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A HYBRID HIGH-ORDER METHOD FOR CREEPING FLOWS OF
NON-NEWTONIAN FLUIDS
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Abstract. In this paper, we design and analyze a Hybrid High-Order discretization method for the
steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities.
The proposed method has several appealing features including the support of general meshes and
high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for
scalar Leray—Lions problems. A complete well-posedness and convergence analysis of the method is
carried out under new, general assumptions on the strain rate-shear stress law, which encompass several
common examples such as the power-law and Carreau—Yasuda models. Numerical examples complete
the exposition.
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1. INTRODUCTION

In this paper, we design and analyze a Hybrid High-Order (HHO) discretization method for the steady motion
of a non-Newtonian, incompressible fluid in the Stokes approximation of small velocities. Notable applications
include ice sheet dynamics [31], mantle convection [44], chemical engineering [33], and biological fluids rheology
[27,36]. We focus on fluids with shear-rate-dependent viscosity, whose behavior is characterized by a nonlinear
strain rate-shear stress function. Physical interpretations and discussions of non-Newtonian fluid models can be
found, e.g., in [8,39]. Typical examples that are frequently used in the applications include the power-law and
Carreau—Yasuda model, covered by the present analysis.

The earliest investigations of fluids with shear-dependent viscosity date back to the pioneering work of
Ladyzhenskaya [35]. For a detailed mathematical study of the well-posedness and regularity of the continuous
problem, see also [3,7,23,38,41] and references therein. Early results on the numerical analysis of non-Newtonian
fluid flow problems were given in [2,29,42]. Later, these results were improved in [6,30] by proving error estimates
that are optimal for fluids with shear thinning behavior (described by a power-law exponent r < 2). In [6], the
authors considered a conforming inf-sup stable finite element discretization, while in [30] a low-order scheme with
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local projection stabilization was proposed. In both works, the use of Orlicz functions is instrumental to unify the
treatment of the shear thinning and shear thickening cases (also called pseudoplastic and dilatant, respectively;
¢f. Example 2.5). More recently, a finite element method based on a four-field formulation of the nonlinear
Stokes equations has been analyzed in [43]. Other notable contributions on the numerical approximation of
generalized Stokes problems include [24, 31,32, 34].

The main issues to be accounted for in the numerical solution of non-Newtonian fluid flow problems are the
presence of local features emerging from the nonlinear strain rate-shear stress relation, the incompressibility
condition leading to indefinite systems, the roughly varying model coefficients, and, possibly, complex geometries
requiring unstructured and highly-adapted meshes. The HHO method provides several advantages to deal with
the complex nature of the problem, such as the support of general polygonal or polyhedral meshes, the possibility
to select the approximation order, and unconditional inf-sup stability. Moreover, HHO schemes can be efficiently
implemented thanks to the possibility of statically condensing a large subset of the unknowns for linearized
versions of the problem encountered, e.g., when solving the nonlinear system by the Newton method. Hybrid
High-Order methods have been successfully applied to the simulation of incompressible flows of Newtonian fluids
governed by the Stokes [1] and Navier—Stokes equations [14,19], possibly driven by large irrotational volumetric
forces [20,40]. Works related to the problem of creeping flows of non-Newtonian fluids are [12,16,17], respectively
dealing with nonlinear elasticity and Leray—Lions problems. Going from nonlinear coercive elliptic equations
to the nonlinear Stokes system involves additional difficulties arising from the pressure and the divergence
constraint. Finally, we mention that HHO methods are members of a wider family of polytopal methods that
also includes, e.g., Virtual Element methods (cf., e.g., [4,5] for their application to Newtonian incompressible
flows) and can fit within general frameworks for the approximation of nonlinear problems such as the one
provided by the Gradient Discretisation Method (see [21, 25]).

The HHO discretization presented in this paper hinges on discontinuous polynomial unknowns on the mesh
and on its skeleton, from which discrete differential operators are reconstructed. These operators are used to
formulate discrete counterparts of the viscous and pressure-velocity coupling terms. For the former, stability
is ensured by a cleverly designed stabilization contribution involving the penalization of boundary differences.
We carry out a complete analysis of the proposed method. In particular, under general assumptions on the
strain rate-shear stress function, we derive error estimates for the velocity and pressure approximations. The
energy-norm error estimate for the velocity given in Theorem 4.7 yields the same convergence orders established
in Theorem 3.2 of [17] for the scalar Leray-Lions elliptic problem. A key tool in our analysis is provided by
Lemma 6.2, in which we prove a generalization of the discrete Korn inequality of Lemma 1 from [14] to the
non-Hilbertian case. The other main contributions are a novel formulation of the requirements on the strain
rate-shear stress function allowing a unified treatment of pseudoplastic and dilatant fluids and the identification
of a set of general assumptions on the nonlinear stabilization function ensuring the desired consistency properties
along with the well-posedness of the discrete problem.

The rest of the paper is organized as follows. In Section 2 we introduce the strong and weak formulations
of the nonlinear Stokes problem and present the assumptions on the strain rate-shear stress function. The
discrete setting is established in Section 3, including the definition of the discrete spaces for the velocity and
the pressure. The HHO scheme along with the main theoretical results are stated in Section 4, and a numerical
validation is provided in Section 5. In Section 6 we prove the discrete counterpart of the Korn inequality
needed in the analysis of the method. Section 7 contains the proof of the main results (well-posedness and
error estimates). Finally, in Appendix A we provide a sufficient condition for the strain rate-shear stress law
to fulfil the assumptions presented in Section 2. The paper is structured so as to offer two levels of reading. In
particular, the reader mainly interested in the formulation of the method and its numerical performance can
focus on Sections 2-5. The remaining sections cover technical aspects of the analysis, and can be skipped at first
reading.
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2. CONTINUOUS SETTING

Let Q C RY, d € {2,3}, denote a bounded, connected, polyhedral open set with Lipschitz boundary 2. We
consider a possibly non-Newtonian fluid occupying € and subjected to a volumetric force field f : Q — R?. Tts
flow is governed by the generalized Stokes problem, which consists in finding the velocity field u : Q — R and
the pressure field p : 2 — R such that

—Vo(-,Vu)+Vp=f in Q, (2.1a)
Vau=0  inQ, (2.1b)
u=0 on 042, (2.1¢c)
/ p(x)dx =0, (2.1d)
Q

where V- denotes the divergence operator applied to vector or tensor fields, Vy is the symmetric part of the
gradient operator V applied to vector fields, and, denoting by RZ*¢ the set of square, symmetric, real-valued
dxd matrices, o : QxRI*4 — R¥*4 i5 the strain rate-shear stress law. In what follows, we formulate assumptions
on o that encompass common models for non-Newtonian fluids and state a weak formulation for problem (2.1)
that will be used as a starting point for its discretization.

