𝑥2)𝑒𝚤𝑗𝜃𝑥1 with 𝑢𝑗(𝑥2) :=
1

2𝜋

∫︁ 2𝜋

0

𝑒−𝚤𝑗𝜃𝑥1𝑢(𝑥) d𝑥1,

so that 𝑢𝑗 ∈ 𝒟(R). On the other hand, every element 𝐹 ∈ 𝒟′𝜃(R2) can be identified with a formal Fourier series
given by

∑︁
𝑗∈Z

𝐹𝑗𝑒
𝚤𝑗𝜃𝑥1 with 𝐹𝑗 :=

{︃
𝒟(R) → C
𝑣 ↦→ 𝐹 (𝑣(𝑥2)𝑒𝚤𝑗𝜃𝑥1)

,

where 𝐹𝑗 ∈ 𝒟′(R) for all 𝑗 ∈ Z and 𝐹 (𝑢) =
∑︀
𝑗∈Z

𝐹𝑗(𝑢𝑗).

Let 𝑠 ∈ R. We define the 𝜃-quasi-periodic Sobolev space of order 𝑠 on 𝒢 as follows,

𝐻𝑠
𝜃 (𝒢) :=

⎧⎨⎩𝐹 ∈ 𝒟′𝜃(R2)
⃒⃒⃒⃒ ∑︁

𝑗∈Z

∫︁
R

(1 + 𝑗2
𝜃 + |𝜉|2)𝑠

⃒⃒⃒ ̂︀𝐹𝑗(𝜉)
⃒⃒⃒2

d𝜉 < ∞

⎫⎬⎭ ,

wherein ̂︀𝐹𝑗 is the Fourier transform (in distributional sense [42], Sect. 2.4) of 𝐹𝑗 , defined as in Proposition 2.1.
Additionally, we introduce the common notation 𝐿2

𝜃(𝒢) := 𝐻0
𝜃 (𝒢) and note that, as in the standard case, 𝐻𝑠

𝜃 (𝒢)
is a Hilbert space ([5], Prop. 2.8). Furthermore, for an open proper subset Ω of 𝒢, we define 𝐻𝑠

𝜃 (Ω) as the Hilbert
space of restrictions to Ω of elements of 𝐻𝑠

𝜃 (𝒢) (see [5], Sect. 2 and [32], Chap. 3.6). Finally, local Sobolev spaces
on Ω are defined as

𝐻𝑠
𝜃,loc(Ω) := {𝑢 ∈ 𝒟′𝜃(Ω) : 𝑢 ∈ 𝐻𝑠

𝜃 (Ω ∩ {𝑥 ∈ 𝒢 : |𝑥2| < 𝑅}) ∀ 𝑅 > 0} .
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2.3. Quasi-periodic Sobolev spaces on boundaries and traces

We begin by considering spaces of periodic functions over R. As in Definition 8.1 of [28], Section 5.3 of [37],
we define Sobolev spaces on [0, 2𝜋] of order 𝑠 ≥ 0 as follows,

𝐻𝑠[0, 2𝜋] :=

⎧⎨⎩𝜑 ∈ 𝐿2((0, 2𝜋)) :
∑︁
𝑗∈Z

(1 + 𝑗2)𝑠 |𝜑𝑗 |2 < ∞

⎫⎬⎭ ,

where {𝜑𝑗}𝑗∈Z are the Fourier coefficients of 𝜑. Quasi-periodic spaces of order 𝑠 ≥ 0 over (0, 2𝜋) are defined
from 𝐻𝑠[0, 2𝜋] straightforwardly, i.e.,

𝐻𝑠
𝜃 [0, 2𝜋] :=

{︀
𝜑 ∈ 𝐿2((0, 2𝜋)) : 𝑒−𝚤𝜃𝑡𝜑(𝑡) ∈ 𝐻𝑠[0, 2𝜋]

}︀
.

Both 𝐻𝑠[0, 2𝜋] and 𝐻𝑠
𝜃 [0, 2𝜋] are Hilbert spaces, as are their respective dual spaces, denoted respectively

𝐻−𝑠[0, 2𝜋] and 𝐻−𝑠
𝜃 [0, 2𝜋] (see [28], Thm. 8.10 and [5], Thm. 2.20). Moreover, for 𝑠 ∈ R, the inner product and

norm of 𝐻𝑠
𝜃 [0, 2𝜋] are given by:

(𝑢, 𝑣)𝐻𝑠
𝜃 [0,2𝜋] :=

∑︁
𝑗∈Z

(1 + 𝑗2
𝜃 )𝑠𝑢𝑗,𝜃𝑣𝑗,𝜃 and ‖𝑢‖𝐻𝑠

𝜃 [0,2𝜋] := (𝑢, 𝑢)
1
2
𝐻𝑠

𝜃 [0,2𝜋] ,

wherein, for positive 𝑠, we define

𝑢𝑗,𝜃 :=
1

2𝜋

(︀
𝑢(𝑡), 𝑒𝚤𝑗𝜃𝑡

)︀
𝐿2((0,2𝜋))

,

and the product is extended through duality to negative 𝑠 (cf. [5], Thms. 2.16 and 2.20).
Let Γ be a periodic boundary of class 𝒞∞ and let 𝑧 : (0, 2𝜋) → Γ be a 𝒞∞ parametrization of Γ. Then, for

any 𝑠 ≥ 0, we define the 𝜃-quasi-periodic Sobolev space of order 𝑠 on Γ as

𝐻𝑠
𝜃 (Γ) :=

{︀
𝑢 ∈ 𝐿2

𝜃(Γ) | (𝑢 ∘ 𝑧)(𝑡) ∈ 𝐻𝑠
𝜃 [0, 2𝜋]

}︀
,

with norm,

‖𝑢‖𝐻𝑠
𝜃 (Γ) := ‖𝑢 ∘ 𝑧‖𝐻𝑠

𝜃 [0,2𝜋] .

We define 𝐻−𝑠
𝜃 (Γ) as the completion of 𝐿2

𝜃(Γ) under the norm given by

‖𝑢‖𝐻−𝑠
𝜃 (Γ) := ‖(𝑢 ∘ 𝑧) ‖𝑧̇‖R2 ‖𝐻−𝑠

𝜃 [0,2𝜋].

Norms and inner products for these spaces are given through their respective pullbacks to 𝐻𝑠
𝜃 [0, 2𝜋] and

𝐻−𝑠
𝜃 [0, 2𝜋]. Moreover, 𝐻−𝑠

𝜃 (Γ) is identified with the dual space of 𝐻𝑠
𝜃 (Γ) ([5], Thm. 2.26) where the duality

is given by the extension of the following anti-linear form:

⟨𝜆, 𝜗⟩Γ := (𝜆, 𝜗)𝐿2
𝜃(Γ) , 𝜆, 𝜗 ∈ 𝐿2

𝜃(Γ). (2.1)

We also define the following space of smooth functions over Γ,

𝒟𝜃(Γ) :=

⎧⎨⎩𝜑 : Γ → C
⃒⃒⃒⃒

(𝜑 ∘ 𝑧)(𝑡) =
𝑛∑︁

𝑗=−𝑛

𝜑𝑗𝑒
𝚤𝑗𝜃𝑡, for some 𝑛 ∈ N

⎫⎬⎭ ,

which is dense in 𝐻𝑠
𝜃 (Γ) for any 𝑠 ∈ R.
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Figure 1. Example of a domain Ω ⊂ 𝒢 with 𝜕𝒢Ω = Γ. 𝒢 encompasses the unbounded area
between dashed lines, while Ω and 𝒢 ∖ Ω

𝒢
correspond to the shaded and unshaded portions,

respectively. Trace operators 𝛾 and 𝛾𝑒 act from Ω and 𝒢 ∖ Ω
𝒢

towards Γ, respectively.

Finally, we introduce trace operators acting on quasi-periodic Sobolev spaces. Let Ω be a proper, open subset
of 𝒢 such that 𝜕𝒢Ω = Γ, we define the following operators for 𝑠 > 1

2 :

𝛾D : 𝐻𝑠
𝜃 (Ω) → 𝐻

𝑠− 1
2

𝜃 (Γ), 𝛾𝑒
D : 𝐻𝑠

𝜃 (𝒢 ∖ Ω
𝒢

) → 𝐻
𝑠− 1

2
𝜃 (Γ),

that extend the notion of the restriction operator 𝑢 ↦→ 𝑢|Γ to quasi-periodic Sobolev spaces ([5], Thm. 2.29). In
this context, 𝛾D and 𝛾𝑒

D are, respectively, the interior and exterior Dirichlet traces. Analogously, for 𝑠 > 3
2 , we

denote the interior and exterior Neumann traces on Ω as

𝛾N : 𝐻𝑠
𝜃 (Ω) → 𝐻

𝑠− 3
2

𝜃 (Γ), 𝛾𝑒
N : 𝐻𝑠

𝜃 (𝒢 ∖ Ω
𝒢

) → 𝐻
𝑠− 3

2
𝜃 (Γ),

extending the normal derivative 𝑢 ↦→ ∇𝑢|Γ ·𝑛, where 𝑛 is – for both traces – the unitary normal exterior to Ω.
Moreover, introducing the subspace of elements of 𝐻1

𝜃 (Ω) with integrable Laplacian,

𝐻𝑠
𝜃,Δ(Ω) :=

{︀
𝑢 ∈ 𝐻1

𝜃 (Ω) : ∆𝑢 ∈ 𝐿2
𝜃(Ω)

}︀
,

the Neumann trace may be extended as

𝛾N : 𝐻1
𝜃,Δ(Ω) → 𝐻

− 1
2

𝜃 (Γ), 𝛾𝑒
N : 𝐻1

𝜃,Δ(𝒢 ∖ Ω
𝒢

) → 𝐻
− 1

2
𝜃 (Γ),

through integration by parts (cf. [5], Sect. 2). All the previous results concerning trace operators follow analo-
gously (with obvious modifications) for both local spaces – in the case that Ω is unbounded – and if Ω is the
bounded space between two non-intersecting periodic curves Γ1 and Γ2. Finally, we denote the following vector
operators

𝛾𝑢 := (𝛾D𝑢, 𝛾N𝑢)𝑡, 𝛾𝑒𝑢 := (𝛾𝑒
D𝑢, 𝛾𝑒

N𝑢)𝑡 and [𝛾𝑢]Γ := 𝛾𝑒𝑢− 𝛾𝑢,

as interior, exterior and jump trace vectors on Γ, respectively. Figure 1 exemplifies the aforementioned setting
as well as the action of the trace operators.

3. Helmholtz problem in periodic layered media

3.1. Geometric setting

We seek to establish a boundary integral representation for scattered and transmitted acoustic or electromag-
netic fields resulting from plane waves impinging a multi-layered grating. The domain is described by 𝑀 ∈ N
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Figure 2. Example of a multi-layered grating. 𝒢 is highlighted and the dashed lines represent
its boundaries at 0 and 2𝜋.

finite non-intersecting periodic surfaces {̃︀Γ𝑖}𝑀
𝑖=1 – ordered downwards – separating 𝑀 + 1 periodic domains

{̃︀Ω𝑖}𝑀
𝑖=0 such that for 0 < 𝑖 < 𝑀 it holds 𝜕̃︀Ω𝑖 = ̃︀Γ𝑖 ∪ ̃︀Γ𝑖+1, 𝜕̃︀Ω0 = ̃︀Γ1 and 𝜕̃︀Ω𝑀 = ̃︀Γ𝑀 (see Fig. 2). Moreover,

while all domains {̃︀Ω𝑖}𝑀
𝑖=0 are unbounded along 𝑒1 – due to their periodicity – only two of them, namely ̃︀Ω0 and̃︀Ω𝑀 , are unbounded in the second spatial dimension (along 𝑒2). The restrictions of the aforementioned domains

and surfaces to the periodic cell 𝒢 are denoted by:

Ω𝑖 := ̃︀Ω𝑖 ∩ 𝒢 ∀ 𝑖 ∈ {0, . . . ,𝑀}, Γ𝑗 := ̃︀Γ𝑗 ∩ 𝒢 ∀ 𝑗 ∈ {1, . . . ,𝑀}.

