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A CENTRAL-UPWIND SCHEME FOR TWO-LAYER SHALLOW-WATER FLOWS
WITH FRICTION AND ENTRAINMENT ALONG CHANNELS

Gerardo Hernandez-Duenas1,* and Jorge Balbás2

Abstract. We present a new high-resolution, non-oscillatory semi-discrete central-upwind scheme
for one-dimensional two-layer shallow-water flows with friction and entrainment along channels with
arbitrary cross sections and bottom topography. These flows are described by a conditionally hyperbolic
balance law with non-conservative products. A detailed description of the properties of the model
is provided, including entropy inequalities and asymptotic approximations of the eigenvalues of the
corresponding coefficient matrix. The scheme extends existing central-upwind semi-discrete numerical
methods for hyperbolic conservation and balance laws and it satisfies two properties crucial for the
accurate simulation of shallow-water flows: it preserves the positivity of the water depth for each layer,
and it is well balanced, i.e., the source terms arising from the geometry of the channel are discretized
so as to balance the non-linear hyperbolic flux gradients. Along with the description of the scheme
and proofs of these two properties, we present several numerical experiments that demonstrate the
robustness of the numerical algorithm.
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1. Introduction

In this paper we present a new high-order numerical scheme for simulating two-layer shallow-water flows along
channels with a bottom topography and varying width (see Fig. 1). These flows are characterized by a large
horizontal length scale relative to their depth and are commonly observed in nature – e.g., channel flows, straits,
mountain passes; and their modeling and simulation have applications in flood control, coastal engineering, or
environmental assessment among others. Applications of this model include the study of internal waves observed
in rivers and possibly caused by shear flow instabilities [4]. Shallow-water flows are typically modeled by the
Saint-Venant equations, a hyperbolic balance law that results from the depth averaging of the Euler equations.
The model poses various mathematical and computational challenges: the effects of the channel geometry on
the flow are described by source terms that need to be discretized consistently with the existence of equilibrium
solutions and the onset and propagation of discontinuities – e.g., hydraulic jumps. The dynamics of the interface
between the two layers render non-conservative products of the flow variables and their space derivatives whose
correct discretization is crucial for determining the location and propagation of these discontinuities.
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Figure 1. Schematic of a channel flow with the two layers moving in opposite directions: (a)
Full 3D view of the flow, (b) channel cross section, (c) profile view, and (d) overview of the
flow.

The various challenges that the Saint-Venant equations pose for simulating shallow-water flows are well known
and have been studied extensively. The two-layer Saint-Venant system is conditionally hyperbolic, and the com-
mon occurrence of steady states in geophysical flows require well-balance numerical schemes capable of capturing
and resolving accurately steady-state solutions of the PDE model. These challenges become increasingly difficult
to address as the flows and the corresponding PDE models that describe them increase in complexity, and a
significant effort over the past couple of decades have lead to the development of numerical schemes for simulat-
ing a wide variety of flows. Numerous schemes have been proposed for the simplest case of one-layer flows along
channels with constant width: a positivity preserving kinetic scheme capable of preserving the steady state of
rest is presented in [30], and in [5] a finite volume scheme with similar properties is devised using hydrostatic
reconstruction to capture steady-state solutions. The authors of [20] proposed a discontinuous Galerkin method.
And [9,22,23] introduce positivity preserving well-balance central-upwind schemes for these flows. The approach
suggested to achieve well-balance and positivity within the central-upwind framework is extended in [6] to sim-
ulate flows along channels with varying cross-sections using a central scheme, a type of flows also addressed in
[18] using an upwind Roe-type scheme. And the authors of this paper proposed a new central-upwind scheme
for one-layer flows along channels with arbitrary geometry in [7]. Several schemes have also been devised for
simulating two-layer flows. For flows along straight channels, the authors of [1] propose to address the condi-
tional hyperbolicity of the model with a relaxation approach that simplifies greatly its eigen structure. A similar
approach is presented in [16] where a strictly hyperbolic formulation with pressure relaxation is obtained by
considering weak compressibility of the phases of the flow. And in [14] friction between the layers is added to
prevent the loss of hyperbolicity. The central-upwind scheme in [24] provides a robust approach for flows along
straight channels that is simple to implement, and the work in [8] extends the central framework to channels
with rectangular sections of varying width. For flows along channels with arbitrary geometry, the authors of
[12] extended with great success (and high impact in the field) the 𝑄-scheme for hyperbolic systems with source
terms previously introduced in [11]. Some of these schemes for shallow-water flows have been employed – and
new ones created – for simulating, studying or recreating geophysical flows from the real world like gravitational
currents or strait flows. These typically pose additional challenges such as the handling of non-symmetrical
channel geometries (described by bathymetry data) or accounting for phenomena like entrainment. For some
examples, we refer the reader to the works presented in [3, 4, 12,13,21].
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In this paper we follow on our previous works on central schemes for one-layer flows along channels with
arbitrary geometry [7], and two-layer flows along channels with varying rectangular cross-sections [8]. We propose
a new high-order central-upwind scheme to compute two-layer shallow-water flows along channels with arbitrary
geometry that incorporates the treatment of friction and entrainment terms. These new terms allow us to
simulate more realistic flows and to assess the limitations of the model and the scheme. In order to understand
and address the challenges posed by the model and its limitations, we present a detailed analysis of the hyperbolic
PDE model, with special emphasis on the conditions that lead to the loss of hyperbolicity. To this end, we derive
rigorous asymptotic approximations of the eigenvalues of the quasilinear form of the model and, for the sake
of completeness in the analysis, we prove the existence of an entropy function and an entropy inequality that
physically relevant weak solutions must satisfy.

In order to address the various numerical and computational challenges we propose a central-upwind scheme
based on the semi-discrete central-upwind schemes for hyperbolic conservation laws of Kurganov et al. [26],
characterized by their simple implementation and robustness. The proposed numerical scheme evolves the cell
averages of the flow variables with second order accuracy, and their implementation requires four main ingredi-
ents: a non-oscillatory reconstruction of point values from cell averages that preserves the positivity of the water
depth, an evolution routine to advance the solution in time, estimates of the largest and smallest eigenvalues of
the system, and the discretization of source terms and non-conservative products that balance the hyperbolic
fluxes so as to recognize steady states at rest and add accuracy to the computation of flows near non stationary
steady states.

The paper is structured as follows. In Section 2 we present the model, its properties, and the challenges
that these properties pose for computing numerical solutions. In Section 3 we describe the proposed numerical
scheme and prove that it preserves the positivity of the water height, and it is well-balanced, i.e., it recognizes
and preserves steady states of rest. Numerical solutions for a variety of flow regimes are presented in Section 4,
validating the scheme’s accuracy and robustness and demonstrating its ability to simulate a wide range of flows.

2. The model and its properties

The model for two-layer shallow-water flows in channels is taken from [12]. After adding source terms due to
friction and entrainment, it has been re-written as

𝜕𝐴1

𝜕𝑡
+

𝜕𝑄1

𝜕𝑥
= 𝑆𝑒, (2.1a)

𝜕𝑄1

𝜕𝑡
+

𝜕

𝜕𝑥

(︀
𝐴1𝑢

2
1 + 𝑝1

)︀
= 𝑔

(︂
𝐼1 − ℎ1𝜎𝐵𝐵′ + 𝑟ℎ2

𝜕𝐴1

𝜕𝑥

)︂
+ 𝑆𝑓,1 + 𝑆𝑒𝑢1, (2.1b)

𝜕𝐴2

𝜕𝑡
+

𝜕𝑄2

𝜕𝑥
= −𝑟𝑆𝑒, (2.1c)

𝜕𝑄2

𝜕𝑡
+

𝜕

𝜕𝑥

(︀
𝐴2𝑢

2
2 + 𝑝2

)︀
= 𝑔

(︂
𝐼2 − ℎ2𝜎1

𝜕𝑤1

𝜕𝑥

)︂
+ 𝑆𝑓,2 − 𝑟𝑆𝑒𝑢2. (2.1d)

Here ℎ1, and ℎ2 denote the depth of bottom and top layers respectively, 𝑢1, and 𝑢2 the cross-sectional
velocities; 𝑔 the acceleration of gravity, 𝐵(𝑥) describes the bottom topography, and 𝜎(𝑥, 𝑧) the width of the
channel; 𝐴1 =

∫︀ 𝑤1

𝐵
𝜎(𝑥, 𝑧) d𝑧, and 𝐴2 =

∫︀ 𝑤2

𝑤1
𝜎(𝑥, 𝑧) d𝑧 are the cross-sectional wet areas in the internal and

external layers respectively; 𝑤1 = 𝐵 + ℎ1 denotes the total elevation of the internal layer and 𝑤2 = 𝐵 + ℎ1 + ℎ2

that of the external layer; and 𝑄1 = 𝐴1𝑢1, and 𝑄2 = 𝐴2𝑢2 are the flow rates or discharges for the internal and
external layers respectively. Furthermore, 𝜎𝐵(𝑥) = 𝜎(𝑥, 𝐵(𝑥)), 𝜎1(𝑥, 𝑡) = 𝜎(𝑥, 𝑤1(𝑥, 𝑡)), 𝜎2(𝑥, 𝑡) = 𝜎(𝑥, 𝑤2(𝑥, 𝑡))
denote the channel’s width at the bottom topography, and at the internal and external layers respectively. We
note that 𝜎1 and 𝜎2 depend both on space and time since they are evaluated at the internal and external layers.
The ratio of densities is denoted by 𝑟 = 𝜌2/𝜌1 ≤ 1. The vertically integrated hydrostatic pressure of the upper
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layer is given by

𝑝2 = 𝑔

∫︁ 𝑤2

𝑤1

(𝑤2 − 𝑧) 𝜎(𝑥, 𝑧) d𝑧, (2.2)

and treats the internal layer as a moving topography. The vertically integrated hydrostatic pressure in the
internal layer has to account for the contribution of the pressure exerted by the upper layer on it, and it is given
by

𝑝1 = 𝑔

∫︁ 𝑤1

𝐵

(𝑤1 + 𝑟ℎ2 − 𝑧) 𝜎(𝑥, 𝑧) d𝑧. (2.3)

The source terms 𝐼1, and 𝐼2 correspond to the vertically integrated pressure terms due to width variation, and
are given by

𝐼1 = 𝐼1(𝑥, 𝑡) =
∫︁ 𝑤1

𝐵

(𝑤1 − 𝑧) 𝜎𝑥(𝑥, 𝑧) d𝑧, and 𝐼2 = 𝐼2(𝑥, 𝑡) =
∫︁ 𝑤2

𝑤1

(𝑤2 − 𝑧) 𝜎𝑥(𝑥, 𝑧) d𝑧. (2.4)

The friction terms are calculated as

𝑆𝑓,1 = −𝑟𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

(𝑢1 − 𝑢2)− 𝑔
𝑛2

𝑏

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

𝑢1,

𝑆𝑓,2 = −𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

(𝑢2 − 𝑢1), (2.5)

for the internal and external layers respectively. Here 𝑛𝑖 and 𝑛𝑏 are the Manning roughness coefficients for the
interface and bottom respectively. The hydraulic radius, 𝑅, is defined as the ratio between the wet area and the
wetted perimeter, and it is given by

𝑅 =
𝐴1 + 𝐴2

𝜎𝐵 +
∫︀ 𝑤2

𝐵

√︀
4 + (𝜕𝑧𝜎(𝑥, 𝑧))2d𝑧

· (2.6)

These friction terms in equation (2.5) have been adapted for the two-layer case from the formula used in [20]
for one-layer non-rectangular channels (Chap. V, p. 83). See [14, 21] for other approaches. We have adapted to
our model the expression of the source term due to entrainment for flows along channels with constant width
found in [3]. For the flows under consideration in this work, entrainment can be modeled by the source term

𝑆𝑒 =
𝐴1

𝜎1
𝑉𝑒,

where 𝑉𝑒 is the entrainment velocity. Furthermore, we set 𝑆𝑒 proportional to 𝐴1 to suppress entrainment in the
absence of the heavier fluid in the internal layer. The cross sectional area in the external layer (𝐴2) is not small
in our numerical tests (see Sect. 4.5).

