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A HYBRID HIGH-ORDER METHOD FOR CREEPING FLOWS OF
NON-NEWTONIAN FLUIDS
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Abstract. In this paper, we design and analyze a Hybrid High-Order discretization method for the
steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities.
The proposed method has several appealing features including the support of general meshes and
high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for
scalar Leray–Lions problems. A complete well-posedness and convergence analysis of the method is
carried out under new, general assumptions on the strain rate-shear stress law, which encompass several
common examples such as the power-law and Carreau–Yasuda models. Numerical examples complete
the exposition.
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1. Introduction

In this paper, we design and analyze a Hybrid High-Order (HHO) discretization method for the steady motion
of a non-Newtonian, incompressible fluid in the Stokes approximation of small velocities. Notable applications
include ice sheet dynamics [31], mantle convection [44], chemical engineering [33], and biological fluids rheology
[27,36]. We focus on fluids with shear-rate-dependent viscosity, whose behavior is characterized by a nonlinear
strain rate-shear stress function. Physical interpretations and discussions of non-Newtonian fluid models can be
found, e.g., in [8, 39]. Typical examples that are frequently used in the applications include the power-law and
Carreau–Yasuda model, covered by the present analysis.

The earliest investigations of fluids with shear-dependent viscosity date back to the pioneering work of
Ladyzhenskaya [35]. For a detailed mathematical study of the well-posedness and regularity of the continuous
problem, see also [3,7,23,38,41] and references therein. Early results on the numerical analysis of non-Newtonian
fluid flow problems were given in [2,29,42]. Later, these results were improved in [6,30] by proving error estimates
that are optimal for fluids with shear thinning behavior (described by a power-law exponent 𝑟 ≤ 2). In [6], the
authors considered a conforming inf-sup stable finite element discretization, while in [30] a low-order scheme with
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local projection stabilization was proposed. In both works, the use of Orlicz functions is instrumental to unify the
treatment of the shear thinning and shear thickening cases (also called pseudoplastic and dilatant, respectively;
cf. Example 2.5). More recently, a finite element method based on a four-field formulation of the nonlinear
Stokes equations has been analyzed in [43]. Other notable contributions on the numerical approximation of
generalized Stokes problems include [24,31,32,34].

The main issues to be accounted for in the numerical solution of non-Newtonian fluid flow problems are the
presence of local features emerging from the nonlinear strain rate-shear stress relation, the incompressibility
condition leading to indefinite systems, the roughly varying model coefficients, and, possibly, complex geometries
requiring unstructured and highly-adapted meshes. The HHO method provides several advantages to deal with
the complex nature of the problem, such as the support of general polygonal or polyhedral meshes, the possibility
to select the approximation order, and unconditional inf-sup stability. Moreover, HHO schemes can be efficiently
implemented thanks to the possibility of statically condensing a large subset of the unknowns for linearized
versions of the problem encountered, e.g., when solving the nonlinear system by the Newton method. Hybrid
High-Order methods have been successfully applied to the simulation of incompressible flows of Newtonian fluids
governed by the Stokes [1] and Navier–Stokes equations [14,19], possibly driven by large irrotational volumetric
forces [20,40]. Works related to the problem of creeping flows of non-Newtonian fluids are [12,16,17], respectively
dealing with nonlinear elasticity and Leray–Lions problems. Going from nonlinear coercive elliptic equations
to the nonlinear Stokes system involves additional difficulties arising from the pressure and the divergence
constraint. Finally, we mention that HHO methods are members of a wider family of polytopal methods that
also includes, e.g., Virtual Element methods (cf., e.g., [4, 5] for their application to Newtonian incompressible
flows) and can fit within general frameworks for the approximation of nonlinear problems such as the one
provided by the Gradient Discretisation Method (see [21,25]).

The HHO discretization presented in this paper hinges on discontinuous polynomial unknowns on the mesh
and on its skeleton, from which discrete differential operators are reconstructed. These operators are used to
formulate discrete counterparts of the viscous and pressure-velocity coupling terms. For the former, stability
is ensured by a cleverly designed stabilization contribution involving the penalization of boundary differences.
We carry out a complete analysis of the proposed method. In particular, under general assumptions on the
strain rate-shear stress function, we derive error estimates for the velocity and pressure approximations. The
energy-norm error estimate for the velocity given in Theorem 4.7 yields the same convergence orders established
in Theorem 3.2 of [17] for the scalar Leray–Lions elliptic problem. A key tool in our analysis is provided by
Lemma 6.2, in which we prove a generalization of the discrete Korn inequality of Lemma 1 from [14] to the
non-Hilbertian case. The other main contributions are a novel formulation of the requirements on the strain
rate-shear stress function allowing a unified treatment of pseudoplastic and dilatant fluids and the identification
of a set of general assumptions on the nonlinear stabilization function ensuring the desired consistency properties
along with the well-posedness of the discrete problem.

The rest of the paper is organized as follows. In Section 2 we introduce the strong and weak formulations
of the nonlinear Stokes problem and present the assumptions on the strain rate-shear stress function. The
discrete setting is established in Section 3, including the definition of the discrete spaces for the velocity and
the pressure. The HHO scheme along with the main theoretical results are stated in Section 4, and a numerical
validation is provided in Section 5. In Section 6 we prove the discrete counterpart of the Korn inequality
needed in the analysis of the method. Section 7 contains the proof of the main results (well-posedness and
error estimates). Finally, in Appendix A we provide a sufficient condition for the strain rate-shear stress law
to fulfil the assumptions presented in Section 2. The paper is structured so as to offer two levels of reading. In
particular, the reader mainly interested in the formulation of the method and its numerical performance can
focus on Sections 2–5. The remaining sections cover technical aspects of the analysis, and can be skipped at first
reading.
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2. Continuous setting

Let Ω ⊂ R𝑑, 𝑑 ∈ {2, 3}, denote a bounded, connected, polyhedral open set with Lipschitz boundary 𝜕Ω. We
consider a possibly non-Newtonian fluid occupying Ω and subjected to a volumetric force field 𝑓 : Ω → R𝑑. Its
flow is governed by the generalized Stokes problem, which consists in finding the velocity field 𝑢 : Ω → R𝑑 and
the pressure field 𝑝 : Ω → R such that

−∇·𝜎(·, ∇s𝑢) + ∇𝑝 = 𝑓 in Ω, (2.1a)
∇·𝑢 = 0 in Ω, (2.1b)

𝑢 = 0 on 𝜕Ω, (2.1c)∫︁
Ω

𝑝(𝑥) d𝑥 = 0, (2.1d)

where ∇· denotes the divergence operator applied to vector or tensor fields, ∇s is the symmetric part of the
gradient operator ∇ applied to vector fields, and, denoting by R𝑑×𝑑

s the set of square, symmetric, real-valued
𝑑×𝑑 matrices, 𝜎 : Ω×R𝑑×𝑑

s → R𝑑×𝑑
s is the strain rate-shear stress law. In what follows, we formulate assumptions

on 𝜎 that encompass common models for non-Newtonian fluids and state a weak formulation for problem (2.1)
that will be used as a starting point for its discretization.

2.1. Strain rate-shear stress law

We define the Frobenius inner product such that, for all 𝜏 = (𝜏𝑖𝑗)1≤𝑖,𝑗≤𝑑 and 𝜂 = (𝜂𝑖𝑗)1≤𝑖,𝑗≤𝑑 in R𝑑×𝑑,
𝜏 : 𝜂 :=

∑︀𝑑
𝑖,𝑗=1 𝜏𝑖𝑗𝜂𝑖𝑗 , and we denote by |𝜏 |𝑑×𝑑 :=

√
𝜏 : 𝜏 the corresponding norm.

Assumption 2.1 (Strain rate-shear stress law). Let a real number 𝑟 ∈ (1,∞) be fixed, denote by 𝑟′ := 𝑟
𝑟−1 ∈

(1,∞) the conjugate exponent of 𝑟, and define the singular exponent of 𝑟 by

𝑟 := min(𝑟, 2) ∈ (1, 2]. (2.2)

The strain rate-shear stress law satisfies

𝜎(𝑥,0) = 0 for almost every 𝑥 ∈ Ω, (2.3a)

𝜎 : Ω× R𝑑×𝑑
s → R𝑑×𝑑

s is measurable. (2.3b)

Moreover, there exist real numbers 𝜎de ∈ [0,∞) and 𝜎hc, 𝜎sm ∈ (0,∞) such that, for all 𝜏 , 𝜂 ∈ R𝑑×𝑑
s and almost

every 𝑥 ∈ Ω, we have the Hölder continuity property

|𝜎 (𝑥, 𝜏 )− 𝜎 (𝑥, 𝜂)|𝑑×𝑑 ≤ 𝜎hc

(︀
𝜎𝑟

de + |𝜏 |𝑟𝑑×𝑑 + |𝜂|𝑟𝑑×𝑑

)︀ 𝑟−𝑟
𝑟 |𝜏 − 𝜂|𝑟−1

𝑑×𝑑, (2.3c)

and the strong monotonicity property

(𝜎 (𝑥, 𝜏 )− 𝜎 (𝑥, 𝜂)) : (𝜏 − 𝜂)
(︀
𝜎𝑟

de + |𝜏 |𝑟𝑑×𝑑 + |𝜂|𝑟𝑑×𝑑

)︀ 2−𝑟
𝑟 ≥ 𝜎sm|𝜏 − 𝜂|𝑟+2−𝑟

𝑑×𝑑 . (2.3d)

Some remarks are in order.

Remark 2.2 (Residual shear stress). Assumption (2.3a) can be relaxed by taking 𝜎(·,0) ∈ 𝐿𝑟′(Ω, R𝑑×𝑑
s ). This

modification requires only minor changes in the analysis, not detailed for the sake of conciseness.

Remark 2.3 (Singular exponent). Inequalities (2.3c) and (2.3d) can be proved starting from the following
assumptions, which correspond to the conditions (A.2) below characterizing an 𝑟-power-framed function: For
all 𝜏 , 𝜂 ∈ R𝑑×𝑑

s with 𝜏 ̸= 𝜂 and almost every 𝑥 ∈ Ω,

|𝜎(𝑥, 𝜏 )− 𝜎(𝑥, 𝜂)|𝑑×𝑑 ≤ 𝜎hc

(︀
𝜎𝑟

de + |𝜏 |𝑟𝑑×𝑑 + |𝜂|𝑟𝑑×𝑑

)︀ 𝑟−2
𝑟 |𝜏 − 𝜂|𝑑×𝑑,

(𝜎(𝑥, 𝜏 )− 𝜎(𝑥, 𝜂)) : (𝜏 − 𝜂) ≥ 𝜎sm

(︀
𝜎𝑟

de + |𝜏 |𝑟𝑑×𝑑 + |𝜂|𝑟𝑑×𝑑

)︀ 𝑟−2
𝑟 |𝜏 − 𝜂|2𝑑×𝑑.
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These relations are reminiscent of the ones used in [17] in the context of scalar Leray–Lions problems. The
advantage of assumptions (2.3c) and (2.3d), expressed in terms of the singular index 𝑟, is that they enable a
unified treatment of the cases 𝑟 < 2 and 𝑟 ≥ 2 in the proofs of Lemma 7.3, Theorem 4.6, Lemma 7.5, and
Theorem 4.7 below.

Remark 2.4 (Relations between the Hölder and monotonicity constants). Inequalities (2.3c) and (2.3d) give

𝜎sm ≤ 𝜎hc. (2.4)

Indeed, let 𝜏 ∈ R𝑑×𝑑
s be such that |𝜏 |𝑑×𝑑 > 0. Using the strong monotonicity (2.3d) (with 𝜂 = 0), the Cauchy–

Schwarz inequality, and the Hölder continuity (2.3c) (again with 𝜂 = 0), we infer that

𝜎sm

(︀
𝜎𝑟

de + |𝜏 |𝑟𝑑×𝑑

)︀ 𝑟−2
𝑟 |𝜏 |𝑟+2−𝑟

𝑑×𝑑 ≤ 𝜎(·, 𝜏 ) : 𝜏 ≤ |𝜎(·, 𝜏 )|𝑑×𝑑|𝜏 |𝑑×𝑑 ≤ 𝜎hc

(︀
𝜎𝑟

de + |𝜏 |𝑟𝑑×𝑑

)︀ 𝑟−𝑟
𝑟 |𝜏 |𝑟𝑑×𝑑

almost everywhere in Ω. Hence, 𝜎sm
𝜎hc

≤
(︁

𝜎𝑟
de+|𝜏 |

𝑟
𝑑×𝑑

|𝜏 |𝑟𝑑×𝑑

)︁ |𝑟−2|
𝑟

. Letting |𝜏 |𝑑×𝑑 →∞ gives (2.4).

Example 2.5 (Carreau–Yasuda fluids). (𝜇, 𝛿, 𝑎, 𝑟)-Carreau–Yasuda fluids, introduced in [46] and later gener-
alized in equation (1.2) of [30], are fluids for which it holds, for almost every 𝑥 ∈ Ω and all 𝜏 ∈ R𝑑×𝑑

s ,

𝜎(𝑥, 𝜏 ) = 𝜇(𝑥)
(︁
𝛿𝑎(𝑥) + |𝜏 |𝑎(𝑥)

𝑑×𝑑

)︁ 𝑟−2
𝑎(𝑥)

𝜏 , (2.5)

where 𝜇 : Ω → [𝜇−, 𝜇+] is a measurable function with 𝜇−, 𝜇+ ∈ (0,∞) corresponding to the local flow consistency
index, 𝛿 ∈ [0,∞) is the degeneracy parameter, 𝑎 : Ω → [𝑎−, 𝑎+] is a measurable function with 𝑎−, 𝑎+ ∈ (0,∞)
expressing the local transition flow behavior index, and 𝑟 ∈ (1,∞) is the flow behavior index. The Carreau–
Yasuda law is a generalization of the Carreau law (corresponding to 𝑎− = 𝑎+ = 2) that takes into account
the different local levels of flow behavior in the fluid. The degenerate case 𝛿 = 0 corresponds to the power-
law model. Non-Newtonian fluids described by constitutive laws with a (𝜇, 𝛿, 𝑎, 𝑟)-structure exhibit a different
behavior according to the value of 𝑟. If 𝑟 > 2, then the fluid shows shear thickening behavior and is called
dilatant. Examples of dilatant fluids are wet sand and oobleck. The case 𝑟 < 2, on the other hand, corresponds
to pseudoplastic fluids having shear thinning behavior, such as blood. Finally, if 𝑟 = 2, then the fluid is Newtonian
and (2.1) becomes the classical (linear) Stokes problem. We show in Appendix A that the strain rate-shear stress
law (2.5) is an 𝑟-power-framed function with 𝜎de = 𝛿,

𝜎hc =

⎧⎪⎨⎪⎩
𝜇+
𝑟−12

[︂
−
(︁

1
𝑎+
− 1

𝑟

)︁⊖
−1

]︂
(𝑟−2)+ 1

𝑟 if 𝑟 < 2,

𝜇+(𝑟 − 1)2
(︁

1
𝑎−
− 1

𝑟

)︁⊕
(𝑟−2) if 𝑟 ≥ 2,

and 𝜎sm =

⎧⎪⎨⎪⎩𝜇−(𝑟 − 1)2
(︁

1
𝑎−
− 1

𝑟

)︁⊕
(𝑟−2) if 𝑟 ≤ 2,

𝜇−
𝑟−12

[︂
−
(︁

1
𝑎+
− 1

𝑟

)︁⊖
−1

]︂
(𝑟−2)−1

if 𝑟 > 2,

where 𝜉⊕ := max(0, 𝜉) and 𝜉⊖ := −min(0, 𝜉) denote, respectively, the positive and negative parts of a real
number 𝜉. As a consequence, it matches Assumption 2.1.

2.2. Weak formulation

From this point on, we omit both the integration variable and the measure from integrals, as they can be in
all cases inferred from the context. We define the following velocity and pressure spaces embedding, respectively,
the homogeneous boundary condition and the zero-average constraint:

𝑈 :=
{︀
𝑣 ∈ 𝑊 1,𝑟

(︀
Ω, R𝑑

)︀
: 𝑣|𝜕Ω = 0

}︀
, 𝑃 := 𝐿𝑟′

0 (Ω, R) :=
{︁

𝑞 ∈ 𝐿𝑟′(Ω, R) :
∫︀
Ω

𝑞 = 0
}︁

.

Assuming 𝑓 ∈ 𝐿𝑟′(Ω, R𝑑), the weak formulation of problem (2.1) reads: Find (𝑢, 𝑝) ∈ 𝑈 × 𝑃 such that

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) =
∫︁

Ω

𝑓 · 𝑣 ∀𝑣 ∈ 𝑈 , (2.6a)
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−𝑏(𝑢, 𝑞) = 0 ∀𝑞 ∈ 𝑃, (2.6b)

where the function 𝑎 : 𝑈 ×𝑈 → R and the bilinear form 𝑏 : 𝑈 × 𝐿𝑟′(Ω, R) → R are defined such that, for all
𝑣, 𝑤 ∈ 𝑈 and all 𝑞 ∈ 𝐿𝑟′(Ω, R),

𝑎(𝑤, 𝑣) :=
∫︁

Ω

𝜎(·, ∇s𝑤) : ∇s𝑣, 𝑏(𝑣, 𝑞) := −
∫︁

Ω

(∇·𝑣)𝑞. (2.7)

Remark 2.6 (Mass equation). The test space in (2.6b) can be extended to 𝐿𝑟′(Ω, R) since, for all 𝑣 ∈ 𝑈 , the
divergence theorem and the fact that 𝑣|𝜕Ω = 0 yield 𝑏(𝑣, 1) = −

∫︀
Ω

∇·𝑣 = −
∫︀

𝜕Ω
𝑣 ·𝑛𝜕Ω = 0, with 𝑛𝜕Ω denoting

the unit vector normal to 𝜕Ω and pointing out of Ω.