2.1. Strain rate-shear stress law

We define the Frobenius inner product such that, for all T = (7i;)1<ij<a and 1 = (9i;)1<ij<a I Rxd
TN = Z?_j:l Ti;Mij, and we denote by |T|qxq == /T : T the corresponding norm.

Assumption 2.1 (Strain rate-shear stress law). Let a real number r € (1,00) be fized, denote by r' == T3 €
(1,00) the conjugate exponent of r, and define the singular exponent of r by
7 :=min(r,2) € (1,2]. (2.2)
The strain rate-shear stress law satisfies
o(x,0) =0 for almost every x € Q, (2.3a)
o : QxR - R* i measurable. (2.3b)

Moreover, there exist real numbers o4. € [0,00) and one, Tsm € (0,00) such that, for all T, € R4 and almost
every x € ), we have the Holder continuity property

o (2, 7) = & (2, M) 4xq < Ohe (0he + | Tlixa + [Mlana) ™ 17 = 1lGxa: (2:3¢)

and the strong monotonicity property

= —F
(o (@, 7) =0 (x,n): (T—n) (0he + |[Tlixa+ Mlixa) ~ = ol —nlii5". (2.3d)

Some remarks are in order.

Remark 2.2 (Residual shear stress). Assumption (2.3a) can be relaxed by taking o(-,0) € L" (Q,R%*?). This
modification requires only minor changes in the analysis, not detailed for the sake of conciseness.

Remark 2.3 (Singular exponent). Inequalities (2.3c) and (2.3d) can be proved starting from the following
assumptions, which correspond to the conditions (A.2) below characterizing an r-power-framed function: For
all 7,1 € R4 with T # 1 and almost every x € (,

r—2
o (z,7) — o(x,m)|axa < one (04 + [Tlaxa + Mlaxa) * |17 = nlaxa,
r—2

(U(va) - 0’(53777)) : (T - "7) > Osm (Ucrie + |T‘2><d + |"7|2><d)T |T - "7|3><d'
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These relations are reminiscent of the ones used in [17] in the context of scalar Leray—Lions problems. The
advantage of assumptions (2.3¢) and (2.3d), expressed in terms of the singular index 7, is that they enable a
unified treatment of the cases r < 2 and r > 2 in the proofs of Lemma 7.3, Theorem 4.6, Lemma 7.5, and
Theorem 4.7 below.

Remark 2.4 (Relations between the Holder and monotonicity constants). Inequalities (2.3c) and (2.3d) give
Osm < Ohe. (2.4)

Indeed, let T € RE*? be such that |7|4xqa > 0. Using the strong monotonicity (2.3d) (with n = 0), the Cauchy—
Schwarz inequality, and the Holder continuity (2.3¢) (again with n = 0), we infer that
=2 ~ r—r .
s (0he +|7Tlixa) 7~ ITIe T <o) T <o (- T)laxalTlaxa < one (0he + | Tlixa) 7 [Tlixa
r—2]
) . Letting |T|axq — 00 gives (2.4).

Uge+|7—|g><d

almost everywhere in 2. Hence, ‘;T < ( i
c

‘gxd
Example 2.5 (Carreau—Yasuda fluids). (u,d,a,r)-Carreau—Yasuda fluids, introduced in [46] and later gener-
alized in equation (1.2) of [30], are fluids for which it holds, for almost every = €  and all T € RZ*4,

a a(x 2(;602)
o(w,7) = plw) (5 + 7)35)) 7, (2:5)

where p : Q — [u—, p] is a measurable function with p—, py € (0, 00) corresponding to the local flow consistency
index, 0 € [0,00) is the degeneracy parameter, a : Q — [a_, ay] is a measurable function with a_,a; € (0, 00)
expressing the local transition flow behavior index, and r € (1,00) is the flow behavior index. The Carreau—
Yasuda law is a generalization of the Carreau law (corresponding to a— = a4 = 2) that takes into account
the different local levels of flow behavior in the fluid. The degenerate case § = 0 corresponds to the power-
law model. Non-Newtonian fluids described by constitutive laws with a (u, d, a, 7)-structure exhibit a different
behavior according to the value of r. If » > 2, then the fluid shows shear thickening behavior and is called
dilatant. Examples of dilatant fluids are wet sand and oobleck. The case r < 2, on the other hand, corresponds
to pseudoplastic fluids having shear thinning behavior, such as blood. Finally, if r = 2, then the fluid is Newtonian
and (2.1) becomes the classical (linear) Stokes problem. We show in Appendix A that the strain rate-shear stress
law (2.5) is an r-power-framed function with og4e = 9,

1 1 © 1 1 ® —
Ohe = %2[_<W7) _1]“_2)** itr<2, 0, u—(rfl)2(“1* ei) TP e <o,
c = ® sm — (19 ] ooy
e r—1)2(F1) D e sy %2[ (-4) ]2 it > 2,

where £P = max(0,£) and £° := —min(0,&) denote, respectively, the positive and negative parts of a real
number £. As a consequence, it matches Assumption 2.1.