Additionally, we choose 𝐻 > 0 so that

𝑀−1⋃︁
𝑖=1

Ω
𝒢
𝑖 ⊂ {𝑥 ∈ 𝒢 : |𝑥2| < 𝐻}

holds. We will assume that the interfaces Γ𝑖 , 𝑖 ∈ {1, . . . ,𝑀}, are all periodic boundaries of class 𝒞∞. Further-
more, for each 𝑖 ∈ {1, . . . ,𝑀}, the exterior and interior trace operators on Γ𝑖 are understood as

𝛾𝑒
D : 𝐻1

𝜃 (Ω𝑖−1) → 𝐻
1
2
𝜃 (Γ𝑖), 𝛾D : 𝐻1

𝜃 (Ω𝑖) → 𝐻
1
2
𝜃 (Γ𝑖),

𝛾𝑒
N : 𝐻1

𝜃,Δ(Ω𝑖−1) → 𝐻
− 1

2
𝜃 (Γ𝑖) and 𝛾N : 𝐻1

𝜃,Δ(Ω𝑖) → 𝐻
− 1

2
𝜃 (Γ𝑖),

and the normal vector on Γ𝑖 is chosen to point towards Ω𝑖−1.

3.2. Helmholtz transmission problem on periodic media

For a time-dependence 𝑒−𝚤𝜔𝑡 for some frequency 𝜔 > 0, let the previously described grating be illuminated
by an incident plane wave,

𝑢(inc)(𝑥) := 𝑒𝚤k0·𝑥 = 𝑒𝚤(𝑘0,1𝑥1+𝑘0,2𝑥2),

where k0 = (𝑘0,1, 𝑘0,2) ∈ R2. Furthermore, we denote 𝑘0 := |k0|.
For 𝑖 = 0, . . . ,𝑀 , the material filling each domain Ω𝑖 is assumed to be homogeneous and isotropic with

refraction index 𝜂𝑖 – we assume 𝜂0 ≡ 1 – and wavenumber 𝑘𝑖 := 𝜔𝑐−1
𝑖 = 𝜂𝑖𝑘0, where 𝑐𝑖 is the wave speed in Ω𝑖.
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Throughout this section, we fix 𝜃 as the unique real in [0, 1) such that 𝜃 = 𝑘0,1 + 𝑛 for some integer 𝑛 and, for
all 𝑗 ∈ Z, we define

𝛽
(0)
𝑗 :=

{︂√︀
𝑘2
0 − 𝑗2

𝜃 if 𝑘2
0 − 𝑗2

𝜃 ≥ 0

𝚤
√︀

𝑗2
𝜃 − 𝑘2

0 if 𝑘2
0 − 𝑗2

𝜃 < 0
, 𝛽

(𝑀)
𝑗 :=

{︂√︀
𝑘2

𝑀 − 𝑗2
𝜃 if 𝑘2

𝑀 − 𝑗2
𝜃 ≥ 0

𝚤
√︀

𝑗2
𝜃 − 𝑘2

𝑀 if 𝑘2
𝑀 − 𝑗2

𝜃 < 0
, (3.1)

where as before 𝑗𝜃 = 𝑗 + 𝜃. With these definitions, we can state our volume problem as follows.

Problem 3.1 (Helmholtz transmission problem). We seek 𝑢(tot) defined as

𝑢(tot) :=

{︃
𝑢(inc) + 𝑢0 in Ω0,

𝑢𝑖 in Ω𝑖 for 𝑖 ∈ {1, . . . ,𝑀},

where 𝑢0 ∈ 𝐻1
𝜃,loc(Ω0), 𝑢𝑀 ∈ 𝐻1

𝜃,loc(Ω𝑀 ) and 𝑢𝑖 ∈ 𝐻1
𝜃 (Ω𝑖) for all 1 ≤ 𝑖 ≤ 𝑀 − 1, such that

−(∆ + 𝑘2
𝑖 )𝑢(tot) = 0 in Ω𝑖 ∩ {𝑥 ∈ 𝒢 : |𝑥2| ≤ 𝐻} , ∀ 𝑖 ∈ {0, . . . ,𝑀}, (3.2a)[︁

𝛾𝑢(tot)
]︁
Γ𝑖

= 0 on Γ𝑖, ∀ 𝑖 ∈ {1, . . . ,𝑀}, (3.2b)

𝑢0(𝑥) =
∑︁
𝑗∈Z

𝑢
(0)
𝑗 𝑒

𝚤
(︁

𝛽
(0)
𝑗 (𝑥2−𝐻)+𝑗𝜃𝑥1

)︁

for 𝑥2 ≥ 𝐻, (3.2c)

𝑢𝑀 (𝑥) =
∑︁
𝑗∈Z

𝑢
(𝑀)
𝑗 𝑒

𝚤
(︁
−𝛽

(𝑀)
𝑗 (𝑥2+𝐻)+𝑗𝜃𝑥1

)︁

for 𝑥2 ≤ −𝐻. (3.2d)

Equation (3.2b) represents the continuity of Dirichlet and Neumann traces across each interface. This condi-
tion can be generalized to include different transmission coefficients without much effort. The last two conditions,
namely (3.2c) and (3.2d), correspond to radiation conditions for 𝑢0 and 𝑢𝑀 , also known as the Rayleigh-Bloch
expansions (cf. [34] for a detailed discussion), where {𝑢(0)

𝑗 }𝑗∈Z and {𝑢(𝑀)
𝑗 }𝑗∈Z are the corresponding Rayleigh

coefficients.
Through an analogous analysis to that presented in ([22], Sect. 3), one finds that – for a fixed choice of

geometries {Γ𝑖}𝑀
𝑖=1 and refraction indices {𝜂𝑖}𝑀

𝑖=1 – Problem 3.1 has a unique solution for all but a countable
number of wavenumbers 𝑘0 as all wavenumbers 𝑘𝑖 for 𝑖 ∈ {1, . . . ,𝑀} depend on 𝑘0.

Assumption 3.2. The wavenumber 𝑘0 is such that Problem 3.1 has a unique solution.

We shall make no further analysis of the volume problem as stated above, and limit ourselves to [7,10,22,27,
34,41,45] and references therein for more detailed analyses of the radiation condition of similar problems.

Remark 3.3. The restriction of the Helmholtz transmission problem in an infinite 𝑥1-periodic domain to a
single period is made possible by the quasi-periodicity of the plane wave 𝑢(inc). However, the same restriction,
as well as the forthcoming analysis, holds for any quasi-periodic boundary data.

4. Boundary integral equations

Following our previous work [5], we introduce the quasi-periodic Green’s function and recall some relevant
properties. We then define the quasi-periodic single and double layer potentials and boundary integral operators
(BIOs) arising from taking their respective traces on the periodic boundaries {Γ𝑖}𝑀

𝑖=1. To conclude this section,
we present an integral representation for the fields {𝑢𝑖}𝑀

𝑖=0 and a proof of unisolvency for the corresponding
BIE. As before, 𝜃 ∈ [0, 1) will denote the quasi-periodic shift.
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4.1. Quasi-periodic fundamental solution

Consider a positive wavenumber 𝑘 ∈ R, we recall the definition of the cut-off frequencies.

Definition 4.1. We say 𝑘 > 0 is a cut-off frequency, if there is 𝑗 ∈ Z, such that

|𝑗 + 𝜃| = 𝑘, (4.1)

where 𝜃 is the previously fixed quasi-periodic shift.

These frequencies correspond to values where the quasi-periodic Green’s function can not be represented
in a traditional manner. While a number of alternatives have been developed to circumvent this issue, e.g.,
[15, 17, 19], their analysis is out of the scope of our present work. Hence, in what follows, we make the next
assumption.

Assumption 4.2. The wavenumber 𝑘 > 0 is not a cut-off frequency for the given 𝜃 ∈ [0, 1).

Under Assumption 4.2 we can define the 𝜃-quasi-periodic Green’s function as (cf. [29,34] and references therein)

𝐺𝑘
𝜃(𝑥, 𝑦) := lim

𝑚→∞

𝑚∑︁
𝑛=−𝑚

𝑒−𝚤2𝜋𝑛𝜃𝐺𝑘(𝑥 + 2𝜋𝑛𝑒1, 𝑦), (4.2)

for all 𝑥, 𝑦 in R2 such that 𝑥− 𝑦 ̸= 2𝜋𝑛𝑒1 for all 𝑛 ∈ Z, wherein 𝐺𝑘(𝑥, 𝑦) is the fundamental solution for the
Helmholtz equation with wavenumber 𝑘, namely,

𝐺𝑘(𝑥, 𝑦) =
𝚤

4
𝐻

(1)
0 (𝑘‖𝑥− 𝑦‖R2),

where 𝐻
(1)
0 (·) denotes the zeroth-order first kind Hankel function. Moreover, the quasi-periodic Green’s function

is a fundamental solution of the Helmholtz equation in the following sense:

−(∆𝑦+𝑘2)𝐺𝑘
𝜃(𝑥, 𝑦) =

∑︁
𝑛∈Z

𝛿(𝑥 + 2𝜋𝑛𝑒1)𝑒𝚤2𝜋𝑛𝜃

for all 𝑥 ∈ R2, satisfying the radiation condition specified in the preceding section (cf. [34], Prop. 3.1).

Remark 4.3. If Assumption 4.2 is not met, the sum in (4.2) fails to converge for any pair of 𝑥, 𝑦 ∈ R2.

4.2. Layer potentials and boundary integral operators

In this section, we will assume a given boundary Γ satisfying the following assumption.

Assumption 4.4. Given 𝑟 ∈ [0,∞], the interface Γ is a periodic boundary of class 𝒞𝑟,1.

We denote by Ω the part of 𝒢 below Γ (see Fig. 2). For 𝜑 ∈ 𝒟𝜃(Γ), one can define the single and double layer
potentials as

SL𝑘
𝜃,Γ𝜑(𝑥) :=

∫︁
Γ

𝐺𝑘
𝜃(𝑥, 𝑦)𝜑(𝑦)d𝑦, DL𝑘

𝜃,Γ𝜑(𝑥) :=
∫︁

Γ

𝛾N,𝑦𝐺𝑘
𝜃(𝑥, 𝑦)𝜑(𝑦)d𝑦, (4.3)

where 𝛾𝑛,𝑦 denotes the interior (with respect to Ω) Neumann trace operator acting on functions with argument
𝑦.

Lemma 4.5 ([5], Thms. 4.7 and 4.10). Let 𝑘 and Γ satisfy Assumptions 4.2 and 4.4 with 𝑟 ≥ 0, respectively.
Then, the single and double layer potentials can be extended as continuous operators acting on Sobolev spaces
as follows

SL𝑘
𝜃,Γ : 𝐻

𝑠− 1
2

𝜃 (Γ) → 𝐻𝑠+1
𝜃,loc(𝒢) and DL𝑘

𝜃,Γ : 𝐻
𝑠+ 1

2
𝜃 (Γ) → 𝐻𝑠+1

𝜃,loc(𝒢 ∖ Γ), for 𝑠 <
1
2
·
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We then define BIOs by taking traces of the layer potentials:

V𝑘
𝜃,Γ := 𝛾DSL𝜃,Γ K′𝑘𝜃,Γ := 𝛾NSL𝜃,Γ +

1
2
I,

W𝑘
𝜃,Γ := −𝛾NDL𝜃,Γ K𝑘

𝜃,Γ := 𝛾DDL𝜃,Γ −
1
2
I·

(4.4)

Moreover, due to the jump properties of the layer potentials ([5], Lem. 4.11), the following relations hold:

V𝑘
𝜃,Γ = 𝛾𝑒

DSL𝜃,Γ, K′𝑘𝜃,Γ = 𝛾𝑒
NSL𝜃,Γ −

1
2
I,

W𝑘
𝜃,Γ = −𝛾𝑒

NDL𝜃,Γ, K𝑘
𝜃,Γ = 𝛾𝑒

DDL𝜃,Γ +
1
2
I·

(4.5)

Remark 4.6. When considering interior and exterior traces acting on layer potentials, note that the normal
vector on Γ is fixed so that the only difference between exterior and interior traces is the direction from which
we approach Γ. Additionally, note that, having fixed the normal vector to Γ, the choice of trace taken in the
definition of W𝑘

𝜃,Γ is arbitrary and makes no difference.