Equations (2.1a) and (2.1c) express conservation of mass. The momentum equation (2.1d) treats the elevation
of the internal layer 𝑤1 as a moving topography, resulting in a balance law with non-conservative products.
The momentum equation (2.1b) of the internal layer accounts for the momentum exchange from the external
layer, represented by non-conservative products. We note that in the limit ℎ2 → 0 we recover the one layer
shallow-water system. On the other hand, when 𝜎 = 𝜎(𝑥) is independent of height (straight vertical walls), the
pressure terms in (2.2) and (2.3) become

𝑝1 = 𝑔
𝜎ℎ2

1

2
+ 𝑟𝑔𝜎ℎ1ℎ2 and 𝑝2 = 𝑔

𝜎ℎ2
2

2
,

and the source terms in (2.4) become

𝐼1 =
ℎ2

1

2
d𝜎

d𝑥
and 𝐼2 =

ℎ2
2

2
d𝜎

d𝑥
,
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resulting in the model presented in [8] in the absence of friction and entrainment.
Source terms in hyperbolic balance laws that do not depend on the derivatives of the solution variables do

not modify the Rankine–Hugoniot jump conditions of weak solutions. However, the source terms in system (2.1)
include 𝑟𝑔ℎ2𝜕𝑥𝐴1 and 𝑔ℎ2𝜎1𝜕𝑥𝑤1 with non-conservative products that depend on derivatives of the wet areas.
The jump conditions are modified by such terms leading to theoretical and numerical challenges [2]. A theory of
non-conservative products can give us a notion of weak solutions in those cases [17]. Following the ideas in [24]
implemented for 2D and 1D two-layer shallow-water flows (with no width variation), we rewrite system (2.1)
in a more convenient way to treat the non-conservative products. To that end, we decompose the hydrostatic
pressures as

𝑝1 = 𝑔 ̂︀𝑤2𝐴1 − 𝑔

∫︁ 𝑤1

𝐵

𝑧 𝜎(𝑥, 𝑧) d𝑧, and 𝑝2 = 𝑔𝑤2𝐴2 − 𝑔

∫︁ 𝑤2

𝑤1

𝑧 𝜎(𝑥, 𝑧) d𝑧,

where ̂︀𝑤2 = 𝐵 + ℎ1 + 𝑟ℎ2. Rewriting system (2.1) in terms of these, we obtain the alternative model

𝜕𝐴1

𝜕𝑡
+

𝜕𝑄1

𝜕𝑥
= 𝑆𝑒, (2.7a)

𝜕𝑄1

𝜕𝑡
+

𝜕

𝜕𝑥

(︂
𝑄2

1

𝐴1
+ 𝑔 ̂︀𝑤2𝐴1

)︂
= 𝑔 ̂︀𝑤2

𝜕𝐴1

𝜕𝑥
+ 𝑆𝑓,1 + 𝑆𝑒𝑢1, (2.7b)

𝜕𝐴2

𝜕𝑡
+

𝜕𝑄2

𝜕𝑥
= −𝑟𝑆𝑒, (2.7c)

𝜕𝑄2

𝜕𝑡
+

𝜕

𝜕𝑥

(︂
𝑄2

2

𝐴2
+ 𝑔𝑤2𝐴2

)︂
= 𝑔𝑤2

𝜕𝐴2

𝜕𝑥
+ 𝑆𝑓,2 − 𝑟𝑆𝑒𝑢2. (2.7d)

We note that system (2.7) still has non-conservative products and it is equivalent to system (2.1) only when
the associated solution is smooth. Therefore, both systems (2.1) and (2.7) present similar theoretical challenges.
However, the non-conservative products in system (2.7) have 𝑤2 and ̂︀𝑤2 as factors, which are approximately
constant in many situations where the rigid-lid approximation is valid, such as in the presence of internal waves.
In the ideal case where such factors are constant, however, those non-conservative products become conservative,
and system (2.7) therefore minimizes the numerical challenges when simulating two-layer flows. If the spatial
derivatives of 𝐴1 and 𝐴2 in the non-conservative products are treated as flux gradients, then any consistent
second order reconstruction of 𝑤2 and ̂︀𝑤2 leads to robust numerical schemes. Details are provided in Section 3.
Other efforts to add stability to the two-layer shallow-water equations includes the three-layer approximation,
as described in [15].

2.1. The quasilinear form

For one-layer shallow-water systems, one can find explicit expressions involving a speed of sound quantity.
For two-layer flows, however, the eigenvalues have no explicit formulas but can be approximated by explicit
expressions under suitable conditions. Nonetheless, the definition of speed of sound for each layer will still be
helpful. For the external layer, this quantity is analogous to the one layer case, and it is given by

𝑐2 =
√︂

𝑔𝐴2

𝜎2
, (2.8)

which, in practice, makes the internal layer a moving topography. The speed of sound for the internal layer
depends on the width of both layers and it is given by

𝑐1 =

√︃
𝑔

(︂
𝜖 + 𝑟

𝜎1

𝜎2

)︂
𝐴1

𝜎1
=

√︃
𝑔

(︂
𝑟
𝐴1

𝜎2
+ 𝜖

𝐴1

𝜎1

)︂
, (2.9)

where 𝜖 = 1− 𝑟.
Similarly to channels with straight walls, the system can be written in quasi-linear form. The details are in

the following proposition.
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Proposition 2.1. Either system, (2.1) or (2.7) can be written in quasilinear form, W𝑡 + 𝑀(W; 𝜎, 𝐵)W𝑥 =
𝑆(W; 𝜎, 𝐵) with

W(𝑥, 𝑡) =

⎛⎜⎜⎜⎜⎜⎝
𝐴1

𝑄1

𝐴2

𝑄2

⎞⎟⎟⎟⎟⎟⎠, 𝑀(W; 𝜎, 𝐵) =

⎛⎜⎜⎜⎝
0 1 0 0

𝑐2
1 − 𝑢2

1 2𝑢1 𝑟𝑔
𝐴1

𝜎2
0

0 0 0 1
𝑐2
2 0 𝑐2

2 − 𝑢2
2 2𝑢2

⎞⎟⎟⎟⎠, (2.10a)

and

𝑆(W; 𝜎, 𝐵) =

⎛⎜⎜⎜⎜⎜⎝
𝑆𝑒

𝑐2
1

(︀
𝐼3 − 𝜎𝐵

d𝐵
d𝑥

)︀
+ 𝑆𝑓,1 + 𝑆𝑒𝑢1

−𝑟𝑆𝑒

𝑐2
2

(︀
𝐼4 − 𝜎𝐵

d𝐵
d𝑥

)︀
+ 𝑆𝑓,2 − 𝑟𝑆𝑒𝑢2

⎞⎟⎟⎟⎟⎟⎠, (2.10b)

where
𝐼3 =

∫︁ 𝑤1

𝐵

𝜎𝑥(𝑥, 𝑧) d𝑧, and 𝐼4 =
∫︁ 𝑤2

𝐵

𝜎𝑥(𝑥, 𝑧) d𝑧. (2.11)

Proof. The derivation of the quasilinear form follows from the fundamental theorem of calculus

𝜕

𝜕𝑥

(︃∫︁ 𝑏(𝑥)

𝑎(𝑥)

𝜎(𝑥, 𝑧)d𝑧

)︃
=
∫︁ 𝑏(𝑥)

𝑎(𝑥)

𝜎𝑥(𝑥, 𝑧)d𝑧 − 𝜎(𝑥, 𝑎(𝑥))
d

d𝑥
𝑎(𝑥) + 𝜎(𝑥, 𝑏(𝑥))

d𝐵

d𝑥
(𝑥), (2.12)

and the relations

𝜕𝑤1

𝜕𝑥
=

𝜕𝐴1
𝜕𝑥 − 𝐼3 + 𝜎(𝑥, 𝐵)d𝐵

d𝑥

𝜎(𝑥, 𝑤1)
, and

𝜕𝑤2

𝜕𝑥
=

𝜕
𝜕𝑥 (𝐴1 + 𝐴2)− 𝐼4

𝜎(𝑥, 𝑤2)
· (2.13)

�

2.2. Asymptotic approximations of the internal eigenvalues as 𝜖 → 0

The characteristic polynomial of the matrix 𝑀 in (2.10) is

𝑝(𝜆) =
[︀
(𝜆− 𝑢1)2 − 𝑐2

1

]︀[︀
(𝜆− 𝑢2)2 − 𝑐2

2

]︀
− 𝑟

𝑔𝐴1

𝜎2
𝑐2
2. (2.14)

Due to the last term, the eigenvalues have no explicit simple formulas. The following proposition provides us
with a first order approximation for the internal eigenvalues.

Proposition 2.2. The two eigenvalues associated with the internal layer satisfy

𝜆±int ≈ ̂︀𝑢±
⎯⎸⎸⎷ 𝜖 𝑔𝐴1

𝜎1
𝑐2
2

𝑐2
1 + 𝑐2

2

(︃
1− 𝑐2

1
𝑔𝐴1
𝜎1

(𝑢2 − 𝑢1)2

𝜖(𝑐2
1 + 𝑐2

2)

)︃
as 𝜖 → 0, (2.15)

where ̂︀𝑢 =
𝑐2
2𝑢1 + 𝑐2

1𝑢2

𝑐2
2 + 𝑐2

1

is the convective velocity.
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Proof. Expanding the characteristic polynomial we get

𝑐2
2(𝜆− 𝑢1)2 + 𝑐2

1(𝜆− 𝑢2)2 − (𝜆− 𝑢1)2(𝜆− 𝑢2)2 = 𝑐2
1𝑐

2
2 − 𝑟

𝑔𝐴1

𝜎2
𝑐2
2 = 𝜖

𝑔𝐴1

𝜎1
𝑐2
2.