2.2. Weak formulation

From this point on, we omit both the integration variable and the measure from integrals, as they can be in
all cases inferred from the context. We define the following velocity and pressure spaces embedding, respectively,
the homogeneous boundary condition and the zero-average constraint:

U={veW" (QRY) : v,, =0}, P:=L§(QR):= {q eL"(UR) : [,q= o}.
Assuming f € L (Q,R%), the weak formulation of problem (2.1) reads: Find (u,p) € U x P such that

a(u,v) +b(v,p) = /Qf ‘v Yv e U, (2.6a)
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—b(u,q) =0 Vg € P, (2.6b)

where the function a : U x U — R and the bilinear form b : U x L" (Q,R) — R are defined such that, for all
v,w e U and all g € LTI(Q,R),

alw,v) = /QO'(-, Vsw) : Vv, b(v,q) = — /Q(V-'u)q. (2.7)

Remark 2.6 (Mass equation). The test space in (2.6b) can be extended to L™ (€2, R) since, for all v € U, the
divergence theorem and the fact that v|,,, = 0 yield b(v,1) = — fQ Vo= fBQ v-nyq = 0, with nyq denoting
the unit vector normal to 92 and pointing out of €.

Remark 2.7 (Well-posedness and a priori estimates). It can be checked that, under Assumption 2.1, the
continuous problem (2.6) admits a unique solution (u,p) € U x P; see, e.g., Section 2.4 of [30], where slightly
stronger assumptions are considered. For future use, we also note the following a priori bound on the velocity:

1
— 25 228, o R
[ulwir oz < (257 Ckomillflr@rn) + (257 Cxlly™ 3 ol en) o (28)
where Ckx > 0 comes from the Korn inequality given at (6.1) below. To prove (2.8), use the strong-monotonicity
(2.3d) of o, sum (2.6a) written for v = u to (2.6b) written for ¢ = p, and use the Holder inequality together
with the Korn inequality (6.1) to write

i (190a5 + [Vl eonsy) IVl sy < o)
= /Qf “u < Okl fll 1 oray I Vst Lr@raxa),

where |Q|4 is the measure of €2, that is,

T—

N = (10, + ||vsu|\z7m,w>) IVl ey < Crod s (2.9
27
Observing that ||Vsu||2'1’(1Q ]’Rdxd) < 2% max (HV w7, Rdxd),|Q|dode) " N, we obtain, enumerating the

cases for the maximum and summing the corresponding bounds,

=7 2- T 7
IVul| - axay < (277 N)ﬁJr(QQ" Qg Uder'/\/> T

Combining this inequality with (2.9) gives (2.8).

3. DISCRETE SETTING

3.1. Mesh and notation for inequalities up to a multiplicative constant

We define a mesh as a couple My, = (73, Fy), where 7}, is a finite collection of polyhedral elements T' such
that h = maxpeg, hr with hr denoting the diameter of T', while Fy, is a finite collection of planar faces F' with
diameter hp. Notice that, here and in what follows, we use the three-dimensional nomenclature also when d = 2,
1.e., we speak of polyhedra and faces rather than polygons and edges. It is assumed henceforth that the mesh
M, matches the geometrical requirements detailed in Definition 1.7 of [18]. In order to have the boundedness
property (3.5) for the interpolator, we additionally assume that the mesh elements are star-shaped with respect
to every point of a ball of radius uniformly comparable to the element diameter; see Lemma 7.12 of [18] for the
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Hilbertian case. Boundary faces lying on 02 and internal faces contained in 2 are collected in the sets }"}f and

1, respectively. For every mesh element T € 75, we denote by Fr the subset of F, containing the faces that
lie on the boundary 9T of T. For every face F' € F},, we denote by 7z the subset of 7}, containing the one (if
F € FP) or two (if F € F}) elements on whose boundary F lies. Finally, for each mesh element 7' € 7}, and
face F' € Fr, nrp denotes the (constant) unit vector normal to F' pointing out of T.

Our focus is on the h-convergence analysis, so we consider a sequence of refined meshes that is regular
in the sense of Definition 1.9 from [18] with regularity parameter uniformly bounded away from zero. The
mesh regularity assumption implies, in particular, that the diameter of a mesh element and those of its faces
are comparable uniformly in h and that the number of faces of one element is bounded above by an integer
independent of h.

To avoid the proliferation of generic constants, we write henceforth a < b (resp., a 2 b) for the inequality a <
Cb (resp., a > Cb) with real number C' > 0 independent of h, of the constants dde, Ohc, Osm in Assumption 2.1,
and, for local inequalities, of the mesh element or face on which the inequality holds. We also write a ~ b to
mean a < b and b < a. The dependencies of the hidden constants are further specified when needed.

3.2. Projectors and broken spaces

Given X € 7, UF, and [ € N, we denote by P/(X,R) the space spanned by the restriction to X of scalar-
valued, d-variate polynomials of total degree < I. The local L?-orthogonal projector 7& : L}(X,R) — P!(X,R)
is defined such that, for all v € L1(X,R),

/ (rkv—v)w=0  VweP(X,R). (3.1)
X

When applied to vector-valued fields in L' (X, R?) (resp., tensor-valued fields in L' (X, R?*?)), the L?-orthogonal
projector mapping on P!(X,R?) (resp., P'(X, R%*?)) acts component-wise and is denoted in boldface font. Let
T € Ty, n € [0,1 + 1] and m € [0,n]. The following (n,r, m)-approximation properties of 7. hold: For any
v e W™ (T,R),

|1) — 7TflIVU|Wm,7‘(T,R) /S h?—‘_nl"l/|Wﬂ,,r(T7]R). (328,)
The above property will also be used in what follows with r replaced by its conjugate exponent r’. If, additionally,
n > 1, we have the following (n, r’')-trace approximation property:

2
v — Wé‘”HLr'(BT,R) Shy T vl (rr)- (3.2b)

The hidden constants in (3.2) are independent of A and T, but possibly depend on d, the mesh regularity
parameter, [, n, and r. The approximation properties (3.2) are proved for integer n and m in Appendix A.2 of
[16] (see also [18], Thm. 1.45), and can be extended to non-integer values using standard interpolation techniques
(see, e.g., [37], Thm. 5.1).