Lemma 4.7 ([5], Thm. 4.10). Let 𝑘 and Γ be as in Assumptions 4.2 and 4.4 with 𝑟 ≥ 0, respectively. Then,
for |𝑠| < 1

2 , the BIOs satisfy the following continuity conditions

V𝑘
𝜃,Γ : 𝐻

𝑠− 1
2

𝜃 (Γ) → 𝐻
𝑠+ 1

2
𝜃 (Γ), W𝑘

𝜃,Γ : 𝐻
𝑠+ 1

2
𝜃 (Γ) → 𝐻

𝑠− 1
2

𝜃 (Γ),

K′𝑘𝜃,Γ : 𝐻
𝑠− 1

2
𝜃 (Γ) → 𝐻

𝑠− 1
2

𝜃 (Γ), K𝑘
𝜃,Γ : 𝐻

𝑠+ 1
2

𝜃 (Γ) → 𝐻
𝑠+ 1

2
𝜃 (Γ).

4.2.1. Compacteness Properties

Until this point, we have established continuity properties of the four BIOs defined in (4.4). However, the
BIEs we consider in the coming section require the subtraction of two instances of the same BIO with different
wavenumbers. This requires a number of results from pseudo-differential operator theory [37] as well as a version
of the Rellich theorem on quasi-periodic Sobolev spaces on boundaries. We show that the difference between
any two of the operators in (4.4) – with different wavenumbers – will result in a compact operator.

Theorem 4.8 (Rellich Theorem for quasi-periodic Sobolev spaces). Let 𝑠1, 𝑠2 be real numbers such that 𝑠1 < 𝑠2

and 𝜃 ∈ [0, 1). Then, 𝐻𝑠2
𝜃 (Γ) is compactly embedded in 𝐻𝑠1

𝜃 (Γ).

Proof. Follows directly from the definition of the quasi-periodic spaces and the result for standard Sobolev
spaces (see [28], Thm. 8.3). �

Remark 4.9. No smoothness assumptions are needed for the proof of the previous theorem. Thus, it can be
extended to Lipschitz boundaries for any pair of real numbers 𝑠1, 𝑠2 < 1, and potentially less regular cases if
we restrict 𝑠1, 𝑠2 to be non-negative.

Theorem 4.10 ([37], Thm. 6.1.1). Let 𝑎 : R × R → C be a 2𝜋-bi-periodic function of class 𝒞∞ and 𝑆 be a
2𝜋-periodic distribution in R. Consider the following formal operator acting on a 2𝜋-periodic smooth function
𝑢 ∈ 𝒞∞(R):

𝐴𝑢(𝑠) =
∫︁ 2𝜋

0

𝑆(𝑠− 𝑡)𝑎(𝑠, 𝑡)𝑢(𝑡)𝑑𝑡 ∀ 𝑠 ∈ R, (4.6)

where integration is to be understood as a duality pairing. Furthermore, let us assume the Fourier coefficients
of 𝑆 to behave as

|𝑆𝑛| . |𝑛|𝑝,
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for some 𝑝 ∈ R. Then, for any 𝑠 ∈ R, 𝐴 in (4.6) may be continuously extended as an operator mapping from
𝐻𝑠[0, 2𝜋] to 𝐻𝑠−𝑝[0, 2𝜋], i.e.,

𝐴 : 𝐻𝑠[0, 2𝜋] → 𝐻𝑠−𝑝[0, 2𝜋].

We also recall a classical result from Fourier analysis (cf. [43]).

Lemma 4.11. Let 𝑚 ∈ N, 𝑓 : R → C be a periodic 𝒞𝑚-class function such that its distributional derivative of
order 𝑚 + 1 belongs to 𝐿1((0, 2𝜋)). Then, its Fourier coefficients {𝑓𝑛}𝑛∈Z are such that

|𝑓𝑛| . |𝑛|−𝑚−1
.

In order to employ Theorem 4.10 we will need to express the quasi-periodic BIOs in a convenient way: with
periodic functions as kernels. Let 𝑘 and Γ be as in Assumptions 4.2 and 4.4, respectively. We begin by considering
a periodic version of the fundamental solution in (4.2) and its derivatives on Γ as

̂︀𝐺𝑘
𝜃(𝑠, 𝑡) := 𝑒−𝚤𝜃(𝑠−𝑡)𝐺𝑘

𝜃(𝑧(𝑠), 𝑧(𝑡)), (4.7)

which may be expressed as

̂︀𝐺𝑘
𝜃(𝑠, 𝑡) = 𝑆(𝑡− 𝑠)𝐽𝑘

𝜃 (𝑠, 𝑡) + 𝑅𝑘
𝜃 (𝑠, 𝑡), (4.8)

with

𝑆(𝑡) := − 1
2𝜋

log
⃒⃒⃒⃒
2 sin

|𝑡|
2

⃒⃒⃒⃒
, (4.9)

𝐽𝑘
𝜃 (𝑠, 𝑡) := 𝑒−𝚤𝜃(𝑠−𝑡)

∞∑︁
𝑗=−∞

𝐽0(𝑘‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖)𝑒−𝚤2𝜋𝑗𝜃𝜒𝜖(𝑠− 𝑡 + 2𝜋𝑗), (4.10)

where 𝐽0(·) is the zeroth-first kind Bessel function, 𝜖 ∈ (0, 2𝜋) and 𝜒𝜖(·) is a smooth function satisfying

𝜒𝜖(𝑠) = 0 if |𝑠| > 𝜖 and 𝜒𝜖(𝑠) = 1 if |𝑠| < 1
2
𝜖,

and

𝑅𝑘
𝜃 (𝑠, 𝑡) = ̂︀𝐺𝑘

𝜃(𝑠, 𝑡)− 𝑆(𝑡− 𝑠)𝐽𝑘
𝜃 (𝑠, 𝑡).

Using known expansions of Hankel functions (see [1], 9.1.12–9.1.13) one can check that 𝑅𝑘
𝜃 belongs to 𝒞∞(R×R).

Before we proceed any further, it is necessary to introduce a second wavenumber. We will denote ̃︀𝑘 > 0 a
wavenumber (not necessarily different from 𝑘) that also satisfies Assumption 4.2.

Proposition 4.12. Let 𝑘 and ̃︀𝑘 satisfy Assumption 4.2, and let Γ satisfy Assumption 4.4 with 𝑟 = ∞. Consider
V𝑘

𝜃 and V
̃︀𝑘
𝜃 the weakly singular BIOs on Γ defined in (4.4) and where we have dropped the Γ subscript for brevity.

Both operators may be considered as pseudo-differential operators of order −1, whence

V𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+1
𝜃 (Γ), V

̃︀𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+1
𝜃 (Γ).

Moreover, the operator V𝑘,̃︀𝑘
𝜃 := V𝑘

𝜃 − V
̃︀𝑘
𝜃 can be extended to

V𝑘,̃︀𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+3
𝜃 (Γ),

as a bounded linear operator for every 𝑠 ∈ R.
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Proof. That V𝑘
𝜃 (and V

̃︀𝑘
𝜃 ) may be extended as claimed follows directly from Theorem 4.10, the kernel represen-

tation (4.8) and the decay of the Fourier coefficients of 𝑆(𝑡) in (4.9) (cf. [37], Exam. 5.6.1). Take 𝜇 ∈ 𝐷𝜃(Γ), we
have that (︁

V𝑘,̃︀𝑘
𝜃 (𝜇) ∘ 𝑧

)︁
(𝑠) = 𝑒𝚤𝜃𝑠

∫︁ 2𝜋

0

(︁ ̂︀𝐺𝑘
𝜃(𝑠, 𝑡)− ̂︀𝐺̃︀𝑘𝜃(𝑠, 𝑡)

)︁
𝑒−𝚤𝜃𝑡(𝜇 ∘ 𝑧)(𝑡)‖𝑧′(𝑡)‖𝑑𝑡

as a Lebesgue integral. Furthermore, one has

̂︀𝐺𝑘
𝜃(𝑠, 𝑡)− ̂︀𝐺̃︀𝑘𝜃(𝑠, 𝑡) = 𝑆(𝑡− 𝑠)

(︁
𝐽𝑘

𝜃 (𝑠, 𝑡)− 𝐽
̃︀𝑘
𝜃 (𝑠, 𝑡)

)︁
+
(︁
𝑅𝑘

𝜃 (𝑠, 𝑡)−𝑅
̃︀𝑘
𝜃 (𝑠, 𝑡)

)︁
. (4.11)

Employing Lemma 4.11, Theorem 4.10 and ([1], Eq. 9.1.13) we see that the second term of the right-hand side
of (4.11) gives rise to a bounded operator from 𝐻𝑠[0, 2𝜋] to 𝐻𝑠+𝑝[0, 2𝜋] for any 𝑝 > 0. On the other hand, the
first term in the right-hand side of (4.11) may be decomposed as

𝑆(𝑡− 𝑠)
(︁
𝐽𝑘

𝜃 (𝑠, 𝑡)− 𝐽
̃︀𝑘
𝜃 (𝑠, 𝑡)

)︁
=
(︁
|sin(𝑡− 𝑠)|2 𝑆(𝑡− 𝑠)

)︁(︃𝐽𝑘
𝜃 (𝑠, 𝑡)− 𝐽

̃︀𝑘
𝜃 (𝑠, 𝑡)

|sin(𝑡− 𝑠)|2

)︃
·

One can see (cf. [1], Eq. 9.1.12) that the term (𝐽𝑘
𝜃 (𝑠, 𝑡)− 𝐽

̃︀𝑘
𝜃 (𝑠, 𝑡)) |sin(𝑡− 𝑠)|−2 belongs to 𝒞∞(R×R), whereas

the term |sin(𝑡− 𝑠)|2 𝑆(𝑡− 𝑠) give rise to an operator of order −3. In fact, its Fourier transform is

− 1
2𝜋

∫︁ 2𝜋

0

sin(𝑡)2 log
⃒⃒⃒⃒
2 sin

𝑡

2

⃒⃒⃒⃒
𝑒𝚤𝑛𝑡𝑑𝑡 = − 1

2𝜋

∫︁ 2𝜋

0

log
⃒⃒⃒⃒
2 sin

𝑡

2

⃒⃒⃒⃒
(𝑒𝚤(𝑛+2)𝑡 + 𝑒𝚤(𝑛−2)𝑡 − 2𝑒𝚤(𝑛)𝑡)𝑑𝑡 . 𝑛−3,

where the last equality follows from ([37], Exam. 5.6.1). Finally, define

̂︀V𝑘,̃︀𝑘
𝜃 (𝜇)(𝑠) := 𝑒−𝚤𝜃𝑠V𝑘,̃︀𝑘

𝜃 (𝜇) ∘ 𝑧(𝑠).

Then,

‖V𝑘,̃︀𝑘
𝜃 (𝜇)‖𝐻𝑠

𝜃 (Γ)
∼= ‖V𝑘,̃︀𝑘

𝜃 (𝜇) ∘ 𝑧‖𝐻𝑠
𝜃 [0,2𝜋] = ‖̂︀V𝑘,̃︀𝑘

𝜃 (𝜇)(𝑠)‖𝐻𝑠[0,2𝜋]. (4.12)

We may now bound the last term in (4.12) by Theorem 4.10:

‖̂︀V𝑘,̃︀𝑘
𝜃 (𝜇)‖𝐻𝑠+3[0,2𝜋] . ‖𝜇‖𝐻𝑠

𝜃 (Γ).

The proof is completed by the density of 𝒟𝜃(Γ) in the corresponding Sobolev space. �

For the hyper-singular BIO, a similar result requires a technical lemma. To this end, let us define the tangential
curl operator:

curlΓ 𝜙 :=
1

‖𝑧̇(𝑡)‖R2

d
d𝑡

(𝜙 ∘ 𝑧)(𝑡).

for any 𝜙 ∈ 𝒟𝜃(Γ) and where 𝑧 is a suitable (arbitrary) parametrization of Γ.