Remark 2.7 (Well-posedness and a priori estimates). It can be checked that, under Assumption 2.1, the
continuous problem (2.6) admits a unique solution (𝑢, 𝑝) ∈ 𝑈 × 𝑃 ; see, e.g., Section 2.4 of [30], where slightly
stronger assumptions are considered. For future use, we also note the following a priori bound on the velocity:

|𝑢|𝑊 1,𝑟(Ω,R𝑑) ≤
(︁

2
2−𝑟

𝑟 𝐶K𝜎−1
sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 1
𝑟−1

+
(︁

2
2−𝑟

𝑟 𝐶K|Ω|
2−𝑟

𝑟

𝑑 𝜎2−𝑟
de 𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 1
𝑟+1−𝑟

, (2.8)

where 𝐶K > 0 comes from the Korn inequality given at (6.1) below. To prove (2.8), use the strong-monotonicity
(2.3d) of 𝜎, sum (2.6a) written for 𝑣 = 𝑢 to (2.6b) written for 𝑞 = 𝑝, and use the Hölder inequality together
with the Korn inequality (6.1) to write

𝜎sm

(︁
|Ω|𝑑𝜎𝑟

de + ‖∇s𝑢‖𝑟
𝐿𝑟(Ω,R𝑑×𝑑)

)︁ 𝑟−2
𝑟 ‖∇s𝑢‖𝑟+2−𝑟

𝐿𝑟(Ω,R𝑑×𝑑)
≤ 𝑎(𝑢, 𝑢)

=
∫︁

Ω

𝑓 · 𝑢 ≤ 𝐶K‖𝑓‖𝐿𝑟′ (Ω,R𝑑)‖∇s𝑢‖𝐿𝑟(Ω,R𝑑×𝑑),

where |Ω|𝑑 is the measure of Ω, that is,

𝒩 :=
(︁
|Ω|𝑑𝜎𝑟

de + ‖∇s𝑢‖𝑟
𝐿𝑟(Ω,R𝑑×𝑑)

)︁ 𝑟−2
𝑟 ‖∇s𝑢‖𝑟+1−𝑟

𝐿𝑟(Ω,R𝑑×𝑑)
≤ 𝐶K𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑). (2.9)

Observing that ‖∇s𝑢‖𝑟+1−𝑟
𝐿𝑟(Ω,R𝑑×𝑑)

≤ 2
2−𝑟

𝑟 max
(︁
‖∇s𝑢‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑), |Ω|𝑑𝜎
𝑟
de

)︁ 2−𝑟
𝑟 𝒩 , we obtain, enumerating the

cases for the maximum and summing the corresponding bounds,

‖∇s𝑢‖𝐿𝑟(Ω,R𝑑×𝑑) ≤ (2
2−𝑟

𝑟 𝒩 )
1

𝑟−1 +
(︁

2
2−𝑟

𝑟 |Ω|
2−𝑟

𝑟

𝑑 𝜎2−𝑟
de 𝒩

)︁ 1
𝑟+1−𝑟

.

Combining this inequality with (2.9) gives (2.8).

3. Discrete setting

3.1. Mesh and notation for inequalities up to a multiplicative constant

We define a mesh as a couple ℳℎ := (𝒯ℎ,ℱℎ), where 𝒯ℎ is a finite collection of polyhedral elements 𝑇 such
that ℎ = max𝑇∈𝒯ℎ

ℎ𝑇 with ℎ𝑇 denoting the diameter of 𝑇 , while ℱℎ is a finite collection of planar faces 𝐹 with
diameter ℎ𝐹 . Notice that, here and in what follows, we use the three-dimensional nomenclature also when 𝑑 = 2,
i.e., we speak of polyhedra and faces rather than polygons and edges. It is assumed henceforth that the mesh
ℳℎ matches the geometrical requirements detailed in Definition 1.7 of [18]. In order to have the boundedness
property (3.5) for the interpolator, we additionally assume that the mesh elements are star-shaped with respect
to every point of a ball of radius uniformly comparable to the element diameter; see Lemma 7.12 of [18] for the
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Hilbertian case. Boundary faces lying on 𝜕Ω and internal faces contained in Ω are collected in the sets ℱb
ℎ and

ℱ i
ℎ, respectively. For every mesh element 𝑇 ∈ 𝒯ℎ, we denote by ℱ𝑇 the subset of ℱℎ containing the faces that

lie on the boundary 𝜕𝑇 of 𝑇 . For every face 𝐹 ∈ ℱℎ, we denote by 𝒯𝐹 the subset of 𝒯ℎ containing the one (if
𝐹 ∈ ℱb

ℎ ) or two (if 𝐹 ∈ ℱ i
ℎ) elements on whose boundary 𝐹 lies. Finally, for each mesh element 𝑇 ∈ 𝒯ℎ and

face 𝐹 ∈ ℱ𝑇 , 𝑛𝑇𝐹 denotes the (constant) unit vector normal to 𝐹 pointing out of 𝑇 .
Our focus is on the ℎ-convergence analysis, so we consider a sequence of refined meshes that is regular

in the sense of Definition 1.9 from [18] with regularity parameter uniformly bounded away from zero. The
mesh regularity assumption implies, in particular, that the diameter of a mesh element and those of its faces
are comparable uniformly in ℎ and that the number of faces of one element is bounded above by an integer
independent of ℎ.

To avoid the proliferation of generic constants, we write henceforth 𝑎 . 𝑏 (resp., 𝑎 & 𝑏) for the inequality 𝑎 ≤
𝐶𝑏 (resp., 𝑎 ≥ 𝐶𝑏) with real number 𝐶 > 0 independent of ℎ, of the constants 𝜎de, 𝜎hc, 𝜎sm in Assumption 2.1,
and, for local inequalities, of the mesh element or face on which the inequality holds. We also write 𝑎 ≃ 𝑏 to
mean 𝑎 . 𝑏 and 𝑏 . 𝑎. The dependencies of the hidden constants are further specified when needed.

3.2. Projectors and broken spaces

Given 𝑋 ∈ 𝒯ℎ ∪ ℱℎ and 𝑙 ∈ N, we denote by P𝑙(𝑋, R) the space spanned by the restriction to 𝑋 of scalar-
valued, 𝑑-variate polynomials of total degree ≤ 𝑙. The local 𝐿2-orthogonal projector 𝜋𝑙

𝑋 : 𝐿1(𝑋, R) → P𝑙(𝑋, R)
is defined such that, for all 𝑣 ∈ 𝐿1(𝑋, R),∫︁

𝑋

(︀
𝜋𝑙

𝑋𝑣 − 𝑣
)︀
𝑤 = 0 ∀𝑤 ∈ P𝑙(𝑋, R). (3.1)

When applied to vector-valued fields in 𝐿1(𝑋, R𝑑) (resp., tensor-valued fields in 𝐿1(𝑋, R𝑑×𝑑)), the 𝐿2-orthogonal
projector mapping on P𝑙(𝑋, R𝑑) (resp., P𝑙(𝑋, R𝑑×𝑑)) acts component-wise and is denoted in boldface font. Let
𝑇 ∈ 𝒯ℎ, 𝑛 ∈ [0, 𝑙 + 1] and 𝑚 ∈ [0, 𝑛]. The following (𝑛, 𝑟,𝑚)-approximation properties of 𝜋𝑙

𝑇 hold: For any
𝑣 ∈ 𝑊𝑛,𝑟(𝑇, R),

|𝑣 − 𝜋𝑙
𝑇 𝑣|𝑊 𝑚,𝑟(𝑇,R) . ℎ𝑛−𝑚

𝑇 |𝑣|𝑊 𝑛,𝑟(𝑇,R). (3.2a)

The above property will also be used in what follows with 𝑟 replaced by its conjugate exponent 𝑟′. If, additionally,
𝑛 ≥ 1, we have the following (𝑛, 𝑟′)-trace approximation property:

‖𝑣 − 𝜋𝑙
𝑇 𝑣‖𝐿𝑟′ (𝜕𝑇,R) . ℎ

𝑛− 1
𝑟′

𝑇 |𝑣|𝑊 𝑛,𝑟′ (𝑇,R). (3.2b)

The hidden constants in (3.2) are independent of ℎ and 𝑇 , but possibly depend on 𝑑, the mesh regularity
parameter, 𝑙, 𝑛, and 𝑟. The approximation properties (3.2) are proved for integer 𝑛 and 𝑚 in Appendix A.2 of
[16] (see also [18], Thm. 1.45), and can be extended to non-integer values using standard interpolation techniques
(see, e.g., [37], Thm. 5.1).

At the global level, for a given integer 𝑙 ≥ 0, we define the broken polynomial space P𝑙(𝒯ℎ, R) spanned by
functions in 𝐿1(Ω, R) whose restriction to each mesh element 𝑇 ∈ 𝒯ℎ lies in P𝑙(𝑇, R), and we define the global
𝐿2-orthogonal projector 𝜋𝑙

ℎ : 𝐿1(Ω, R) → P𝑙(𝒯ℎ, R) such that, for all 𝑣 ∈ 𝐿1(Ω, R) and all 𝑇 ∈ 𝒯ℎ,(︀
𝜋𝑙

ℎ𝑣
)︀
|𝑇 := 𝜋𝑙

𝑇 𝑣|𝑇 .

Broken polynomial spaces are subspaces of the broken Sobolev spaces

𝑊𝑛,𝑟(𝒯ℎ, R) :=
{︀
𝑣 ∈ 𝐿𝑟(Ω, R) : 𝑣|𝑇 ∈ 𝑊𝑛,𝑟(𝑇, R) ∀𝑇 ∈ 𝒯ℎ

}︀
.

We define the broken gradient operator ∇ℎ : 𝑊 1,1(𝒯ℎ, R) → 𝐿1(Ω, R𝑑) such that, for all 𝑣 ∈ 𝑊 1,1(𝒯ℎ, R) and
all 𝑇 ∈ 𝒯ℎ, (∇ℎ𝑣) |𝑇 := ∇𝑣 |𝑇 . We define similarly the broken gradient acting on vector fields along with its
symmetric part ∇s,ℎ, as well as the broken divergence operator ∇ℎ· acting on tensor fields. The global 𝐿2-
orthogonal projector 𝜋𝑙

ℎ mapping vector-valued fields in 𝐿1(Ω, R𝑑) (resp., tensor-valued fields in 𝐿1(Ω, R𝑑×𝑑))
on P𝑙(𝒯ℎ, R𝑑) (resp., P𝑙(𝒯ℎ, R𝑑×𝑑)) is obtained applying 𝜋𝑙

ℎ component-wise.
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3.3. Discrete spaces and norms

Let an integer 𝑘 ≥ 1 be fixed. The HHO space of discrete velocity unknowns is

𝑈𝑘
ℎ :=

{︀
𝑣ℎ =

(︀
(𝑣𝑇 )𝑇∈𝒯ℎ

, (𝑣𝐹 )𝐹∈ℱℎ

)︀
: 𝑣𝑇 ∈ P𝑘

(︀
𝑇, R𝑑

)︀
∀𝑇 ∈ 𝒯ℎ and 𝑣𝐹 ∈ P𝑘

(︀
𝐹, R𝑑

)︀
∀𝐹 ∈ ℱℎ

}︀
.

The interpolation operator 𝐼𝑘
ℎ : 𝑊 1,1(Ω, R𝑑) → 𝑈𝑘

ℎ maps a function 𝑣 ∈ 𝑊 1,1(Ω, R𝑑) on the vector of discrete
unknowns 𝐼𝑘

ℎ𝑣 defined as follows:

𝐼𝑘
ℎ𝑣 :=

(︁(︀
𝜋𝑘

𝑇 𝑣|𝑇
)︀
𝑇∈𝒯ℎ

,
(︀
𝜋𝑘

𝐹 𝑣|𝐹
)︀
𝐹∈ℱℎ

)︁
.

For all 𝑇 ∈ 𝒯ℎ, we denote by 𝑈𝑘
𝑇 and 𝐼𝑘

𝑇 the restrictions of 𝑈𝑘
ℎ and 𝐼𝑘

ℎ to 𝑇 , respectively and, for all 𝑣ℎ ∈ 𝑈𝑘
ℎ,

we let 𝑣𝑇 := (𝑣𝑇 , (𝑣𝐹 )𝐹∈ℱ𝑇
) ∈ 𝑈𝑘

𝑇 denote the vector collecting the discrete unknowns attached to 𝑇 and its
faces. Furthermore, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ, we define the broken polynomial field 𝑣ℎ ∈ P𝑘(𝒯ℎ, R𝑑) obtained patching
element unknowns, that is,

(𝑣ℎ)|𝑇 := 𝑣𝑇 ∀𝑇 ∈ 𝒯ℎ. (3.3)

We define on 𝑈𝑘
ℎ the 𝑊 1,𝑟(Ω, R𝑑)-like strain seminorm ‖·‖𝑟,ℎ such that, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ,

‖𝑣ℎ‖𝑟,ℎ :=

(︃∑︁
𝑇∈𝒯ℎ

‖𝑣𝑇 ‖𝑟
𝑟,𝑇

)︃ 1
𝑟

(3.4a)

with ‖𝑣𝑇 ‖𝑟,𝑇 :=

(︃
‖∇s𝑣𝑇 ‖𝑟

𝐿𝑟(𝑇,R𝑑×𝑑) +
∑︁

𝐹∈ℱ𝑇

ℎ1−𝑟
𝐹 ‖𝑣𝐹 − 𝑣𝑇 ‖𝑟

𝐿𝑟(𝐹,R𝑑)

)︃ 1
𝑟

for all 𝑇 ∈ 𝒯ℎ. (3.4b)

The following boundedness property for 𝐼𝑘
𝑇 can be proved adapting the arguments of Proposition 6.24 from [18]

and requires the star-shaped assumption on the mesh elements: For all 𝑇 ∈ 𝒯ℎ and all 𝑣 ∈ 𝑊 1,𝑟(𝑇, R𝑑),

‖𝐼𝑘
𝑇 𝑣‖𝑟,𝑇 . |𝑣|𝑊 1,𝑟(𝑇,R𝑑), (3.5)

where the hidden constant depends only on 𝑑, the mesh regularity parameter, 𝑟, and 𝑘.
The discrete velocity and pressure are sought in the following spaces, which embed, respectively, the homo-

geneous boundary condition for the velocity and the zero-average constraint for the pressure:

𝑈𝑘
ℎ,0 :=

{︁
𝑣ℎ = ((𝑣𝑇 )𝑇∈𝒯ℎ

, (𝑣𝐹 )𝐹∈ℱℎ
) ∈ 𝑈𝑘

ℎ : 𝑣𝐹 = 0 ∀𝐹 ∈ ℱb
ℎ

}︁
, 𝑃 𝑘

ℎ := P𝑘(𝒯ℎ, R) ∩ 𝑃.

By the discrete Korn inequality proved in Lemma 6.2 below, ‖·‖𝑟,ℎ is a norm on 𝑈𝑘
ℎ,0 (the proof is obtained

reasoning as in [18], Cor. 2.16).

4. HHO scheme

In this section, after introducing the discrete counterparts of the viscous and pressure-velocity coupling terms,
we state the discrete problem along with the main results.

4.1. Viscous term

4.1.1. Local symmetric gradient reconstruction

For all 𝑇 ∈ 𝒯ℎ, we define the local symmetric gradient reconstruction G𝑘
s,𝑇 : 𝑈𝑘

𝑇 → P𝑘
(︀
𝑇, R𝑑×𝑑

s

)︀
such that,

for all 𝑣𝑇 ∈ 𝑈𝑘
𝑇 ,∫︁
𝑇

G𝑘
s,𝑇 𝑣𝑇 : 𝜏 =

∫︁
𝑇

∇s𝑣𝑇 : 𝜏 +
∑︁

𝐹∈ℱ𝑇

∫︁
𝐹

(𝑣𝐹 − 𝑣𝑇 ) · (𝜏𝑛𝑇𝐹 ) ∀𝜏 ∈ P𝑘
(︀
𝑇, R𝑑×𝑑

s

)︀
. (4.1)
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This symmetric gradient reconstruction, originally introduced in Section 4.2 of [12], is designed so that the
following relation holds (see, e.g., [13], Prop. 5 or [18], Sect. 7.2.5): For all 𝑣 ∈ 𝑊 1,1(𝑇, R𝑑),

G𝑘
s,𝑇

(︁
𝐼𝑘

𝑇 𝑣
)︁

= 𝜋𝑘
𝑇 (∇s𝑣) . (4.2)

The global symmetric gradient reconstruction G𝑘
s,ℎ : 𝑈𝑘

ℎ → P𝑘(𝒯ℎ, R𝑑×𝑑
s ) is obtained patching the local contri-

butions, that is, for all 𝑣ℎ ∈ 𝑈𝑘
ℎ, we set(︁

G𝑘
s,ℎ𝑣ℎ

)︁
|𝑇 := G𝑘

s,𝑇 𝑣𝑇 ∀𝑇 ∈ 𝒯ℎ. (4.3)

4.1.2. Discrete viscous function

The discrete counterpart of the function 𝑎 defined by (2.7) is aℎ : 𝑈𝑘
ℎ×𝑈𝑘

ℎ → R such that, for all 𝑣ℎ, 𝑤ℎ ∈ 𝑈𝑘
ℎ,

aℎ (𝑤ℎ, 𝑣ℎ) :=
∫︁

Ω

𝜎
(︁
·,G𝑘

s,ℎ𝑤ℎ

)︁
: G𝑘

s,ℎ𝑣ℎ + 𝛾sℎ (𝑤ℎ, 𝑣ℎ) . (4.4)

In the above definition, recalling (2.4), 𝛾 is a stabilization parameter such that

𝛾 ∈ [𝜎sm, 𝜎hc], (4.5)

while the stabilization function sℎ : 𝑈𝑘
ℎ ×𝑈𝑘

ℎ → R is such that, for all 𝑣ℎ, 𝑤ℎ ∈ 𝑈𝑘
ℎ,

sℎ(𝑤ℎ, 𝑣ℎ) :=
∑︁

𝑇∈𝒯ℎ

s𝑇 (𝑤𝑇 , 𝑣𝑇 ), (4.6)

where the local contributions are assumed to satisfy the following assumption.