Dividing by 𝜖 𝑔𝐴1
𝜎1

𝑐2
2, we get

(𝜆− 𝑢1)2

𝜖 𝑔𝐴1
𝜎1

+
𝑐2
1

𝑔𝐴1
𝜎1

(𝜆− 𝑢2)2

𝜖𝑐2
2

− 𝜖
(𝜆− 𝑢1)2

𝜖 𝑔𝐴1
𝜎1

(𝜆− 𝑢2)2

𝜖𝑐2
2

= 1.

The conditions for vanishing eigenvalues give us the composite Froude number

𝐺2 =
𝑢2

1

𝜖 𝑔𝐴1
𝜎1

+
𝑐2
1

𝑔𝐴1
𝜎1

𝑢2
2

𝜖𝑐2
2

− 𝜖
𝑢2

1

𝜖 𝑔𝐴1
𝜎1

𝑢2
2

𝜖𝑐2
2

, (2.16)

where 𝑐1 and 𝑐2 are given, respectively, by equations (2.9) and (2.8). We note that 𝑐2
1

𝑔𝐴1/𝜎1
→ 𝜎1

𝜎2
as 𝜖 → 0. So,

the first two terms in the above equation are order 1 and

(𝜆− 𝑢1)2

𝜖 𝑔𝐴1
𝜎1

+
𝑐2
1

𝑔𝐴1/𝜎1

(𝜆− 𝑢2)2

𝜖𝑐2
2

≈ 1.

The roots of the above quadratic polynomial are those given in (2.15). �

2.3. Asymptotic approximations of the external eigenvalues as 𝑢2 − 𝑢1 → 0, 𝜖 → 0

Approximate explicit formulas of the external eigenvalues can be obtained when 𝑢2 − 𝑢1 and 𝜖 are both
small. In that case, the fluid behaves like a one layer shallow-water flow. The details are given in the following
proposition.

Proposition 2.3. Assume 𝑢1, 𝐴1, 𝐴2, 𝜎1 and 𝜎2 are all fixed. Let 𝛿 = (𝑢2− 𝑢1)/𝑐, and 𝜖 = 1− 𝑟 approach zero
at the same rate. Then the external eigenvalues satisfy

𝜆±ext = 𝑢± 𝑐∓ 𝜖

2

𝑔𝐴1
𝜎2√︁

𝑔(𝐴1+𝐴2)
𝜎2

(︃
1−

𝑔𝐴1
𝜎1

𝑔(𝐴1+𝐴2)
𝜎2

)︃
+ 𝑐 𝑂(𝛿2), as 𝛿 → 0, (2.17)

where

𝑢 =
𝐴1𝑢1 + 𝐴2𝑢2

𝐴1 + 𝐴2
, and 𝑐 =

√︃
𝑔(𝐴1 + 𝐴2)

𝜎2

are the vertically averaged velocity and the speed of sound of a one-layer shallow-water system with total cross-
sectional area 𝐴1 + 𝐴2 and surface width 𝜎2.

Proof. In what follows, we assume the parameters 𝐴1, 𝐴2, 𝑢1, 𝜎1, 𝜎2 are all fixed. The only parameter that varies
is 𝑢2 = 𝑢1 + 𝛿1, where 𝛿1 = 𝛿 𝑐. We look for an expansion of the form

𝜆 = 𝜆𝑜 + 𝜆1 + 𝑐 𝑂(𝛿2),

with 𝜆𝑜 independent of 𝜖 and 𝛿1, and 𝜆1 = 𝑂(𝛿1). Then

0 =
[︀
(𝜆𝑜 − 𝑢1 + 𝜆1)2 − 𝑐2

1

]︀[︀
(𝜆𝑜 − 𝑢1 + 𝜆1 − 𝛿1)2 − 𝑐2

2

]︀
− 𝑟

𝑔𝐴1

𝜎2
𝑐2
2 + 𝑂(𝛿2

1)
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=
[︂
(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴1

𝜎2

]︂[︂
(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴2

𝜎2

]︂
− 𝑔𝐴1

𝜎2

𝑔𝐴2

𝜎2
+ 2(𝜆𝑜 − 𝑢1)(𝜆1 − 𝛿1)

(︂
(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴1

𝜎2

)︂
(2.18)

+
(︂

2(𝜆𝑜 − 𝑢1)𝜆1 + 𝜖

(︂
𝑔𝐴1

𝜎2
− 𝑔𝐴1

𝜎1

)︂)︂(︂
(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴2

𝜎2

)︂
+ 𝜖

𝑔𝐴1

𝜎2

𝑔𝐴2

𝜎2
+ 𝑂(𝛿2

1).

Collecting order 1 terms we get[︂
(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴1

𝜎2

]︂[︂
(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴2

𝜎2

]︂
− 𝑔𝐴1

𝜎2

𝑔𝐴2

𝜎2
= 0,

with solution

𝜆𝑜 − 𝑢1 = ±

√︃
𝑔(𝐴1 + 𝐴2)

𝜎2
·

Collecting order 𝛿 = 𝑂(𝜖) terms, we get

2(𝜆𝑜 − 𝑢1)(𝜆1 − 𝛿1)
(︂

(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴1

𝜎2

)︂
+
(︂

2(𝜆𝑜 − 𝑢1)𝜆1 + 𝜖

(︂
𝑔𝐴1

𝜎2
− 𝑔𝐴1

𝜎1

)︂)︂(︂
(𝜆𝑜 − 𝑢1)2 − 𝑔𝐴2

𝜎2

)︂
+ 𝜖

𝑔𝐴1

𝜎2

𝑔𝐴2

𝜎2
= 0, (2.19)

with solution

𝜆1 = 𝛿1
𝐴2

𝐴1 + 𝐴2
∓ 𝜖

𝑔𝐴1
𝜎2

2
√︁

𝑔(𝐴1+𝐴2)
𝜎2

(︂
1− 𝜎2

𝜎1

𝐴1

𝐴1 + 𝐴2

)︂
·

Substituting 𝜆𝑜 and 𝜆1 we get

𝜆 =
𝐴1𝑢1 + 𝐴2𝑢2

𝐴1 + 𝐴2
±

√︃
𝑔(𝐴1 + 𝐴2)

𝜎2
∓ 𝜖

2

𝑔𝐴1
𝜎2√︁

𝑔(𝐴1+𝐴2)
𝜎2

(︃
1−

𝑔𝐴1
𝜎1

𝑔(𝐴1+𝐴2)
𝜎2

)︃
+ 𝑐 𝑂(𝛿2),

as desired. �

The approximation for the internal (2.15) and external (2.17) eigenvalues indicates that the system is condi-
tionally hyperbolic with an approximated condition given by

(𝑢2 − 𝑢1)2 ≤ 𝑔𝐴1/𝜎1

𝑐2
1

𝜖
(︀
𝑐2
1 + 𝑐2

2

)︀
. (2.20)

As documented in [1], loss of hyperbolicity is associated with shear layer Kelvin–Helmholtz instabilities of the
internal layer, and in such case the proposed balance law (2.7) is no longer valid to describe the flow.

2.4. Eigenvalue bounds

Assume we are in the hyperbolic regime where all the eigenvalues are real, and denote by 𝛾±1 , 𝛾±2 the roots of

(𝛾 − 𝑢1)2 − 𝑐2
1 =

√
𝑟
𝑔𝐴1

𝜎2
, and (𝛾 − 𝑢2)2 − 𝑐2

2 =
√

𝑟𝑐2
2,

which are given by

𝛾±1 = 𝑢1 ±
√︂
√

𝑟
(︀
1 +

√
𝑟
)︀𝑔𝐴1

𝜎2
+ 𝜖

𝑔𝐴1

𝜎1
, and 𝛾±2 = 𝑢2 ±

√︁
1 +

√
𝑟𝑐2. (2.21)

The following proposition gives us bounds for the eigenvalues. Such bounds will be used to define the one-sided
local speeds, which in turn are used in the numerical scheme of Section 3.
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Figure 2. The eigenvalues, the approximations (2.17) and (2.15) and the bounds in Propo-
sition 2.4 are shown for different values of 𝛿 = 𝜖 from 0 to 0.5. Here 𝐴1 = 1.5, 𝐴2 = 2, 𝑢1 =
1, 𝜎1 = 1.4, and 𝜎2 = 2.

Proposition 2.4. Let us assume that the eigenvalues of the coefficient matrix 𝐴 in equation (2.10) are all real.
Then they all fall in the interval [min(𝛾±1,2), max(𝛾±1,2)].

The proof of the previous proposition can be adapted to the present case of channels with arbitrary geom-
etry from the original proof in [1]. We note that the values of 𝛾±𝑘 , 𝑘 = 1, 2 are always real, regardless of the
hyperbolicity condition.

We have verified the approximations in equations (2.17) and (2.15) numerically for specific values and have
found that the approximations are excellent even if 𝜖 and 𝛿 are not too small. Figure 2 shows the eigenvalues,
the approximations (2.17) and (2.15) and the bounds in Proposition 2.4 for different values of 𝛿 = 𝜖 from 0 to
0.5. The approximations are excellent and the bounds in all cases stay close to the minimum and maximum
eigenvalues.

2.5. Steady-state solutions

System (2.1) admits non-trivial steady-state solutions. The following proposition characterizes conditions
satisfied by general smooth steady states. We also describe the internal waves, consisting of a moving internal
layer at equilibrium and an external layer at rest, as well as steady states at rest for both layers.

Proposition 2.5. In the absence of friction and entrainment (𝑛𝑖 = 𝑛𝑏 = 0, 𝑉𝑒 = 0), smooth steady-state
solutions of system (2.1) are characterized by the invariant quantities 𝑄1, 𝑄2, 𝐸1 = 1

2𝑢2
1 +𝑔(𝐵 +ℎ1 + 𝑟ℎ2), 𝐸2 =

1
2𝑢2

2 + 𝑔(𝐵 + ℎ1 + ℎ2). From those with given constant discharge 𝑄1 ̸= 0, constant energy 𝐸1, and constant free
surface 𝑤2, one can identify flows with internal waves that satisfy

𝑔(1− 𝑟)ℎ3
1 + (𝑔(1− 𝑟)𝐵 + 𝑔𝑟𝑤2 − 𝐸1)ℎ2

1 +
1
2
𝑄2

1 = 0, (2.22a)

ℎ1 + ℎ2 + 𝐵 = 𝑤2, (2.22b)
𝑢1 = 𝑄1/ℎ1, (2.22c)
𝑢2 = 0, (2.22d)

and steady states of rest that satisfy

𝐵 + ℎ1 = Const., (2.23a)
ℎ2 = Const., (2.23b)

𝑢1 = 𝑢2 = 0. (2.23c)
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Proof. We use the relation in (2.12) to obtain

𝜕𝑥𝑝2 = 𝜕𝑥

[︂
𝑔

∫︁ 𝑤2

𝑤1

(𝑤2 − 𝑧)𝜎(𝑥, 𝑧)d𝑧

]︂
= 𝑔

∫︁ 𝑤2

𝑤1

(𝑤2 − 𝑧)𝜎𝑥(𝑥, 𝑧)d𝑧 + 𝑔𝐴1𝜕𝑥𝑤2 − 𝑔ℎ2𝜎1𝜕𝑥𝑤1.