At the global level, for a given integer [ > 0, we define the broken polynomial space P!(7},,R) spanned by
functions in L*(Q, R) whose restriction to each mesh element T' € 7}, lies in P!(T,R), and we define the global
L%-orthogonal projector 7} : L1(Q,R) — P!(7},R) such that, for all v € L*(Q,R) and all T € T,

(wﬁlv) |7 = 7TlT’U|T.
Broken polynomial spaces are subspaces of the broken Sobolev spaces
W™ (T, R) = {v eL"(QR) : v, €e W(T,R) VT € 771}

We define the broken gradient operator V, : W11(7;,,R) — L'(Q,R?) such that, for all v € W11(7,,R) and
all T' € Tp, (Vyv)|, == Vv|,. We define similarly the broken gradient acting on vector fields along with its
symmetric part Vs, as well as the broken divergence operator V- acting on tensor fields. The global L?-
orthogonal projector 7!, mapping vector-valued fields in L'(Q,R¢) (resp., tensor-valued fields in L!(€2, R4*%))
on PY(7;,,RY) (resp., P'(T;, R¥*4)) is obtained applying 7} component-wise.
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3.3. Discrete spaces and norms

Let an integer k > 1 be fixed. The HHO space of discrete velocity unknowns is
Uy ={v, = (v1)per, » (Wr)rer,) : vr €PF(T,RY) VI €7, and vp € P* (F,RY) VF € F,}.

The interpolation operator If : W1 1(Q,R%) — U} maps a function v € W5 (€2, R%) on the vector of discrete
unknowns I¥v defined as follows:

Ijv = ((”’JC“U\T)TGTh’ (W};’WF)FG}‘;L) :

For all T' € 7T}, we denote by Ql} and I’ l} the restrictions of Q’,j and I Z to T, respectively and, for all v;, € Qﬁ,
we let vy == (vr, (VF)per,) € Uk denote the vector collecting the discrete unknowns attached to T' and its
faces. Furthermore, for all v; € Qﬁ, we define the broken polynomial field v, € P*(7;,,R?) obtained patching
element unknowns, that is,

(’Uh)|T = VU7 VT € Tp,. (33)

We define on U} the W17 (Q, RY)-like strain seminorm ||-||,. 5 such that, for all v, € U¥,

1
[opllrn = <Z HUT”:,T) (3.4a)

TET,

with |[vp|l.r = <||stT|gr(T’RM) + > hpTlvp - vT||Z,.(F}Rd)> for all T € Ty. (3.4b)

FeFr

The following boundedness property for I /% can be proved adapting the arguments of Proposition 6.24 from [18]
and requires the star-shaped assumption on the mesh elements: For all T € 7;, and all v € W17 (T, R%),

[PECI PSS [Vl Wi (1 Re), (3.5)

where the hidden constant depends only on d, the mesh regularity parameter, r, and k.
The discrete velocity and pressure are sought in the following spaces, which embed, respectively, the homo-
geneous boundary condition for the velocity and the zero-average constraint for the pressure:

Q;O = {Qh = ((vr)reT, (VF)rer,) € QZ :vp=0 VF ¢ ]—',t;}, P}]f = Pk(’Th,R) N P.

By the discrete Korn inequality proved in Lemma 6.2 below, |||, is a norm on U 2,0 (the proof is obtained
reasoning as in [18], Cor. 2.16).

4. HHO SCHEME

In this section, after introducing the discrete counterparts of the viscous and pressure-velocity coupling terms,
we state the discrete problem along with the main results.

4.1. Viscous term

4.1.1. Local symmetric gradient reconstruction

For all T' € 7},, we define the local symmetric gradient reconstruction GZT : Q’% — P* (T, Rng) such that,
for all v, € UX.,

/ G v 1= / Vsor: T+ Z / (v —vr) - (tnrp) V1 € PY(T,RI*Y). (4.1)
T T Ferp’F
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This symmetric gradient reconstruction, originally introduced in Section 4.2 of [12], is designed so that the
following relation holds (see, e.g., [13], Prop. 5 or [18], Sect. 7.2.5): For all v € WH(T,R9),

Glr (Lhv) = 74 (Vo). (4.2)

The global symmetric gradient reconstruction Gf,h : Qﬁ — P*(T;,,R%*4) is obtained patching the local contri-
butions, that is, for all v, € Q’,z, we set

(Gs,hﬂh) lr = GE,TQT VT € T, (4.3)

4.1.2. Discrete viscous function

The discrete counterpart of the function a defined by (2.7) is a;, : U xUF — R such that, for all v, w, € U,

ap (wy,,vy,) = / o ('aGg,hwh> : Gf,hﬂh +ysn (wy,, vy,) - (4.4)
Q
In the above definition, recalling (2.4), 7 is a stabilization parameter such that

vy € [O—vaghc]a (45)

while the stabilization function sy, : QZ X Qﬁ — R is such that, for all v;,w,, € QZ,

Sh(Q}th) = Z ST(QTaQT)? (46)
TeTy

where the local contributions are assumed to satisfy the following assumption.

Assumption 4.1 (Local stabilization function). For all T € Ty, the local stabilization function st : Ql% XQ];« —
R is linear in its second argument and satisfies the following properties, with hidden constants independent of

both h and T':

(1) Stability and boundedness. Recalling the definition (3.4b) of the local ||-||, r-seminorm, for all vy € U%. it
holds:

k
1G0T lr (7 Raxay + 51 (07, 07) = [lorll) - (4.7)

(2) Polynomial consistency. For all w € P¥™ (T,R?) and all vy € Uk,
ST (f%w,QT) =0. (4.8)

(3) Holder continuity. For all wy, vy, wy € Uk, it holds, setting ep = wy — wy,

r—7 =1

Sl

s (wr,vr) — st (wr, v7)| S (57 (ur, ur) +s7 (wr,wy)) © sr(er,er) © sr(vr,vr) (4.9)
4) Strong monotonicity. For all w, w, € Qk , it holds, setting again e; = wp — W,
T, Wr T T T T
2—7 r+2-—+%
(st (ur, er) — st (wy, er)) (st (up, ur) +sr (wp,wy)) = Zsr(er.er) © . (4.10)

Remark 4.2 (Comparison with the linear case). If r = 2, sy can be any symmetric bilinear form satisfying
(4.7), (4.8). Indeed, property (4.9) coincides in this case with the Cauchy—Schwarz inequality, while, by linearity
of st, property (4.10) holds with the equal sign.
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4.1.3. An example of viscous stabilization function