Assumption 4.1 (Local stabilization function). For all 𝑇 ∈ 𝒯ℎ, the local stabilization function s𝑇 : 𝑈𝑘
𝑇×𝑈𝑘

𝑇 →
R is linear in its second argument and satisfies the following properties, with hidden constants independent of
both ℎ and 𝑇 :

(1) Stability and boundedness. Recalling the definition (3.4b) of the local ‖·‖𝑟,𝑇 -seminorm, for all 𝑣𝑇 ∈ 𝑈𝑘
𝑇 it

holds:
‖G𝑘

s,𝑇 𝑣𝑇 ‖𝑟
𝐿𝑟(𝑇,R𝑑×𝑑) + s𝑇 (𝑣𝑇 , 𝑣𝑇 ) ≃ ‖𝑣𝑇 ‖𝑟

𝑟,𝑇 . (4.7)

(2) Polynomial consistency. For all 𝑤 ∈ P𝑘+1
(︀
𝑇, R𝑑

)︀
and all 𝑣𝑇 ∈ 𝑈𝑘

𝑇 ,

s𝑇

(︁
𝐼𝑘

𝑇 𝑤, 𝑣𝑇

)︁
= 0. (4.8)

(3) Hölder continuity. For all 𝑢𝑇 , 𝑣𝑇 , 𝑤𝑇 ∈ 𝑈𝑘
𝑇 , it holds, setting 𝑒𝑇 := 𝑢𝑇 −𝑤𝑇 ,

|s𝑇 (𝑢𝑇 , 𝑣𝑇 )− s𝑇 (𝑤𝑇 , 𝑣𝑇 )| . (s𝑇 (𝑢𝑇 , 𝑢𝑇 ) + s𝑇 (𝑤𝑇 , 𝑤𝑇 ))
𝑟−𝑟

𝑟 s𝑇 (𝑒𝑇 , 𝑒𝑇 )
𝑟−1

𝑟 s𝑇 (𝑣𝑇 , 𝑣𝑇 )
1
𝑟 . (4.9)

(4) Strong monotonicity. For all 𝑢𝑇 , 𝑤𝑇 ∈ 𝑈𝑘
𝑇 , it holds, setting again 𝑒𝑇 := 𝑢𝑇 −𝑤𝑇 ,

(s𝑇 (𝑢𝑇 , 𝑒𝑇 )− s𝑇 (𝑤𝑇 , 𝑒𝑇 )) (s𝑇 (𝑢𝑇 , 𝑢𝑇 ) + s𝑇 (𝑤𝑇 , 𝑤𝑇 ))
2−𝑟

𝑟 & s𝑇 (𝑒𝑇 , 𝑒𝑇 )
𝑟+2−𝑟

𝑟 . (4.10)

Remark 4.2 (Comparison with the linear case). If 𝑟 = 2, s𝑇 can be any symmetric bilinear form satisfying
(4.7), (4.8). Indeed, property (4.9) coincides in this case with the Cauchy–Schwarz inequality, while, by linearity
of s𝑇 , property (4.10) holds with the equal sign.
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4.1.3. An example of viscous stabilization function

Taking inspiration from the scalar case (cf., e.g., [16], Eq. (4.11c)), a local stabilization function that matches
Assumption 4.1 can be obtained setting, for all 𝑣𝑇 , 𝑤𝑇 ∈ 𝑈𝑘

𝑇 ,

s𝑇 (𝑤𝑇 , 𝑣𝑇 ) :=
∫︁

𝜕𝑇

|Δ𝑘
𝜕𝑇 𝑤𝑇 |𝑟−2Δ𝑘

𝜕𝑇 𝑤𝑇 ·Δ
𝑘
𝜕𝑇 𝑣𝑇 , (4.11)

where, denoting by P𝑘(ℱ𝑇 , R𝑑) the space of vector-valued broken polynomials of total degree ≤ 𝑘 on ℱ𝑇 , the
boundary residual operator Δ𝑘

𝜕𝑇 : 𝑈𝑘
𝑇 → P𝑘(ℱ𝑇 , R𝑑) is such that, for all 𝑣𝑇 ∈ 𝑈𝑘

𝑇 ,(︁
Δ𝑘

𝜕𝑇 𝑣𝑇

)︁
|𝐹 := ℎ

− 1
𝑟′

𝐹

(︀
𝜋𝑘

𝐹

(︀
r𝑘+1

𝑇 𝑣𝑇 − 𝑣𝐹

)︀
− 𝜋𝑘

𝑇

(︀
r𝑘+1

𝑇 𝑣𝑇 − 𝑣𝑇

)︀)︀
∀𝐹 ∈ ℱ𝑇 ,

with velocity reconstruction r𝑘+1
𝑇 : 𝑈𝑘

𝑇 → P𝑘+1(𝑇, R𝑑) such that∫︁
𝑇

(︁
∇sr𝑘+1

𝑇 𝑣𝑇 −G𝑘
s,𝑇 𝑣𝑇

)︁
: ∇s𝑤 = 0 ∀𝑤 ∈ P𝑘+1

(︀
𝑇, R𝑑

)︀
,∫︁

𝑇

r𝑘+1
𝑇 𝑣𝑇 =

∫︁
𝑇

𝑣𝑇 , and
∫︁

𝑇

∇ssr𝑘+1
𝑇 𝑣𝑇 =

1
2

∑︁
𝐹∈ℱ𝑇

∫︁
𝐹

(𝑣𝐹 ⊗ 𝑛𝑇𝐹 − 𝑛𝑇𝐹 ⊗ 𝑣𝐹 ) .

Above, ∇ss denotes the skew-symmetric part of the gradient operator ∇ applied to vector fields and ⊗ is the
tensor product such that, for all 𝑥 = (𝑥𝑖)1≤𝑖≤𝑑 and 𝑦 = (𝑦𝑖)1≤𝑖≤𝑑 in R𝑑, 𝑥⊗ 𝑦 := (𝑥𝑖𝑦𝑗)1≤𝑖,𝑗≤𝑑 ∈ R𝑑×𝑑.

Lemma 4.3 (Stabilization function (4.11)). The local stabilization function defined by (4.11) satisfies Assump-
tion 4.1.

Proof. The proof of (4.7) for 𝑟 = 2 is given in equation (25) of [12]. The result can be generalized to 𝑟 ̸= 2
using the same arguments of Lemma 5.2 from [16]. Property (4.8) is an immediate consequence of the fact that
Δ𝑘

𝜕𝑇 (𝐼𝑘
𝑇 𝑤) = 0 for any 𝑤 ∈ P𝑘+1(𝑇, R𝑑), which can be proved reasoning as in Proposition 2.6 of [18].

Let us prove (4.9). First, we remark that, since the function 𝛼 ↦→ 𝛼𝑟−2 verifies the conditions in (A.1b) below,
we can apply Theorem A.1 to infer that the function R𝑑 ∋ 𝑥 ↦→ |𝑥|𝑟−2𝑥 satisfies for all 𝑥, 𝑦 ∈ R𝑑,⃒⃒

|𝑥|𝑟−2𝑥− |𝑦|𝑟−2𝑦
⃒⃒
. (|𝑥|𝑟 + |𝑦|𝑟)

𝑟−𝑟
𝑟 |𝑥− 𝑦|𝑟−1, (4.12a)(︀

|𝑥|𝑟−2𝑥− |𝑦|𝑟−2𝑦
)︀
· (𝑥− 𝑦) (|𝑥|𝑟 + |𝑦|𝑟)

2−𝑟
𝑟 & |𝑥− 𝑦|𝑟+2−𝑟. (4.12b)

Recalling (4.11), we can write

|s𝑇 (𝑢𝑇 , 𝑣𝑇 )− s𝑇 (𝑤𝑇 , 𝑣𝑇 )| ≤
∫︁

𝜕𝑇

⃒⃒⃒
|Δ𝑘

𝜕𝑇 𝑢𝑇 |𝑟−2Δ𝑘
𝜕𝑇 𝑢𝑇 − |Δ

𝑘
𝜕𝑇 𝑤𝑇 |𝑟−2Δ𝑘

𝜕𝑇 𝑤𝑇

⃒⃒⃒
|Δ𝑘

𝜕𝑇 𝑣𝑇 |

.
∫︁

𝜕𝑇

(︁
|Δ𝑘

𝜕𝑇 𝑢𝑇 |𝑟 + |Δ𝑘
𝜕𝑇 𝑤𝑇 |𝑟

)︁ 𝑟−𝑟
𝑟 |Δ𝑘

𝜕𝑇 𝑒𝑇 |𝑟−1|Δ𝑘
𝜕𝑇 𝑣𝑇 |

≤ (s𝑇 (𝑢𝑇 , 𝑢𝑇 ) + s𝑇 (𝑤𝑇 , 𝑤𝑇 ))
𝑟−𝑟

𝑟 s𝑇 (𝑒𝑇 , 𝑒𝑇 )
𝑟−1

𝑟 s𝑇 (𝑣𝑇 , 𝑣𝑇 )
1
𝑟 ,

where we have used (4.12a) to pass to the second line and the
(︁

1; 𝑟
𝑟−𝑟 , 𝑟

𝑟−1 , 𝑟
)︁

-Hölder inequality to conclude.

Moving to (4.10), (4.12b) and the
(︁

1; 𝑟+2−𝑟
2−𝑟 , 𝑟+2−𝑟

𝑟

)︁
-Hölder inequality yield

s𝑇 (𝑒𝑇 , 𝑒𝑇 )

=
∫︁

𝜕𝑇

|Δ𝑘
𝜕𝑇 𝑢𝑇 −Δ𝑘

𝜕𝑇 𝑤𝑇 |𝑟

.
∫︁

𝜕𝑇

(︁
|Δ𝑘

𝜕𝑇 𝑢𝑇 |𝑟 + |Δ𝑘
𝜕𝑇 𝑤𝑇 |𝑟

)︁ 2−𝑟
𝑟+2−𝑟

[︁(︁
|Δ𝑘

𝜕𝑇 𝑢𝑇 |𝑟−2Δ𝑘
𝜕𝑇 𝑢𝑇 − |Δ

𝑘
𝜕𝑇 𝑤𝑇 |𝑟−2Δ𝑘

𝜕𝑇 𝑤𝑇

)︁
·Δ𝑘

𝜕𝑇 𝑒𝑇

]︁ 𝑟
𝑟+2−𝑟

≤ (s𝑇 (𝑢𝑇 , 𝑢𝑇 ) + s𝑇 (𝑤𝑇 , 𝑤𝑇 ))
2−𝑟

𝑟+2−𝑟 (s𝑇 (𝑢𝑇 , 𝑒𝑇 )− s𝑇 (𝑤𝑇 , 𝑒𝑇 ))
𝑟

𝑟+2−𝑟 .

�
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4.2. Pressure-velocity coupling

For all 𝑇 ∈ 𝒯ℎ, we define the local divergence reconstruction D𝑘
𝑇 : 𝑈𝑘

𝑇 → P𝑘(𝑇, R) by setting, for all 𝑣𝑇 ∈ 𝑈𝑘
𝑇 ,

D𝑘
𝑇 𝑣𝑇 := tr

(︁
G𝑘

s,𝑇 𝑣𝑇

)︁
. We have the following characterization of D𝑘

𝑇 : For all 𝑣𝑇 ∈ 𝑈𝑘
𝑇 ,∫︁

𝑇

D𝑘
𝑇 𝑣𝑇 𝑞 =

∫︁
𝑇

(∇·𝑣𝑇 ) 𝑞 +
∑︁

𝐹∈ℱ𝑇

∫︁
𝐹

(𝑣𝐹 − 𝑣𝑇 ) · 𝑛𝑇𝐹 𝑞 ∀𝑞 ∈ P𝑘(𝑇, R), (4.13)

as can be checked writing (4.1) for 𝜏 = 𝑞I𝑑. Taking the trace of (4.2), it is inferred that, for all 𝑇 ∈ 𝒯ℎ

and all 𝑣 ∈ 𝑊 1,1(𝑇, R𝑑), D𝑘
𝑇 (𝐼𝑘

𝑇 𝑣) = 𝜋𝑘
𝑇 (∇·𝑣). The pressure-velocity coupling is realized by the bilinear form

bℎ : 𝑈𝑘
ℎ × P𝑘(𝒯ℎ, R) → R such that, for all (𝑣ℎ, 𝑞ℎ) ∈ 𝑈𝑘

ℎ × P𝑘(𝒯ℎ, R), setting 𝑞𝑇 := (𝑞ℎ)|𝑇 for all 𝑇 ∈ 𝒯ℎ,

bℎ(𝑣ℎ, 𝑞ℎ) := −
∑︁

𝑇∈𝒯ℎ

∫︁
𝑇

D𝑘
𝑇 𝑣𝑇 𝑞𝑇 . (4.14)

4.3. Discrete problem and main results

The discrete problem reads: Find (𝑢ℎ, 𝑝ℎ) ∈ 𝑈𝑘
ℎ,0 × 𝑃 𝑘

ℎ such that

aℎ(𝑢ℎ, 𝑣ℎ) + bℎ(𝑣ℎ, 𝑝ℎ) =
∫︁

Ω

𝑓 · 𝑣ℎ ∀𝑣ℎ ∈ 𝑈𝑘
ℎ,0, (4.15a)

−bℎ(𝑢ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃 𝑘
ℎ . (4.15b)

Remark 4.4 (Discrete mass equation). The space of test functions in (4.15b) can be extended to P𝑘(𝒯ℎ, R)
since, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ,0, the divergence theorem together with the fact that 𝑣𝐹 = 0 for all 𝐹 ∈ ℱb
ℎ and∑︀

𝑇∈𝒯𝐹

∫︀
𝐹

𝑣𝐹 · 𝑛𝑇𝐹 = 0 for all 𝐹 ∈ ℱ i
ℎ, yield

bℎ(𝑣ℎ, 1) = −
∑︁

𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝑇

∫︁
𝐹

𝑣𝐹 · 𝑛𝑇𝐹 = −
∑︁

𝐹∈ℱ i
ℎ

∑︁
𝑇∈𝒯𝐹

∫︁
𝐹

𝑣𝐹 · 𝑛𝑇𝐹 = 0.

Remark 4.5 (Efficient implementation). When solving the system of nonlinear algebraic equations correspond-
ing to (4.15) by, e.g., the Newton algorithm, all element-based velocity unknowns and all but one pressure
unknown per element can be locally eliminated at each iteration by static condensation. As all the computations
are local, this procedure is an embarrassingly parallel task which can fully benefit from multi-thread and multi-
processor architectures. This implementation strategy has been described for the linear Stokes problem in Section
6.2 of [20]. After further eliminating the boundary unknowns by strongly enforcing the boundary condition (2.1c),
we end up solving, at each iteration of the nonlinear solver, a linear system of size 𝑑card(ℱ i

ℎ)
(︀
𝑘+𝑑−1

𝑑−1

)︀
+card(𝒯ℎ).

Concerning the interplay between the static condensation strategy and the performance of 𝑝-multilevel linear
solvers, we refer to [11].

In what follows, we state the main results for the HHO scheme (4.15). The proofs are postponed to Section 7.

Theorem 4.6 (Well-posedness). There exists a unique solution (𝑢ℎ, 𝑝ℎ) ∈ 𝑈𝑘
ℎ,0 × 𝑃 𝑘

ℎ to the discrete problem
(4.15). Additionally, the following a priori bounds hold:

‖𝑢ℎ‖𝑟,ℎ .
(︁
𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 1
𝑟−1

+
(︁
𝜎2−𝑟

de 𝜎−1
sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 1
𝑟+1−𝑟

, (4.16a)

‖𝑝ℎ‖𝐿𝑟′ (Ω,R) . 𝜎hc

(︂
𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑) + 𝜎
|𝑟−2|(𝑟−1)
de

(︁
𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 𝑟−1
𝑟+1−𝑟

)︂
. (4.16b)

Proof. See Section 7.2. �
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Theorem 4.7 (Error estimate). Let (𝑢, 𝑝) ∈ 𝑈×𝑃 and (𝑢ℎ, 𝑝ℎ) ∈ 𝑈𝑘
ℎ,0×𝑃 𝑘

ℎ solve (2.6) and (4.15), respectively.
Assume the additional regularity 𝑢 ∈ 𝑊 𝑘+2,𝑟(𝒯ℎ, R𝑑), 𝜎(·, ∇s𝑢) ∈ 𝑊 1,𝑟′(Ω, R𝑑×𝑑

s ) ∩𝑊 (𝑘+1)(𝑟−1),𝑟′(𝒯ℎ, R𝑑×𝑑
s ),

and 𝑝 ∈ 𝑊 1,𝑟′(Ω, R) ∩𝑊 (𝑘+1)(𝑟−1),𝑟′(𝒯ℎ, R). Then, under Assumptions 2.1 and 4.1,

‖𝑢ℎ − 𝐼𝑘
ℎ𝑢‖𝑟,ℎ . ℎ

(𝑘+1)(𝑟−1)
𝑟+1−𝑟

(︁
𝜎−1

sm𝒩 2−𝑟
𝑓 𝒩𝜎,𝑢,𝑝

)︁ 1
𝑟+1−𝑟

, (4.17a)

‖𝑝ℎ − 𝜋𝑘
ℎ𝑝‖𝐿𝑟′ (Ω,R) . ℎ(𝑘+1)(𝑟−1)𝒩𝜎,𝑢,𝑝 + ℎ

(𝑘+1)(𝑟−1)2

𝑟+1−𝑟 𝜎hc𝒩 |𝑟−2|(𝑟−1)
𝑓

(︀
𝜎−1

sm𝒩𝜎,𝑢,𝑝

)︀ 𝑟−1
𝑟+1−𝑟 , (4.17b)

where we have set, for the sake of brevity,

𝒩𝜎,𝑢,𝑝 := 𝜎hc

(︁
𝜎𝑟

de + |𝑢|𝑟𝑊 1,𝑟(Ω,R𝑑)

)︁ 𝑟−𝑟
𝑟 |𝑢|𝑟−1

𝑊 𝑘+2,𝑟(𝒯ℎ,R𝑑)

+ |𝜎(·, ∇s𝑢)|𝑊 (𝑘+1)(𝑟−1),𝑟′ (𝒯ℎ,R𝑑×𝑑) + |𝑝|𝑊 (𝑘+1)(𝑟−1),𝑟′ (𝒯ℎ,R),

𝒩𝑓 := 𝜎de +
(︁
𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 1
𝑟−1

+
(︁
𝜎2−𝑟

de 𝜎−1
sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 1
𝑟+1−𝑟

.