Taking the difference between the flux gradients and the source term in the external layer we have

𝜕𝑥

[︀
𝐴2𝑢

2
2 + 𝑝2

]︀
− 𝑔𝐼2 + 𝑔ℎ2𝜎1𝜕𝑥𝑤1 = 𝑢2𝜕𝑥𝑄2 + 𝐴2𝜕𝑥

[︂
1
2
𝑢2

2 + 𝑔𝑤2

]︂
.

For the internal layer, we notice that

𝜕𝑥𝑝1 = 𝑔

∫︁ 𝑤1

𝐵

(𝑤1 + 𝑟ℎ2 − 𝑧)𝜎𝑥(𝑥, 𝑧)d𝑧 + 𝑔𝐴1𝜕𝑥(𝑤1 + 𝑟ℎ2) + 𝑟𝑔ℎ2𝜎1𝜕𝑥𝑤1 − 𝑔(ℎ1 + 𝑟ℎ2)𝜎𝐵
d𝐵

d𝑥
,

and using

𝜕𝑥𝐴2 =
∫︁ 𝑤1

𝐵

𝜎𝑥(𝑥, 𝑧) d𝑧 + 𝜎1𝜕𝑥𝑤1 − 𝜎𝐵
d𝐵

d𝑥
,

we obtain

𝜕𝑥𝑝1 − 𝑔𝐼1 + 𝑔ℎ1𝜎𝐵
d𝐵

d𝑥
− 𝑟𝑔ℎ2𝜕𝑥𝐴1 = 𝑢1𝜕𝑥𝑄1 + 𝐴1𝜕𝑥

[︂
1
2
𝑢2

1 + 𝑔(𝑤1 + 𝑟ℎ2)
]︂
,

which concludes the proof for the general smooth steady states.
If we set 𝑢2 = 0, we obtain 𝑤2 = 𝐵 + ℎ1 + ℎ2 = Const. On the other hand, 𝐵 + ℎ1 + 𝑟ℎ2 = (1− 𝑟)𝐵 + (1−

𝑟)ℎ1 + 𝑟𝑤2, which implies the conditions (2.22). �

2.6. Entropy functions

The existence of entropy functions and entropy inequalities have shown to be helpful in choosing the correct
weak solution [5, 29]. A numerical scheme that satisfies a fully discrete entropy inequality can be found in [10].
To conclude this section and for the sake of completeness in the analysis of the hyperbolic model, in the following
proposition we prove that system (2.1) admits one entropy function and entropy inequality that accounts for
the contribution of both layers.

Proposition 2.6. In the absence of entrainment (𝑉𝑒 = 0), system (2.1) is endowed with an entropy function
ℰ = ℰ1 + 𝑟ℰ2, where ℰ1 = 𝐴1𝐸1 − 𝑝1𝐸, and ℰ2 = 𝐴2𝐸2 − 𝑝2, and its physically relevant solutions satisfy the
entropy inequality

𝜕𝑡ℰ + 𝜕𝑥(𝑢1(ℰ1 + 𝑝1) + 𝑟 𝑢2(ℰ2 + 𝑝2)) ≤ 0. (2.24)

Proof. Adding friction or viscous terms is usually the first step in deriving entropy inequalities. However,
system (2.1) already admits friction terms. Without loss of generality, we assume that the Manning coefficients
are positive. Using the fundamental theorem of calculus we get the relation 𝜕𝑡𝑝2 = 𝑔𝐴2𝜕𝑡𝑤2 − 𝑔ℎ2𝜎1𝜕𝑡𝑤1.
Multiplying the momentum equation of the external layer by 𝑢2, the resulting equation can be rewritten as

𝜕𝑡(𝐴2𝐸2) + 𝜕𝑥(𝑄2𝐸2) = 𝑔𝜕𝑡(𝐴2𝑤2) + 𝑔𝑤2𝜕𝑥𝑄2 − 𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

(𝑢2 − 𝑢2)𝑢2.

Subtracting the two equations and using 𝜕𝑡𝐴1 = 𝜎1𝜕𝑡𝑤1, we get

𝜕𝑡ℰ2 + 𝜕𝑥(𝑢2(ℰ2 + 𝑝2)) = −𝑔ℎ2𝜕𝑥𝑄1 − 𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

(𝑢2 − 𝑢1)𝑢2. (2.25)
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On the other hand, the pressure in the internal layer satisfies 𝜕𝑡𝑝1 = 𝑔𝐴1𝜕𝑡(𝑤1 +𝑟ℎ2)+𝑟𝑔ℎ2𝜎1𝜕𝑡𝑤1. Multiplying
the momentum equation of the internal layer by 𝑢1, the resulting equation can be rewritten as

𝜕𝑡(𝐴1𝐸1) + 𝜕𝑥(𝑄1𝐸1) = 𝑔𝜕𝑡(𝐴1(𝑤1 + 𝑟𝑤2)) + 𝑔(𝑤1 + 𝑟𝑤2)𝜕𝑥𝑄1

+ 𝑟𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

(𝑢2 − 𝑢1)𝑢1 − 𝑔
𝑛2

𝑏

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

𝑢2
1. (2.26)

Subtracting the two equations we get

𝜕𝑡ℰ1 + 𝜕𝑥(𝑢1(ℰ1 + 𝑝1)) = 𝑟𝑔ℎ2𝜕𝑥𝑄1 + 𝑟𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

(𝑢2 − 𝑢1)𝑢1 − 𝑔
𝑛2

𝑏

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

𝑢2
1. (2.27)

Finally, using equations (2.25) and (2.27) and defining ℰ = ℰ1 + 𝑟ℰ2, we get

𝜕𝑡ℰ + 𝜕𝑥(𝑢1(ℰ1 + 𝑝1) + 𝑟 𝑢2(ℰ2 + 𝑝2)) = −𝑟𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

(𝑢2 − 𝑢1)2 − 𝑔
𝑛2

𝑏

⃒⃒⃒
𝑄1𝐴1+𝑄2𝐴2

𝐴1+𝐴2

⃒⃒⃒
𝑅4/3

𝑢2
1 ≤ 0,

which concludes the proof. �

3. Numerical scheme

In this section we describe a well-balanced positivity-preserving central-upwind scheme to approximate the
solutions of system (2.7). See [8,23–25] for more details on central and central-upwind schemes. We extend the
semi-discrete central-upwind formulation to obtain a scheme for two-layer flows along channels with arbitrary
cross sections. The non-conservative products on the right hand side of (2.7) and the more complex geometry
of the channels considered here makes the extension of these schemes more challenging than those presented in
the above references.

The system now takes the form

𝜕W
𝜕𝑡

+
𝜕

𝜕𝑥
F(W; 𝜎, 𝐵) = S(W; 𝜎, 𝐵), (3.1)

with

W =

⎛⎜⎜⎜⎜⎜⎝
𝐴1

𝑄1

𝐴2

𝑄2

⎞⎟⎟⎟⎟⎟⎠, F(W; 𝜎, 𝐵) =

⎛⎜⎜⎜⎜⎝
𝑄1

𝑄2
1

𝐴1
+ 𝑔 ̂︀𝑤2𝐴1

𝑄2

𝑄2
1

𝐴1
+ 𝑔𝑤2𝐴2

⎞⎟⎟⎟⎟⎠, and S(W; 𝜎, 𝐵) =

⎛⎜⎜⎜⎝
𝑆𝑒

𝑔 ̂︀𝑤2𝜕𝑥𝐴1 + 𝑆𝑓,1 + 𝑆𝑒𝑢1

−𝑟𝑆𝑒

𝑔𝑤2𝜕𝑥𝐴2 + 𝑆𝑓,2 − 𝑟𝑆𝑒𝑢2

⎞⎟⎟⎟⎠. (3.2)

3.1. Discretization of the channel’s geometry

In order to arrive at a second order scheme for (3.1) and (3.2), we shall first address the discretization of the
channel geometry given by the width function 𝜎(𝑥, 𝑧) and the bottom topography 𝐵(𝑥). Since our approximate
solution of the system (3.1) and (3.2) will be realized as the cell averages W𝑗 of the flow quantities over the
grid cells 𝐼𝑗 := [𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
], where ∆𝑥 is the spatial scale in the direction of the flow, 𝑥𝑗± 1

2
= 𝑥𝑗 ± Δ𝑥

2 and
𝑥𝑗 is the center of the grid cell, we begin by sampling the bottom topography and width of the channel at the
points 𝑥𝑗+ 1

2
. From these samples, we define the cell average of the bottom topography as

𝐵𝑗 :=
𝐵𝑗+ 1

2
+ 𝐵𝑗− 1

2

2
· (3.3)



2196 G. HERNANDEZ-DUENAS AND J. BALBÁS

Figure 3. Left panel: piecewise trapezoidal discretization of a channel cross-section showing
the quantities involved in the reconstruction of the interface point values of 𝐴1 and 𝐴2 described
by (3.14)–(3.23). Right panel: positivity preserving reconstruction of 𝑤1 = 𝐵 + ℎ1.

And similarly, we define the average width functions

𝜎𝑗(𝑧) :=
𝜎(𝑥𝑗+ 1

2
, 𝑧) + 𝜎(𝑥𝑗− 1

2
, 𝑧)

2
· (3.4)

Using these, we build a piecewise trapezoidal approximation of the cross-sections of the channel at each cell
center 𝑥𝑗

̃︀𝜎𝑗(𝑧) = 𝜎𝑗(𝑧𝑙) +
𝜎𝑗(𝑧𝑙+1)− 𝜎𝑗(𝑧𝑙)

∆𝑧
(𝑧 − 𝑧𝑙) for 𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑙+1, (3.5)

where ∆𝑧 is a fixed spatial scale in the vertical direction (flow height).
These piecewise (bi-)linear functions allow us to approximate the spatial derivatives of 𝐵(𝑥) and 𝜎(𝑥, 𝑧) with

centered divided differences that are consistent with the second order accuracy sought for the scheme (see left
panel of Fig. 3). Unless otherwise noted, in the numerical experiments we use a resolution of ∆𝑧 = 0.01.