Taking inspiration from the scalar case (cf., e.g., [16], Eq. (4.11c)), a local stabilization function that matches

Assumption 4.1 can be obtained setting, for all v, w, € Qifp,

sr(wp, vp) = /é)T | A rwr| T Afrwy - Ajrvr, (4.11)
where, denoting by P*(Fr,R?) the space of vector-valued broken polynomials of total degree < k on Fr, the
boundary residual operator AgT : Q; — P*(Fr,RY) is such that, for all v, € QkT',

(A](;TQT) Ip = h;% (71"fD (ri}“gT — ’UF> —nk, (ri}“gT - 'UT)) VI € Fr,

with velocity reconstruction ri! : U% — P*+1(T,R?) such that

/ (Vsr’;“gT - GQTQT) Va =0  Vw e P (T RY),
T

1
/r?JrlQT:/UT, and /VssrlfrHET:’ Z /(UF@nTF_"TF®vF)'
T T T 2 F

FeFr

Above, Vs denotes the skew-symmetric part of the gradient operator V applied to vector fields and ® is the
tensor product such that, for all = (2;)1<i<q¢ and y = (¥;)1<i<a in R,z @y = (xiyj)1<ij<d € Rax4,

Lemma 4.3 (Stabilization function (4.11)). The local stabilization function defined by (4.11) satisfies Assump-
tion 4.1.

Proof. The proof of (4.7) for r = 2 is given in equation (25) of [12]. The result can be generalized to r # 2
using the same arguments of Lemma 5.2 from [16]. Property (4.8) is an immediate consequence of the fact that
AL (I5w) = 0 for any w € PFH1(T, R?), which can be proved reasoning as in Proposition 2.6 of [18].

Let us prove (4.9). First, we remark that, since the function o +— a”~2 verifies the conditions in (A.1b) below,
we can apply Theorem A.1 to infer that the function R? > & + |x|"~2x satisfies for all z,y € R?,

r—#
" ‘

|2z — |y 2y| S (=" + y[") 7 |z -yl (4.12a)

2

(Jo|" %z — [y|"%y) - (z —y) (=" + |y[") 7 Z|z—y/ " (4.12b)

Recalling (4.11), we can write

k oAk k 2 Ak k
st (wr, vr) — sr(wy,vr)| < /({)T “AaTHTV 2Ac?T!T — |Agrwr|" 2A8TMT |AGrur|

k k =k Fo1) Ak
S /8T (\ABT@TV + \AaTﬂTV) |AGrer| | AGrvr|

r—7 Fo1

< (s7 (up,ur) +sr (W, wy)) © sr(er,er) = st (vp,vy)",

<=

where we have used (4.12a) to pass to the second line and the (1' L =L r) -Holder inequality to conclude.

V= F—1>

Moving to (4.10), (4.12b) and the (1; 2t @)—Hélder inequality yield
st (er, er)
:/ |AI{§TMT - AgTQTV
oT

_—r
2=

2—7
k k THI-T k 2 Ak k 2 Ak k
S /é)T (\ABT@TV + \AaTwTV) K\AaTﬂﬂr 2AaTﬂT — |[Agrwr|” 2A3TMT> 'ABTQT}

2—7

< (37 (wp, ug) + s7 (W, wp)) 727 (57 (up, e) — s7 (W, e7)) 7727
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4.2. Pressure-velocity coupling

For all T € 7;,, we define the local divergence reconstruction D% : U% — P*(T,R) by setting, for all v, € Uk,
DEv, = tr <G§7TQT). We have the following characterization of D%: For all v, € Q@,

/DTqu—/(VvT ) ¢+ Z / (vp —vr) nrFEq Vg € P*(T,R), (4.13)

FeFr

as can be checked writing (4.1) for 7 = ¢lI;. Taking the trace of (4.2), it is inferred that, for all T € 7y,
and all v € WH(T,R?), Dk (I%v) = 7k (V-v). The pressure-velocity coupling is realized by the bilinear form
by, : QZ x P*(T;,,R) — R such that, for all (v, qp) € Qﬁ x P*(T;,, R), setting qr = (qn)|y for all T € Ty,

CAEE / Diwr qr. (4.14)

TeTh

4.3. Discrete problem and main results

The discrete problem reads: Find (u,,pp) € Qlflyo x P} such that

an(uy,vy,) + bp(vy,, pr) = / fou, Vv, €U, (4.15a)
Q

—bn(wy, qn) =0 Vg, € Py (4.15b)

Remark 4.4 (Discrete mass equation). The space of test functions in (4.15b) can be extended to P*(7;,R)
since, for all v, € Qi,m the divergence theorem together with the fact that vy = 0 for all F' € .7-'}; and
>rery JpvF -nrp =0 for all F € F}, yield

bp(vy,1) = ZZ/UFRTF— ZZ/UFRTF—U

TeTy, FEFT FerFi TeTr

Remark 4.5 (Efficient implementation). When solving the system of nonlinear algebraic equations correspond-
ing to (4.15) by, e.g., the Newton algorithm, all element-based velocity unknowns and all but one pressure
unknown per element can be locally eliminated at each iteration by static condensation. As all the computations
are local, this procedure is an embarrassingly parallel task which can fully benefit from multi-thread and multi-
processor architectures. This implementation strategy has been described for the linear Stokes problem in Section
6.2 of [20]. After further eliminating the boundary unknowns by strongly enforcing the boundary condition (2.1c),
we end up solving, at each iteration of the nonlinear solver, a linear system of size dcard(F} ) (k+d 1) +card(7p).
Concerning the interplay between the static condensation strategy and the performance of p-multilevel linear
solvers, we refer to [11].

In what follows, we state the main results for the HHO scheme (4.15). The proofs are postponed to Section 7.