Proof. See Section 7.3. �

Remark 4.8 (Orders of convergence). From (4.17), neglecting higher-order terms, we infer asymptotic conver-
gence rates of 𝒪𝑘

vel := (𝑘+1)(𝑟−1)
𝑟+1−𝑟 for the velocity and 𝒪𝑘

pre := (𝑘+1)(𝑟−1)2

𝑟+1−𝑟 for the pressure, that is,

𝒪𝑘
vel =

{︃
(𝑘 + 1)(𝑟 − 1) if 𝑟 < 2,
𝑘+1
𝑟−1 if 𝑟 ≥ 2,

and 𝒪𝑘
pre =

{︃
(𝑘 + 1)(𝑟 − 1)2 if 𝑟 < 2,
𝑘+1
𝑟−1 if 𝑟 ≥ 2.

(4.18)

Notice that, owing to the presence of higher-order terms in the right-hand sides of (4.17), higher convergence
rates may be observed before attaining the asymptotic ones; see Section 5. The asymptotic order of convergence
for the velocity coincides with the one proved in Theorem 3.2 of [17] for HHO discretizations of scalar Leray–
Lions problems. We refer to [22] for recent improvements on these estimates depending on the degeneracy of
the problem.

5. Numerical examples

In this section, we evaluate the numerical performance of the HHO method on a complete panel of numerical
test cases. We focus on the (𝜇, 0, 1, 𝑟)-Carreau–Yasuda law (2.5) (corresponding to the power-law model) with
values of the exponent 𝑟 ranging from 1.25 to 2.75. Our implementation relies on the SpaFEDTe library (cf.,
https://spafedte.github.io).

5.1. Trigonometric solution

We begin by considering a manufactured solution to problem (2.1) in order to assess the convergence of the
method. We take Ω = (0, 1)2 and exact velocity 𝑢 and pressure 𝑝 given by, respectively,

𝑢 (𝑥1, 𝑥2) =
(︀
sin
(︀

𝜋
2 𝑥1

)︀
cos
(︀

𝜋
2 𝑥2

)︀
,− cos

(︀
𝜋
2 𝑥1

)︀
sin
(︀

𝜋
2 𝑥2

)︀)︀
, 𝑝 (𝑥1, 𝑥2) = sin

(︀
𝜋
2 𝑥1

)︀
sin
(︀

𝜋
2 𝑥2

)︀
− 4

𝜋2 ·

The volumetric load 𝑓 and the Dirichlet boundary condition are inferred from the exact solution. Considering
𝜇 = 1 and 𝑟 ∈ {1.5, 1.75, . . . , 2.75}, this solution matches the assumptions required in Theorem 4.7 for 𝑘 = 1,
except the case 𝑟 = 1.5 for which 𝜎(·, ∇s𝑢) /∈ 𝑊 1,𝑟′(Ω, R𝑑×𝑑

s ). We consider the HHO scheme for 𝑘 = 1 on three
mesh families, namely Cartesian orthogonal, distorted triangular, and distorted Cartesian; see Figure 1. Overall,
the results are in agreement with the theoretical predictions, and in some cases the expected asymptotic orders

https://spafedte.github.io
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Figure 1. Coarsest Cartesian, distorted triangular, and distorted Cartesian meshes used in
Section 5.

Figure 2. Numerical results for the test case of Section 5. The slopes indicate the order
of convergence expected from Theorem 4.7, i.e., 𝒪1

vel = 2(𝑟 − 1) and 𝒪1
pre = 2(𝑟 − 1)2 for

𝑟 ∈ {1.5, 1.75, 2}.

of convergence are exceeded. Specifically, for 𝑟 ̸= 2, the convergence rates computed on the last refinement
surpass in some cases the theoretical ones. As noticed in Remark 4.8, this suggests that the asymptotic order is
still not attained. A similar phenomenon has been observed on certain meshes for the 𝑝-Laplace problem; see
Section 3.5.2 of [17] and Section 3.7 of [21]. In some cases, we observe a better convergence for the velocity on
distorted triangular meshes than on Cartesian meshes. This phenomenon possibly results from the combination
of two factors: on one hand, the improved robustness of HHO methods with respect to elongated elements when
compared to classical discretization methods; on the other hand, the fact that unstructured triangular meshes
have more elements than Cartesian meshes for a given meshsize and lack privileged directions, which reduces
mesh bias. Further investigation is postponed to a future work (Figs. 2 and 3).
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Figure 3. Numerical results for the test case of Section 5.1. The slopes indicate the order of
convergence expected from Theorem 4.7, i.e., 𝒪1

vel = 𝒪1
pre = 2

𝑟−1 for 𝑟 ∈ {2.25, 2.5, 2.75}.

5.2. Lid-driven cavity flow

We next consider the lid-driven cavity flow, a well-known problem in fluid mechanics. The domain is the unit
square Ω = (0, 1)2, and we enforce a unit tangential velocity 𝑢 = (1, 0) on the top edge (of equation 𝑥2 = 1)
and wall boundary conditions on the other edges. This boundary condition is incompatible with the formulation
(2.6), even generalized to non-homogeneous boundary conditions, since 𝑢 /∈ 𝑊 1,𝑟(Ω, R𝑑). However, this is a very
classical test that demonstrates the quality of the method. We consider a low Reynolds number Re := 2

𝜇 = 1.
For 𝑟 ∈ {1.25, 2, 2.75}, we solve the discrete problem on Cartesian and distorted triangular meshes (cf., Fig. 1)
of approximate size 128× 128 for 𝑘 = 1, and 16× 16 for 𝑘 = 5. This choice is meant to compare the low-order
version of the method on a fine mesh with the high-order version on a very coarse one. The corresponding total
number of degrees of freedom is: 130 048 for the fine Cartesian mesh with 𝑘 = 1; 5760 for the coarse Cartesian
mesh with 𝑘 = 5; 298 676 for the fine triangular mesh with 𝑘 = 1; and 14 196 for the coarse triangular mesh
with 𝑘 = 5. In the left column of Figure 4 we display the velocity magnitude, while in the right column we plot
the horizontal component 𝑢1 of the velocity along the vertical centreline 𝑥1 = 1

2 (resp., vertical component 𝑢2

along the horizontal centreline 𝑥2 = 1
2 ). The lines corresponding to 𝑘 = 1 on the fine mesh and to 𝑘 = 5 on the

coarse mesh are perfectly superimposed, regardless of the mesh family and of the value of 𝑟. This shows that,
despite the lack of regularity of the exact solution, high-order versions of the scheme on very coarse meshes
deliver similar results as low-order versions on very fine grids. Furthermore, we observe significant differences in
the behavior of the flow according to 𝑟, coherent with the expected physical behavior. In particular, the viscous
effects increase with 𝑟, as reflected by the size of the central vortex.
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Figure 4. Numerical results for the test case of Section 5.2. Left: velocity magnitude contours
(15 equispaced values in the range [0, 1]). Computations on a Cartesian mesh of size 128× 128
with 𝑘 = 5. Right: horizontal component 𝑢1 of the velocity along the vertical centreline 𝑥1 = 1

2

and vertical component 𝑢2 of the velocity along the horizontal centreline 𝑥2 = 1
2 .
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6. Discrete Korn inequality

We prove in this section a discrete counterpart of the following Korn inequality (see [28], Thm. 1) that will
be needed in the analysis: There is 𝐶K > 0 depending only on Ω and 𝑟 such that for all 𝑣 ∈ 𝑈 ,

‖𝑣‖𝑊 1,𝑟(Ω,R𝑑) ≤ 𝐶K‖∇s𝑣‖𝐿𝑟(Ω,R𝑑×𝑑). (6.1)

We start by recalling the following preliminary result concerning the node-averaging interpolator (sometimes
called Oswald interpolator). Let Tℎ be a matching simplicial submesh of ℳℎ in the sense of Definition 1.8
from [18]. The node-averaging operator 𝐼𝑘

av,ℎ : P𝑘(𝒯ℎ, R𝑑) → P𝑘(Tℎ, R𝑑) ∩ 𝑊 1,𝑟(Ω, R𝑑) is such that, for all
𝑣ℎ ∈ P𝑘(𝒯ℎ, R𝑑) and all Lagrange node 𝑉 of Tℎ, denoting by T𝑉 the set of simplices sharing 𝑉 ,

(𝐼𝑘
av,ℎ𝑣ℎ)(𝑉 ) :=

{︃
1

card(TV)

∑︀
𝜏∈T𝑉

𝑣ℎ|𝜏 (𝑉 ) if 𝑉 ∈ Ω,

0 if 𝑉 ∈ 𝜕Ω.

For all 𝐹 ∈ ℱ i
ℎ, denote by 𝑇1, 𝑇2 ∈ 𝒯ℎ the elements sharing 𝐹 , taken in an arbitrary but fixed order. We define

the jump operator such that, for any function 𝑣 ∈ 𝑊 1,1(𝒯ℎ, R𝑑), [𝑣]𝐹 := (𝑣|𝑇1
)|𝐹 − (𝑣|𝑇2

)|𝐹 . This definition is
extended to boundary faces 𝐹 ∈ ℱb

ℎ by setting [𝑣]𝐹 := 𝑣|𝐹 .

Proposition 6.1 (Boundedness of the node-averaging operator). For all 𝑣ℎ ∈ P𝑘(𝒯ℎ, R𝑑), it holds

|𝑣ℎ − 𝐼𝑘
av,ℎ𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑) .

∑︁
𝐹∈ℱℎ

ℎ1−𝑟
𝐹 ‖[𝑣ℎ]𝐹 ‖𝑟

𝐿𝑟(𝐹,R𝑑). (6.2)

Proof. Combining equation (4.13) of [18] (which corresponds to (6.2) for 𝑟 = 2) with the local Lebesgue
embeddings of Lemma 1.25 from [18] (see also [16], Lem. 5.1) gives, for any 𝑇 ∈ 𝒯ℎ,

‖𝑣ℎ − 𝐼𝑘
av,ℎ𝑣ℎ‖𝑟

𝐿𝑟(𝑇,R𝑑) .
∑︁

𝐹∈ℱ𝒱,𝑇

ℎ𝐹 ‖[𝑣ℎ]𝐹 ‖𝑟
𝐿𝑟(𝐹,R𝑑), (6.3)

where ℱ𝒱,𝑇 collects the faces whose closure has non-empty intersection with 𝑇 . Using the local inverse inequality
of Lemma 1.28 from [18] (see also [16], Eq. (A.1)), we can write

|𝑣ℎ − 𝐼𝑘
av,ℎ𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑) .

∑︁
𝑇∈𝒯ℎ

ℎ−𝑟
𝑇 ‖𝑣ℎ − 𝐼𝑘

av,ℎ𝑣ℎ‖𝑟
𝐿𝑟(𝑇,R𝑑)

.
∑︁

𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝒱,𝑇

ℎ1−𝑟
𝐹 ‖[𝑣ℎ]𝐹 ‖𝑟

𝐿𝑟(𝐹,R𝑑)

.
∑︁

𝐹∈ℱℎ

∑︁
𝑇∈𝒯𝒱,𝐹

ℎ1−𝑟
𝐹 ‖[𝑣ℎ]𝐹 ‖𝑟

𝐿𝑟(𝐹,R𝑑)

≤ max
𝐹∈ℱℎ

card(𝒯𝒱,𝐹 )
∑︁

𝐹∈ℱℎ

ℎ1−𝑟
𝐹 ‖[𝑣ℎ]𝐹 ‖𝑟

𝐿𝑟(𝐹,R𝑑),

where we have used the fact that ℎ−𝑟
𝑇 ≤ ℎ−𝑟

𝐹 along with inequality (6.3) to pass to the second line, and we
have exchanged the sums after setting 𝒯𝒱,𝐹 :=

{︀
𝑇 ∈ 𝒯ℎ : 𝐹 ∩ 𝑇 ̸= ∅

}︀
for all 𝐹 ∈ ℱℎ to pass to the third line.

Observing that max𝐹∈ℱℎ
card(𝒯𝒱,𝐹 ) . 1 (since, for any 𝐹 ∈ ℱℎ, card(𝒯𝒱,𝐹 ) is bounded by the left-hand side of

equation (4.23) from [18] written for any 𝑇 ∈ 𝒯ℎ to which 𝐹 belongs), (6.2) follows. �

The following inequalities between sums of powers will be often used in what follows without necessarily
recalling this fact explicitly each time. Let an integer 𝑛 ≥ 1 and a real number 𝑚 ∈ (0,∞) be given. Then, for
all 𝑎1, . . . , 𝑎𝑛 ∈ (0,∞), we have

𝑛−(𝑚−1)⊖
𝑛∑︁

𝑖=1

𝑎𝑚
𝑖 ≤

(︃
𝑛∑︁

𝑖=1

𝑎𝑖

)︃𝑚

≤ 𝑛(𝑚−1)⊕
𝑛∑︁

𝑖=1

𝑎𝑚
𝑖 . (6.4)
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If 𝑚 = 1, then (6.4) holds with the equal sign. If 𝑚 < 1, equations (5) and (3) of [45] with 𝛼 = 1 and 𝛽 = 𝑚
give 𝑛𝑚−1

∑︀𝑛
𝑖=1 𝑎𝑚

𝑖 ≤ (
∑︀𝑛

𝑖=1 𝑎𝑖)
𝑚 ≤

∑︀𝑛
𝑖=1 𝑎𝑚

𝑖 . If, on the other hand, 𝑚 > 1, equations (3) and (5) of [45] with
𝛼 = 𝑚 and 𝛽 = 1 give

∑︀𝑛
𝑖=1 𝑎𝑚

𝑖 ≤ (
∑︀𝑛

𝑖=1 𝑎𝑖)
𝑚 ≤ 𝑛𝑚−1

∑︀𝑛
𝑖=1 𝑎𝑚

𝑖 . Gathering the above cases yields (6.4).

Lemma 6.2 (Discrete Korn inequality). We have, for all 𝑣ℎ ∈ 𝑈𝑘
ℎ,0, recalling the notation (3.3),

‖𝑣ℎ‖𝑟
𝐿𝑟(Ω,R𝑑) + |𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑) . ‖𝑣ℎ‖𝑟

𝑟,ℎ. (6.5)

Proof. Let 𝑣ℎ ∈ 𝑈𝑘
ℎ,0. Using a triangle inequality followed by (6.4), we can write

|𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑) . |𝐼
𝑘
av,ℎ𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑) + |𝑣ℎ − 𝐼𝑘

av,ℎ𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑)

. ‖∇s

(︁
𝐼𝑘

av,ℎ𝑣ℎ

)︁
‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑) + |𝑣ℎ − 𝐼𝑘
av,ℎ𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑)

. ‖∇s,ℎ𝑣ℎ‖𝑟
𝐿𝑟(Ω,R𝑑×𝑑) + |𝑣ℎ − 𝐼𝑘

av,ℎ𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑)

. ‖∇s,ℎ𝑣ℎ‖𝑟
𝐿𝑟(Ω,R𝑑×𝑑) +

∑︁
𝐹∈ℱℎ

ℎ1−𝑟
𝐹 ‖[𝑣ℎ]𝐹 ‖𝑟

𝐿𝑟(𝐹,R𝑑),

where we have used the continuous Korn inequality (6.1) to pass to the second line, we have inserted ±∇s,ℎ𝑣ℎ

into the first norm and used a triangle inequality followed by (6.4) to pass to the third line, and we have
invoked the bound (6.2) to conclude. Observing that, for any 𝐹 ∈ ℱℎ, |[𝑣ℎ]𝐹 | ≤

∑︀
𝑇∈𝒯𝐹

|𝑣𝐹 − 𝑣𝑇 | by a triangle
inequality, and using (6.4), we can continue writing

|𝑣ℎ|𝑟𝑊 1,𝑟(𝒯ℎ,R𝑑) . ‖∇s,ℎ𝑣ℎ‖𝑟
𝐿𝑟(Ω,R𝑑×𝑑) +

∑︁
𝐹∈ℱℎ

∑︁
𝑇∈𝒯𝐹

ℎ1−𝑟
𝐹 ‖𝑣𝐹 − 𝑣𝑇 ‖𝑟

𝐿𝑟(𝐹,R𝑑) = ‖𝑣ℎ‖𝑟
𝑟,ℎ,

where we have exchanged the sums over faces and elements and recalled definition (3.4a) to conclude. This
proves the bound for the second term in the left-hand side of (6.5). Combining this result with the global
discrete Sobolev embeddings of Proposition 5.4 from [16] yields the bound for the first term in (6.5). �

7. Well-posedness and convergence analysis

In this section, after studying the stabilization function sℎ, we prove the main results stated in Section 4.3.

