A hybrid high-order method for creeping flows of non-Newtonian fluids
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2045-2073

In this paper, we design and analyze a Hybrid High-Order discretization method for the steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities. The proposed method has several appealing features including the support of general meshes and high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for scalar Leray–Lions problems. A complete well-posedness and convergence analysis of the method is carried out under new, general assumptions on the strain rate-shear stress law, which encompass several common examples such as the power-law and Carreau–Yasuda models. Numerical examples complete the exposition.

DOI : 10.1051/m2an/2021051
Classification : 65N08, 65N30, 65N12, 35Q30, 76D05
Keywords: Hybrid High-Order methods, non-Newtonian fluids, power-law, Carreau–Yasuda law, discrete Korn inequality
@article{M2AN_2021__55_5_2045_0,
     author = {Botti, Michele and Castanon Quiroz, Daniel and Di Pietro, Daniele A. and Harnist, Andr\'e},
     title = {A hybrid high-order method for creeping flows of {non-Newtonian} fluids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2045--2073},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021051},
     mrnumber = {4319602},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021051/}
}
TY  - JOUR
AU  - Botti, Michele
AU  - Castanon Quiroz, Daniel
AU  - Di Pietro, Daniele A.
AU  - Harnist, André
TI  - A hybrid high-order method for creeping flows of non-Newtonian fluids
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2045
EP  - 2073
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021051/
DO  - 10.1051/m2an/2021051
LA  - en
ID  - M2AN_2021__55_5_2045_0
ER  - 
%0 Journal Article
%A Botti, Michele
%A Castanon Quiroz, Daniel
%A Di Pietro, Daniele A.
%A Harnist, André
%T A hybrid high-order method for creeping flows of non-Newtonian fluids
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2045-2073
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021051/
%R 10.1051/m2an/2021051
%G en
%F M2AN_2021__55_5_2045_0
Botti, Michele; Castanon Quiroz, Daniel; Di Pietro, Daniele A.; Harnist, André. A hybrid high-order method for creeping flows of non-Newtonian fluids. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2045-2073. doi: 10.1051/m2an/2021051

J. Aghili, S. Boyaval and D. A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math. 15 (2015) 111–134. | MR | DOI

J. W. Barrett and W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68 (1994) 437–456. | MR | Zbl | DOI

H. Beirão Da Veiga, On the global regularity of shear thinning flows in smooth domains. J. Math. Anal. Appl. 349 (2009) 335–360. | MR | Zbl | DOI

L. Beirão Da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | MR | Numdam | DOI

L. Beirão Da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. | MR | DOI

L. Belenki, L. C. Berselli, L. Diening and M. Růžička, On the finite element approximation of p -Stokes systems. SIAM J. Numer. Anal. 50 (2012) 373–397. | MR | Zbl | DOI

L. C. Berselli and M. Růžička, Global regularity for systems with p -structure depending on the symmetric gradient. Adv. Nonlinear Anal. 9 (2020) 176–192. | MR | DOI

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, 2nd edition. John Wiley, New York 1 (1987).

D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl

M. Bogovski, Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248 (1979) 1037–1040. | MR | Zbl

L. Botti and D. A. Di Pietro, p -multilevel preconditioners for hho discretizations of the Stokes equations with static condensation. Commun. Appl. Math. Comput. (2021). Accepted for publication. | MR

M. Botti, D. A. Di Pietro and P. Sochala, A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 55 (2017) 2687–2717. | MR | DOI

M. Botti, D. A. Di Pietro and P. Sochala, A nonconforming high-order method for nonlinear poroelasticity. In: Finite Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems. Vol. 200 of Springer Proc. Math. Stat. Springer, Cham (2017) 537–545. | MR | DOI

M. Botti, D. A. Di Pietro and A. Guglielmana, A low-order nonconforming method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 354 (2019) 96–118. | MR | DOI

K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). | MR | Zbl | DOI

D. A. Di Pietro and J. Droniou, A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86 (2017) 2159–2191. | MR | DOI

D. A. Di Pietro and J. Droniou, W s , p -approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray-Lions problems. Math. Models Methods Appl. Sci. 27 (2017) 879–908. | MR | DOI