Theorem 4.6 (Well-posedness). There exists a unique solution (w,,pp) € Qﬁ)o X P,’f to the discrete problem
(4.15). Additionally, the following a priori bounds hold:

1 1
_ 1 _F e
lanllrn S (omallF i ozn) " + (03 0wl ) (4.16a)

r—1
r—2|(r—1 — r+i—7
L™ (Q,R) S Ohe ( Osm Hf\ L (@Rrd) T U‘ =0 (Usrr}”f‘ L"’(Q,Rd)) ) : (4.16Db)

||ph|

Proof. See Section 7.2. O
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Theorem 4.7 (Error estimate). Let (u,p) € Ux P and (uy,,pp) € UF Ofo solve (2.6) and (4. 5) respectively

Assume the additional regularity w € W27 (T, RY), (-, Vou) € W' (Q,RIxd) 0 W EDE=1Dr" (7, RIxd),
and p € VVl’T/(Q7 R)N W kD (F=1),r (7, R). Then, under Assumptions 2.1 and 4.1,

1
(k+1)(7—1) . TiF
s, = Ll S 0 HT (0 NF " Non) ™ (4.17a)
(kD) (F=1)? 2|(F—1 P
th ﬂ'hp”LT (QR) < h(k+1)(7“ DNG,u,p + h™— rti-7 U}ICNIT [(7—1) (O-smNC',’UqP) 1 , (417b)
where we have set, for the sake of brevity,
Noup = Ohe (Uge + |u|;/V1$T(Q,]Rd)) |u‘Wk+2 7 (T, RY)

+ |o(:, Vsu)|W(k+1)(7“‘—1),r’(Th)Rdxd) + |p‘W(k+1)(F—1)m/(Th,R),
1 1
_ _ =1 9 TR
Ny = 0ae + (0mll fllr@rn)  + (o3 omll Fllir @) -
Proof. See Section 7.3. |

Remark 4.8 (Orders of convergence). From (4.17), neglecting higher-order terms, we infer asymptotic conver-

gence rates of O\’fel = % for the velocity and Opre = % for the pressure, that is,
(k+1)(r—1) ifr<2, K (k+1)(r—1)% ifr<2,
and = 4.1
Orer = {jfj} if 7> 2, Opre bl if r > 2. (4.18)

Notice that, owing to the presence of higher-order terms in the right-hand sides of (4.17), higher convergence
rates may be observed before attaining the asymptotic ones; see Section 5. The asymptotic order of convergence
for the velocity coincides with the one proved in Theorem 3.2 of [17] for HHO discretizations of scalar Leray—
Lions problems. We refer to [22] for recent improvements on these estimates depending on the degeneracy of
the problem.

5. NUMERICAL EXAMPLES

In this section, we evaluate the numerical performance of the HHO method on a complete panel of numerical
test cases. We focus on the (u,0, 1, r)-Carreau—Yasuda law (2.5) (corresponding to the power-law model) with
values of the exponent r ranging from 1.25 to 2.75. Our implementation relies on the SpaFEDTe library (cf.,
https://spafedte.github.io).

5.1. Trigonometric solution

We begin by considering a manufactured solution to problem (2.1) in order to assess the convergence of the
method. We take Q = (0,1)? and exact velocity w and pressure p given by, respectively,

u (r1,22) = (sin (gxl) cos (gﬂ?g), — CoS (gxl) sin (%l‘g)), p(x1,22) = sin (gxl) sin (%l‘g) — %-

The volumetric load f and the Dirichlet boundary condition are inferred from the exact solution. Considering
uw=1and r € {1.5,1.75,...,2.75}, this solution matches the assumptions required in Theorem 4.7 for k = 1,
except the case r = 1.5 for which o(-, Vsu) ¢ W (Q, R?*?). We consider the HHO scheme for k = 1 on three
mesh families, namely Cartesian orthogonal, distorted triangular, and distorted Cartesian; see Figure 1. Overall,
the results are in agreement with the theoretical predictions, and in some cases the expected asymptotic orders
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F1GURE 1. Coarsest Cartesian, distorted triangular, and distorted Cartesian meshes used in
Section 5.

o r=15-=7r=17-e1r=2

k
llwy, — Iyl n

lon — ﬂ—]}ipHLT’(Q,R)
-
f=]
L
:

Ll L L i L Ll L wwwwuz E L L TR R
1072 107! 103 1072 107! 102 107!

Cartesian Distorted triangular Distorted Cartesian

FIGURE 2. Numerical results for the test case of Section 5. The slopes indicate the order
of convergence expected from Theorem 4.7, i.e., Oly = 2(r — 1) and OF,, = 2(r — 1)* for
re {1.5,1.75,2}.

of convergence are exceeded. Specifically, for » # 2, the convergence rates computed on the last refinement
surpass in some cases the theoretical ones. As noticed in Remark 4.8, this suggests that the asymptotic order is
still not attained. A similar phenomenon has been observed on certain meshes for the p-Laplace problem; see
Section 3.5.2 of [17] and Section 3.7 of [21]. In some cases, we observe a better convergence for the velocity on
distorted triangular meshes than on Cartesian meshes. This phenomenon possibly results from the combination
of two factors: on one hand, the improved robustness of HHO methods with respect to elongated elements when
compared to classical discretization methods; on the other hand, the fact that unstructured triangular meshes
have more elements than Cartesian meshes for a given meshsize and lack privileged directions, which reduces
mesh bias. Further investigation is postponed to a future work (Figs. 2 and 3).
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FiGURE 3. Numerical results for the test case of Section 5.1. The slopes indicate the order of
convergence expected from Theorem 4.7, i.e., O, = O} = 2_ for r € {2.25,2.5,2.75}.