3.2. The semi-discrete central-upwind scheme

With the above partition of the solution grid and discretization of the channel geometry, we denote by W𝑗(𝑡)
the computed cell average of W(𝑥, 𝑡) over the cell 𝐼𝑗 ,

W𝑗(𝑡) =
1

∆𝑥

∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

W(𝑥, 𝑡) d𝑥. (3.6)

Integrating equation (2.7) over each cell 𝐼𝑗 , we obtain the semi-discrete formulation

d
d𝑡

W𝑗(𝑡) +
1

∆𝑥

(︁
F
(︁
W
(︁
𝑥𝑗+ 1

2
, 𝑡
)︁)︁

− F
(︁
W
(︁
𝑥𝑗− 1

2
, 𝑡
)︁)︁)︁

=
1

∆𝑥

∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

S(W(𝑥, 𝑡), 𝑥) d𝑥, (3.7)

which is approximated by

d
d𝑡

W𝑗(𝑡) = −
H𝑗+ 1

2
−H𝑗− 1

2

∆𝑥
+

1
∆𝑥

∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

S(W, 𝑥) d𝑥. (3.8)
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In order to account for the propagation of discontinuities at the cell interfaces, the flux F
(︁
W
(︁
𝑥𝑗± 1

2

)︁
, 𝑡
)︁

is
approximated by the numerical flux H𝑗± 1

2
(𝑡) in [26]

H𝑗± 1
2
(𝑡) =

𝑎+
𝑗± 1

2
F
(︁
W−

𝑗± 1
2
(𝑡)
)︁
− 𝑎−

𝑗± 1
2
F
(︁
W+

𝑗± 1
2
(𝑡)
)︁

𝑎+
𝑗± 1

2
− 𝑎−

𝑗± 1
2

+
𝑎+

𝑗± 1
2
𝑎−

𝑗± 1
2

𝑎+
𝑗± 1

2
− 𝑎−

𝑗± 1
2

(︁
W+

𝑗± 1
2
(𝑡)−W−

𝑗± 1
2
(𝑡)
)︁
. (3.9)

Here, W±
𝑗± 1

2
(𝑡) is recovered from the cell averages via a non-oscillatory piecewise polynomial reconstruction

W−
𝑗+ 1

2
:= p𝑗

(︁
𝑥𝑗+ 1

2

)︁
, and W+

𝑗+ 1
2

:= p𝑗+1

(︁
𝑥𝑗+ 1

2

)︁
. (3.10)

Furthermore, the one-sided local speeds in this scheme are approximated using the eigenvalues’ bounds given
by (2.21):

𝑎+
𝑗± 1

2
= max

{︁
𝛾+
1,𝑗± 1

2
, 𝛾+

2,𝑗± 1
2
, 0
}︁

, and 𝑎−
𝑗± 1

2
= min

{︁
𝛾−
1,𝑗± 1

2
, 𝛾−

2,𝑗± 1
2
, 0
}︁

. (3.11)

We note that in the case where the eigenvalues are real, the inequalities 𝑎+
𝑗± 1

2
≥ max

(︁
0, 𝜆±

𝑘,𝑗± 1
2

)︁
, 𝑎−

𝑗± 1
2
≤

min
(︁

0, 𝜆±
𝑘,𝑗± 1

2

)︁
hold for 𝑘 = ext, int. On the other hand, the formulas in equation (3.11) are always real valued

even if hyperbolicity is lost. Furthermore, 𝑎+
𝑗± 1

2
−𝑎−

𝑗± 1
2

> 0 is always positive unless ℎ±
1,𝑗± 1

2
, 𝑢±

1,𝑗± 1
2
, ℎ±

2,𝑗± 1
2
, 𝑢±

2,𝑗± 1
2

all vanish in a dry state with “no fluid motion”. Near dry states, we use the regularization of the velocity given by
(3.25) below, and it is usually not negligible. The condition 𝑎+

𝑗± 1
2
≥ max

(︁
𝑢+

𝑗± 1
2
, 𝑢−

𝑗± 1
2

)︁
, 𝑎−

𝑗± 1
2
≤ min

(︁
𝑢+

𝑗± 1
2
, 𝑢−

𝑗± 1
2

)︁
is automatically satisfied given the expressions in equation (2.21), which is important for the positivity-preserving
property.

3.3. Positivity preserving non-oscillatory reconstruction

In order to recover the interface point values W∓
𝑗± 1

2
(𝑡) from the cell averages W𝑗(𝑡), we seek a piecewise

polynomial reconstruction at cell 𝑗 given by

p𝑗(𝑥) = W𝑗 + W′
𝑗(𝑥− 𝑥𝑗), (3.12)

with the limited slopes W′
𝑗 calculated as [31],

W′
𝑗 =

1
∆𝑥

minmod
(︀
𝛼∆−W𝑗 , ∆0W𝑗 , 𝛼∆+W𝑗

)︀
, where 1 ≤ 𝛼 < 2, and (3.13)

minmod(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘) =

⎧⎨⎩min𝑗(𝑥𝑗) if 𝑥𝑗 > 0 ∀𝑗,
max𝑗(𝑥𝑗) if 𝑥𝑗 < 0 ∀𝑗,
0 otherwise.

Here we take 𝛼 = 1.5. This non-oscillatory reconstruction is applied directly to the discharges 𝑄1 and 𝑄2.
However, in order to ensure the positivity of the water layers and recognize steady states of rest (2.23), the
point values of the areas 𝐴1 and 𝐴2 are obtained by first reconstructing the total elevations of the internal and
external layers, 𝑤1 = 𝐵 + ℎ1 and 𝑤2 = 𝑤1 + ℎ2 respectively. These, unlike ℎ1 and ℎ2, will remain constant for
the steady state of rest, so their reconstruction will also render constant point values within and across grid
cells, and help us achieve well balance as well as prevent the onset of spurious oscillations.

In order to reconstruct the interface point values of 𝐴±
1,𝑗∓ 1

2
and 𝐴±

2,𝑗∓ 1
2

from their cell averages 𝐴1,𝑗 and 𝐴2,𝑗 ,
we proceed as follows:
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– Determine the values 𝑧𝑙1 and 𝑧𝑙2 along the partition {𝑧𝑙} of the vertical axis such that∫︁ 𝑧𝑙1

𝐵𝑗

̃︀𝜎𝑗(𝑧) d𝑧 ≤ 𝐴1,𝑗 <

∫︁ 𝑧𝑙1+1

𝐵𝑗

̃︀𝜎𝑗(𝑧) d𝑧 (3.14)

and ∫︁ 𝑧𝑙2

𝐵𝑗

̃︀𝜎𝑗(𝑧) d𝑧 ≤ 𝐴1,𝑗 + 𝐴2,𝑗 <

∫︁ 𝑧𝑙2+1

𝐵𝑗

̃︀𝜎𝑗(𝑧) d𝑧. (3.15)

– Find the height 𝛿𝑤1,𝑗 of the next trapezoid in the discretization of the 𝑗th cross-section of the channel so
that ∫︁ 𝑧𝑙1+𝛿𝑤1,𝑗

𝑧𝑙1

̃︀𝜎𝑗(𝑧) d𝑧 = 𝐴1,𝑗 −
∫︁ 𝑧𝑙1

𝐵𝑗

̃︀𝜎𝑗(𝑧) d𝑧, (3.16)

and set 𝑤1,𝑗 := 𝑧𝑙1 + 𝛿𝑤1,𝑗 .
– Find the height 𝛿𝑤2,𝑗 so that∫︁ 𝑧𝑙2+𝛿𝑤2,𝑗

𝑧𝑙2

̃︀𝜎𝑗(𝑧) d𝑧 = 𝐴1,𝑗 + 𝐴2,𝑗 −
∫︁ 𝑧𝑙2

𝐵𝑗

̃︀𝜎𝑗(𝑧) d𝑧, (3.17)

and set ℎ2,𝑗 := 𝑧𝑙2 + 𝛿𝑤2,𝑗 − 𝑤1,𝑗 and 𝑤2,𝑗 := ℎ2,𝑗 + 𝑤1,𝑗 .

Note that the left hand side of (3.16) and (3.17) are, respectively, increasing functions of 𝛿𝑤1 and 𝛿𝑤2, and
because of the linearity of 𝜎𝑗(𝑧), the equations are quadratic. Therefore, 𝛿𝑤1,𝑗 and 𝛿𝑤2,𝑗 correspond, each,
to one of the solutions of a quadratic equation. As an alternative, we may also determine their values using
bisection so as to pick the right solution, which works well here because the cross sectional area is an increasing
function of height.

Once the heights corresponding to the cell averages of the areas are recovered, following the ideas of [23], we
reconstruct their interface values via the minmod reconstruction (3.12) and (3.13), but ensuring their positivity
with the following correction of the reconstructed values where needed (see right panel of Fig. 3):

– For the internal layer, if 𝑤+
1,𝑗− 1

2
< 𝐵𝑗− 1

2
, then set

𝑤+
1,𝑗− 1

2
:= 𝐵𝑗− 1

2
+ 𝛿𝐵 , 𝑤′1,𝑗 := 2

(︁
𝑤1,𝑗 −𝐵𝑗− 1

2
− 𝛿𝐵

)︁
, and 𝑤−

1,𝑗+ 1
2

:= 𝑤1,𝑗 +
1
2
𝑤′1,𝑗 , (3.18)

for some small 𝛿𝐵 , or if 𝑤−
1,𝑗+ 1

2
< 𝐵𝑗+ 1

2
, then set

𝑤−
1,𝑗+ 1

2
:= 𝐵𝑗+ 1

2
+ 𝛿𝐵 , 𝑤′1,𝑗 := 2

(︁
𝐵𝑗+ 1

2
+ 𝛿𝐵 − 𝑤1,𝑗

)︁
, and 𝑤+

1,𝑗− 1
2

:= 𝑤1,𝑗 −
1
2
𝑤′1,𝑗 . (3.19)

– And for the external layer, if 𝑤+
2,𝑗− 1

2
< 𝑤+

1,𝑗− 1
2
, then set

𝑤+
2,𝑗− 1

2
:= 𝑤+

1,𝑗− 1
2

+ 𝛿𝐵 , 𝑤′2,𝑗 := 2
(︁
𝑤2,𝑗 − 𝑤+

1,𝑗− 1
2
− 𝛿𝐵

)︁
, and 𝑤−

2,𝑗+ 1
2

:= 𝑤2,𝑗 +
1
2
𝑤′2,𝑗 , (3.20)

or if 𝑤−
2,𝑗+ 1

2
< 𝑤−

1,𝑗+ 1
2
, then set

𝑤−
2,𝑗+ 1

2
:= 𝑤−

1,𝑗+ 1
2

+ 𝛿𝐵 , 𝑤′2,𝑗 := 2
(︁
𝑤−

1,𝑗+ 1
2

+ 𝛿𝐵 − 𝑤2,𝑗

)︁
, and 𝑤+

2,𝑗− 1
2

:= 𝑤2,𝑗 −
1
2
𝑤′2,𝑗 . (3.21)