7.1. Properties of the stabilization function

Lemma 7.1 (Consistency of s𝑇 ). For any 𝑇 ∈ 𝒯ℎ and any s𝑇 satisfying Assumption 4.1, it holds, for all
𝑤 ∈ 𝑊 𝑘+2,𝑟(𝑇, R𝑑) and all 𝑣𝑇 ∈ 𝑈𝑘

𝑇 ,

|s𝑇 (𝐼𝑘
𝑇 𝑤, 𝑣𝑇 )| . ℎ

(𝑘+1)(𝑟−1)
𝑇 |𝑤|𝑟−𝑟

𝑊 1,𝑟(𝑇,R𝑑)
|𝑤|𝑟−1

𝑊 𝑘+2,𝑟(𝑇,R𝑑)
‖𝑣𝑇 ‖𝑟,𝑇 , (7.1)

where the hidden constant is independent of ℎ, 𝑇 , and 𝑤.

Proof. The proof adapts the arguments of Proposition 2.14 from [18]. Using the polynomial consistency property
(4.8), we can write⃒⃒⃒

s𝑇

(︁
𝐼𝑘

𝑇 𝑤, 𝑣𝑇

)︁⃒⃒⃒
=
⃒⃒⃒
s𝑇

(︁
𝐼𝑘

𝑇 𝑤, 𝑣𝑇

)︁
− s𝑇

(︁
𝐼𝑘

𝑇

(︀
𝜋𝑘+1

𝑇 𝑤
)︀
, 𝑣𝑇

)︁⃒⃒⃒
. s𝑇

(︁
𝐼𝑘

𝑇 𝑤, 𝐼𝑘
𝑇 𝑤
)︁ 𝑟−𝑟

𝑟

s𝑇

(︁
𝐼𝑘

𝑇

(︀
𝑤 − 𝜋𝑘+1

𝑇 𝑤
)︀
, 𝐼𝑘

𝑇

(︀
𝑤 − 𝜋𝑘+1

𝑇 𝑤
)︀)︁ 𝑟−1

𝑟

s𝑇 (𝑣𝑇 , 𝑣𝑇 )
1
𝑟

. ‖𝐼𝑘
𝑇 𝑤‖𝑟−𝑟

𝑟,𝑇 ‖𝐼
𝑘
𝑇

(︀
𝑤 − 𝜋𝑘+1

𝑇 𝑤
)︀
‖𝑟−1

𝑟,𝑇 ‖𝑣𝑇 ‖𝑟,𝑇

. |𝑤|𝑟−𝑟
𝑊 1,𝑟(𝑇,R𝑑)

|𝑤 − 𝜋𝑘+1
𝑇 𝑤|𝑟−1

𝑊 1,𝑟(𝑇,R𝑑)
‖𝑣𝑇 ‖𝑟,𝑇

. ℎ
(𝑘+1)(𝑟−1)
𝑇 |𝑤|𝑟−𝑟

𝑊 1,𝑟(𝑇,R𝑑)
|𝑤|𝑟−1

𝑊 𝑘+2,𝑟(𝑇,R𝑑)
‖𝑣𝑇 ‖𝑟,𝑇 ,
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where we have used the Hölder continuity (4.9) and observed that, by the polynomial consistency property (4.8),
s𝑇

(︁
𝐼𝑘

𝑇 (𝜋𝑘+1
𝑇 𝑤), 𝐼𝑘

𝑇 (𝜋𝑘+1
𝑇 𝑤)

)︁
= 0 to pass to the second line, we have used the boundedness property (4.7) to

pass to the third line, the boundedness (3.5) of 𝐼𝑘
𝑇 to pass to the fourth line, and the (𝑘 + 2, 𝑟, 1)-approximation

property (3.2a) of 𝜋𝑘+1
𝑇 to conclude. �

In what follows, we will need generalized versions of the continuous and discrete Hölder inequalities, recalled
hereafter for the sake of convenience. Let 𝑋 ⊂ R𝑑 be measurable, 𝑛 ∈ N*, and let 𝑡, 𝑝1, . . . , 𝑝𝑛 ∈ (0,∞] be such
that

∑︀𝑛
𝑖=1

1
𝑝𝑖

= 1
𝑡 . The continuous (𝑡; 𝑝1, . . . , 𝑝𝑛)-Hölder inequality reads: For any (𝑓1, . . . , 𝑓𝑛) ∈×𝑛

𝑖=1
𝐿𝑝𝑖(𝑋, R),⃦⃦⃦⃦

⃦
𝑛∏︁

𝑖=1

𝑓𝑖

⃦⃦⃦⃦
⃦

𝐿𝑡(𝑋,R)

≤
𝑛∏︁

𝑖=1

‖𝑓𝑖‖𝐿𝑝𝑖 (𝑋,R). (7.2)

Let 𝑚 ∈ N*. For all 𝑓 : {1, . . . ,𝑚} → R and all 𝑞 ∈ [1,∞), setting ‖𝑓‖𝑞 := (
∑︀𝑚

𝑖=1 |𝑓(𝑖)|𝑞)
1
𝑞 , and ‖𝑓‖∞ :=

max1≤𝑖≤𝑚 |𝑓(𝑖)|, the discrete (𝑡; 𝑝1, . . . , 𝑝𝑛)-Hölder inequality reads: For any 𝑓1, . . . , 𝑓𝑛 : {1, . . . ,𝑚} → R,⃦⃦⃦⃦
⃦

𝑛∏︁
𝑖=1

𝑓𝑖

⃦⃦⃦⃦
⃦

𝑡

≤
𝑛∏︁

𝑖=1

‖𝑓𝑖‖𝑝𝑖 . (7.3)

Proposition 7.2 (Properties of sℎ). Let sℎ be given by (4.6) with, for all 𝑇 ∈ 𝒯ℎ, s𝑇 satisfying Assumption 4.1.
Then it holds, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ,

‖G𝑘
s,ℎ𝑣ℎ‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑) + sℎ(𝑣ℎ, 𝑣ℎ) ≃ ‖𝑣ℎ‖𝑟
𝑟,ℎ. (7.4a)

Furthermore, for all 𝑢ℎ, 𝑣ℎ, 𝑤ℎ ∈ 𝑈𝑘
ℎ it holds, setting 𝑒ℎ := 𝑢ℎ −𝑤ℎ,

|sℎ (𝑢ℎ, 𝑣ℎ)− sℎ (𝑤ℎ, 𝑣ℎ)| . (sℎ (𝑢ℎ, 𝑢ℎ) + sℎ (𝑤ℎ, 𝑤ℎ))
𝑟−𝑟

𝑟 sℎ (𝑒ℎ, 𝑒ℎ)
𝑟−1

𝑟 sℎ (𝑣ℎ, 𝑣ℎ)
1
𝑟 , (7.4b)

(sℎ (𝑢ℎ, 𝑒ℎ)− sℎ (𝑤ℎ, 𝑒ℎ)) (sℎ (𝑢ℎ, 𝑢ℎ) + sℎ (𝑤ℎ, 𝑤ℎ))
2−𝑟

𝑟 & sℎ (𝑒ℎ, 𝑒ℎ)
𝑟+2−𝑟

𝑟 . (7.4c)

Finally, for any 𝑤 ∈ 𝑈 ∩𝑊 𝑘+2,𝑟(𝒯ℎ, R𝑑), it holds

sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

sℎ(𝐼𝑘
ℎ𝑤, 𝑣ℎ) . ℎ(𝑘+1)(𝑟−1)|𝑤|𝑟−𝑟

𝑊 1,𝑟(Ω,R𝑑)
|𝑤|𝑟−1

𝑊 𝑘+2,𝑟(𝒯ℎ,R𝑑)
. (7.5)

Above, the hidden constants are independent of ℎ and of the arguments of sℎ.

Proof. For the sake of conciseness, we only sketch the proof and leave the details to the reader. Summing (4.7)
over 𝑇 ∈ 𝒯ℎ immediately yields (7.4a). The Hölder continuity property (7.4b) follows applying to the quantity
in the left-hand side triangle inequalities, using (4.9), and concluding with a discrete (1; 𝑟

𝑟−𝑟 , 𝑟
𝑟−1 , 𝑟)-Hölder

inequality. Moving to (7.4c), starting from |sℎ(𝑒ℎ, 𝑒ℎ)|, we use (4.10) and apply a discrete (1; 𝑟+2−𝑟
2−𝑟 , 𝑟+2−𝑟

𝑟 )-
Hölder inequality to conclude. Finally, to prove (7.5) we start from sℎ(𝐼𝑘

ℎ𝑤, 𝑣ℎ), expand this quantity according
to (4.6), use, for all 𝑇 ∈ 𝒯ℎ, the local consistency property (7.1) together with ℎ𝑇 ≤ ℎ, invoke the discrete
(1; 𝑟

𝑟−𝑟 , 𝑟
𝑟−1 , 𝑟)-Hölder inequality, and pass to the supremum to conclude. �

7.2. Well-posedness

In this section, after proving Hölder continuity and strong monotonicity properties for the discrete viscous
function aℎ and the inf-sup stability of the pressure-velocity coupling bilinear form bℎ, we prove Theorem 4.6.
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7.2.1. Hölder continuity and strong monotonicity of the viscous function

Lemma 7.3 (Hölder continuity and strong monotonicity of aℎ). For all 𝑢ℎ, 𝑣ℎ, 𝑤ℎ ∈ 𝑈𝑘
ℎ, setting 𝑒ℎ := 𝑢ℎ−𝑤ℎ,

it holds

|aℎ (𝑢ℎ, 𝑣ℎ)− aℎ (𝑤ℎ, 𝑣ℎ)| . 𝜎hc

(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑤ℎ‖𝑟

𝑟,ℎ

)︀ 𝑟−𝑟
𝑟 ‖𝑒ℎ‖𝑟−1

𝑟,ℎ ‖𝑣ℎ‖𝑟,ℎ, (7.6a)

(aℎ (𝑢ℎ, 𝑒ℎ)− aℎ (𝑤ℎ, 𝑒ℎ))
(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑤ℎ‖𝑟

𝑟,ℎ

)︀ 2−𝑟
𝑟 & 𝜎sm‖𝑒ℎ‖𝑟+2−𝑟

𝑟,ℎ . (7.6b)

Proof. (i) Hölder continuity. Using a Cauchy–Schwarz inequality followed by the Hölder continuity (2.3c) of
𝜎, we can write⃒⃒⃒⃒∫︁

Ω

(︁
𝜎
(︁
·,G𝑘

s,ℎ𝑢ℎ

)︁
− 𝜎

(︁
·,G𝑘

s,ℎ𝑤ℎ

)︁)︁
: G𝑘

s,ℎ𝑣ℎ

⃒⃒⃒⃒
≤ 𝜎hc

∫︁
Ω

(︁
𝜎𝑟

de + |G𝑘
s,ℎ𝑢ℎ|𝑟𝑑×𝑑 + |G𝑘

s,ℎ𝑤ℎ|𝑟𝑑×𝑑

)︁ 𝑟−𝑟
𝑟 |G𝑘

s,ℎ𝑒ℎ|𝑟−1
𝑑×𝑑|G

𝑘
s,ℎ𝑣ℎ|𝑑×𝑑

. 𝜎hc

(︁
|Ω|𝑑𝜎𝑟

de + ‖G𝑘
s,ℎ𝑢ℎ‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑) + ‖G𝑘
s,ℎ𝑤ℎ‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑)

)︁ 𝑟−𝑟
𝑟

× ‖G𝑘
s,ℎ𝑒ℎ‖𝑟−1

𝐿𝑟(Ω,R𝑑×𝑑)
‖G𝑘

s,ℎ𝑣ℎ‖𝐿𝑟(Ω,R𝑑×𝑑)

. 𝜎hc

(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑤ℎ‖𝑟

𝑟,ℎ

)︀ 𝑟−𝑟
𝑟 ‖𝑒ℎ‖𝑟−1

𝑟,ℎ ‖𝑣ℎ‖𝑟,ℎ,

(7.7)

where we have used the
(︁

1; 𝑟
𝑟−𝑟 , 𝑟

𝑟−1 , 𝑟
)︁

-Hölder inequality (7.2) in the second bound and the global semi-
norm equivalence (7.4a) together with the fact that |Ω|𝑑 . 1 (since Ω is bounded) to conclude. For the
stabilization term, combining the Hölder continuity (7.4b) of sℎ and the seminorm equivalence (7.4a) readily
gives

|sℎ (𝑢ℎ, 𝑣ℎ)− sℎ (𝑤ℎ, 𝑣ℎ)| .
(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑤ℎ‖𝑟

𝑟,ℎ

)︀ 𝑟−𝑟
𝑟 ‖𝑒ℎ‖𝑟−1

𝑟,ℎ ‖𝑣ℎ‖𝑟,ℎ, (7.8)

where we have additionally noticed that 𝜎𝑟
de ≥ 0 to add this term to the quantity inside parentheses. Using

the definition (4.4) of aℎ, a triangle inequality followed by (7.7) and (7.8), and recalling that 𝛾 ≤ 𝜎hc (cf.,
(4.5)), (7.6a) follows.

(ii) Strong monotonicity. Using the strong monotonicity (2.3d) of 𝜎 and the
(︁

1; 𝑟+2−𝑟
2−𝑟 , 𝑟+2−𝑟

𝑟

)︁
-Hölder inequal-

ity (7.2), we get

𝜎
𝑟

𝑟+2−𝑟
sm ‖G𝑘

s,ℎ𝑒ℎ‖𝑟
𝐿𝑟(Ω,R𝑑×𝑑)

≤
∫︁

Ω

(︁
𝜎𝑟

de + |G𝑘
s,ℎ𝑢ℎ|𝑟𝑑×𝑑 + |G𝑘

s,ℎ𝑤ℎ|𝑟𝑑×𝑑

)︁ 2−𝑟
𝑟+2−𝑟

(︁(︁
𝜎
(︁
·,G𝑘

s,ℎ𝑢ℎ

)︁
− 𝜎

(︁
·,G𝑘

s,ℎ𝑤ℎ

)︁)︁
: G𝑘

s,ℎ𝑒ℎ

)︁ 𝑟
𝑟+2−𝑟

.
(︁
𝜎𝑟

de + ‖G𝑘
s,ℎ𝑢ℎ‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑) + ‖G𝑘
s,ℎ𝑤ℎ‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑)

)︁ 2−𝑟
𝑟+2−𝑟

×
(︂∫︁

Ω

(︁
𝜎
(︁
·,G𝑘

s,ℎ𝑢ℎ

)︁
− 𝜎

(︁
·,G𝑘

s,ℎ𝑤ℎ

)︁)︁
: G𝑘

s,ℎ𝑒ℎ

)︂ 𝑟
𝑟+2−𝑟

.
(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑤ℎ‖𝑟

𝑟,ℎ

)︀ 2−𝑟
𝑟+2−𝑟

(︂∫︁
Ω

(︁
𝜎
(︁
·,G𝑘

s,ℎ𝑢ℎ

)︁
− 𝜎

(︁
·,G𝑘

s,ℎ𝑤ℎ

)︁)︁
: G𝑘

s,ℎ𝑒ℎ

)︂ 𝑟
𝑟+2−𝑟

,

(7.9)
where the conclusion follows from the global seminorm equivalence (7.4a). Additionally, using the strong
monotonicity (7.4c) of sℎ together with the fact that 𝜎sm ≤ 𝛾 (cf., (4.5)) and invoking again the seminorm
equivalence (7.4a), we readily obtain

𝜎
𝑟

𝑟+2−𝑟
sm sℎ(𝑒ℎ, 𝑒ℎ) .

(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑤ℎ‖𝑟

𝑟,ℎ

)︀ 2−𝑟
𝑟+2−𝑟 (𝛾sℎ(𝑢ℎ, 𝑒ℎ)− 𝛾sℎ(𝑤ℎ, 𝑒ℎ))

𝑟
𝑟+2−𝑟 . (7.10)
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Finally, combining again the norm equivalence (7.4a) with (7.9) and (7.10), and using (6.4) yields

𝜎
𝑟

𝑟+2−𝑟
sm ‖𝑒ℎ‖𝑟

𝑟,ℎ .
(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑤ℎ‖𝑟

𝑟,ℎ

)︀ 2−𝑟
𝑟+2−𝑟 (aℎ(𝑢ℎ, 𝑒ℎ)− aℎ(𝑤ℎ, 𝑒ℎ))

𝑟
𝑟+2−𝑟 .

Raising this inequality to the power 𝑟−2−𝑟
𝑟 yields (7.6b).

�

7.2.2. Stability of the pressure-velocity coupling

Lemma 7.4 (Inf-sup stability of bℎ). It holds, for all 𝑞ℎ ∈ 𝑃 𝑘
ℎ ,

‖𝑞ℎ‖𝐿𝑟′ (Ω,R) . sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

bℎ(𝑣ℎ, 𝑞ℎ), (7.11)

with hidden constant depending only on 𝑑, 𝑘, 𝑟, Ω, and the mesh regularity parameter.

Proof. The proof follows the classical Fortin argument (cf., e.g., [9], Sect. 8.4), adapted here to the non-Hilbertian
setting.

(i) Fortin operator. We need to prove that the following properties hold for any 𝑣 ∈ 𝑊 1,𝑟(Ω, R𝑑):

‖𝐼𝑘
ℎ𝑣‖𝑟,ℎ . |𝑣|𝑊 1,𝑟(Ω,R𝑑), (7.12a)

bℎ

(︁
𝐼𝑘

ℎ𝑣, 𝑞ℎ

)︁
= 𝑏 (𝑣, 𝑞ℎ) ∀𝑞ℎ ∈ P𝑘 (𝒯ℎ, R) . (7.12b)

Property (7.12a) is obtained by raising both sides of (3.5) to the power 𝑟, summing over 𝑇 ∈ 𝒯ℎ, then
taking the 𝑟th root of the resulting inequality. The proof of (7.12b) is given, e.g., in Lemma 8.12 of [18].