Lemma 4.13. Let 𝑘 and Γ satisfy Assumptions 4.2 and 4.4 for 𝑟 = 0, respectively, and let 𝜆 and 𝜙 belong to
𝒟𝜃(Γ). Then, ⟨︀

W𝑘
𝜃 (𝜆), 𝜙

⟩︀
Γ

=
⟨︀
V𝑘

𝜃 (curlΓ 𝜆), curlΓ 𝜙
⟩︀
Γ

+
⟨
V

⋀︀𝑘

𝜃(𝜆), 𝜙
⟩

Γ
,

where ⟨·, ·⟩Γ represents the duality product between 𝐻𝑠
𝜃 (Γ) and 𝐻−𝑠

𝜃 (Γ) for any 𝑠 > 0 and V𝑘
𝜃 is the extension by

density of the operator given by⟨
V

⋀︀𝑘

𝜃(𝜆), 𝜙
⟩

Γ
:= −𝑘2

∫︁
Γ

∫︁
Γ

𝑛(𝑥) · 𝑛(𝑦)𝐺𝑘
𝜃(𝑥, 𝑦)𝜆(𝑦)𝜙(𝑥)d𝑦d𝑥.
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Proof. Notice that for 𝜆, 𝜙 in 𝒟𝜃(Γ), it holds that

⟨curlΓ 𝜆, 𝜙⟩Γ =
∫︁ 2𝜋

0

d(𝜆 ∘ 𝑧)(𝑡)
d𝑡

(𝜙 ∘ 𝑧)(𝑡)d𝑡 = −
∫︁ 2𝜋

0

d(𝜙 ∘ 𝑧)(𝑡)
d𝑡

(𝜆 ∘ 𝑧)(𝑡)d𝑡,

where the border terms cancel each other out due to the quasi-periodicity of 𝜆 and 𝜙. Hence, the result for
quasi-periodic functions follows verbatim from the standard case (cf. [42], Thm. 6.15). �

Corollary 4.14. Under the assumptions of Proposition 4.12, consider W𝑘
𝜃 , and W

̃︀𝑘
𝜃 , the hyper-singular opera-

tors defined as in (4.4) and where again we drop the Γ subscript. The operator W𝑘,̃︀𝑘
𝜃 := W𝑘

𝜃−W
̃︀𝑘
𝜃 can be extended

to

W𝑘,̃︀𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+1
𝜃 (Γ),

as a bounded linear operator for every 𝑠 ∈ R.

Proof. Let 𝜆, 𝜙 in 𝒟𝜃(Γ). By Lemma 4.13, we have that⟨
W𝑘,̃︀𝑘

𝜃 (𝜆), 𝜙
⟩

Γ
=
⟨
V𝑘,̃︀𝑘

𝜃 (curlΓ 𝜆), curlΓ 𝜙
⟩

Γ
+
⟨

(V

⋀︀𝑘

𝜃 − V

⋀︀̃︀𝑘
𝜃)(𝜆), 𝜙

⟩
Γ

.

Using Proposition 4.12, one obtains⃒⃒⃒⟨
W𝑘,̃︀𝑘

𝜃 (𝜆), 𝜙
⟩

Γ

⃒⃒⃒
. ‖ curlΓ 𝜆‖𝐻𝑠−1

𝜃 (Γ)‖ curlΓ 𝜙‖𝐻−𝑠−2
𝜃 (Γ) + ‖𝜆‖𝐻𝑠

𝜃 (Γ)‖𝜙‖𝐻−𝑠−1
𝜃 (Γ).

Where the inequality for the second term of the right-hand side is obtained using that both (V𝑘
𝜃 , V

̃︀𝑘
𝜃 ) are operators

of order −1 by Theorem 4.10 and ([37], Exam. 5.6.1). Then, since curlΓ is a first-order differential operator, it
holds that ⃒⃒⃒⟨

W𝑘,̃︀𝑘
𝜃 (𝜆), 𝜙

⟩
Γ

⃒⃒⃒
. ‖𝜆‖𝐻𝑠

𝜃 (Γ)‖𝜙‖𝐻−𝑠−1
𝜃 (Γ).

The result then follows by a duality argument and recalling the density of 𝒟𝜃(Γ) in our quasi-periodic Sobolev
spaces. �

We now consider Dirichlet traces of the double layer potential and its adjoint, defined in Section 4.2 as the
principal value integrals

(K′𝑘𝜃 (𝜇) ∘ 𝑟)(𝑠) = −
∫︁ 2𝜋

0

𝒦′𝑘𝜃(𝑠, 𝑡)(𝜇 ∘ 𝑧)(𝑡)‖𝑧̇(𝑡)‖d𝑡,

(K𝑘
𝜃(𝜆) ∘ 𝑟)(𝑠) = −

∫︁ 2𝜋

0

𝒦𝑘
𝜃 (𝑠, 𝑡)(𝜆 ∘ 𝑧)(𝑡)‖𝑧̇(𝑡)‖d𝑡,

for which we have dropped the Γ index momentarily, and where the kernels are given by ([14], Sect. 3):

𝒦′𝑘𝜃(𝑠, 𝑡) := − 𝚤𝑘

4

∞∑︁
𝑗=−∞

(︃
𝐻

(1)
1 (𝑘‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖)
‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖

𝑒−𝚤2𝜋𝑗𝜃

× (𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)) · 𝑛(𝑧(𝑠))

)︃
,

𝒦𝑘
𝜃 (𝑠, 𝑡) :=

𝚤𝑘

4

∞∑︁
𝑗=−∞

(︃
𝐻

(1)
1 (𝑘‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖)
‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖

𝑒−𝚤2𝜋𝑗𝜃

× (𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)) · 𝑛(𝑧(𝑡))

)︃
.
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where 𝑛 denotes the unitary normal vector exterior to Ω – recall that Γ := 𝜕𝒢Ω. These can be written as ([1],
Eq. 9.1.11)

𝒦′𝑘𝜃(𝑠, 𝑡) = 𝑆1(𝑡− 𝑠)𝐽𝑘
1,𝜃(𝑠, 𝑡) + 𝑅𝑘

1,𝜃(𝑠, 𝑡)

𝒦𝑘
𝜃 (𝑠, 𝑡) = 𝑆1(𝑡− 𝑠)𝐽𝑘

2,𝜃(𝑠, 𝑡) + 𝑅𝑘
2,𝜃(𝑠, 𝑡),

(4.13)

wherein

𝑆1(𝑡− 𝑠) := − 1
2𝜋

log
(︂

2 sin
(︂

1
2
|𝑡− 𝑠|

)︂)︂
| sin(𝑡− 𝑠)|2,

𝐽𝑘
1,𝜃(𝑠, 𝑡) := −𝑘

∞∑︁
𝑗=−∞

(︃
𝐽1(𝑘‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖)
‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖

𝑒−𝚤2𝜋𝑗𝜃

× (𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)) · 𝑛(𝑧(𝑠))
| sin(𝑡− 𝑠)|2

𝜒𝜖(𝑡− 2𝜋𝑗 − 𝑠)

)︃
,

𝐽𝑘
2,𝜃(𝑠, 𝑡) := 𝑘

∞∑︁
𝑗=−∞

(︃
𝐽1(𝑘‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖)
‖𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)‖

𝑒−𝚤2𝜋𝑗𝜃

× (𝑧(𝑠) + 2𝜋𝑗𝑒1 − 𝑧(𝑡)) · 𝑛(𝑧(𝑡))
| sin(𝑡− 𝑠)|2

𝜒𝜖(𝑡− 2𝜋𝑗 − 𝑠)

)︃
,

and

𝑅𝑘
1,𝜃(𝑠, 𝑡) := 𝒦′𝑘𝜃(𝑠, 𝑡)− 𝑆1(𝑡− 𝑠)𝐽𝑘

1,𝜃(𝑠, 𝑡),

𝑅𝑘
2,𝜃(𝑠, 𝑡) := 𝒦𝑘

𝜃 (𝑠, 𝑡)− 𝑆1(𝑡− 𝑠)𝐽𝑘
2,𝜃(𝑠, 𝑡).

As in the proof of Proposition 4.12, we have that |𝑆1,𝑛| . 𝑛−3, whence, arguing as in Proposition 4.12, we have
the following result.

Proposition 4.15. For 𝑘 and Γ as in Assumptions 4.2 and 4.4 with 𝑟 = ∞, respectively, and for any 𝑠 ∈ R,
it holds that

K′𝑘𝜃 : 𝐻𝑠
𝜃 (Γ) → 𝐻𝑠+3

𝜃 (Γ), K𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+3
𝜃 (Γ),

are bounded and linear operators.

As in the case of the weakly and hyper-singular BIO, we define:

K′
𝑘,̃︀𝑘
𝜃 := K′

𝑘
𝜃 − K′

̃︀𝑘
𝜃 , K𝑘,̃︀𝑘

𝜃 := K𝑘
𝜃 − K

̃︀𝑘
𝜃 .

Finally, we obtain our compactness result.

Proposition 4.16. Let 𝑘 and ̃︀𝑘 satisfy Assumption 4.2, let Γ be as in Assumption 4.4 with 𝑟 = ∞. Then, for
𝑠 ∈ R, the following operators

V𝑘,̃︀𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+3−𝜖
𝜃 (Γ), W𝑘,̃︀𝑘

𝜃 : 𝐻𝑠
𝜃 (Γ) → 𝐻𝑠+1−𝜖

𝜃 (Γ),

K𝑘,̃︀𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+3−𝜖
𝜃 (Γ), K′

𝑘,̃︀𝑘
𝜃 : 𝐻𝑠

𝜃 (Γ) → 𝐻𝑠+3−𝜖
𝜃 (Γ),

are compact for every 𝜖 > 0.
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Proof. The result is direct from the mapping properties shown and Theorem 4.8. �

Lastly, we require the compactness of the operator resulting from taking traces of the single and double layer
operators acting on densities lying on a boundary Γ1 over another 𝑥1-periodic curve, say Γ2, that does not
intersect with Γ1. Let us denote by 𝛾2

𝑑 , 𝛾2
𝑛 Dirichlet and Neumann traces over Γ2, respectively. Then, by an

application of Lemma 4.11, Theorem 4.8 and Theorem 4.10, we obtain the following result.

Proposition 4.17. Let 𝑘 satisfy Assumption 4.2. If Γ1 and Γ2 are periodic boundaries of class 𝒞∞, then the
application of the following traces to the layer potentials:

𝛾2
DSL𝑘

𝜃,Γ1
: 𝐻𝑠1

𝜃 (Γ1) → 𝐻𝑠2
𝜃 (Γ2), 𝛾2

NSL𝑘
𝜃,Γ1

: 𝐻𝑠1
𝜃 (Γ1) → 𝐻𝑠2

𝜃 (Γ2),

𝛾2
DDL𝑘

𝜃,Γ1
: 𝐻𝑠1

𝜃 (Γ1) → 𝐻𝑠2
𝜃 (Γ2), 𝛾2

NDL𝑘
𝜃,Γ1

: 𝐻𝑠1
𝜃 (Γ1) → 𝐻𝑠2

𝜃 (Γ2),

are compact operators for any choice of 𝑠1, 𝑠2 ∈ R. The result holds regardless of the direction from which the
traces are taken.

Remark 4.18. For the main results in this section, we have assumed the interfaces to be of class 𝒞∞. While
this simplifies the analysis, we could obtain similar results with less stringent regularity requirements. Consider
𝑘 and ̃︀𝑘 satisfying Assumption 4.2 and Γ as in Assumption 4.4 with 𝑟 ∈ [1,∞), and the weakly-singular operator
𝑉 𝑘

𝜃 (where we have omitted the Γ sub-index momentarily). The expression in (4.8) still holds for the kernel of
𝑉 𝑘

𝜃 , but 𝑅𝑘
𝜃 and 𝐽𝑘

𝜃 would be only of class 𝒞𝑟,1, instead of arbitrarily smooth. Corollary 6.1.1 and Lemma 6.1.3
in [37] imply the same results of Propositions 4.12 and 4.16 for 𝑠 in a range limited by 𝑟.

Remark 4.19. As aforementioned, we have limited ourselves to extending the classical mapping results of the
BIOs to the context of quasi-periodic spaces. For the classical result see, for example, ([12], Thm. 2.1).

