A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2185-2210

We present a new high-resolution, non-oscillatory semi-discrete central-upwind scheme for one-dimensional two-layer shallow-water flows with friction and entrainment along channels with arbitrary cross sections and bottom topography. These flows are described by a conditionally hyperbolic balance law with non-conservative products. A detailed description of the properties of the model is provided, including entropy inequalities and asymptotic approximations of the eigenvalues of the corresponding coefficient matrix. The scheme extends existing central-upwind semi-discrete numerical methods for hyperbolic conservation and balance laws and it satisfies two properties crucial for the accurate simulation of shallow-water flows: it preserves the positivity of the water depth for each layer, and it is well balanced, i.e., the source terms arising from the geometry of the channel are discretized so as to balance the non-linear hyperbolic flux gradients. Along with the description of the scheme and proofs of these two properties, we present several numerical experiments that demonstrate the robustness of the numerical algorithm.

DOI : 10.1051/m2an/2021052
Classification : 76M12, 35L65
Keywords: Hyperbolic systems of conservation and balance laws, semi-discrete schemes, Saint-Venant system of shallow-water equations with friction, non-oscillatory reconstructions, channels with irregular geometry
@article{M2AN_2021__55_5_2185_0,
     author = {Hernandez-Duenas, Gerardo and Balb\'as, Jorge},
     title = {A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2185--2210},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021052},
     mrnumber = {4323402},
     zbl = {1485.76057},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021052/}
}
TY  - JOUR
AU  - Hernandez-Duenas, Gerardo
AU  - Balbás, Jorge
TI  - A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2185
EP  - 2210
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021052/
DO  - 10.1051/m2an/2021052
LA  - en
ID  - M2AN_2021__55_5_2185_0
ER  - 
%0 Journal Article
%A Hernandez-Duenas, Gerardo
%A Balbás, Jorge
%T A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2185-2210
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021052/
%R 10.1051/m2an/2021052
%G en
%F M2AN_2021__55_5_2185_0
Hernandez-Duenas, Gerardo; Balbás, Jorge. A central-upwind scheme for two-layer shallow-water flows with friction and entrainment along channels. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2185-2210. doi: 10.1051/m2an/2021052

[1] R. Abgrall and S. Karni, Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31 (2009) 1603–1627. | MR | Zbl | DOI

[2] R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759–2763. | MR | Zbl | DOI

[3] C. Adduce, G. Sciortino and S. Proietti, Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment. J. Hydraulic Eng. 138 (2012) 111–121. | DOI

[4] J. R. Apel, H. M. Byrne, J. R. Proni and R. L. Charnell, Observations of oceanic internal and surface waves from the earth resources technology satellite. J. Geophys. Res. 80 (1975) 865–881. | DOI

[5] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. | MR | Zbl | DOI

[6] J. Balbás and S. Karni, A central scheme for shallow water flows along channels with irregular geometry. M2AN Math. Model. Numer. Anal. 43 (2009) 333–351. | MR | Zbl | Numdam | DOI

[7] J. Balbás and G. Hernandez-Duenas, A positivity preserving central scheme for shallow water flows in channels with wet-dry states. ESAIM: M2AN 48 (2014) 665–696. | MR | Zbl | Numdam | DOI

[8] J. Balbás and S. Karni, A non-oscillatory central scheme for one-dimensional two-layer shallow water flows along channels with varying width. J. Sci. Comput. 55 (2013) 499–528. | MR | Zbl | DOI

[9] A. Bollermann, G. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56 (2013) 267–290. | MR | Zbl | DOI

[10] F. Bouchut and T. M. De Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683–698. | MR | Zbl | Numdam | DOI

[11] M. Castro, J. Macías and C. Parés, A Q -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. M2AN. Math. Model. Numer. Anal. 35 (2001) 107–127. | MR | Zbl | Numdam | DOI

[12] M. J. Castro, J. A. García-Rodríguez, J. M. González-Vida, J. Macas, C. Parés and M. E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. | MR | Zbl | DOI

[13] M. J. Castro, J. A. García-Rodríguez, J. M. González-Vida, J. Macas and C. Parés, Improved FVM for two-layer shallow-water models: application to the Strait of Gibraltar. Adv. Eng. Softw. 38 (2007) 386–398. | Zbl | DOI

[14] M. J. Castro-Daz, E. D. Fernández-Nieto, J. M. González-Vida and C. Parés-Madroñal, Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system. J. Sci. Comput. 48 (2011) 16–40. | MR | Zbl | DOI

[15] A. Chertock, A. Kurganov, Z. Qu and T. Wu, Three-layer approximation of two-layer shallow water equations. Math. Modell. Anal. 18 (2013) 675–693. | MR | Zbl | DOI

[16] A. Chiapolino and R. Saurel, Models and methods for two-layer shallow water flows. J. Comput. Phys. 371 (2018) 1043–1066. | MR | Zbl | DOI

[17] G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl

[18] P. Garcia-Navarro and M. E. Vazquez-Cendon, On numerical treatment of the source terms in the shallow water equations. Comput. Fluids 29 (2000) 951–979. | Zbl | DOI

[19] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. | MR | Zbl | DOI

[20] A. A. Khan and W. Lai, Modeling Shallow Water Flows Using the Discontinuous Galerkin Method. CRC Press (2014). | Zbl | DOI

[21] J. Kim, R. J. Leveque, Two-layer shallow water system and its applications. In: Hyperbolic Problems: Theory, Numerics and Applications. Vol. 67 of Proc. Sympos. Appl. Math. Am. Math. Soc., Providence, RI (2009) 737–743. | MR | Zbl

[22] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 36 (2002) 397–425. | MR | Zbl | Numdam | DOI

[23] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. | MR | Zbl | DOI

[24] A. Kurganov and G. Petrova, Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31 (2009) 1742–1773. | MR | Zbl | DOI

[25] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. | MR | Zbl | DOI

[26] A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. | MR | Zbl | DOI

[27] P. G. Lefloch, Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). The theory of classical and nonclassical shock waves. | MR | Zbl | DOI

[28] P. G. Lefloch, Graph solutions of nonlinear hyperbolic systems. J. Hyperbolic Differ. Equ. 1 (2004) 643–689. | MR | Zbl | DOI

[29] O. A. Oleinik, Discontinuous solutions of non-linear differential equations. Uspekhi Matematicheskikh Nauk 12 (1957) 3–73. | MR | Zbl

[30] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. | MR | Zbl | DOI

[31] B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method [J. Comput. Phys. 32 (1979) 101–136]. J. Comput. Phys. 1351997 (1979) 227–248. | MR | Zbl

Cité par Sources :