(ii) Inf-sup condition on bℎ. Let 𝑞ℎ ∈ 𝑃 𝑘
ℎ and set 𝑐ℎ :=

∫︀
Ω
|𝑞ℎ|𝑟

′−2𝑞ℎ. Using the triangle and Hölder inequalities,
we get

‖|𝑞ℎ|𝑟
′−2𝑞ℎ − 𝑐ℎ‖𝐿𝑟(Ω,R) ≤ ‖𝑞ℎ‖𝑟′−1

𝐿𝑟′ (Ω,R)
+ |𝑐ℎ||Ω|

1
𝑟

𝑑 ≤ (1 + |Ω|𝑑) ‖𝑞ℎ‖𝑟′−1
𝐿𝑟′ (Ω,R)

. ‖𝑞ℎ‖𝑟′−1
𝐿𝑟′ (Ω,R)

, (7.13)

where we have used the fact that |𝑐ℎ| ≤ ‖𝑞ℎ‖𝑟′−1
𝐿𝑟′ (Ω,R)

|Ω|
1
𝑟′
𝑑 along with 1

𝑟 + 1
𝑟′ = 1 in the second bound

and the fact that |Ω|𝑑 . 1 to conclude. Thus, using the surjectivity of the continuous divergence operator
∇· : 𝑈 → 𝐿𝑟

0(Ω, R) :=
{︀
𝑞 ∈ 𝐿𝑟(Ω, R) :

∫︀
Ω

𝑞 = 0
}︀

, (cf., [26] and also [10], Thm. 1), we infer that there exists
𝑣𝑞ℎ

∈ 𝑈 such that

−∇·𝑣𝑞ℎ
= |𝑞ℎ|𝑟

′−2𝑞ℎ − 𝑐ℎ and |𝑣𝑞ℎ
|𝑊 1,𝑟(Ω,R𝑑) . ‖|𝑞ℎ|𝑟

′−2𝑞ℎ − 𝑐ℎ‖𝐿𝑟(Ω,R). (7.14)

Denote by $ the supremum in (7.11). Using the fact that 𝑞ℎ has zero mean value over Ω, the equality in
(7.14) together with the definition (2.7) of 𝑏, and the second Fortin property (7.12b), we have

‖𝑞ℎ‖𝑟′

𝐿𝑟′ (Ω,R)
=
∫︁

Ω

(︁
|𝑞ℎ|𝑟

′−2𝑞ℎ − 𝑐ℎ

)︁
𝑞ℎ = 𝑏 (𝑣𝑞ℎ

, 𝑞ℎ) = bℎ

(︁
𝐼𝑘

ℎ𝑣𝑞ℎ
, 𝑞ℎ

)︁
≤ $‖𝐼𝑘

ℎ𝑣𝑞ℎ
‖𝑟,ℎ . $‖𝑞ℎ‖𝑟′−1

𝐿𝑟′ (Ω,R)
,

where, to conclude, we have used (7.12a) followed by (7.14) and (7.13). Simplifying yields (7.11).

�
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7.2.3. Proof of Theorem 4.6

Proof of Theorem 4.6. (i) Existence. Denote by 𝑃 𝑘,*
ℎ the dual space of 𝑃 𝑘

ℎ and let 𝐵ℎ : 𝑈𝑘
ℎ,0 → 𝑃 𝑘,*

ℎ be such
that, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ,0,
⟨𝐵ℎ𝑣ℎ, 𝑞ℎ⟩ := −bℎ(𝑣ℎ, 𝑞ℎ) ∀𝑞ℎ ∈ 𝑃 𝑘

ℎ .

Here and in what follows, ⟨·, ·⟩ denotes the appropriate duality pairing as inferred from its arguments. Define
the following subspace of 𝑈𝑘

ℎ,0 spanned by vectors of discrete unknowns with zero discrete divergence:

𝑊 𝑘
ℎ := Ker(𝐵ℎ) =

{︁
𝑣ℎ ∈ 𝑈𝑘

ℎ,0 : bℎ(𝑣ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑃 𝑘
ℎ

}︁
, (7.15)

and consider the following problem: Find 𝑢ℎ ∈ 𝑊 𝑘
ℎ such that

aℎ(𝑢ℎ, 𝑣ℎ) =
∫︁

Ω

𝑓 · 𝑣ℎ ∀𝑣ℎ ∈ 𝑊 𝑘
ℎ. (7.16)

Existence of a solution to this problem for a fixed ℎ can be proved adapting the arguments of Theorem 4.5
from [16]. Specifically, equip 𝑊 𝑘

ℎ with an inner product (·, ·)𝑊 ,ℎ (which need not be further specified), denote
by ‖·‖𝑊 ,ℎ the induced norm, and let Φℎ : 𝑊 𝑘

ℎ → 𝑊 𝑘
ℎ be such that, for all 𝑤ℎ ∈ 𝑊 𝑘

ℎ, (Φℎ(𝑤ℎ), 𝑣ℎ)𝑊 ,ℎ =
aℎ(𝑤ℎ, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑊 𝑘

ℎ. The strong monotonicity (7.6b) of aℎ yields, for any 𝑣ℎ ∈ 𝑊 𝑘
ℎ such that

‖𝑣ℎ‖𝑟,ℎ ≥ 𝜎de,

(Φℎ(𝑣ℎ), 𝑣ℎ)𝑊 ,ℎ ≥ 𝜎sm

(︀
𝜎𝑟

de + ‖𝑣ℎ‖𝑟
𝑟,ℎ

)︀ 𝑟−2
𝑟 ‖𝑣ℎ‖𝑟+2−𝑟

𝑟,ℎ & 𝜎sm‖𝑣ℎ‖𝑟
𝑟,ℎ ≥ 𝐶𝑟𝜎sm‖𝑣ℎ‖𝑟

𝑊 ,ℎ,

where 𝐶 denotes the constant (possibly depending on ℎ) in the equivalence of the norms ‖·‖𝑟,ℎ and ‖·‖𝑊 ,ℎ

(which holds since 𝑊 𝑘
ℎ is finite-dimensional). This shows that Φℎ is coercive hence, by Theorem 3.3 of [15],

surjective. Let now 𝑤ℎ ∈ 𝑊 𝑘
ℎ be such that (𝑤ℎ, 𝑣ℎ)𝑊 ,ℎ =

∫︀
Ω

𝑓 · 𝑣ℎ for all 𝑣ℎ ∈ 𝑊 𝑘
ℎ. By the surjectivity of

Φℎ, there exists 𝑢ℎ ∈ 𝑊 𝑘
ℎ such that Φℎ(𝑢ℎ) = 𝑤ℎ which, by definition of 𝑤ℎ and Φℎ, is a solution to the

discrete problem (7.16).
The proof of existence now continues as in the linear case; see, e.g., Theorem 4.2.1 of [9]. Denote by 𝑈𝑘,*

ℎ,0

the dual space of 𝑈𝑘
ℎ,0 and consider the linear mapping ℓℎ ∈ 𝑈𝑘,*

ℎ,0 such that, for all 𝑣ℎ ∈ 𝑈𝑘
ℎ,0,

⟨ℓℎ, 𝑣ℎ⟩ :=
∫︁

Ω

𝑓 · 𝑣ℎ − aℎ(𝑢ℎ, 𝑣ℎ).

Thanks to (7.16), ℓℎ vanishes identically for every 𝑣ℎ ∈ 𝑊 𝑘
ℎ, that is to say, ℓℎ lies in the polar space of 𝑊 𝑘

ℎ

which, denoting by 𝐵*
ℎ : 𝑃 𝑘

ℎ → 𝑈𝑘,*
ℎ,0 the adjoint operator of 𝐵ℎ, coincides in our case with Im(𝐵*

ℎ) (see, e.g.,
[9], Thm. 4.14). Hence, ℓℎ ∈ Im(𝐵*

ℎ), and there exists therefore a 𝑝ℎ ∈ 𝑃 𝑘
ℎ such that 𝐵*

ℎ𝑝ℎ = ℓℎ. This means
that, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ,0,

bℎ (𝑣ℎ, 𝑝ℎ) = ⟨𝐵*
ℎ𝑝ℎ, 𝑣ℎ⟩ = ⟨ℓℎ, 𝑣ℎ⟩ =

∫︁
Ω

𝑓 · 𝑣ℎ − aℎ (𝑢ℎ, 𝑣ℎ) ,

i.e., the (𝑢ℎ, 𝑝ℎ) satisfies the discrete momentum equation (4.15a). On the other hand, since 𝑢ℎ ∈ 𝑊 𝑘
ℎ, we

also have, by the definition (7.15) of 𝑊 𝑘
ℎ, bℎ(𝑢ℎ, 𝑞ℎ) = 0 for all 𝑞ℎ ∈ 𝑃 𝑘

ℎ , which shows that the discrete mass
equation (4.15b) is also verified. In conclusion, (𝑢ℎ, 𝑝ℎ) ∈ 𝑈𝑘

ℎ,0 × 𝑃 𝑘
ℎ solves (4.15).

(ii) Uniqueness. We start by proving uniqueness for the velocity. Let (𝑢ℎ, 𝑝ℎ), (𝑢′ℎ, 𝑝′ℎ) ∈ 𝑈𝑘
ℎ,0 × 𝑃 𝑘

ℎ be two
solutions of (4.15). Making 𝑣ℎ = 𝑢ℎ −𝑢′ℎ in (4.15a) written first for (𝑢ℎ, 𝑝ℎ) then for (𝑢′ℎ, 𝑝′ℎ), then taking
the difference and observing that bℎ(𝑢ℎ − 𝑢′ℎ, 𝑝ℎ) = bℎ(𝑢ℎ − 𝑢′ℎ, 𝑝′ℎ) = 0 by (4.15b), we infer that

aℎ(𝑢ℎ, 𝑢ℎ − 𝑢′ℎ)− aℎ(𝑢′ℎ, 𝑢ℎ − 𝑢′ℎ) = 0.
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Thus, the strong monotonicity (7.6b) of aℎ yields ‖𝑢ℎ − 𝑢′ℎ‖𝑟,ℎ = 0, which implies 𝑢ℎ = 𝑢′ℎ since ‖·‖𝑟,ℎ is
a norm on 𝑈𝑘

ℎ,0. Moreover, using the inf-sup stability (7.11) of bℎ and (4.15a) written first for 𝑢ℎ then for
𝑢′ℎ, we get

‖𝑝ℎ − 𝑝′ℎ‖𝐿𝑟′ (Ω,R) . sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

bℎ (𝑣ℎ, 𝑝ℎ − 𝑝′ℎ)

= sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

(aℎ (𝑢′ℎ, 𝑣ℎ)− aℎ (𝑢ℎ, 𝑣ℎ)) = 0,

hence 𝑝ℎ = 𝑝′ℎ.
(iii) A priori estimates. Using the strong monotonicity (7.6b) of aℎ (with 𝑤ℎ = 0), equation (4.15a) together

with (4.15b), and the Hölder inequality together with the discrete Korn inequality (6.5), we obtain

𝜎sm

(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ

)︀ 𝑟−2
𝑟 ‖𝑢ℎ‖𝑟+2−𝑟

𝑟,ℎ . aℎ(𝑢ℎ, 𝑢ℎ) =
∫︁

Ω

𝑓 · 𝑢ℎ . ‖𝑓‖𝐿𝑟′ (Ω,R𝑑)‖𝑢ℎ‖𝑟,ℎ. (7.17)

We then conclude as in the continuous case to infer (4.16a) (see Rem. 2.7). To prove the bound (4.16b) on
the pressure, we use the inf-sup stability (7.11) of bℎ to write

‖𝑝ℎ‖𝐿𝑟′ (Ω,R) . sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

bℎ(𝑣ℎ, 𝑝ℎ)

= sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

(︂∫︁
Ω

𝑓 · 𝑣ℎ − aℎ (𝑢ℎ, 𝑣ℎ)
)︂

. ‖𝑓‖𝐿𝑟′ (Ω,R𝑑) + 𝜎hc

(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ

)︀ 𝑟−𝑟
𝑟 ‖𝑢ℎ‖𝑟−1

𝑟,ℎ

. 𝜎hc

(︂
𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑) + 𝜎
|𝑟−2|(𝑟−1)
de

(︁
𝜎−1

sm‖𝑓‖𝐿𝑟′ (Ω,R𝑑)

)︁ 𝑟−1
𝑟+1−𝑟

)︂
,

where we have used the discrete momentum equation (4.15a) to pass to the second line, the Hölder and
discrete Korn (6.5) inequalities together with the Hölder continuity (7.6a) of aℎ to pass to the third line,
and the a priori bound (4.16a) on the velocity together with 𝜎hc

𝜎sm
≥ 1 (see (2.4)) to conclude.

�

7.3. Error estimate

In this section, after studying the consistency of the viscous and pressure-velocity coupling terms, we prove
Theorem 4.7.

7.3.1. Consistency of the viscous function

Lemma 7.5 (Consistency of aℎ). Let 𝑤 ∈ 𝑈 ∩ 𝑊 𝑘+2,𝑟(𝒯ℎ, R𝑑) be such that 𝜎(·, ∇s𝑤) ∈ 𝑊 1,𝑟′(Ω, R𝑑×𝑑
s ) ∩

𝑊 (𝑘+1)(𝑟−1),𝑟′(𝒯ℎ, R𝑑×𝑑
s ). Define the viscous consistency error linear form ℰa,ℎ(𝑤; ·) : 𝑈𝑘

ℎ → R such that, for
all 𝑣ℎ ∈ 𝑈𝑘

ℎ,

ℰa,ℎ (𝑤; 𝑣ℎ) :=
∫︁

Ω

(∇·𝜎 (·, ∇s𝑤)) · 𝑣ℎ + aℎ

(︁
𝐼𝑘

ℎ𝑤, 𝑣ℎ

)︁
. (7.18)

Then, under Assumptions 2.1 and 4.1, we have

sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

ℰa,ℎ (𝑤; 𝑣ℎ) . ℎ(𝑘+1)(𝑟−1)

[︂
𝜎hc

(︁
𝜎𝑟

de + |𝑤|𝑟𝑊 1,𝑟(Ω,R𝑑)

)︁ 𝑟−𝑟
𝑟 |𝑤|𝑟−1

𝑊 𝑘+2,𝑟(𝒯ℎ,R𝑑)

+ |𝜎(·, ∇s𝑤)|𝑊 (𝑘+1)(𝑟−1),𝑟′ (𝒯ℎ,R𝑑×𝑑)

]︂
. (7.19)
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Proof. Let 𝑤̂ℎ := 𝐼𝑘
ℎ𝑤 and 𝑣ℎ ∈ 𝑈𝑘

ℎ,0. Expanding aℎ according to its definition (4.4) in the expression (7.18)

of ℰa,ℎ, inserting ±
(︁∫︀

Ω
𝜎(·, ∇s𝑤) : G𝑘

s,ℎ𝑣ℎ +
∫︀
Ω

𝜋𝑘
ℎ𝜎(·, ∇s𝑤) : G𝑘

s,ℎ𝑣ℎ

)︁
, and rearranging, we obtain

ℰa,ℎ(𝑤; 𝑣ℎ)

=
∫︁

Ω

(∇·𝜎 (·, ∇s𝑤)) · 𝑣ℎ+
∫︁

Ω

𝜋𝑘
ℎ𝜎 (·, ∇s𝑤) : G𝑘

s,ℎ𝑣ℎ⏟  ⏞  
𝒯1

+
(((

((((
(((

((((
((((∫︁

Ω

(︀
𝜎 (·, ∇s𝑤)− 𝜋𝑘

ℎ𝜎 (·, ∇s𝑤)
)︀

: G𝑘
s,ℎ𝑣ℎ

+
∫︁

Ω

(︁
𝜎
(︁
·,G𝑘

s,ℎ𝑤̂ℎ

)︁
− 𝜎 (·, ∇s𝑤)

)︁
: G𝑘

s,ℎ𝑣ℎ⏟  ⏞  
𝒯2

+ 𝛾sℎ (𝑤̂ℎ, 𝑣ℎ)⏟  ⏞  
𝒯3

, (7.20)

where have used the definition (3.1) of 𝜋𝑘
ℎ together with the fact that G𝑘

s,ℎ𝑣ℎ ∈ P𝑘(𝒯ℎ, R𝑑×𝑑
s ) in the cancellation.