This yields
ℎ±

1,𝑗∓ 1
2

:= 𝑤±
1,𝑗∓ 1

2
−𝐵𝑗∓ 1

2
> 0, and ℎ±

2,𝑗∓ 1
2

:= 𝑤±
2,𝑗∓ 1

2
− 𝑤±

1,𝑗∓ 1
2

> 0. (3.22)
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See [7,23] for more details. For the numerical experiments presented in Sections 4.4 and 4.5, we use 𝛿𝐵 = 10−3.
The pointvalues of the wet areas, 𝐴±

1,𝑗∓ 1
2

and 𝐴±
2,𝑗∓ 1

2
, are then recovered from these by integrating the

interface width,

𝐴±
1,𝑗∓ 1

2
=
∫︁ 𝑤±

1,𝑗∓ 1
2

𝐵
𝑗∓ 1

2

̃︀𝜎𝑗∓ 1
2
(𝑧) d𝑧 and 𝐴±

2,𝑗∓ 1
2

=
∫︁ 𝑤±

2,𝑗∓ 1
2

𝑤±
1,𝑗∓ 1

2

̃︀𝜎𝑗∓ 1
2
(𝑧) d𝑧, (3.23)

where

̃︀𝜎𝑗∓ 1
2
(𝑧) = 𝜎

(︁
𝑥𝑗∓ 1

2
, 𝑧𝑙

)︁
+

𝜎
(︁
𝑥𝑗∓ 1

2
, 𝑧𝑙+1

)︁
− 𝜎

(︁
𝑥𝑗∓ 1

2
, 𝑧𝑙

)︁
∆𝑧

(𝑧 − 𝑧𝑙) for 𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑙+1 (3.24)

is a piecewise trapezoidal approximation of the channel cross-section at the cell interfaces 𝑥𝑗∓ 1
2
. These guarantee

the positivity of the water layers and will remain constant across cell interfaces for steady states of rest, where
the total elevation of the water layers, 𝑤1 = ℎ1 + 𝐵 and 𝑤2 = 𝑤1 + ℎ2, remain constant.

Regularization of flow velocity and discharge for small 𝐴1, 𝐴2

Although the positivity of depth in each layer is preserved, these point-values may still be very small and
may lead to large values of the velocity of the flow, 𝑢1, 𝑢2. We can prevent this by adapting the regularization
technique suggested in [23],

𝑢±
𝑘,𝑗± 1

2
=

√
2 𝑄±

𝑘,𝑗± 1
2
𝐴±

𝑘,𝑗± 1
2√︂(︁

𝐴±
𝑘,𝑗± 1

2

)︁4

+ max
(︁

(𝐴±
𝑘,𝑗± 1

2
)4, 𝛿𝐴

)︁ (3.25)

for 𝑘 = 1, 2. The discharges 𝑄±
𝑘,𝑗± 1

2
are then recalculated as

𝑄±
𝑘,𝑗± 1

2
= 𝐴±

𝑘,𝑗± 1
2

𝑢±
𝑘,𝑗± 1

2
(3.26)

to ensure conservation. The value of 𝛿𝐴 was empirically determined, usually choosing 𝛿𝐴 = 10−12 in this paper.

3.4. Well balance

Flows described by the balance law (2.7) admit steady-state solutions of rest satisfying (2.23). Numerical
schemes for approximating the solutions of (2.7) that are capable of capturing these equilibrium solutions are
said to satisfy the well balance property.

The authors of [22,23], where shallow-water models for flows along channels with constant width are discussed,
propose to reconstruct the variables 𝑤1 and 𝑤2, which remain constant for steady states of rest, and not the
heights ℎ1 and ℎ2, that, despite the water layers remaining flat, may vary across cells due to changes in the
bottom topography. While our model (2.7) describes the evolution of wet areas, not heights, 𝑄±

1,𝑗∓ 1
2
, 𝑄±

2,𝑗∓ 1
2
,

𝑤±
1,𝑗∓ 1

2
, 𝑤±

2,𝑗∓ 1
2

still characterize the steady states of rest, for which they are either zero or constant (as iŝ︀𝑤2 = 𝑤1 + 𝑟ℎ2). The positivity preserving minmod reconstruction of point values proposed in Section 3.3 above
will recognize and preserve the constant values of these variables and will recover the point values 𝐴±

1,𝑗∓ 1
2

and

𝐴±
2,𝑗∓ 1

2
in (3.23) in a manner consistent with those steady states, allowing us to achieve well balance.

The rest of the variables satisfy (·)+
𝑗∓ 1

2
= (·)−

𝑗∓ 1
2

in the case of a steady state at rest. In order to obtain such
discretization of the source terms, we begin by writing the numerical flux for 𝑄1 under these rest conditions,

− 1
∆𝑥

[︁
𝐻𝑄1

𝑗+ 1
2
−𝐻𝑄1

𝑗− 1
2

]︁
= − 1

∆𝑥

(︁
𝑔 ̂︀𝑤2,𝑗

(︁
𝐴−

1,𝑗+ 1
2
−𝐴+

1,𝑗− 1
2

)︁)︁
, (3.27)

and seek a discretization of the cell average of the corresponding source term that matches this numerical flux
𝑆𝑄1(𝑥,W,W𝑥) = 𝑔 ̂︀𝑤2𝜕𝑥𝐴1. A consistent discretization is given in the following proposition.
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Proposition 3.1. Let us consider the following discretization of the source terms in (3.2)

𝑔

∆𝑥

∫︁ 𝑥−
𝑗+ 1

2

𝑥+
𝑗− 1

2

̂︀𝑤2𝜕𝑥𝐴1 d𝑥 ≈ 𝑔 ̂︀𝑤2,𝑗

𝐴1,𝑗+ 1
2
−𝐴1,𝑗− 1

2

∆𝑥
,

𝑔

∆𝑥

∫︁ 𝑥−
𝑗+ 1

2

𝑥+
𝑗− 1

2

𝑤2𝜕𝑥𝐴2 d𝑥 ≈ 𝑔𝑤̄2,𝑗

𝐴2,𝑗+ 1
2
−𝐴2,𝑗− 1

2

∆𝑥
,

𝑔

∆𝑥

∫︁ 𝑥−
𝑗+ 1

2

𝑥+
𝑗− 1

2

𝑆𝑒𝑢1 d𝑥 =
𝐴1,𝑗

𝜎1,𝑗
𝑉𝑒 𝑢̄1,𝑗 ,

𝑔

∆𝑥

∫︁ 𝑥−
𝑗+ 1

2

𝑥+
𝑗− 1

2

𝑆𝑒 d𝑥 =
𝐴1,𝑗

𝜎1,𝑗
𝑉𝑒,

𝑔

∆𝑥

∫︁ 𝑥−
𝑗+ 1

2

𝑥+
𝑗− 1

2

𝑆𝑒𝑢2 d𝑥 =
𝐴1,𝑗

𝜎1,𝑗
𝑉𝑒 𝑢̄2,𝑗 ,

𝑔

∆𝑥

∫︁ 𝑥−
𝑗+ 1

2

𝑥+
𝑗− 1

2

𝑆𝑓,1 d𝑥 = −𝑟𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄̄1,𝑗𝐴1,𝑗+𝑄̄2,𝑗𝐴2,𝑗

𝐴1,𝑗+𝐴2,𝑗

⃒⃒⃒
𝑅̄

4/3
𝑗

(𝑢̄1,𝑗 − 𝑢̄2,𝑗)− 𝑔
𝑛2

𝑏

⃒⃒⃒
𝑄̄1,𝑗𝐴1,𝑗+𝑄̄2,𝑗𝐴2,𝑗

𝐴1,𝑗+𝐴2,𝑗

⃒⃒⃒
𝑅̄

4/3
𝑗

𝑢̄1,𝑗 ,

𝑔

∆𝑥

∫︁ 𝑥−
𝑗+ 1

2

𝑥+
𝑗− 1

2

𝑆𝑓,2 d𝑥 = −𝑔
𝑛2

𝑖

⃒⃒⃒
𝑄̄1,𝑗𝐴1,𝑗+𝑄̄2,𝑗𝐴2,𝑗

𝐴1,𝑗+𝐴2,𝑗

⃒⃒⃒
𝑅̄

4/3
𝑗

(𝑢̄2,𝑗 − 𝑢̄1,𝑗) (3.28)

where

𝐴𝑘,𝑗± 1
2

=
𝑎+

𝑗± 1
2
𝐴−

𝑘,𝑗± 1
2
− 𝑎−

𝑗± 1
2
𝐴+

𝑘,𝑗± 1
2

𝑎+
𝑗± 1

2
− 𝑎−

𝑗± 1
2

, 𝑘 = 1, 2, and 𝑅̄𝑗 =
𝐴1,𝑗 + 𝐴2,𝑗

𝜎𝐵𝑗
+
∫︀ 𝑤̄2,𝑗

𝐵𝑗

√︀
4 + (𝜕𝑧𝜎𝑗(𝑧))2d𝑧

·

Then the numerical scheme given by equation (3.8) satisfies the well-balance property. That is, it recognizes
steady states of rest.

The averages for the wet areas 𝐴𝑘,𝑗± 1
2

are computed consistently with the discretization of the numerical
fluxes in equation (3.9), which is relevant for the cases where 𝑤2, 𝑤̂2 are constant.