4.3. Boundary integral formulation

We recall the notation and geometry configuration introduced in Section 3, that is:

1. 𝑢(inc) denotes a plane incident wave with wavenumber 𝑘0, which is assumed to be quasi-periodic with shift
𝜃 ∈ [0, 1).

2. {Γ𝑖}𝑀
𝑖=1 denotes a set of 𝑀 ∈ N non-intersecting periodic boundaries of class 𝒞𝑟,1, with 𝑟 ∈ [1,∞], ordered

downwards.
3. {Ω𝑖}𝑀

𝑖=0 denotes a set of 𝑀 + 1 open domains, ordered downwards with boundaries

𝜕𝒢Ω0 = Γ1, 𝜕𝒢Ω𝑖 = Γ𝑖 ∪ Γ𝑖+1 ∀ 𝑖 ∈ {1, . . . ,𝑀 − 1}, 𝜕𝒢Ω𝑀 = Γ𝑀 .

4. {𝜂𝑖}𝑀
𝑖=1 denotes a parameter set such that the wavenumber in Ω𝑖 is given by 𝑘𝑖 = 𝜂𝑖𝑘0 for 𝑖 ∈ {1, . . . ,𝑀}.

Assumption 4.20. For a given shift, 𝜃, the wavenumber 𝑘0 and the parameters {𝜂𝑖}𝑀
𝑖=1 are such that neither

𝑘0 nor the wavenumbers 𝑘𝑖 = 𝜂𝑖𝑘0 are cut-off frequencies.

Following the notation of Problem 3.1, the scattered field – defined as the total field 𝑢(tot) minus the incident
field 𝑢(inc) – is written as

𝑢(sc) := 𝑢𝑖 in Ω𝑖, for 𝑖 ∈ {0, . . . ,𝑀}.

Under Assumption 4.20, we make the following representation Ansatz for the scattered field:

𝑢(sc) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SL𝑘0

𝜃,Γ1
(𝜇1)− DL𝑘0

𝜃,Γ1
(𝜆1) in Ω0,

SL𝑘𝑖

𝜃,Γ𝑖
(𝜇𝑖)− DL𝑘𝑖

𝜃,Γ𝑖
(𝜆𝑖)

+ SL𝑘𝑖

𝜃,Γ𝑖+1
(𝜇𝑖+1)− DL𝑘𝑖

𝜃,Γ𝑖+1
(𝜆𝑖+1)

in Ω𝑖, for 𝑖 ∈ {1, . . . ,𝑀 − 1}

SL𝑘𝑀

𝜃,Γ𝑀
(𝜇𝑀 )− DL𝑘𝑀

𝜃,Γ𝑀
(𝜆𝑀 ) in Ω𝑀 ,

,
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where, for each 𝑖 ∈ {1, . . . ,𝑀}, the boundary data 𝜆𝑖 and 𝜇𝑖 are assumed to belong to 𝐻𝑠
𝜃 (Γ𝑖) for some possibly

different values of 𝑠 ∈ R, i.e., 𝑠 may be different for each boundary datum. SL
𝑘𝑗

𝜃,Γ𝑖
and DL

𝑘𝑗

𝜃,Γ𝑖
are, respectively,

the single and double layer potentials of wavenumber 𝑘𝑗 on Γ𝑖.
As shorthand, in what follows, we denote, for each 𝑖 ∈ {1, . . . ,𝑀},

Λ𝑖 := (𝜆𝑖, 𝜇𝑖)𝑡, L𝑘
𝜃,Γ𝑖

Λ𝑖 := SL𝑘
𝜃,Γ𝑖

(𝜇𝑖)− DL𝑘
𝜃,Γ𝑖

(𝜆𝑖), (4.14)

where 𝜆𝑖 and 𝜇𝑖 are defined over Γ𝑖. For 𝑠1, 𝑠2 ∈ R, we define the Cartesian product spaces:

𝒱𝑠1,𝑠2
𝜃,Γ𝑖

:= 𝐻𝑠1
𝜃 (Γ𝑖)×𝐻𝑠2

𝜃 (Γ𝑖) for 𝑖 = 0, . . . ,𝑀, and 𝒱𝑠1,𝑠2
𝜃 :=

𝑀∏︁
𝑖=1

𝒱𝑠1,𝑠2
𝜃,Γ𝑖

,

where all of these spaces are equipped with their natural graph inner products. For each 𝑖 ∈ {1, . . . ,𝑀}, let us
define the following operators:

A𝑖Λ𝑖 :=

(︃
−K

𝑘𝑖−1,𝑘𝑖

𝜃,Γ𝑖
(𝜆𝑖) + V

𝑘𝑖−1,𝑘𝑖

𝜃,Γ𝑖
(𝜇𝑖)

W
𝑘𝑖−1,𝑘𝑖

𝜃,Γ𝑖
(𝜆𝑖) + K′

𝑘𝑖−1,𝑘𝑖

𝜃,Γ𝑖
(𝜇𝑖)

)︃
, (4.15)

corresponding to self-interactions between the potentials defined over each Γ𝑖 with themselves. Analogously, for
𝑖, 𝑗 ∈ {1, . . . ,𝑀}, we define the following operators:

B𝑖,𝑗Λ𝑗 :=

⎧⎪⎨⎪⎩
(︃
−𝛾𝑖

DDL
𝑘min{𝑖,𝑗}
𝜃,Γ𝑗

(𝜆𝑗) + 𝛾𝑖
DSL

𝑘min{𝑖,𝑗}
𝜃,Γ𝑗

(𝜇𝑗)

−𝛾𝑖
NDL

𝑘min{𝑖,𝑗}
𝜃,Γ𝑗

(𝜆𝑗) + 𝛾𝑖
NSL

𝑘min{𝑖,𝑗}
𝜃,Γ𝑗

(𝜇𝑗)

)︃
if |𝑖− 𝑗| = 1

0 a.o.c.

(4.16)

corresponding to interactions between potentials defined over Γ𝑖 with those defined over Γ𝑗 .

Proposition 4.21. Let Assumption 4.20 hold and let interfaces {Γ𝑖}𝑀
𝑖=1 be of class 𝒞∞. Then, the self-

interaction operators defined in (4.15)
A𝑖 : 𝒱𝑠1,𝑠2

𝜃,Γ𝑖
→ 𝒱𝑠1,𝑠2

𝜃,Γ𝑖

are compact operators for any 𝑠1, 𝑠2 ∈ R with 𝑠2 < 𝑠1 < 𝑠2 + 2. Furthermore, the cross-interaction operators
(4.16)

B𝑖,𝑗 :𝒱𝑠1,𝑠2
𝜃,Γ𝑗

→ 𝒱𝑠1,𝑠2
𝜃,Γ𝑖

,

are compact for any choice of 𝑠1, 𝑠2 ∈ R.

Proof. The first result is directly found using Proposition 4.16, whereas the second one follows from
Proposition 4.17. �

With the above definitions and using the jump properties of the BIOs, it holds that[︁
𝛾𝑢(sc)

]︁
Γ𝑖

= B𝑖,𝑖−1Λ𝑖−1 + (A𝑖 − I𝑖)Λ𝑖 − B𝑖,𝑖+1Λ𝑖+1, (4.17)

for each 𝑖 ∈ {1, . . . ,𝑀}, where I𝑖 corresponds to the identity map over 𝒱𝑠1,𝑠2
𝜃,Γ𝑗

, with 𝑠1, 𝑠2 ∈ R. We now introduce
the following operator matrix over 𝒱𝑠1,𝑠2

𝜃 :

ℳ :=

⎛⎜⎜⎜⎜⎝
A1 − I1 −B1,2 0 0 0 . . . 0
B2,1 A2 − I2 −B2,3 0 0 . . . 0

...
...

...
...

...
...

...
0 0 . . . 0 B𝑀−1,𝑀−2 A𝑀−1 − I𝑀−1 B𝑀−1,𝑀

0 0 . . . 0 0 B𝑀,𝑀−1 A𝑀 − I𝑀

⎞⎟⎟⎟⎟⎠ . (4.18)

Imposing the boundary conditions of Problem 3.1 to 𝑢(sc) leads to the following system of BIEs.
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Problem 4.22. Let Assumption 4.20 hold and let 𝑠 ∈ R. Set 𝑠1 = 𝑠 + 1
2 and 𝑠2 = 𝑠− 1

2 . We seek Λ ∈ 𝒱𝑠1,𝑠2
𝜃

such that

ℳΛ =

⎛⎜⎜⎜⎝
−𝛾𝑒,1𝑢(inc)

0
...
0

⎞⎟⎟⎟⎠ ,

where ℳ corresponds to the operator matrix in (4.18) and 𝛾𝑒,1 corresponds to the exterior trace vector on Γ1.

In order to ensure the well-posedness of Problem 4.22, we introduce the following set of auxiliary problems.

Problem 4.23 (Auxiliary problems). We seek {𝑣𝑖}𝑀
𝑖=1 such that 𝑣𝑖 ∈ 𝐻1

𝜃,loc(𝒢 ∖ Γ𝑖) and

−(∆ + 𝑘2
𝑖 )𝑣𝑖(𝑥) = 0 in

⎛⎝Ω𝑖−1 ∪
𝑖−2⋃︁
𝑗=0

Ω𝑗
𝒢

⎞⎠ ∩ {𝑥 ∈ 𝒢 : |𝑥2| < 𝐻},

−(∆ + 𝑘2
𝑖−1)𝑣𝑖(𝑥) = 0 in Ω𝑖 ∪

⎛⎝ 𝑀⋃︁
𝑗=𝑖+1

Ω𝑗
𝒢

⎞⎠ ∩ {𝑥 ∈ 𝒢 : |𝑥2| < 𝐻},

[𝛾𝑣𝑖]Γ𝑖 = 0 on Γ𝑖 ,

𝑣𝑖(𝑥) =
∑︁
𝑗∈Z

𝑣
(𝑖)
𝑗 𝑒

𝚤
(︁

𝛽
(𝑖)
𝑗 (𝑥2−𝐻)+𝑗𝜃𝑥1

)︁

for all 𝑥2 ≥ 𝐻,

𝑣𝑖(𝑥) =
∑︁
𝑗∈Z

𝑣
(𝑖)
𝑗 𝑒

𝚤
(︁

𝛽
(𝑖−1)
𝑗 (𝑥2+𝐻)+𝑗𝜃𝑥1

)︁

for all 𝑥2 ≤ −𝐻,

(4.19)

with

𝛽
(𝑖)
𝑗 :=

{︂√︀
𝑘2

𝑖 − 𝑗2
𝜃 if 𝑘2

𝑖 − 𝑗2
𝜃 ≥ 0

𝚤
√︀

𝑗2
𝜃 − 𝑘2

𝑖 if 𝑘2
𝑖 − 𝑗2

𝜃 < 0
∀𝑗 ∈ Z,

for each 𝑖 ∈ {1, . . . ,𝑀}, and where 𝐻 > 0 is as in Section 3.1 and {𝑘𝑖}𝑀
𝑖=0 are the wavenumbers in each {Ω𝑖}𝑀

𝑖=0,
as introduced in Section 3.

By a similar analysis to the one presented in ([41], Sect. 3.4), each interface Γ𝑖, 𝑖 ∈ {1, . . . ,𝑀}, potentially
adds a countable set of wavenumbers, 𝑘0, such that Problem 4.23 is unsolvable. This justifies the following
Assumption – recall 𝑘𝑖 = 𝜂𝑖𝑘0 for all 𝑖 ∈ {1, . . . ,𝑀}.

Assumption 4.24. Given {𝜂𝑖}𝑀
𝑖=1, the wavenumber 𝑘0 is such that the auxiliary Problem 4.23 has only one

solution {𝑣𝑖}𝑀
𝑖=1 given by 𝑣𝑖 := 0 for all 𝑖 ∈ {1, . . . ,𝑀}.

Assumption 4.24 will force us to discard yet more wavenumbers, but the set of wavenumbers neglected by
Assumptions 3.2 and 4.24 is still countable.

Theorem 4.25. Let parameters 𝑘0 and {𝜂𝑖}𝑀
𝑖=1 satisfy Assumption 4.20 and let interfaces {Γ𝑖}𝑀

𝑖=1 be periodic
boundaries of class 𝒞∞. Under Assumptions 3.2 and 4.24, Problem 4.22 is well posed for any 𝑠 ∈ R.