pre r—1

5.2. Lid-driven cavity flow

We next consider the lid-driven cavity flow, a well-known problem in fluid mechanics. The domain is the unit
square € = (0,1)2, and we enforce a unit tangential velocity u = (1,0) on the top edge (of equation x5 = 1)
and wall boundary conditions on the other edges. This boundary condition is incompatible with the formulation
(2.6), even generalized to non-homogeneous boundary conditions, since u ¢ W1 (£, R%). However, this is a very
classical test that demonstrates the quality of the method. We consider a low Reynolds number Re := 2 = 1.
For r € {1.25,2,2.75}, we solve the discrete problem on Cartesian and distorted triangular meshes (cf., Fig. 1)
of approximate size 128 x 128 for k = 1, and 16 x 16 for k = 5. This choice is meant to compare the low-order
version of the method on a fine mesh with the high-order version on a very coarse one. The corresponding total
number of degrees of freedom is: 130048 for the fine Cartesian mesh with & = 1; 5760 for the coarse Cartesian
mesh with k£ = 5; 298676 for the fine triangular mesh with & = 1; and 14196 for the coarse triangular mesh
with £ = 5. In the left column of Figure 4 we display the velocity magnitude, while in the right column we plot
the horizontal component u; of the velocity along the vertical centreline z; = % (resp., vertical component s
along the horizontal centreline x5 = %) The lines corresponding to k = 1 on the fine mesh and to £ = 5 on the
coarse mesh are perfectly superimposed, regardless of the mesh family and of the value of . This shows that,
despite the lack of regularity of the exact solution, high-order versions of the scheme on very coarse meshes
deliver similar results as low-order versions on very fine grids. Furthermore, we observe significant differences in
the behavior of the flow according to r, coherent with the expected physical behavior. In particular, the viscous
effects increase with 7, as reflected by the size of the central vortex.
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FIGURE 4. Numerical results for the test case of Section 5.2. Left: velocity magnitude contours

(15 equispaced values in the range [0, 1]). Computations on a Cartesian mesh of size 128 x 128
with k = 5. Right: horizontal component u; of the velocity along the vertical centreline z; = 1

2
and vertical component us of the velocity along the horizontal centreline xo = %
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6. DISCRETE KORN INEQUALITY

We prove in this section a discrete counterpart of the following Korn inequality (see [28], Thm. 1) that will
be needed in the analysis: There is Cx > 0 depending only on € and r such that for all v € U,

[vllwirore) < Ckl| Vvl Lr o raxay. (6.1)

We start by recalling the following preliminary result concerning the node-averaging interpolator (sometimes
called Oswald interpolator). Let ), be a matching simplicial submesh of M}, in the sense of Definition 1.8
from [18]. The node-averaging operator Iav n ot PR(T,,RY) — PF(T,,RY) N WET(Q,R?) is such that, for all
vy, € P*(T,,R?) and all Lagrange node V' of ¥, denoting by Ty the set of simplices sharing V/,

Wl(csv) Yorex, Vn (V) if V €Q,

I* =
(Ioy pon)(V) {0 if Veon.

For all F' € F}, denote by T1, T € Ty, the elements sharing F, taken in an arbitrary but fixed order. We define
the jump operator such that, for any function v € WH(7;,,R?), [v]p = (V)4 )1r — (V]4,) |- This definition is
extended to boundary faces F' € f}; by setting [v]p = v),.

|F

Proposition 6.1 (Boundedness of the node-averaging operator). For all vy, € P*(T;,,R9), it holds
v — Igv,hvhwvlm(n,ﬂw Z hi " ll[wn 17l (- (6.2)
FeFy,
Proof. Combining equation (4.13) of [18] (which corresponds to (6.2) for » = 2) with the local Lebesgue
embeddings of Lemma 1.25 from [18] (see also [16], Lem. 5.1) gives, for any T' € 7p,,
lon = Iy wonllrrpey S D hellloalely pze), (6.3)

FeFv r

where Fy, 1 collects the faces whose closure has non-empty intersection with 7. Using the local inverse inequality
of Lemma 1.28 from [18] (see also [16], Eq. (A.1)), we can write

k - k
v — Iav,hvhH/Vlﬂ'(Th,Rd) S Z hy"llon — Igy ponl
TeT)

Z Z hl 'UhFHLr(FRd)

TeTy, FEFy,T

<D D b lnlelLemme

FeF, TeTv,F

< d(Ty.r) Y by " -
Igréa%car (Ty,r) P [[valrll7 (F.R9)

-
L7(T,R4)

where we have used the fact that h” < hz" along with inequality (6.3) to pass to the second line, and we
have exchanged the sums after setting 7y g = {T €T, :FNT # @} for all F' € F}, to pass to the third line.
Observing that maxper, card(7y p) S 1 (since, for any F € Fy, card(7y r) is bounded by the left-hand side of
equation (4.23) from [18] written for any T € 7j, to which F' belongs), (6.2) follows. O

The following inequalities between sums of powers will be often used in what follows without necessarily
recalling this fact explicitly each time. Let an integer n > 1 and a real number m € (0, 00) be given. Then, for
all ay,...,a, € (0,00), we have

n*(mfl)ez m < <Zaz> < p(m-1°¢ Xn:a;n. (6.4)

i=1 =1
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If m =1, then (6.4) holds with the equal sign If m < 1, equations (5) and (3) of [45] with « =1 and 8 =m
give n™ L3S0 am < (300 @)™ <Y, a. If, on the other hand, m > 1, equations (3) and (5) of [45] with
a=mand 8= 1 give Y0 jam < (300, az) <nm~ 13" | a". Gathering the above cases yields (6.4).

Lemma 6.2 (Discrete Korn inequality). We have, for all v, € QZO, recalling the notation (3.3),
||'Uh||2r(Q,Rd) + |'Uh|§/vl,r(7, R S th||7 h- (6.5)

Proof. Let v;, € Qﬁ,o. Using a triangle inequality followed by (6.4), we can write

k k -
|vh‘TI;V1vT(Th,Rd ,S |Iav hvhH/VlvT(Th,Rd + |'Uh - Iav,hvh|’1,/Vl=T(Th,Rd)
k
S Vs ( av h'Uh) HLr QRaxdy T v — Iav,hvh‘cvlvr(Th,Rd)
SIVenvnlle@paxay + [vn = Iy y0nliyir (7, ga)

SIVenvnllirqpraxay + D b "NwAlEll]rpras
FeFy,

where we have used the continuous Korn inequality (6.1) to pass to the second line, we have inserted £V vy,
into the first norm and used a triangle inequality followed by (6.4) to pass to the third line, and we have
invoked the bound (6.2) to conclude. Observing that, for any ' € Fy, |[va]r| < D pcr,. [vF — vr| by a triangle
inequality, and using (6.4), we can continue writing

[wnliyrr g, gy S I Vsnnllr@paxay + Y > hp "vr — vl pgay = lloals,
FeF, TeTg

where we have exchanged the sums over faces and elements and recalled definition (3.4a) to conclude. This
proves the bound for the second term in the left-hand side of (6.5). Combining this result with the global
discrete Sobolev embeddings of Proposition 5.4 from [16] yields the bound for the first term in (6.5). g

7. WELL-POSEDNESS AND CONVERGENCE ANALYSIS
In this section, after studying the stabilization function s, we prove the main results stated in Section 4.3.