3.5. Evolution

Once the interface values, the numerical fluxes and the average of the source terms have been calculated,
the ODE system (3.8) is integrated in time using the second order Strong Stability Preserving Runge–Kutta
scheme [19],

W(1) = W(𝑡) + ∆𝑡C
[︀
W(𝑡)

]︀
(3.29a)

W(2) =
1
2
W(𝑡) +

1
2

(︁
W(1) + ∆𝑡C

[︁
W(1)

]︁)︁
(3.29b)

W(𝑡 + ∆𝑡) := W(2), (3.29c)

with the Runge–Kutta fluxes

C[W(𝑡)]𝑗 = −
H𝑗+ 1

2
(𝑣(𝑡))−H𝑗− 1

2
(𝑣(𝑡))

∆𝑥
+ S𝑗(𝑡), (3.30)

where S𝑗(𝑡) is described by equation (3.2), and discretized by equation (3.28). The time step ∆𝑡 is determined
so as to satisfy the CFL restriction

𝜈 = ∆𝑡 max

[︃
𝑎

∆𝑥
max

𝑘=1,2,𝑗=1:𝑁

𝐴−
𝑘,𝑗+ 1

2
+ 𝐴+

𝑘,𝑗− 1
2

2𝐴𝑘,𝑗

+ 𝜏𝑒, 5𝜏𝑓

]︃
≤ 1

2
, (3.31)

where 𝑘 = 1, 2 denote the corresponding quantities for the internal and external layers respectively. Here, 𝜏𝑒 is
given by

𝜏𝑒 = min
(︂

0, min
𝑗=1:𝑁

𝑉 𝑒,𝑗

𝜎1,𝑗
, min
𝑗=1:𝑁

𝐴1,𝑗

𝐴2,𝑗

𝑉 𝑒,𝑗

𝜎1,𝑗

)︂
, (3.32)
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and

𝜏𝑓 = 𝑟 𝑔 max(𝑛𝑖, 𝑛𝑏)2 max
𝑗=1:𝑁

⃒⃒⃒
𝑄1,𝑗𝐴1,𝑗+𝑄2,𝑗𝐴2,𝑗

(𝐴1,𝑗+𝐴2,𝑗)2

⃒⃒⃒
𝑅

4/3

𝑗

· (3.33)

We note that in channels with straight walls,
𝐴−

𝑘,𝑗+ 1
2
+𝐴+

𝑘,𝑗− 1
2

2𝐴𝑘,𝑗
= 1 by construction. In the case of general channels,

that quantity is only approximately 1, so the extra condition is not too restrictive. Furthermore, 𝜏𝑒 is non-positive
and such extra restriction is due to entrainment. We also note that we are considering entrainment only when
the external layer 𝐴2 is away from zero, and the above definition is valid. The quantity in (3.33) is a frequency
scale given by the friction term. The condition in (3.31) guarantees that the friction is resolved in the sense that
we include at least 10 time steps during each time period of length 1/𝜏𝑓 .

One can show that the CFL restriction in equation (3.31) also guarantees the positivity-preserving property.
That is, the positivity of 𝐴1 and 𝐴2 are preserved in the numerical evolution. The details are given in the
following proposition.

Proposition 3.2. Consider the scheme (3.8) and (3.9) with the reconstruction algorithm described in
Section 3.3 and the discretization of the source term given by Proposition 3.1. If the cell averages 𝐴𝑘(𝑡), 𝑘 = 1, 2
are such that

𝑤1,𝑗(𝑡) ≥
𝐵𝑗− 1

2
+ 𝐵𝑗+ 1

2

2
, 𝑤2,𝑗(𝑡) ≥ 𝑤1,𝑗 ∀𝑗,

then the cell averages 𝐴(𝑡+∆𝑡) as evolved with time evolution given by equation (3.29), under the CFL limitation
(3.31), and with one-sided local speeds given by equation (3.11) yields

𝐴𝑘,𝑗(𝑡 + ∆𝑡) ≥ 0 ∀𝑗, 𝑘 = 1, 2.

The proof follows that in [7] for each layer, adding the contribution of entrainment. It will be omitted here.

4. Numerical results

Numerical setup and boundary conditions

In this section we validate the properties of our central-upwind scheme by solving several problems that
simulate a variety of flow situations. For all the results presented below the value of the acceleration of gravity
is taken as 𝑔 = 9.81, and the time step, ∆𝑡, satisfies the CFL restriction (3.31). Unless otherwise mentioned,
the computations below were performed using 200 grid cells and 𝜈 = 0.45. In all numerical tests, 𝑥, 𝑧, 𝜎 are in
units of m, 𝐴1, 𝐴2 in m2, 𝑄1, 𝑄2 in m3 s−1, 𝑢1, 𝑢2, 𝑉𝑒 in m s−1, 𝑔 in m2 s−1, and 𝑛𝑖, 𝑛𝑏 in s m−1/3.

At the left (right) boundary, outflow occurs when 𝛾−1 < 0, 𝛾−2 < 0 (𝛾+
1 > 0, 𝛾+

2 > 0) respectively. Inflow is
considered to occur when such conditions are not satisfied. Unless otherwise noted, we extrapolate the variables
𝑤1, 𝑤2, 𝑄1, 𝑄2 at outflow, and prescribe 𝑤1, 𝑤2, 𝑄1, 𝑄2 at inflow (with the values given by the initial conditions).

4.1. Riemann problem

System (2.7) consists of balance laws with non-conservative products. This adds both theoretical and numer-
ical challenges for calculating physically relevant weak solutions. Non-conservative products may change the
jump conditions in weak solutions. In [17], a definition of weak solutions based on the theory of non-conservative
products is provided and more on the theory of paths can be found in [27,28].

In this example we test the convergence and non oscillatory properties of the proposed scheme. We consider
a Riemann problem consisting of a two-layer flow along a channel with constant width, 𝜎(𝑥, 𝑧) = 1, and a flat
bottom 𝐵(𝑥) = 0. Friction and entrainment are ignored so that 𝑛𝑖 = 𝑛𝑏 = 0, and 𝑉𝑒 = 0, and the ratio of
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Figure 4. Solution to the Riemann problem at 𝑡 = 0.12. The initial conditions are given
by equation (4.1). Top left panel: internal layer 𝑤1. Bottom left panel: external layer 𝑤2. Top
right panel: internal velocity 𝑢1. Bottom right panel: external velocity 𝑢2. In each panel, the
reference solution is computed with a fine resolution using 10 000 gridpoints (black solid line).
The numerical approximations using 1000 (red solid line) and 2000 (blue dashed line) grid
points are also shown.

densities is 𝑟 = 0.98. The initial conditions over the domain 𝑥 ∈ [0, 1] consist of two constant states separated
by a membrane at 𝑥 = 0.2:

(𝐴1, 𝑄1, 𝐴2, 𝑄2)(𝑥, 0) =
{︂

(0.5, 1.25, 0.5, 1.25) if 𝑥 ≤ 0.2,
(0.55, 1.375, 0.45, 1.125) otherwise. (4.1)

We impose the boundary conditions as specified at the beginning of Section 4. The two layers move originally
at the same speed, 𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 2.5 in both sides of the membrane, and the only difference is a jump
on the location of the interface between the two layers at 𝑡 = 0 (ℎ1 increases and ℎ2 decreases by 0.05 while the
flow remains flat at the top).

Although the geometry of the channel is trivial and does not pose any challenges for the numerical scheme,
when the membrane is removed, the initial conditions develop strong shock discontinuities. If solved with
non-oscillatory numerical schemes or over coarse grids, these discontinuities will lead to the onset of spurious
oscillations. The numerical results shown in Figure 4 demonstrate the robustness of our scheme and shows the
convergence to the discontinuous solution as the grid is refined. The left panels show the internal layer 𝑤1 (top
left) and the external layer 𝑤2 (bottom left). The corresponding velocities are shown in the right panels. In each
panel, different resolutions are used. The red dotted line shows the numerical results using 1000 gridpoints, while
the blue dashed line represents the solution computed with a finer grid of 2000 gridpoints. Due to the presence
of non-conservative products, a Riemann problem is particularly challenging in two-layer flows. Although one
can observe oscillations when a resolution of 1000 gridpoints is used, such oscillations are significantly reduced
for the reference solution that is obtained with a very fine resolution of 10 000 gridpoints. The structure of the
solution can be clearly identified. There are four shockwaves, one of them with negative speed of propagation.
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Figure 5. Perturbation of steady state at rest. The initial conditions are given by (4.3). Left
panel: 3D view of the channel at 𝑡 = 0. Middel panel: surface layer 𝑤2 = 𝐵 + ℎ1 + ℎ2 at times
𝑡 = 0, 0.03, 0.1, 5. Right panel: velocities 𝑢1 and 𝑢2 at times 𝑡 = 0, 0.03, 0.1, 5.

4.2. Perturbation from a steady state of rest in a general channel with discontinuous
topography

A perturbation to a steady state of rest in a channel with general walls and discontinuous topography is
applied in this section. The wall’s width defined over the domain [0, 1] is given by

𝜎(𝑥, 𝑧) =

{︃
1
2 + 1

2

√
𝑧
(︁

1− 1
4

(︁
1 + cos

(︁
𝜋(𝑥−0.6)

0.2

)︁)︁)︁
if 0.4 ≤ 𝑥 < 0.8,

1
2 (1 +

√
𝑧) if 𝑥 ∈ [0, 1] ∖ [0.4, 0.8].

(4.2)

The ratio of densities between layers is 𝑟 = 0.98. Here 𝑉𝑒 = 0 but friction is included with Manning coefficients
𝑛𝑖 = 𝑛𝑏 = 0.009 s m−1/3. Such values were obtained from [20]. The topography is given by

𝐵(𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑥 ∈ [0, 0.15],
1
4 (1 + cos(4𝜋(𝑥− 0.4))) if 𝑥 ∈ [0.15, 0.4],
1
4 if 𝑥 ∈ [0.4, 1].

The initial conditions are given by

𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 0, 𝑤1(𝑥, 0) = 0.7, and 𝑤2(𝑥, 0) =

{︃
1.2 + 10−2 if 0.1 ≤ 𝑥 ≤ 0.2,

1.2 otherwise.
(4.3)

The left panel of Figure 5 shows the 3D view of the channel described by equation (4.2) along with the initial
conditions given by equation (4.3). Here we impose the boundary conditions as specified at the beginning of
this section. The middle panel shows the external layer (𝑤2) at times 𝑡 = 0, 0.03, 0.1, 5 in descending order and
using a resolution of 200 grid points. The internal layer 𝑤1 is not shown in the middle panels to identify the
perturbation more clearly. The right panels show the velocity of each layer. Initially those velocities are zero.
The densities in both layers are similar. The evolution of the flow is similar to that of a one-layer flow. This can
be corroborated in the velocity plots where 𝑢1 and 𝑢2 are close to each other over time. The velocities at 𝑡 = 5
satisfy ||𝑢1||∞ ≤ 0.41× 10−4, ||𝑢2||∞ ≤ 0.83× 10−4, and ||𝑢2 − 𝑢1||∞ ≤ 1.24× 10−4.

The well-balance property is particularly important in two-layer flows. Any imbalance in the external layer
affects the internal one and viceversa. Figure 6 (without the initial perturbation) shows the numerical results
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Figure 6. The numerical results are shown when the numerical scheme does not satisfy the
well-balance property. The initial conditions are those given in Figure 5 without the perturba-
tion. The total height 𝑤2 is shown in the middle top panel at time 𝑡 = 0.1, while 𝑤1, 𝑢2 and 𝑢1

are displayed in the middle bottom, right top and right bottom panels. Left panel: topography
(black solid line), 𝑤1 (blue solid line), and 𝑤2 (red solid line) are shown.

when the numerical scheme does not satisfy the well-balance property. In particular, here we use the same scheme
but implement the reconstruction of 𝐴1 and 𝐴2 directly, instead of the procedure described in Section 3.4. In a
channel with width variations like the one considered in this section, the reconstruction results in a top surface
𝑤2 that is not flat already in the first time step. The time evolution of 𝑤2, 𝑤1, 𝑢2 and 𝑢1 are shown in the middle
top, middle bottom, right top and right bottom panels respectively. All those quantities must be flat in this
steady state at rest but the imbalance in the numerical scheme caused numerical errors, which are significant
as one can see in the left panel that shows the topography and the total heights of each layer.