We proceed to estimate the terms in the right-hand side. For the first term, we start by noticing that

∑︁
𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝑇

∫︁
𝐹

𝑣𝐹 · (𝜎 (·, ∇s𝑤) 𝑛𝑇𝐹 ) = 0 (7.21)

as a consequence of the continuity of the normal trace of 𝜎 (·, ∇s𝑤) together with the single-valuedness of 𝑣𝐹

across each interface 𝐹 ∈ ℱ i
ℎ and of the fact that 𝑣𝐹 = 0 for every boundary face 𝐹 ∈ ℱb

ℎ . Using an element by
element integration by parts on the first term of 𝒯1 along with the definitions (4.3) of G𝑘

s,ℎ and (4.1) of G𝑘
s,𝑇 ,

we can write

𝒯1 =
(((

((((
(((

((((
(((

((∫︁
Ω

(︀
𝜋𝑘

ℎ𝜎 (·, ∇s𝑤)− 𝜎 (·, ∇s𝑤)
)︀

: ∇s,ℎ𝑣ℎ

+
∑︁

𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝑇

(︂∫︁
𝐹

(𝑣𝐹 − 𝑣𝑇 ) ·
(︀
𝜋𝑘

𝑇 𝜎 (·, ∇s𝑤)
)︀
𝑛𝑇𝐹 +

∫︁
𝐹

𝑣𝑇 · (𝜎 (·, ∇s𝑤) 𝑛𝑇𝐹 )
)︂

=
∑︁

𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝑇

∫︁
𝐹

(𝑣𝐹 − 𝑣𝑇 ) ·
(︀
𝜋𝑘

𝑇 𝜎 (·, ∇s𝑤)− 𝜎 (·, ∇s𝑤)
)︀
𝑛𝑇𝐹 ,

where we have used the definition (3.1) of 𝜋𝑘
ℎ together with the fact that ∇s,ℎ𝑣ℎ ∈ P𝑘−1(𝒯ℎ, R𝑑×𝑑

s ) ⊂
P𝑘(𝒯ℎ, R𝑑×𝑑

s ) to cancel the term in the first line, and we have inserted (7.21) and rearranged to conclude.
Therefore, applying the Hölder inequality together with the bound ℎ𝐹 ≤ ℎ𝑇 , we infer

|𝒯1| ≤

(︃∑︁
𝑇∈𝒯ℎ

ℎ𝑇 ‖𝜎(·, ∇s𝑤)− 𝜋𝑘
𝑇 𝜎(·, ∇s𝑤)‖𝑟′

𝐿𝑟′ (𝜕𝑇,R𝑑×𝑑)

)︃ 1
𝑟′
(︃∑︁

𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝑇

ℎ1−𝑟
𝐹 ‖𝑣𝐹 − 𝑣𝑇 ‖𝑟

𝐿𝑟(𝐹,R𝑑)

)︃ 1
𝑟

. ℎ(𝑘+1)(𝑟−1)|𝜎(·, ∇s𝑤)|𝑊 (𝑘+1)(𝑟−1),𝑟′ (𝒯ℎ,R𝑑×𝑑)‖𝑣ℎ‖𝑟,ℎ,

(7.22)

where the conclusion follows using the ((𝑘 + 1)(𝑟 − 1), 𝑟′)-trace approximation properties (3.2b) of 𝜋𝑘
𝑇 along

with ℎ𝑇 ≤ ℎ for the first factor and the definition (3.4) of the ‖·‖𝑟,ℎ-norm for the second.
For the second term, using the Hölder inequality and again (7.4a), we get

|𝒯2| ≤
⃦⃦⃦
𝜎
(︁
·,G𝑘

s,ℎ𝑤̂ℎ

)︁
− 𝜎 (·, ∇s𝑤)

⃦⃦⃦
𝐿𝑟′ (Ω,R𝑑×𝑑)

‖𝑣ℎ‖𝑟,ℎ. (7.23)
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We estimate the first factor as follows:⃦⃦⃦
𝜎
(︁
·,G𝑘

s,ℎ𝑤̂ℎ

)︁
− 𝜎 (·, ∇s𝑤)

⃦⃦⃦
𝐿𝑟′ (Ω,R𝑑×𝑑)

≤ 𝜎hc

⃦⃦⃦⃦(︁
𝜎𝑟

de + |G𝑘
s,ℎ𝑤̂ℎ|𝑟𝑑×𝑑 + |∇s𝑤|𝑟𝑑×𝑑

)︁ 𝑟−𝑟
𝑟 |G𝑘

s,ℎ𝑤̂ℎ −∇s𝑤|𝑟−1
𝑑×𝑑

⃦⃦⃦⃦
𝐿𝑟′ (Ω,R)

. 𝜎hc

(︁
𝜎𝑟

de + ‖G𝑘
s,ℎ𝑤̂ℎ‖𝑟

𝐿𝑟(Ω,R𝑑×𝑑) + ‖∇s𝑤‖𝑟
𝐿𝑟(Ω,R𝑑×𝑑)

)︁ 𝑟−𝑟
𝑟 ‖G𝑘

s,ℎ𝑤̂ℎ −∇s𝑤‖𝑟−1
𝐿𝑟(Ω,R𝑑×𝑑)

. 𝜎hc

(︁
𝜎𝑟

de + ‖𝑤̂ℎ‖𝑟
𝑟,ℎ + |𝑤|𝑟𝑊 1,𝑟(Ω,R𝑑)

)︁ 𝑟−𝑟
𝑟 ‖𝜋𝑘

ℎ(∇s𝑤)−∇s𝑤‖𝑟−1
𝐿𝑟(Ω,R𝑑×𝑑)

. ℎ(𝑘+1)(𝑟−1)𝜎hc

(︁
𝜎𝑟

de + |𝑤|𝑟𝑊 1,𝑟(Ω,R𝑑)

)︁ 𝑟−𝑟
𝑟 |𝑤|𝑟−1

𝑊 𝑘+2,𝑟(𝒯ℎ,R𝑑)
,

where we have used the Hölder continuity (2.3c) of 𝜎 in the first bound, the (𝑟′; 𝑟
𝑟−𝑟 , 𝑟

𝑟−1 )-Hölder inequality
(7.2) in the second, the boundedness of Ω along with (7.4a) and the commutation property (4.2) of G𝑘

s,ℎ in
the third, and we have concluded invoking the (𝑘 + 1, 𝑟, 0)-approximation property (3.2a) of 𝜋𝑘

𝑇 . Plugging this
estimate into (7.23), we get

|𝒯2| . ℎ(𝑘+1)(𝑟−1)𝜎hc

(︁
𝜎𝑟

de + |𝑤|𝑟𝑊 1,𝑟(Ω,R𝑑)

)︁ 𝑟−𝑟
𝑟 |𝑤|𝑟−1

𝑊 𝑘+2,𝑟(𝒯ℎ,R𝑑)
‖𝑣ℎ‖𝑟,ℎ. (7.24)

Finally, using the fact that 𝛾 ≤ 𝜎hc together with the consistency (7.5) of sℎ and the norm equivalence (7.4a),
we obtain for the third term

|𝒯3| . ℎ(𝑘+1)(𝑟−1)𝜎hc|𝑤|𝑟−𝑟
𝑊 1,𝑟(Ω,R𝑑)

|𝑤|𝑟−1
𝑊 𝑘+2,𝑟(𝒯ℎ,R𝑑)

‖𝑣ℎ‖𝑟,ℎ. (7.25)

Plug the bounds (7.22), (7.24), and (7.25) into (7.20) and pass to the supremum to conclude. �

7.3.2. Consistency of the pressure-velocity coupling bilinear form

Lemma 7.6 (Consistency of bℎ). Let 𝑞 ∈ 𝑊 1,𝑟′(Ω, R) ∩𝑊 (𝑘+1)(𝑟−1),𝑟′(𝒯ℎ, R). Let ℰb,ℎ(𝑞; ·) : 𝑈𝑘
ℎ → R be the

pressure consistency error linear form such that, for all 𝑣ℎ ∈ 𝑈𝑘
ℎ,

ℰb,ℎ(𝑞; 𝑣ℎ) :=
∫︁

Ω

∇𝑞 · 𝑣ℎ − bℎ

(︀
𝑣ℎ, 𝜋𝑘

ℎ𝑞
)︀
. (7.26)

Then, we have that

sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

ℰb,ℎ(𝑞; 𝑣ℎ) . ℎ(𝑘+1)(𝑟−1)|𝑞|𝑊 (𝑘+1)(𝑟−1),𝑟′ (𝒯ℎ,R). (7.27)

Proof. Let 𝑣ℎ ∈ 𝑈𝑘
ℎ,0. Integrating by parts element by element, we can reformulate the first term in the right-

hand side of (7.26) as follows:∫︁
Ω

∇𝑞 · 𝑣ℎ = −
∑︁

𝑇∈𝒯ℎ

(︃∫︁
𝑇

𝑞(∇·𝑣𝑇 ) +
∑︁

𝐹∈ℱ𝑇

∫︁
𝐹

𝑞(𝑣𝐹 − 𝑣𝑇 ) · 𝑛𝑇𝐹

)︃
, (7.28)

where the introduction of 𝑣𝐹 in the boundary term is justified by the fact that the jumps of 𝑞 vanish across
interfaces by the assumed regularity and that 𝑣𝐹 = 0 on every boundary face 𝐹 ∈ ℱb

ℎ . On the other hand,
expanding, for each 𝑇 ∈ 𝒯ℎ, D𝑘

𝑇 according to its definition (4.13), we get

−bℎ

(︀
𝑣ℎ, 𝜋𝑘

ℎ𝑞
)︀

=
∑︁

𝑇∈𝒯ℎ

(︃∫︁
𝑇

𝜋𝑘
𝑇 𝑞 (∇·𝑣𝑇 ) +

∑︁
𝐹∈ℱ𝑇

∫︁
𝐹

𝜋𝑘
𝑇 𝑞 (𝑣𝐹 − 𝑣𝑇 ) · 𝑛𝑇𝐹

)︃
. (7.29)
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Summing (7.28) and (7.29) and observing that the first terms in parentheses cancel out by the definition (3.1)
of 𝜋𝑘

𝑇 since ∇·𝑣𝑇 ∈ P𝑘−1(𝑇, R) ⊂ P𝑘(𝑇, R) for all 𝑇 ∈ 𝒯ℎ, we can write

ℰb,ℎ (𝑞; 𝑣ℎ) =
∑︁

𝑇∈𝒯ℎ

(︃
���

���
���

�∫︁
𝑇

(︀
𝜋𝑘

𝑇 𝑞 − 𝑞
)︀

(∇·𝑣𝑇 ) +
∑︁

𝐹∈ℱ𝑇

∫︁
𝐹

(︀
𝜋𝑘

𝑇 𝑞 − 𝑞
)︀

(𝑣𝐹 − 𝑣𝑇 ) · 𝑛𝑇𝐹

)︃

≤

(︃∑︁
𝑇∈𝒯ℎ

ℎ𝑇 ‖𝜋𝑘
𝑇 𝑞 − 𝑞‖𝑟′

𝐿𝑟′ (𝜕𝑇,R)

)︃ 1
𝑟′
(︃∑︁

𝑇∈𝒯ℎ

∑︁
𝐹∈ℱ𝑇

ℎ1−𝑟
𝐹 ‖𝑣𝐹 − 𝑣𝑇 ‖𝑟

𝐿𝑟(𝐹,R𝑑)

)︃ 1
𝑟

. ℎ(𝑘+1)(𝑟−1)|𝑞|𝑊 (𝑘+1)(𝑟−1),𝑟′ (𝒯ℎ,R)‖𝑣ℎ‖𝑟,ℎ,

where we have used the Hölder inequality along with ℎ𝐹 ≥ ℎ𝑇 whenever 𝐹 ∈ ℱ𝑇 in the second line and the
((𝑘+1)(𝑟−1), 𝑟′)-trace approximation property (3.2b) of 𝜋𝑘

𝑇 together with the bound ℎ𝐹 ≤ ℎ and the definition
(3.4) of the ‖·‖𝑟,ℎ-norm to conclude. Passing to the supremum yields (7.27). �

7.3.3. Proof of Theorem 4.7

Proof of Theorem 4.7. Let (𝑒ℎ, 𝜖ℎ) := (𝑢ℎ− 𝑢̂ℎ, 𝑝ℎ−𝑝ℎ) ∈ 𝑈𝑘
ℎ,0×𝑃 𝑘

ℎ where 𝑢̂ℎ := 𝐼𝑘
ℎ𝑢 ∈ 𝑈𝑘

ℎ,0 and 𝑝ℎ := 𝜋𝑘
ℎ𝑝 ∈

𝑃 𝑘
ℎ .

Step 1. Consistency error. Let ℰℎ : 𝑈𝑘
ℎ,0 → R be the consistency error linear form such that, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ,0,

ℰℎ (𝑣ℎ) :=
∫︁

Ω

𝑓 · 𝑣ℎ − aℎ (𝑢̂ℎ, 𝑣ℎ)− bℎ (𝑣ℎ, 𝑝ℎ) . (7.30)

Using in the above expression the fact that 𝑓 = −∇·𝜎(·, ∇s𝑢) + ∇𝑝 almost everywhere in Ω to write
ℰℎ(𝑣ℎ) = ℰa,ℎ(𝑢; 𝑣ℎ) + ℰb,ℎ(𝑝; 𝑣ℎ), and invoking the consistency properties (7.19) of aℎ and (7.27) of bℎ, we
obtain

$ := sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

ℰℎ (𝑣ℎ) . ℎ(𝑘+1)(𝑟−1)𝒩𝜎,𝑢,𝑝. (7.31)

Step 2. Error estimate for the velocity. Using the strong monotonicity (7.6b) of aℎ, we get

‖𝑒ℎ‖𝑟+2−𝑟
𝑟,ℎ . 𝜎−1

sm

(︀
𝜎𝑟

de + ‖𝑢ℎ‖𝑟
𝑟,ℎ + ‖𝑢̂ℎ‖𝑟

𝑟,ℎ

)︀ 2−𝑟
𝑟 (aℎ (𝑢ℎ, 𝑒ℎ)− aℎ (𝑢̂ℎ, 𝑒ℎ))

. 𝜎−1
sm𝒩 2−𝑟

𝑓 (aℎ (𝑢ℎ, 𝑒ℎ)− aℎ (𝑢̂ℎ, 𝑒ℎ)) ,
(7.32)

where we have used the a priori bound (4.16a) on the discrete solution along with the boundedness (7.12a)
of the global interpolator and the a priori bound (2.8) on the continuous solution to conclude. Using then
the discrete mass equation (4.15b) along with (7.12b) (written for 𝑣 = 𝑢) and the continuous mass equation
(2.6b) to write bℎ(𝐼𝑘

ℎ𝑢, 𝑞ℎ) = 𝑏(𝑢, 𝑞ℎ) = 0, we get bℎ(𝑒ℎ, 𝑞ℎ) = 0 for all 𝑞ℎ ∈ 𝑃 𝑘
ℎ . Hence, combining this

result with (7.30) and the discrete momentum equation (4.15a) (with 𝑣ℎ = 𝑒ℎ), we obtain

aℎ (𝑢ℎ, 𝑒ℎ)− aℎ (𝑢̂ℎ, 𝑒ℎ) =
∫︁

Ω

𝑓 · 𝑒ℎ − aℎ (𝑢̂ℎ, 𝑒ℎ)−���
��bℎ (𝑒ℎ, 𝑝ℎ) = ℰℎ(𝑒ℎ). (7.33)

Plugging (7.33) into (7.32), we get

‖𝑒ℎ‖𝑟+2−𝑟
𝑟,ℎ ≤ 𝜎−1

sm𝒩 2−𝑟
𝑓 $‖𝑒ℎ‖𝑟,ℎ.

Simplifying, using (7.31), and taking the (𝑟 + 1− 𝑟)th root of the resulting inequality yields (4.17a).
Step 3. Error estimate for the pressure. Using the Hölder continuity (7.6a) of aℎ, we have, for all 𝑣ℎ ∈ 𝑈𝑘

ℎ,0,

|aℎ (𝑢̂ℎ, 𝑣ℎ)− aℎ (𝑢ℎ, 𝑣ℎ)| . 𝜎hc

(︀
𝜎𝑟

de + ‖𝑢̂ℎ‖𝑟
𝑟,ℎ + ‖𝑢ℎ‖𝑟

𝑟,ℎ

)︀ 𝑟−𝑟
𝑟 ‖𝑒ℎ‖𝑟−1

𝑟,ℎ ‖𝑣ℎ‖𝑟,ℎ

. 𝜎hc𝒩 𝑟−𝑟
𝑓 ‖𝑒ℎ‖𝑟−1

𝑟,ℎ ‖𝑣ℎ‖𝑟,ℎ,
(7.34)
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where the first factor is estimated as in (7.32). Thus, using the inf-sup condition (7.11), we can write

‖𝜖ℎ‖𝐿𝑟′ (Ω,R) . sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

bℎ (𝑣ℎ, 𝜖ℎ)

= sup
𝑣ℎ∈𝑈𝑘

ℎ,0,‖𝑣ℎ‖𝑟,ℎ=1

(ℰℎ(𝑣ℎ) + aℎ (𝑢̂ℎ, 𝑣ℎ)− aℎ (𝑢ℎ, 𝑣ℎ))

. $ + 𝜎hc𝒩 𝑟−𝑟
𝑓 ‖𝑒ℎ‖𝑟−1

𝑟,ℎ

. ℎ(𝑘+1)(𝑟−1)𝒩𝜎,𝑢,𝑝 + ℎ(𝑘+1)(𝑟−1)2𝜎hc𝒩 |𝑟−2|(𝑟−1)
𝑓

(︀
𝜎−1

sm𝒩𝜎,𝑢,𝑝

)︀ 𝑟−1
𝑟+1−𝑟 ,

(7.35)

where we have used the definition (7.30) of the consistency error together with equation (4.15a) to pass to
the second line, (7.34) to pass to the third line (recall that $ denotes here the supremum in the left-hand
side of (7.31)), and the bounds (7.31) and (4.17a) (proved in Step 2) to conclude.

�

Appendix A. Power-framed functions

In the following theorem, we introduce the notion of power-framed function and discuss sufficient conditions
for this property to hold.

Theorem A.1 (Power-framed function). Let 𝑈 be a measurable subset of R𝑛 with 𝑛 ≥ 1, (𝑊, (·, ·)𝑊 ) an inner
product space, and 𝜎 : 𝑈 ×𝑊 → 𝑊 . Assume that there exists a Carathéodory function 𝜍 : 𝑈 × [0,∞) → R such
that, for all 𝜏 ∈ 𝑊 and almost every 𝑥 ∈ 𝑈 ,

𝜎(𝑥, 𝜏 ) = 𝜍(𝑥, ‖𝜏‖𝑊 )𝜏 , (A.1a)

where ‖·‖𝑊 is the norm induced by (·, ·)𝑊 . Additionally assume that, for almost every 𝑥 ∈ 𝑈 , 𝜍(𝑥, ·) is dif-
ferentiable on (0,∞) and there exist 𝜍de ∈ [0,∞) and 𝜍sm, 𝜍hc ∈ (0,∞) independent of 𝑥 such that, for all
𝛼 ∈ (0,∞),

𝜍sm(𝜍𝑟
de + 𝛼𝑟)

𝑟−2
𝑟 ≤ 𝜕(𝛼𝜍(𝑥, 𝛼))

𝜕𝛼
≤ 𝜍hc(𝜍𝑟

de + 𝛼𝑟)
𝑟−2

𝑟 . (A.1b)

Then, 𝜎 is an 𝑟-power-framed function, i.e., for all (𝜏 , 𝜂) ∈ 𝑊 2 with 𝜏 ̸= 𝜂 and almost every 𝑥 ∈ 𝑈 , the
function 𝜎 verifies the Hölder continuity property

‖𝜎(𝑥, 𝜏 )− 𝜎(𝑥, 𝜂)‖𝑊 ≤ 𝜎hc (𝜎𝑟
de + ‖𝜏‖𝑟

𝑊 + ‖𝜂‖𝑟
𝑊 )

𝑟−2
𝑟 ‖𝜏 − 𝜂‖𝑊 , (A.2a)

and the strong monotonicity property

(𝜎(𝑥, 𝜏 )− 𝜎(𝑥, 𝜂), 𝜏 − 𝜂)𝑊 ≥ 𝜎sm (𝜎𝑟
de + ‖𝜏‖𝑟

𝑊 + ‖𝜂‖𝑟
𝑊 )

𝑟−2
𝑟 ‖𝜏 − 𝜂‖2𝑊 , (A.2b)

with 𝜎de := 𝜍de, 𝜎hc := 22−𝑟+𝑟−1⌈2−𝑟⌉(𝑟− 1)−1𝜍hc, and 𝜎sm := 2𝑟−𝑟−⌈𝑟−1(𝑟−𝑟)⌉(𝑟 + 1− 𝑟)−1𝜍sm, where 𝑟 is given
by (2.2) and ⌈·⌉ is the ceiling function.