Proof. Note that the operator matrix ℳ may be written as

ℳ =

⎛⎜⎜⎜⎜⎝
A1 −B1,2 0 0 0 . . . 0
B2,1 A2 −B2,3 0 0 . . . 0

...
...

...
...

...
...

...
0 0 . . . 0 B𝑀−1,𝑀−2 A𝑀−1 B𝑀−1,𝑀

0 0 . . . 0 0 B𝑀,𝑀−1 A𝑀

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎝
I1 0 0 0 . . . 0
0 I2 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 I𝑀−1 0
0 0 . . . 0 0 I𝑀

⎞⎟⎟⎟⎟⎠ .
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By the Fredholm alternative, we need only show uniqueness of Problem 4.22, as the above tridiagonal block is
compact by Proposition 4.21. The proof is similar to the one found for the classical problem of scattering by a
bounded object in free space (cf. [20], Thm. 3.41).

Let Λ ∈ 𝒱𝑠1,𝑠2
𝜃 , with 𝑠1 = 𝑠 + 1

2 and 𝑠2 = 𝑠− 1
2 , be such that ℳΛ = 0. We define

̃︀𝑢0(𝑥) :=
(︁
L𝑘0

𝜃,Γ1
(Λ1)

)︁
(𝑥) ∀ 𝑥 ∈ 𝒢 ∖ Γ1,

̃︀𝑢𝑖(𝑥) :=
(︁
L𝑘𝑖

𝜃,Γ𝑖
(Λ𝑖)

)︁
(𝑥) +

(︁
L𝑘𝑖

𝜃,Γ𝑖+1
(Λ𝑖+1)

)︁
(𝑥) ∀ 𝑥 ∈ 𝒢 ∖ (Γ𝑖 ∪ Γ𝑖+1), ∀ 𝑖 ∈ {1, . . . ,𝑀 − 1},

̃︀𝑢𝑚(𝑥) :=
(︁
L𝑘𝑀

𝜃,Γ𝑚
(Λ𝑚)

)︁
(𝑥) ∀ 𝑥 ∈ 𝒢 ∖ Γ𝑚,

where L is defined as in (4.14). We further define

̃︀𝑢(𝑥) := ̃︀𝑢𝑖(𝑥) ∀ 𝑥 ∈ Ω𝑖, ∀ 𝑖 ∈ {0, . . . ,𝑀},

which is well defined in each Ω𝑖. Moreover, ℳΛ = 0 implies [𝛾̃︀𝑢]Γ𝑖
= 0 on each Γ𝑖, and thus, ̃︀𝑢 solves the

Helmholtz equation with wavenumber 𝑘𝑖 in each Ω𝑖 and satisfies appropriate radiation conditions at infinity
([5], Sect. 4). Hence, ̃︀𝑢 solves Problem 3.1, and Assumption 3.2 implies ̃︀𝑢 ≡ 0.

Let us now define the following auxiliary functions:

̃︀𝑣𝑖(𝑥) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
̃︀𝑢𝑖(𝑥) ∀𝑥 ∈ Ω𝑖−1 ∪

(︃
𝑖−2⋃︀
𝑗=0

Ω𝑗
𝒢
)︃

−̃︀𝑢𝑖−1(𝑥) ∀𝑥 ∈ Ω𝑖 ∪

(︃
𝑀⋃︀

𝑗=𝑖+1

Ω𝑗
𝒢
)︃ , ∀ 𝑖 ∈ {1, . . . ,𝑀}.

It is clear from this definition that

(−∆− 𝑘2
𝑖 )̃︀𝑣𝑖(𝑥) = 0, in Ω𝑖−1 ∪

⎛⎝𝑖−2⋃︁
𝑗=0

Ω𝑗
𝒢

⎞⎠ ,

(−∆− 𝑘2
𝑖−1)̃︀𝑣𝑖(𝑥) = 0, in Ω𝑖 ∪

⎛⎝ 𝑀⋃︁
𝑗=𝑖+1

Ω𝑗
𝒢

⎞⎠ .

Furthermore, each ̃︀𝑣𝑖 satisfies the appropriate radiation conditions at infinity. Using the jump relationships of
BIOs ([5], Lem. 4.11), we have that

𝛾𝑖,𝑒̃︀𝑣𝑖 − 𝛾𝑖̃︀𝑢 = Λ𝑖, 𝛾𝑖,𝑒̃︀𝑢 + 𝛾𝑖̃︀𝑣𝑖 = Λ𝑖. (4.20)

Since ̃︀𝑢 ≡ 0, we have that

[𝛾̃︀𝑣𝑖]Γ𝑖 = 𝛾𝑖,𝑒̃︀𝑣𝑖 − 𝛾𝑖̃︀𝑣𝑖 = 𝛾𝑖,𝑒̃︀𝑣𝑖 − 𝛾𝑖̃︀𝑢− (𝛾𝑖,𝑒̃︀𝑢 + 𝛾𝑖̃︀𝑣𝑖) = 0,

from where it follows that {̃︀𝑣𝑖}𝑀
𝑖=1 solves Problem 4.23. Assumption 4.24 implies that ̃︀𝑣𝑖 ≡ 0, for all 𝑖 in

{1, . . . ,𝑀}. Finally, (4.20) implies Λ ≡ 0 as stated. �

Remark 4.26. Theorem 4.25 states that if all interfaces are of arbitrary smoothness, the solution Λ is also
arbitrarily smooth. This result can be generalized to geometries of limited regularity by following the ideas
presented in Remark 4.18, obtaining a solution of limited regularity.
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5. Spectral Galerkin method

We now provide a numerical method to approximate solutions of Problem 4.22 along with its corresponding
error estimates. We restrict ourselves to cases where the interfaces {Γ𝑖}𝑀

𝑖=1 are periodic boundaries of class
𝒞∞. By Theorem 4.25, the solution is of arbitrary smoothness and a spectral method should converge at a
super-algebraic rate (cf. [37], Chap. 9 and [25,26]).

5.1. Discrete spaces

Let us define a suitable family of finite dimensional subspaces of 𝒱𝑠1,𝑠2
𝜃 . From the definition of quasi-periodic

Sobolev spaces, it is natural to consider the following finite dimensional functional spaces over (0, 2𝜋):

̂︀ℰ𝑁
𝜃 := span{̂︀𝑒𝑛

𝜃 (𝑡) := 𝑒𝚤(𝑛+𝜃)𝑡 : 𝑛 ∈ {−𝑁, . . . , 𝑁}}.

It is clear that ̂︀ℰ𝑁
𝜃 ⊂ ̂︀ℰ𝑁+1

𝜃 for all 𝑁 ∈ N and that
⋃︀

𝑁∈N
̂︀ℰ𝑁
𝜃 is dense in 𝐻𝑠

𝜃 [0, 2𝜋] for any 𝑠 ∈ R. Denoting
𝑧𝑖 : (0, 2𝜋) → Γ𝑖 a parametrization of Γ𝑖, we define

̃︀ℰ𝑁
𝜃,Γ𝑖

:= span{̃︀𝑒𝑛
𝜃,𝑖 := ̂︀𝑒𝑛

𝜃 ∘ 𝑧−1
𝑖 , : 𝑛 ∈ {−𝑁, . . . , 𝑁}}, (5.1)

ℰ𝑁
𝜃,Γ𝑖

:= span{𝑒𝑛
𝜃,𝑖 :=

⃦⃦
𝑧̇𝑖 ∘ 𝑧−1

𝑖

⃦⃦−1

R2 ̃︀𝑒𝑛
𝜃,𝑖 : 𝑛 ∈ {−𝑁, . . . , 𝑁}}. (5.2)

We can see that ̃︀ℰ𝑁
𝜃,Γ𝑖

is the space spanned by finite Fourier basis parametrized on Γ𝑖 and that ℰ𝑁
𝜃,Γ𝑖

is constructed
from the previous space by dividing the basis by the norm of the tangential vector of the corresponding interface.
The inclusion of the tangential vector norm in the definition of ℰ𝑁

𝜃,Γ𝑖
allows for a simplified implementation of

the discrete problem by factoring out the Jacobian of the parametrization given by 𝑧𝑖. As before, it is clear
that both

⋃︀
𝑁∈N ℰ𝑁

𝜃,Γ𝑖
and

⋃︀
𝑁∈N

̃︀ℰ𝑁
𝜃,Γ𝑖

are dense subspaces of 𝐻𝑠
𝜃 (Γ𝑖) for 𝑠 ∈ R. Finally, we define the Cartesian

product of discrete spaces

ℰ𝑁
𝜃,Γ𝑖

:= ̃︀ℰ𝑁
𝜃,Γ𝑖

× ℰ𝑁
𝜃,Γ𝑖

,

whose infinite union on 𝑁 forms a dense subspace of 𝒱𝑠1,𝑠2
𝜃,Γ𝑖

for any pair 𝑠1, 𝑠2 ∈ R.

5.2. Discrete problem

We now consider the Galerkin discretization of Problem 4.22 on the finite dimensional product space

E𝑁
𝜃 :=

𝑀∏︁
𝑖=1

ℰ𝑁𝑖

𝜃,Γ𝑖
⊂ 𝒱𝑠1,𝑠2

𝜃 for 𝑁 = {𝑁𝑖}𝑀
𝑖=1 ⊂ N, 𝑠1, 𝑠2 ∈ R.

Problem 5.1 (Discrete BIEs). Let parameters 𝑘0 and {𝜂𝑖}𝑀
𝑖=1 satisfy Assumption 4.20 along with interfaces

{Γ𝑖}𝑀
𝑖=1 of class 𝒞∞. For some 𝑁 = {𝑁𝑖}𝑀

𝑖=1 ⊂ N, we seek Λ𝑁 ∈ E𝑁
𝜃 such that⟨

ℳΛ𝑁 ,Ξ𝑁
⟩

Γ
=
⟨
𝜚,Ξ𝑁

⟩
Γ

, ∀ Ξ𝑁 ∈ E𝑁
𝜃 , (5.3)

where the duality product

⟨Ψ,Ξ⟩Γ :=
𝑀∑︁
𝑖=1

⟨Ψ𝑖, Ξ𝑖⟩Γ𝑖
∀ Ψ, Ξ ∈ 𝒱𝑠1,𝑠2

𝜃 ,

denotes the sum of two standard duality pairings in 𝐻
1
2
𝜃 (Γ𝑖) and 𝐻

− 1
2

𝜃 (Γ𝑖), and 𝜚 accounts for the right-hand
side of Problem 4.22.
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Since this is a second-kind BIE, we can deduce a quasi-optimality approximation result for the Galerkin
discretization (cf. [38], Thm. 4.2.9), so that in order to establish error convergence rates for the discrete solution,
we need to bound those of the best approximation. From the definition of our discrete and continuous spaces,
the problem of bounding the best approximation on 𝒱𝑠1,𝑠2

𝜃 is equivalent to that of establishing bounds for the
best approximation of an element of 𝐻𝑠[0, 2𝜋] when approximated by elements of ̂︀ℰ𝑁

̃︀𝜃
with ̃︀𝜃 = 0. This issue

was already addressed, for example, in ([37], Thm. 8.2.1). Specifically, for any pair 𝑟1, 𝑟2 ∈ R with 𝑟2 > 𝑟1 and
𝑓 ∈ 𝐻𝑟2 [0, 2𝜋], there holds

inf
𝑞∈̂︀ℰ𝑁

̃︀𝜃

‖𝑓 − 𝑞‖𝐻𝑟1 [0,2𝜋] . 𝑁𝑟1−𝑟2‖𝑓‖𝐻𝑟2 [0,2𝜋]. (5.4)

Theorem 5.2. Let parameters 𝑘0 and {𝜂𝑖}𝑀
𝑖=1 satisfy Assumption 4.20 along with interfaces {Γ𝑖}𝑀

𝑖=1of class 𝒞∞.
For 𝑠 ≥ 0, let 𝑠1 = 𝑠+ 1

2 and 𝑠2 = 𝑠− 1
2 . Then, under Assumptions 3.2 and 4.24, there exists 𝑁⋆ = {𝑁⋆

𝑖 }𝑀
𝑖=1 ⊂ N

such that for any 𝑁 = {𝑁𝑖}𝑀
𝑖=1 ⊂ N with 𝑁𝑖 > 𝑁⋆

𝑖 for all 𝑖 ∈ {1, . . . ,𝑀}, Problem 5.1 is well posed and it holds
that ⃦⃦⃦

Λ−Λ𝑁
⃦⃦⃦

𝒱
1
2 ,− 1

2
𝜃

.