4.3. Internal waves

Waves due to gravity may form in the internal layer, generating internal waves in two-layer flows. Internal
waves may appear in rivers, and shear flow instabilities may be one of the mechanisms leading to such waves
[4]. Here we test the ability of the numerical scheme to capture steady states that are not at rest for the internal
layer while the free surface is at rest. We consider a channel extended over the interval 𝑥 ∈ [0, 2] with the
topography and channel’s width given, respectively, by

𝐵(𝑥) = 0.3 max

(︃
1
2
− 2
(︂

𝑥− 3
4

)︂2

, 0

)︃
, (4.4)

and

𝜎(𝑥, 𝑧) = 1− 1
2

max
(︂

1
2
− 2(𝑥− 1.25)2, 0

)︂
+

𝑧

10
− 3

2
max

(︃
1
2
− 1

2
(𝑥− 1)2 −

(︂
𝑧 − 3

2

)︂2

, 0

)︃
. (4.5)

For the purpose of this numerical test, we ignore entrainment (𝑉𝑒 = 0). We also ignore friction (𝑛𝑖 = 𝑛𝑏 = 0) to
verify that the conditions for steady states in Proposition 2.5 are met.

The discretization of the source terms (3.28) guarantees the balance between source terms and non linear
fluxes for steady states of rest, but that balance is not guaranteed in steady states characterized by the conditions
(2.22), where the equilibrium in the internal layer is achieved through the effects of hydrostatic pressure exerted
by the external layer. Perturbations in any of the layers affect each other. The results obtained for this example
demonstrate that the proposed numerical schemes computes correctly these non trivial steady states.

It is also worth noting that in these examples, despite the loss of hyperbolicity in a subregion, the approxi-
mations (2.21) that we employ to bound the eigenvalues allow us to capture the steady-state flows and resolve
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Figure 7. Internal waves. Left panel: 3D views of a steady state where the internal layer is
not at rest. Middle top panel: plots of 𝑤1 (blue solid line), 𝑤2 (red dashed line), and topography
(black solid line). The red asterisks show locations where hyperbolicity is lost. Top right panel:
external (red dashed line) and internal (blue solid line) velocities. Middle bottom and bottom
right panels repeat the plots for 𝑄1, 𝑄2 (middle bottom) and 𝐸1, 𝐸2 (bottom right).

Figure 8. Perturbation evolution of internal wave. As in Figure 7, the solution at 𝑡 = 0.2 is
computed here with the same central-upwind scheme without the well-balance property. Top
left panel: topography (black solid line), 𝑤1 (blue solid line) and 𝑤2 (red dashed line). Top right
panel: velocities 𝑢1 (blue solid line) and 𝑢2 (red dashed line). The discharge and energy of each
layer are shown in the bottom left and bottom right panels respectively.

accurately their internal waves. Other steady states with large enough velocity 𝑢1, however, may lose hyperbol-
icity in the entire domain. In such cases, the proposed model is not suitable to describe those type of flows and
should not be used at all.

Figure 7 shows one example of internal waves. The steady state was obtained numerically by running the
model for a long time, i.e., by convergence. The boundary conditions in this case are as follows. At inflow,
we specify 𝑤1 = 0.9, 𝑢1 = 0.3, 𝑤2 = 1.5, 𝑢2 = 0, and those same values are used for the initial conditions.
We confirm the solution is a steady state with the plots of 𝑄1, 𝑄2, 𝐸1, 𝐸2 in the bottom middle and bottom
right panels. The discharges 𝑄1, 𝑄2 and the energy 𝐸1 are approximately constant. The energy 𝐸2 seems to
be converging to a piecewise constant profile. The topography, and the elevations of the internal and external
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layers are shown in the middle top panel, while the velocity is displayed in the top right panel. We clearly see
that 𝑤2 is constant, indicating that the external layer is at rest. The 3D view of this flow is shown in the left
panel. In the middle top panel we also show with red asterisks the region where hyperbolicity is lost. We notice
that hyperbolicity is lost where 𝑢1 is highest. This is consistent with the fact that hyperbolicity is lost when 𝑢1

and 𝑢2 are far from each other.
We now continue the simulation of the steady state reached in Figure 7 with a reconstruction that does

not follow the procedure in Sections 3.3 and 3.4 where 𝑤1 and 𝑤2 are reconstructed first. Instead, both 𝐴1

and 𝐴2 are reconstructed directly with the non-oscillatory procedure in Section 3.3. As a consequence, this
version of the numerical scheme does not satisfy the well-balance property. The numerical results are shown
in Figure 8 at time 𝑡 = 0.2, where the initial conditions correspond to the steady state reached in Figure 7.
The two heights are shown in the top left panel, while the velocities are shown in the top right panel. Here
we expect the solution to be near the original steady state as in Figure 7 but observe large numerical errors
instead. For instance, the discharge (bottom left) and energy (bottom right) show large oscillations and are
not converging to constant or piece-wise constant values anymore. The well-balance property is particularly
important in two-layer shallow-water flows.

We further test the numerical scheme by adding a perturbation of 𝛿𝑤 = 0.2 in the internal layer in the interval
[0.1, 0.2]. The time evolution of this perturbation at times 𝑡 = 0, 0.2, 1, 3, 10 is shown in Figure 9 from top to
bottom for 𝑤1, 𝑤2 (left column) and 𝑢1, 𝑢2 (right column). We observe that the perturbation in the internal layer
propagates throughout the domain and eventually leaves it, recovering its initial profile. On the other hand, the
external layer 𝑤2 is always almost flat. The formulation in equation (2.7) helps maintaining the balance in this
internal wave flow and computing the free surface correctly.

4.4. Lock exchange

In this example we test the positivity preserving property of the numerical scheme presented in Section 3.
The topography and wall’s width are given by equations (4.4) and (4.5) from the previous numerical test. The
Manning coefficients for the interface and bottom are 𝑛𝑖 = 𝑛𝑏 = 0.009 s m−1/3, and 𝑉𝑒 = 0.

The two layers are initially at rest, 𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 0, with the external layer occupying the left side of
the channel and the internal layer the right side. That is,

𝑤1(𝑥, 0) =

{︃
𝐵(𝑥) + 𝛿𝐵 if 𝑥 ≤ 0.75,

1.5 otherwise,
and 𝑤2(𝑥, 0) =

{︃
1.5 if 𝑥 ≤ 0.75,

1.5 + 𝛿𝐵 otherwise.
(4.6)

Here 𝛿𝐵 = 10−3 is used as a threshold. We note that this threshold is used to avoid loss of hyperbolicity. The
ratio of densities is 𝑟 = 0.95. The boundary conditions used here are those specified at the beginning of this
section. We expect the heavier fluid to push the external layer, resulting in a displacement of the internal layer
below the external one. The time evolution at times 𝑡 = 0, 0.25, 1, 50 are displayed in Figure 10. The elevations
are shown in the middle column. As one can observe, preserving positivity is challenging and such property in
the numerical scheme adds stability and accuracy to the approximated numerical solution. At 𝑡 = 50, the flow
has reached a steady state that is not at rest. The velocity in the right column indicates that the external layer
moves to the right while the internal one goes in the opposite direction. The 3D view on the left column exhibits
the complex geometry of the channel’s wall and the fluid’s evolution over time.

4.5. Currents

Gravity currents produced by lock exchanges have been studied in [3]. Experimental data and numerical
results are compared in [3] using a shallow-water model with entrainment. It was shown that entrainment helps
getting more realistic numerical results. In the numerical test considered in this section, we start with a fluid
that is composed only of the external layer (lighter fluid). We then impose a discharge of heavier fluid in the
internal layer. Specifically, we impose a discharge 𝑄1,left = 0.1, 𝑤1,left = 0.6, 𝑄2,left = 0, and 𝑤2,left = 1.5 at the
left boundary. The right boundary is treated as specified at the beginning of this section.
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Figure 9. Perturbation evolution of internal wave. A perturbation of 𝛿𝑤 = 0.2 is added to
the bottom depth 𝑤1 in the interval [0.1, 0.2]. From top to bottom panels: the time evolution at
times 𝑡 = 0, 0.2, 1, 3, 10 is shown for 𝑤1 and 𝑤2 in the left column, and 𝑢1 and 𝑢2 in the right
column respectively.

The topography 𝐵(𝑥) and the geometry 𝜎(𝑥, 𝑧) are the same from the previous test, and

ℎ1(𝑥, 0) = 𝛿𝐵 , 𝑢1(𝑥, 0) = 0, 𝑤2(𝑥, 0) = 1.5, 𝑢2(𝑥, 0) = 0. (4.7)

Here, 𝑟 = 0.95, 𝑔 = 9.81 m2 s−1, and 𝑛𝑖 = 𝑛𝑏 = 0.009 s m−1/3. Following [3], the velocity entrainment is given
by

𝑉𝑒 =
𝑘𝐺2

𝐺2 + 5
𝑢1,

where 𝐺 is the composite Froude number in equation (2.16), and 𝑘 = 0.1. Furthermore, the Manning coefficients
for the interface and bottom are 𝑛𝑖 = 𝑛𝑏 = 0.009 s m−1/3 respectively.

One of the challenges in this numerical test is that the internal layer has wet-dry states since the depth ℎ1 is
initially small. The discharge on the left produces a wet-dry front propagating to the right, inducing a current
in the internal layer. Figure 11 shows the topography 𝐵(𝑥) (black dashed line), 𝑤1 (solid blue line) and 𝑤2 (red
dashed line) at times 𝑡 = 0, 1, 1.5, 2. One can clearly identify the wet-dry front in the internal layer. In addition
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Figure 10. Positivity numerical test with initial conditions given by (4.6), topography given
by (4.4) and wall’s width by (4.5). Left column: 3D plot at times 𝑡 = 0 and 𝑡 = 1. Middle
column: topography (black solid line), 𝑤1 (blue solid line), and 𝑤2 (red dashed line) at times
𝑡 = 0, 0.25, 0.5, 50. Right column: the same as in the middle column for 𝑢1 (blue solid line) and
𝑢2 (red dashed line).

Figure 11. Time evolution of the solution with initial conditions given by equation (4.7). The
topography, 𝑤1 and 𝑤2 are shown at times 𝑡 = 0, 1, 1.5, 2. The initial conditions are specified
in equation (4.7).
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to the above variables, the bottom right panel also includes the elevation of the internal layer computed without
entrainment. Consistently, one can observe a higher elevation near the front for the computations implemented
with entrainment.
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