Remark A.2 (Notation). The boldface notation for the elements of 𝑊 is reminiscent of the fact that Theo-
rem A.1 is used with 𝑊 = R𝑑×𝑑

s in Corollary A.3 to characterize the Carreau–Yasuda law as an 𝑟-power-framed
function and in Lemma 4.3 with 𝑊 = R𝑑 to study the local stabilization function s𝑇 .

Proof of Theorem A.1. Let 𝑥 ∈ 𝑈 be such that (A.1) holds, and 𝜏 , 𝜂 ∈ 𝑊 . By symmetry of inequalities (A.2)
and the fact that 𝜎 is continuous, we can assume, without loss of generality, that ‖𝜏‖𝑊 > ‖𝜂‖𝑊 > 0.
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(i) Strong monotonicity. Let 𝛽 ∈ (0,∞) and let 𝑔 : [𝛽,∞) → R be such that, for all 𝛼 ∈ [𝛽,∞),

𝑔(𝛼) := 𝛼𝜍 (𝑥, 𝛼)− 𝛽𝜍 (𝑥, 𝛽)− 𝐶sm (𝜍𝑟
de + 𝛼𝑟 + 𝛽𝑟)

𝑟−2
𝑟 (𝛼− 𝛽), with 𝐶sm := 2𝑟−𝑟

𝑟+1−𝑟 𝜍sm.

Differentiating 𝑔 and using the first inequality in (A.1b), we obtain, for all 𝛼 ∈ [𝛽,∞),

𝜕

𝜕𝛼
𝑔(𝛼) ≥ 𝜍sm (𝜍𝑟

de + 𝛼𝑟)
𝑟−2

𝑟 − 𝐶sm

(︁
(𝑟 − 2) (𝜍𝑟

de + 𝛼𝑟 + 𝛽𝑟)−
2
𝑟 (𝛼− 𝛽)𝛼𝑟−1 + (𝜍𝑟

de + 𝛼𝑟 + 𝛽𝑟)
𝑟−2

𝑟

)︁
≥ 𝜍sm (𝜍𝑟

de + 𝛼𝑟)
𝑟−2

𝑟 − (𝑟 + 1− 𝑟) 𝐶sm (𝜍𝑟
de + 𝛼𝑟 + 𝛽𝑟)

𝑟−2
𝑟

≥ 𝜍sm2𝑟−𝑟 (𝜍𝑟
de + 𝛼𝑟 + 𝛽𝑟)

𝑟−2
𝑟 − (𝑟 + 1− 𝑟) 𝐶sm (𝜍𝑟

de + 𝛼𝑟 + 𝛽𝑟)
𝑟−2

𝑟 = 0,

where, to pass to the second line, we have removed negative contributions if 𝑟 < 2 and used the fact that
(𝛼 − 𝛽)𝛼𝑟−1 ≤ 𝜍𝑟

de + 𝛼𝑟 + 𝛽𝑟 if 𝑟 ≥ 2, to pass to the third line we have used the fact that 𝑡 ↦→ 𝑡𝑟−2 is
non-increasing if 𝑟 < 2, and the fact that 𝛽 ≤ 𝛼 otherwise, while the conclusion follows from the definition
of 𝐶sm. This shows that 𝑔 is non-decreasing. Hence, for all 𝛼 ∈ [𝛽,∞), 𝑔(𝛼) ≥ 𝑔(𝛽) = 0, i.e.,

𝛼𝜍(𝑥, 𝛼)− 𝛽𝜍(𝑥, 𝛽) ≥ 𝐶sm (𝜍𝑟
de + 𝛼𝑟 + 𝛽𝑟)

𝑟−2
𝑟 (𝛼− 𝛽). (A.3)

Moreover, for all 𝛼, 𝛽 ∈ (0,∞), using (A.3) (with 𝛽 = 0) along with the fact that 𝑡 ↦→ 𝑡𝑟−2 is decreasing if
𝑟 < 2 and inequality (6.4) if 𝑟 ≥ 2, we infer that

𝜍(𝑥, 𝛼) + 𝜍(𝑥, 𝛽) ≥ 𝐶sm

(︁
(𝜍𝑟

de + 𝛼𝑟)
𝑟−2

𝑟 + (𝜍𝑟
de + 𝛽𝑟)

𝑟−2
𝑟

)︁
≥ 𝐶sm21−⌈ 𝑟−𝑟

𝑟 ⌉ (𝜍𝑟
de + 𝛼𝑟 + 𝛽𝑟)

𝑟−2
𝑟 · (A.4)

We conclude that 𝜎 verifies (A.2b) by using (A.3) and (A.4) with 𝛼 = ‖𝜏‖𝑊 and 𝛽 = ‖𝜂‖𝑊 as follows:

(𝜎 (𝑥, 𝜏 )− 𝜎 (𝑥, 𝜂) , 𝜏 − 𝜂)𝑊

= (𝜏 𝜍 (𝑥, ‖𝜏‖𝑊 )− 𝜂𝜍 (𝑥, ‖𝜂‖𝑊 ) , 𝜏 − 𝜂)𝑊

= ‖𝜏‖2𝑊 𝜍 (𝑥, ‖𝜏‖𝑊 ) + ‖𝜂‖2𝑊 𝜍 (𝑥, ‖𝜂‖𝑊 )− (𝜏 , 𝜂)𝑊 [𝜍 (𝑥, ‖𝜏‖𝑊 ) + 𝜍 (𝑥, ‖𝜂‖𝑊 )]
= [‖𝜏‖𝑊 𝜍 (𝑥, ‖𝜏‖𝑊 )− ‖𝜂‖𝑊 𝜍 (𝑥, ‖𝜂‖𝑊 )] (‖𝜏‖𝑊 − ‖𝜂‖𝑊 )

+ [𝜍 (𝑥, ‖𝜏‖𝑊 ) + 𝜍 (𝑥, ‖𝜂‖𝑊 )] (‖𝜏‖𝑊 ‖𝜂‖𝑊 − (𝜏 , 𝜂)𝑊 )

≥ 𝐶sm2−⌈
𝑟−𝑟

𝑟 ⌉ (𝜍𝑟
de + ‖𝜏‖𝑟

𝑊 + ‖𝜂‖𝑟
𝑊 )

𝑟−2
𝑟

[︁
(‖𝜏‖𝑊 − ‖𝜂‖𝑊 )2 + 2 (‖𝜏‖𝑊 ‖𝜂‖𝑊 − (𝜏 , 𝜂)𝑊 )

]︁
= 𝐶sm2−⌈

𝑟−𝑟
𝑟 ⌉ (𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 + ‖𝜂‖𝑟

𝑊 )
𝑟−2

𝑟 ‖𝜏 − 𝜂‖2𝑊 .

(ii) Hölder continuity. Now, setting 𝐶hc := 𝜍hc
𝑟−1 and reasoning in a similar way as for the proof of (A.3) to

leverage the second inequality in (A.1b), we have, for all 𝛼 ∈ [𝛽,∞),

𝛼𝜍(𝑥, 𝛼)− 𝛽𝜍(𝑥, 𝛽) ≤ 𝐶hc (𝜍𝑟
de + 𝛼𝑟 + 𝛽𝑟)

𝑟−2
𝑟 (𝛼− 𝛽). (A.5)

First, let 𝑟 ≥ 2. Using (A.5) (with 𝛽 = 0) and the fact that 𝑡 ↦→ 𝑡𝑟−2 is non-decreasing, we have, for all
𝛼, 𝛽 ∈ (0,∞),

𝜍(𝑥, 𝛼)𝜍(𝑥, 𝛽) ≤ 𝐶2
hc (𝜍𝑟

de + 𝛼𝑟)
𝑟−2

𝑟 (𝜍𝑟
de + 𝛽𝑟)

𝑟−2
𝑟 ≤

[︁
𝐶hc (𝜍𝑟

de + 𝛼𝑟 + 𝛽𝑟)
𝑟−2

𝑟

]︁2
. (A.6)
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Thus, using inequalities (A.5) and (A.6) with 𝛼 = ‖𝜏‖𝑊 and 𝛽 = ‖𝜂‖𝑊 , we infer

‖𝜎(𝑥, 𝜏 )− 𝜎(𝑥, 𝜂)‖2𝑊
= (𝜏 𝜍 (𝑥, ‖𝜏‖𝑊 )− 𝜂𝜍 (𝑥, ‖𝜂‖𝑊 ) , 𝜏 𝜍 (𝑥, ‖𝜏‖𝑊 )− 𝜂𝜍 (𝑥, ‖𝜂‖𝑊 ))𝑊

= [‖𝜏‖𝑊 𝜍 (𝑥, ‖𝜏‖𝑊 )− ‖𝜂‖𝑊 𝜍 (𝑥, ‖𝜂‖𝑊 )]2

+ 2𝜍 (𝑥, ‖𝜏‖𝑊 ) 𝜍 (𝑥, ‖𝜂‖𝑊 ) [‖𝜏‖𝑊 ‖𝜂‖𝑊 − (𝜏 , 𝜂)𝑊 ]

≤
[︁
𝐶hc (𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 + ‖𝜂‖𝑟

𝑊 )
𝑟−2

𝑟

]︁2 [︁
(‖𝜏‖𝑊 − ‖𝜂‖𝑊 )2 + 2 (‖𝜏‖𝑊 ‖𝜂‖𝑊 − (𝜏 , 𝜂)𝑊 )

]︁
=
[︁
𝐶hc (𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 + ‖𝜂‖𝑟

𝑊 )
𝑟−2

𝑟 ‖𝜏 − 𝜂‖𝑊

]︁2
,

(A.7)

hence 𝜎 verifies (A.2a) for 𝑟 ≥ 2. Assume now 𝑟 < 2. Using a triangle inequality followed by (A.5) and the
left inequality in (6.4), it is inferred that

‖𝜎(𝑥, 𝜏 )− 𝜎(𝑥, 𝜂)‖𝑊 ≤ 𝜍(𝑥, ‖𝜏‖𝑊 )‖𝜏‖𝑊 + 𝜍(𝑥, ‖𝜂‖𝑊 )‖𝜂‖𝑊

≤ 𝐶hc

(︁
(𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 )

𝑟−1
𝑟 + (𝜍𝑟

de + ‖𝜂‖𝑟
𝑊 )

𝑟−1
𝑟

)︁
≤ 2

1
𝑟 𝐶hc(2𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 + ‖𝜂‖𝑟

𝑊 )
𝑟−1

𝑟

= 2
1
𝑟 𝐶hc(2𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 + ‖𝜂‖𝑟

𝑊 )
𝑟−2

𝑟 (2𝜍𝑟
de + ‖𝜏‖𝑟

𝑊 + ‖𝜂‖𝑟
𝑊 )

1
𝑟 ,

≤ 2
1
𝑟 𝐶hc(𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 + ‖𝜂‖𝑟

𝑊 )
𝑟−2

𝑟 (2𝜍de + ‖𝜏‖𝑊 + ‖𝜂‖𝑊 ),

where the last line follows from the fact that 𝑡 ↦→ 𝑡𝑟−2 is decreasing and again (6.4). If 2𝜍de+‖𝜏‖𝑊 +‖𝜂‖𝑊 ≤
22−𝑟‖𝜏 −𝜂‖𝑊 , from the previous bound we directly get the conclusion, i.e., (A.2a) with 𝜎hc = 22−𝑟+ 1

𝑟 𝐶hc.
Otherwise, using (6.4) and a triangle inequality yields

(𝜍𝑟
de + ‖𝜏‖𝑟

𝑊 )
1
𝑟 (𝜍𝑟

de + ‖𝜂‖𝑟
𝑊 )

1
𝑟 ≥ 2−

2
𝑟′ (𝜍de + ‖𝜏‖𝑊 ) (𝜍de + ‖𝜂‖𝑊 )

= 2−2( 1
𝑟′+1)

[︁
(2𝜍de + ‖𝜏‖𝑊 + ‖𝜂‖𝑊 )2 − (‖𝜏‖𝑊 − ‖𝜂‖𝑊 )2

]︁
≥ 2−2( 1

𝑟′+1)
[︁
(2𝜍de + ‖𝜏‖𝑊 + ‖𝜂‖𝑊 )2 − ‖𝜏 − 𝜂‖2𝑊

]︁
≥ 2−2( 1

𝑟′+1) (︀1− 4𝑟−2
)︀

(2𝜍de + ‖𝜏‖𝑊 + ‖𝜂‖𝑊 )2

≥ 2
2

(𝑟−2)𝑟
−2 (𝜍𝑟

de + ‖𝜏‖𝑟
𝑊 + ‖𝜂‖𝑟

𝑊 )
2
𝑟 ,

(A.8)

where we concluded with (6.4) together with the fact that 2−2( 1
𝑟′+1)

(︀
1− 4𝑟−2

)︀
≥ 2

2
(𝑟−2)𝑟

−2. Finally, raising
both sides of (A.8) to the power 𝑟− 2, we get a relation analogous to (A.6). Hence, proceeding as in (A.7),
we infer (A.2a).

�

Corollary A.3 (Carreau–Yasuda). The strain rate-shear stress law of the (𝜇, 𝛿, 𝑎, 𝑟)-Carreau–Yasuda fluid
defined in Example 2.5 is an 𝑟-power-framed function.

Proof. Let 𝑥 ∈ Ω and 𝑔 : (0,∞) → R be such that, for all 𝛼 ∈ (0,∞),

𝑔(𝛼) :=
𝜕

𝜕𝛼

[︂
𝛼𝜇(𝑥)

(︁
𝛿𝑎(𝑥) + 𝛼𝑎(𝑥)

)︁ 𝑟−2
𝑎(𝑥)
]︂

= 𝜇(𝑥)
(︁
𝛿𝑎(𝑥) + 𝛼𝑎(𝑥)

)︁ 𝑟−2
𝑎(𝑥)−1 (︁

𝛿𝑎(𝑥) + (𝑟 − 1)𝛼𝑎(𝑥)
)︁

.

We have for all 𝛼 ∈ (0,∞),

𝜇−(𝑟 − 1)
(︁
𝛿𝑎(𝑥) + 𝛼𝑎(𝑥)

)︁ 𝑟−2
𝑎(𝑥) ≤ 𝑔(𝛼) ≤ 𝜇+(𝑟 + 1− 𝑟)

(︁
𝛿𝑎(𝑥) + 𝛼𝑎(𝑥)

)︁ 𝑟−2
𝑎(𝑥)

,

and we conclude using (6.4) together with Theorem A.1. �
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[10] M. Bogovskĭı, Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl.
Akad. Nauk SSSR 248 (1979) 1037–1040.

[11] L. Botti and D.A. Di Pietro, 𝑝-multilevel preconditioners for hho discretizations of the Stokes equations with static condensation.
Commun. Appl. Math. Comput. (2021). Accepted for publication.

[12] M. Botti, D.A. Di Pietro and P. Sochala, A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 55
(2017) 2687–2717.

[13] M. Botti, D.A. Di Pietro, and P. Sochala, A nonconforming high-order method for nonlinear poroelasticity. In: Finite Volumes
for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems. Vol. 200 of Springer Proc. Math. Stat. Springer,
Cham (2017) 537–545.

[14] M. Botti, D.A. Di Pietro and A. Guglielmana, A low-order nonconforming method for linear elasticity on general meshes.
Comput. Methods Appl. Mech. Eng. 354 (2019) 96–118.

[15] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985).

[16] D.A. Di Pietro and J. Droniou, A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math.
Comput. 86 (2017) 2159–2191.

[17] D.A. Di Pietro and J. Droniou, 𝑊 𝑠,𝑝-approximation properties of elliptic projectors on polynomial spaces, with application to
the error analysis of a hybrid high-order discretisation of Leray-Lions problems. Math. Models Methods Appl. Sci. 27 (2017)
879–908.

[18] D.A. Di Pietro and J. Droniou, The Hybrid High-Order method for polytopal meshes. In: Number 19 in Modeling, Simulation
and Application. Springer International Publishing (2020).

[19] D.A. Di Pietro and S. Krell, A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. J. Sci.
Comput. 74 (2018) 1677–1705.

[20] D.A. Di Pietro, A. Ern, A. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem.
Comput. Methods Appl. Mech. Eng. 306 (2016) 175–195.

[21] D.A. Di Pietro, J. Droniou and G. Manzini, Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes. J.
Comput. Phys. 355 (2018) 397–425.

[22] D.A. Di Pietro, J. Droniou and A. Harnist, Improved error estimates for Hybrid High-Order discretizations of Leray–Lions
problems. Calcolo 58 (2021) 1–24.

[23] L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20
(2008) 523–556.
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[33] S. Ko, P. Pustejovská and E. Süli, Finite element approximation of an incompressible chemically reacting non-newtonian fluid.
ESAIM: M2AN 52 (2018) 509–541.
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