(︂
max

𝑖∈{1,...,𝑀}
𝑁−𝑠

𝑖

)︂
‖𝜚‖𝒱𝑠1,𝑠2

𝜃
,

where Λ and Λ𝑁 are the solutions to Problems 4.22 and 5.1, respectively.

Proof. By ([38], Thm. 4.2.9), together with Proposition 4.21 and the density of E𝑁
𝜃 in 𝒱

1
2 ,− 1

2
𝜃 , one can ensure

the existence of some 𝑁⋆ = {𝑁⋆
𝑖 }𝑀

𝑖=1 ⊂ N such that, for any 𝑁 = {𝑁𝑖}𝑀
𝑖=1 ⊂ N with 𝑁𝑖 > 𝑁⋆

𝑖 , 𝑖 ∈ {1, . . . ,𝑀},
Problem 5.1 is well posed and it holds that⃦⃦⃦

Λ−Λ𝑁
⃦⃦⃦

𝒱𝑠1,𝑠2
𝜃

. inf
Ξ𝑁∈E𝑁

𝜃

⃦⃦⃦
Λ−Ξ𝑁

⃦⃦⃦
𝒱𝑠1,𝑠2

𝜃

, (5.5)

where Λ and Λ𝑁 are the solutions to Problems 4.22 and 5.1, respectively.
We continue by bounding (5.5). For any Ξ𝑁 ∈ E𝑁

𝜃 , write Ξ𝑁𝑖
𝑖 = (𝜉𝑁𝑖

𝑖 , 𝜁𝑁𝑖
𝑖 )𝑡 for all 𝑖 ∈ {1, . . . ,𝑀}, so that

⃦⃦⃦
Λ−Ξ𝑁

⃦⃦⃦2

𝒱
1
2 ,− 1

2
𝜃

=
𝑀∑︁
𝑖=1

⃦⃦⃦
𝜆𝑖 − 𝜉𝑁𝑖

𝑖

⃦⃦⃦2

𝐻
1
2

𝜃 (Γ𝑖)
+
⃦⃦⃦
𝜇𝑖 − 𝜁𝑁𝑖

𝑖

⃦⃦⃦2

𝐻
− 1

2
𝜃 (Γ𝑖)

.

By definition of our continuous and discrete spaces together with (5.4), we see that for all 𝑖 ∈ {1, . . . ,𝑀}, one
deduces ⃦⃦⃦

𝜆𝑖 − 𝜉𝑁𝑖
𝑖

⃦⃦⃦2

𝐻
1
2

𝜃 (Γ𝑖)
. 𝑁−2𝑠

𝑖 ‖𝜆𝑖‖2
𝐻

𝑠+ 1
2

𝜃 (Γ𝑖)
,
⃦⃦⃦
𝜇𝑖 − 𝜁𝑁𝑖

𝑖

⃦⃦⃦2

𝐻
− 1

2
𝜃 (Γ𝑖)

. 𝑁−2𝑠
𝑖 ‖𝜇𝑖‖2

𝐻
𝑠− 1

2
𝜃 (Γ𝑖)

,

where the unspecified constant depends only on Γ𝑖. Hence, it holds that⃦⃦⃦
Λ−Ξ𝑁

⃦⃦⃦2

𝒱
1
2 ,− 1

2
𝜃

.

(︂
max

𝑖∈{1,...,𝑀}
𝑁−2𝑠

𝑖

)︂
‖Λ‖2𝒱𝑠1,𝑠2

𝜃
.

Since the problem is well posed, we obtain⃦⃦⃦
Λ−Ξ𝑁

⃦⃦⃦2

𝒱
1
2 ,− 1

2
𝜃

.

(︂
max

𝑖∈{1,...,𝑀}
𝑁−2𝑠

𝑖

)︂
‖𝜚‖2𝒱𝑠1,𝑠2

𝜃
,

where the unspecified constant now also depends on the wavenumbers {𝑘𝑖}𝑀
𝑖=0. �
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Remark 5.3. Theorem 5.2 states that the proposed spectral Galerkin method has a similar performance to the
Nyström one. Indeed, if interfaces belong to 𝒞∞, one obtains super-algebraic convergence for both methods (see
[46] for Nyström). The super-algebraic convergence rate of the Nyström method for the transmission problem on
a bounded object in two dimensions was rigorously proved in [12]. Similar convergence results for quasi-periodic
problems using the Nyström scheme are, to the best of our knowledge, not available.

Remark 5.4. It follows from Remark 4.26 that, if the interfaces are of class 𝒞𝑟,1 with 𝑟 ∈ [1,∞), one attains
limited convergence orders.

5.3. Implementation

We continue with an overview of the procedure employed to compute the approximation Λ𝑁 . For a given
𝑁 ∈ N and 𝑙, 𝑚 ∈ Z such that −𝑁 ≤ 𝑙,𝑚 ≤ 𝑁 , the integrals

𝐼1
𝑙 :=

∫︁ 2𝜋

0

𝑓(𝑡)𝑒−𝚤𝑙𝑡 d𝑡 and 𝐼2
𝑙,𝑚 :=

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝐹 (𝑠, 𝑡)𝑒−𝚤𝑙𝑠𝑒𝚤𝑚𝑡 d𝑡d𝑠, (5.6)

where 𝑓 and 𝐹 are smooth periodic and bi-periodic functions, respectively, are computed using the FFT to
construct trigonometric interpolations of the corresponding functions (cf. [37], Thm. 8.4.1). In particular, the
computation of block matrices B𝑖,𝑗 in (4.18) is performed in this way. Moreover, we have the following result
regarding the accuracy of the integral procedure.

Lemma 5.5. For 𝑁 ′ ∈ N, let 𝐼1,𝑁 ′

𝑙 denote the approximation of 𝐼1
𝑙 computed through an interpolation of 𝑓

computed via FFT using 2𝑁 ′ + 1 points. Then, it holds that

|𝐼1,𝑁 ′

𝑙 − 𝐼1
𝑙 | . (𝑁 ′)−𝑝,

for all 𝑙 ∈ Z and 𝑝 ∈ N satisfying 𝑝 < 𝑁 ′ and |𝑙| ≤ 𝑁 ′, wherein the unspecified constant depends on 𝑓 but not
on 𝑙 or 𝑁 ′. Similarly, let 𝐼2

𝑙,𝑚 denote the analogous approximation of 𝐼2,𝑁 ′

𝑙,𝑚 . Then, it holds that

|𝐼2,𝑁 ′

𝑙,𝑚 − 𝐼2
𝑙,𝑚| . (𝑁 ′)−𝑝,

for all 𝑙, 𝑚 ∈ Z and 𝑝 ∈ N satisfying 𝑝 < 𝑁 ′ and |𝑙|, |𝑚| ≤ 𝑁 ′, where the unspecified constant depends on 𝑓 but
not on 𝑙, 𝑚 or 𝑁 ′.

Proof. Follows directly from the aliasing properties of Fourier coefficients for smooth functions (cf. [44],
Chap. 4). �

Since one can choose 𝑁 ′ in Lemma 5.5 proportional1 to 𝑁 , approximating the set of integrals {𝐼1
𝑙 }𝑁

𝑙=−𝑁

involves 𝑂(2𝑁 + 1) evaluations of 𝑓 and one application of the FFT to the corresponding vector. Thus, the
total cost2 is 𝑂 ((2𝑁 + 1) log(2𝑁 + 1)) arithmetic operations – plus 𝑂(2𝑁 + 1) function evaluations of 𝑓 – to
approximate the 2𝑁 +1 integrals. The approximation of the set of integrals {𝐼2

𝑙,𝑚}𝑁
𝑙,𝑚=−𝑁 requires 𝑂((2𝑁 +1)2)

evaluations of the function 𝐹 and 𝑂(2(2𝑁 + 1)) applications of the FFT to the corresponding vectors, yielding
a cost of 𝑂

(︀
(2𝑁 + 1)2 log(2𝑁 + 1)

)︀
arithmetic operations – plus 𝑂((2𝑁 + 1)2) function evaluations of 𝐹 .

On the other hand, the block matrices A𝑖 in (4.18) consist of differences of self-interaction operators on Γ𝑖

for the four BIOs. While the difference of two operators is compact – the resulting kernel is smoother than
that associated to a single evaluation of the same operator – the kernel is not arbitrarily smooth, even if the
geometry is. Consequently, a deeper analysis is required before applying classical algorithms for the computation
of Fourier transforms.

1The number of degrees of freedom is 2𝑁 + 1.
2This is the classical estimation of the computational cost for the FFT.
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Let us consider, as an illustrative example, the weakly singular operator. We are required to compute integrals
such as ∫︁ 2𝜋

0

∫︁ 2𝜋

0

̂︀𝐺𝑘
𝜃(𝑠, 𝑡)𝑒−𝚤𝑙𝑠𝑒𝚤𝑚𝑡 d𝑡d𝑠,

where ̂︀𝐺𝑘
𝜃 is as in (4.7). Decomposing ̂︀𝐺𝑘

𝜃 as shown in (4.8), we obtain two integrals,

𝐼𝑆
𝑙,𝑚 :=

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝑆(𝑡− 𝑠)𝐽𝑘
𝜃 (𝑠, 𝑡)𝑒−𝚤𝑙𝑠𝑒𝚤𝑚𝑡 d𝑡d𝑠, 𝐼𝑅

𝑙,𝑚 :=
∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝑅𝑘
𝜃 (𝑠, 𝑡)𝑒−𝚤𝑙𝑠𝑒𝚤𝑚𝑡 d𝑡d𝑠.

Since 𝑅𝑘
𝜃 (𝑠, 𝑡) is smooth and periodic (see Section 4.2.1), 𝐼𝑅

𝑙,𝑚 may be computed via the FFT. To compute 𝐼𝑆
𝑙,𝑚,

we use the expansion (cf. [25], Eq. 12):

𝑆(𝑡− 𝑠) =
∞∑︁

𝑛=−∞
𝑛̸=0

1
4𝜋𝑛

𝑒𝚤𝑛(𝑡−𝑠). (5.7)

Thus,

𝐼𝑆
𝑙,𝑚 =

∞∑︁
𝑛=−∞

𝑛 ̸=0

1
4𝜋𝑛

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝐽𝑘
𝜃 (𝑠, 𝑡)𝑒−𝚤(𝑙+𝑛)𝑠𝑒𝚤(𝑚+𝑛)𝑡 d𝑡d𝑠. (5.8)

Since 𝐽𝑘
𝜃 (𝑠, 𝑡) is smooth and periodic (cf. (4.10)), each of the integrals of the right-hand side is easy to compute.

Moreover, the terms in the series in (5.8) decay exponentially and the series may be truncated at the cost of a
small approximation error. Furthermore, the sum in (5.8) may be understood as a discrete convolution, allowing
it to be computed by multiplying the corresponding Fourier transforms (see [25] for details).

Lemma 5.6. For 𝑁 ′, ̃︀𝑁 ∈ N, let 𝐼𝑆,𝑁 ′, ̃︀𝑁
𝑙,𝑚 denote the approximation of 𝐼𝑆

𝑙,𝑚 computed through a 2𝑁 ′ + 1 point
interpolation of 𝐽𝑘

𝜃 (𝑠, 𝑡) via FFT and approximating 𝑆(𝑡− 𝑠) by approximating the sum in (5.7) as

̃︀𝑁∑︁
𝑛=−̃︁𝑁

𝑛 ̸=0

1
4𝜋𝑛

𝑒𝚤𝑛(𝑡−𝑠).