D. A. Di Pietro and J. Droniou, The Hybrid High-Order method for polytopal meshes. In: Number 19 in Modeling, Simulation and Application. Springer International Publishing (2020). | MR

D. A. Di Pietro and S. Krell, A Hybrid High-Order method for the steady incompressible Navier-Stokes problem. J. Sci. Comput. 74 (2018) 1677–1705. | MR | DOI

D. A. Di Pietro, A. Ern, A. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306 (2016) 175–195. | MR | DOI

D. A. Di Pietro, J. Droniou and G. Manzini, Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes. J. Comput. Phys. 355 (2018) 397–425. | MR | DOI

D. A. Di Pietro, J. Droniou and A. Harnist, Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems. Calcolo 58 (2021) 1–24. | MR

L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008) 523–556. | MR | Zbl | DOI

L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015. | MR | Zbl | DOI

J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The gradient discretisation method. In: Vol. 82 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Cham (2018). | MR

R. Duran, M. A. Muschietti, E. Russ and P. Tchamitchian, Divergence operator and Poincaré inequalities on arbitrary bounded domains. Complex Var. Elliptic Equ. 55 (2010) 795–816. | MR | Zbl | DOI

G. P. Galdi, R. Rannacher, A. M. Robertson and S. Turek, Mathematical problems in classical and non-newtonian fluid mechanics. In: Hemodynamical Flows. Vol. 37 of Oberwolfach Seminars. Birkhäuser (2008). | MR | Zbl | DOI

G. Geymonat and P. M. Suquet, Functional spaces for Norton-Hoff materials. Math. Methods Appl. Sci. 8 (1986) 206–222. | MR | Zbl | DOI

R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175–186. | MR | Zbl | Numdam | DOI

A. Hirn, Approximation of the p -Stokes equations with equal-order finite elements. J. Math. Fluid Mech. 15 (2013) 65–88. | MR | Zbl | DOI

T. Isaac, G. Stadler and O. Ghattas, Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics. SIAM J. Sci. Comput. 37 (2015) B804–B833. | MR | DOI

S. Ko and E. Süli, Finite element approximation of steady flows of generalized newtonian fluids with concentration-dependent power-law index. Math. Comput. 88 (2018) 1061–1090. | MR | DOI

S. Ko, P. Pustejovská and E. Süli, Finite element approximation of an incompressible chemically reacting non-newtonian fluid. ESAIM: M2AN 52 (2018) 509–541. | MR | Zbl | Numdam | DOI

C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. ESAIM: M2AN 50 (2016) 1333–1369. | MR | Numdam | Zbl | DOI

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd edition, Gordon Breach, New York (1969). | MR | Zbl

W. M. Lai, S. C. Kuei and V. C. Mow, Rheological equations for synovial fluids. J. Biomech. Eng. 100 (1978) 169–186. | DOI

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, New York-Heidelberg I (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. | MR | Zbl

J. Málek and K. R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of their generalizations. In: Evolutionary Equations. Vol. 2 of Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam, 2005) 371–459. | MR | Zbl

J. Málek, K. R. Rajagopal and M. Růžička, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5 (1995) 789–812. | MR | Zbl | DOI

D. C. Quiroz and D. A. Di Pietro, A Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces. Comput. Math. Appl. 79 (2020) 2655–2677. | MR | DOI

M. Růžička and L. Diening, Non-newtonian fluids and function spaces. In: Nonlinear Analysis, Function Spaces and Applications. Institute of Mathematics of the Academy of Sciences of the Czech Republic (2007) 95–143. | MR | Zbl

D. Sandri, Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de carreau. ESAIM: M2AN 27 (1993) 131–155. | MR | Zbl | Numdam | DOI

D. Sandri, Numerical analysis of a four-field model for the approximation of a fluid obeying the power law or carreau’s law. Jpn J. Ind. Appl. Math. 31 (2014) 633–663. | MR | Zbl | DOI

G. Schubert, D. L. Turcotte and P. Olson, Mantle Convection in the Earth and Planets. Cambridge University Press (2001). | DOI

H. D. Ursell, Inequalities between sums of powers. Proc. London Math. Soc. 9 (1959) 432–450. | MR | Zbl | DOI

K. Yasuda, R. C. Armstrong and R. E. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 20 (1981) 163–178. | DOI

Cité par Sources :