Then, it holds that
|𝐼𝑆,𝑁 ′, ̃︀𝑁

𝑙,𝑚 − 𝐼𝑆
𝑙,𝑚| . (𝑁 ′)−𝑝 log ̃︀𝑁 + (𝑁 ′ + ̃︀𝑁)−𝑝,

for all 𝑙, 𝑚 ∈ Z and 𝑝 ∈ N satisfying 𝑝 < 𝑁 ′ and |𝑙|, |𝑚| ≤ 𝑁 ′, where the unspecified constant depends only on
the kernel 𝐽𝑘

𝜃 (𝑠, 𝑡).

Proof. Notice that⃒⃒⃒⃒
⃒𝐼𝑆,𝑁 ′, ̃︀𝑁

𝑙,𝑚 − 𝐼𝑆
𝑙,𝑚

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒⃒⃒ ̃︀𝑁∑︁

𝑛=−̃︁𝑁
𝑛 ̸=0

1
4𝜋𝑛

(𝐼𝐽
𝑙+𝑛,𝑚+𝑛 − 𝐼𝐽,𝑁 ′

𝑙+𝑛,𝑚+𝑛)

⃒⃒⃒⃒
⃒⃒⃒+

⃒⃒⃒⃒
⃒⃒ ∑︁
|𝑛|> ̃︀𝑁

1
4𝜋𝑛

𝐼𝐽
𝑙+𝑛,𝑚+𝑛

⃒⃒⃒⃒
⃒⃒ ,

where

𝐼𝐽
𝑙+𝑛,𝑚+𝑛 =

∫︁ 2𝜋

0

∫︁ 2𝜋

0

𝐽𝑘
𝜃 (𝑠, 𝑡)𝑒−𝚤(𝑙+𝑛)𝑠𝑒𝚤(𝑚+𝑛)𝑡 d𝑡d𝑠

and 𝐼𝐽,𝑁 ′

𝑙+𝑛,𝑚+𝑛 is the approximation of 𝐼𝐽
𝑙+𝑛,𝑚+𝑛 obtained as in Lemma 5.5. The result then follows from

Lemma 5.5 and the decay of Fourier coefficients of smooth functions ([44], Chap. 4). �
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The computational cost of approximating {𝐼𝑆
𝑙,𝑚}𝑁

𝑙,𝑚=−𝑁 is dominated by the cost of the approximation of
{𝐼𝑅

𝑙,𝑚}𝑁
𝑙,𝑚=−𝑁 , since it involves (2𝑁 ′ + 1)2 evaluations of the quasi-periodic Green’s function, each of which

corresponds to 2 ̃︀𝑁 + 1 evaluations of a Hankel function (cf. [14]). Choosing 𝑁 ′ and ̃︀𝑁 proportional to 𝑁 leaves
the cost of evaluating the quasi-periodic Green’s function as 𝑂((2𝑁 + 1)3) evaluations of the Hankel function3.
Meanwhile, the total cost for 𝐼𝑆

𝑙,𝑚 is 𝑂((2𝑁 + 1) log(2𝑁 + 1)).
For the operators K𝑘

𝜃 and K′𝑘𝜃 , a similar technique can be applied using (4.13). The integrals corresponding to
the hyper-singular BIO are approximated by first using the integration-by-parts formula in Lemma 4.13, reducing
it to two different integrals which are then approximated as those corresponding to the weakly singular BIO.

Considering 𝑀 > 1 interfaces, 2𝑁 + 1 degrees of freedom on each interface and 𝑁 ′ proportional to 𝑁
the total cost of the matrix assembly process can be estimated as 𝑂(𝑁3𝑀) Hankel function evaluations and
𝑂(𝑀𝑁2 log 𝑁) arithmetic operations. We point out that the cost could be reduced drastically by constructing
an accurate algorithm to approximate the Hankel functions by pre-computing some values. We then have the
following corollary of Theorem 5.2 and Lemmas 5.5 and 5.6.

Corollary 5.7. Let 𝑁 ⊂ N be as in Theorem 5.2 and consider the fully discrete problem, where we seek a
solution ̃︀Λ𝑁

∈ E𝑁
𝜃 of Problem 5.1, and consider the approximation of the discrete operator and right-hand side

via FFT as in Lemmas 5.5 and 5.6. Then, the fully discrete problem is well posed and there exists 𝑁⋆ ∈ N such
that, for all 𝑁 ′, ̃︀𝑁 ≥ 𝑁⋆ defined as in Lemma 5.5 and 5.6, for which⃦⃦⃦

Λ− ̃︀Λ𝑁
⃦⃦⃦

𝒱
1
2 ,− 1

2
𝜃

.

(︂
max

𝑖∈{1,...,𝑀}
𝑁−𝑠

𝑖

)︂
‖𝜚‖𝒱𝑠1,𝑠2

𝜃
.

Proof. The result is an immediate consequence of Strang’s lemma ([38], Sect. 4.2.4), using Lemma 5.5, and 5.6
to bound the quadrature errors. �

6. Numerical examples

We now showcase computational experiments verifying the convergence estimates found in Theorem 5.2.
The implementation of the aforementioned algorithms was carried through a C++ cpu-only library. All the
experiments ran on a Intel I7-4770@3.4GHZ processor with 8 threads. The code was compiled with gcc 4.9.4,
openmp and O2 flags on. As in Section 5.3, we consider our discrete spaces with 2𝑁 + 1 bases per interface,
with 𝑁 ∈ N.

6.1. Code validation

We begin by considering the simple case of a grating with two media separated by a single horizontal line
segment acting as its layer. Hence, using the following expansion of the Green’s function ([5], Prop. 4.2):

𝐺𝑘
𝜃(𝑥, 𝑦) =

𝚤

4𝜋

∑︁
𝑗∈Z

1
𝛽𝑗

𝑒𝚤𝛽𝑗 |𝑥2−𝑦2|−𝚤𝑗𝜃(𝑦1−𝑥1) for all 𝑥, 𝑦 ∈ R2,

it is possible to assemble the matrix analytically. The matrix ℳ is then composed of only block diagonal
terms. Since the right-hand side only has two non-null components4, only the corresponding components for the
solution are non-zero, yielding a closed form for the solution.

In order to test the implementation, we consider an artificial (harder) problem by including ghost domains,
i.e., we add extra smooth (ghost) layers that separate domains with the same refraction index. Hence, the
solution is the same as if these additional domains did not exist and has a closed form, as before. The results
for different ghost layers are reported in Figure 3.

3The value of ̃︀𝑁 has to be chosen depending of 𝑘0, but typically one can assume that it need not be greater than 2𝑁 , for 𝑁
large enough to ensure convergence.

4One for the Dirichlet trace of the incident wave and another for the Neumann trace.



FAST SOLVER FOR QUASI-PERIODIC 2D-HELMHOLTZ SCATTERING IN LAYERED MEDIA 2467

Figure 3. (a) Problem geometry. (b) Error in the 𝒱
1
2 ,− 1

2
𝜃 norm with respect to the analytic

solution. Results provided for different numbers ghost layers (1,2 and 3, respectively), i.e., the
first experiment considers only the first 3 layers (counting downwards), the second one considers
the first 4 layers and the third considers all 5 layers.

Figure 4. Error in the 𝒱
1
2 ,− 1

2
𝜃 norm with respect to the analytic solution. The legend indicates

an estimate of the slope of the error convergence curves for different values of 𝑝 (degrees of
smoothness). Classically, error convergence estimates for spectral methods indicate the slope
to be at least equal to 𝑝. We also consider the case 𝑝 = 2, where the extra layer is 𝒞∞ and the
super-algebraic convergence rate is observed.
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Table 1. Value of refraction indices {𝜂(1)
𝑖 }12𝑖=1 and {𝜂(2)

𝑖 }12𝑖=1 (corresponding to the two consid-
ered cases) for the grating in Figure 6 (counting downwards).

1 2 3 4 5 6 7 8 9 10 11 12

𝜂
(1)
𝑖 4.7 4.2 4.8 3.6 1.1 4.4 4.7 3.7 4.0 3.9 2.6 3.6

𝜂
(2)
𝑖 4.7 8.4 4.8 7.2 1.1 8.8 4.7 7.4 4.0 7.8 2.6 7.2

We also display the convergence behaviour of the method for interfaces with limited regularity by repeating
the previous experiment (same incident field) with one ghost domain and an interface given by

𝑧3(𝑡) = (𝑡, 𝑎| sin(𝑡)|𝑝 + 𝑏),

where 𝑎, 𝑏 are real numbers that scale the interface, and 𝑝 is an odd integer that determines the smoothness
degree of the interface. In particular, 𝑧3 is in 𝒞𝑝−2,1 or, more precisely, 𝒞𝑝−1 with an integrable 𝑝-th derivative.
Results are reported in Figure 4.

For all experiments in this section, the frequency is chosen as 𝑘0 = 1 and the incidence angle is 0.47 radians.

6.2. Convergence results

We now consider a smooth geometry composed of 12 layers with varying refraction indices. Two differ-
ent scenarios are employed, reported in Table 1, 𝜂

(1)
𝑖 and 𝜂

(2)
𝑖 , respectively. We also consider three different

wavenumbers for the incident wave, 𝑘0 = 2.8, 14 and 28. Convergence results in the energy norm for the solu-
tion of Problem 5.1 for the different cases of parameters and wavenumbers are reported in Figure 5, where
exponential convergence is observed for all considered scenarios, as expected. All errors were computed with
respect to an overkill solution, with approximately 50 more bases per interface than the last plotted point for
each curve. The incidence angle is, again, 0.47 radians.

Finally, in Figure 6 we present an illustration of the total field corresponding to the refraction indices given
in Table 1 for case 1. The fields were obtained by using enough degrees of freedom so as to ensure an error of
order 10−2 in the energy norm, i.e., 𝑁 ≈ 40, 130 and 250 for 𝑘0 = 2.8, 14 and 28, respectively.

Remark 6.1. Though establishing the relation between the parameters – {𝜂𝑖}𝑀
𝑖=0 and 𝑘0 – and the number

of basis elements required to attain a certain desired accuracy is not straightforward, our experiments suggest
that 𝑁 should be chosen proportional to the maximum wavenumber 𝑘max := max𝑖∈{0,...𝑀} 𝑘𝑖.

7. Conclusions

We have proposed a fast spectral method for the efficient representation, through surface potentials based
on the quasi-periodic Green’s function, for the solution of the Helmholtz equation with transmission boundary
conditions on a periodic domain. In Theorem 5.2, we obtained convergence estimates for the discrete approx-
imation of the corresponding boundary data, and found that discrete solutions converge at a super-algebraic
rate to continuous solutions of the considered BIE. Though we focused on the Helmholtz transmission problem,
our approximation results and convergence estimates can be easily extended to other BIEs on quasi-periodic
Sobolev spaces whenever the formulation is well posed. We avoided cut-off frequencies from our analysis since
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Figure 5. (a) Problem geometry with 12 layers. (b), (c) and (d) Errors in the corresponding
energy norm for 𝑘0 = 2.8, 14.0, 28.0. Each of these subfigures present error convergence curves
for the two scenarios of refraction indices considered and specified in Table 1. Notice that the
curves in red – corresponding to parameters 𝜂

(2)
𝑖 in Table 1 – display a longer preasymptotic

regime before convergence is observed for all considered values of 𝑘0, seemingly due the presence
of layers with higher wavenumbers (see Rem. 6.1).

the series in (4.2) fails to converge for said frequencies and, for the same reason, our previous results from [5]
exclude them as well.

Despite similar numerical results are known for the Nyström Method, theoretical grounds for the observed
convergence rates are scarce [12]. In contrast, the Galerkin discretizations presented in this article lead to
provable convergence rates equal to those expected by Nyström methods.

Future work considers: (i) including cut-off frequencies in our analysis, (ii) extending our results to three
dimensional Helmholtz equations and Maxwell’s equations on periodic domains and (iii) applications in uncer-
tainty quantification [40] and shape optimization [6].
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Figure 6. Real part of the total wave (𝑢(tot) = 𝑢(sc) + 𝑢(inc)) for each different value of 𝑘0,
namely 2.8, 14 and 28. The refraction indices on each layer are those indicated on Table 1. The
incidence angle is again 0.47. (a) 𝑘0 = 2:8. (b) 𝑘0 = 14. (c) 𝑘0 = 28.
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