7.1. Properties of the stabilization function

Lemma 7.1 (Counsistency of sy). For any T € T, and any st satisfying Assumption 4.1, it holds, for all
w € WEF2T (T, RY) and all vy € Ql’;",

k+1 1
[sr(Lfw, vp)| S ATV [l e 0l g [0l (7.1)

where the hidden constant is independent of h, T, and w.

Proof. The proof adapts the arguments of Proposition 2.14 from [18]. Using the polynomial consistency property
(4.8), we can write

‘ST (llfpw,yT)‘ = ‘ST (Lf”pw,yT) — ST (E} (mhtw), QT)‘
r—r r—1

<sp (ﬂ}w,ﬁ}w) " s (ﬁfp (w— 1r§+1w) I (w— wffﬁlw)) " sy (vp,vp)

S w77 117 (w — 73" w) (77 o

~ |w|W1 o (T,R4) ‘w 77]76“+1w|wl (T, RY) ”yT”T,T

< h(k+1)(7" 1)|

<=

W17(TRd ‘w|Wk+2 (T, RA) ||QT||T,T3
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where we have used the Holder continuity (4.9) and observed that, by the polynomial consistency property (4.8),
ST (lT(ﬂ'];flw) I (7r’}+1w)> = 0 to pass to the second line, we have used the boundedness property (4.7) to

pass to the third line, the boundedness (3.5) of l? to pass to the fourth line, and the (k+ 2, r, 1)-approximation

property (3.2a) of k! to conclude. O

In what follows, we will need generalized versions of the continuous and discrete Holder inequalities, recalled
hereafter for the sake of convenience. Let X C R? be measurable, n € N*, and let ¢,py, ..., p, € (0,00] be such

that 37" | p = % The continuous (¢; p1, . . ., p,)-Holder inequality reads: For any (f1,..., fn) € X?=1 LPi(X,R),
11+ < T Ifillzrex - (7.2)
i=1 Lt(X,R) i=1

Let m € N*. For all f : {1,....,m} — R and all ¢ € [1,00), setting | f|l, = (>Cir, |f(z)|q)%, and ||f|leo =
maxi<;<m |f(7)|, the discrete (t D1, .., pn)-Holder inequality reads: For any fi,..., f,: {1,...,m} = R,

Hfz < HHfz P
i=1 i=1

(7.3)

t

Proposition 7.2 (Properties of sp,). Let sy, be given by (4.6) with, for all T € T, st satisfying Assumption 4.1.
Then it holds, for all v, € QZ,

k
||Gs,h2hH2r(Q,Rdxd) +sn(vp,v,) = gl (7.4a)

Furthermore, for all u,,v;,,w, € QZ 1t holds, setting e, ‘= u; — w,,

s (,0) = s (w3, 03)| S (5 (g 43) + 5 (w0, 03)) T s (eg,€4) 7 Sn (w5, 03)7 7.4b)
2-7 r42—7
(sn (wy,, ) — sn (wy,, €,)) (sn (W, ) + s (W, wy)) ™ Zsn(ey.e,) - (7.4c)
Finally, for any w € U N W 27(T;, . RY), it holds
sup Sh(lzwvﬂh) S h(Hl)(TLI)|w|71;1fjf(ﬂ,Rd)|w|Wk+2 (T, RE)* (7.5)

Eh,eglzyovl‘gh‘lhh:l
Above, the hidden constants are independent of h and of the arguments of sp,.

Proof. For the sake of conciseness, we only sketch the proof and leave the details to the reader. Summing (4.7)
over T' € 7}, immediately yields (7.4a). The Holder continuity property (7.4b) follows applying to the quantity

in the left-hand side triangle inequalities, using (4.9), and concluding with a discrete (1; "=, =", )-Holder
. . . . . +2 +2
inequality. Moving to (7.4c), starting from [s;(ey,, e,)|, we use (4.10) and apply a discrete (1; Zf2=T, rH2=7).

Holder inequality to conclude. Finally, to prove (7.5) we start from s, (I ﬁw, v},), expand this quantity according
0 (4.6), use, for all T € Tp,, the local consistency property (7.1) together with hr < h, invoke the discrete
(1; -5, #55, r)-Holder inequality, and pass to the supremum to conclude. |

7.2. Well-posedness

In this section, after proving Hoélder continuity and strong monotonicity properties for the discrete viscous
function a; and the inf-sup stability of the pressure-velocity coupling bilinear form by, we prove Theorem 4.6.
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7.2.1. Hélder continuity and strong monotonicity of the viscous function

Lemma 7.3 (Hélder continuity and strong monotonicity of az ). For all w,,v,,w, € UY, setting e, = w, —w,,
it holds

lan (wp, vy) — an (W), vp)] S One (Ugc + HEhH:,h + ||Mh||:,h)T ”Qh”:;LlHQh”r,ha (7.6a)

2-7

(an (wy,, e5,) — an (wy,, e;,)) (04 + lwpllyn + ||Mh||:h) Tz UsmHQh”:jLzJ- (7.6b)

Proof. (i) Hélder continuity. Using a Cauchy—Schwarz inequality followed by the Holder continuity (2.3c) of

o, we can write
k k .k
/ (0’ ('7 Gg,h@h) -0 ('7 Gs,hyh)) : Gs,hyh
Q
r—T

k k k 1|k
< C’hc/Q <U<T1e + |G pplaxa + |Gs,hﬂh|§xd) ’ |Gs,h§h|2xé|Gs,hyh|dXd

r—r 7.7
S One (|Q\d05e +|1GE | Lr(QRraxay + |G jwy,| E"’(Q,Rdx‘i)) ’ i
X ”Gs,hgh”i:(lgdexd)||G§,hgh||LT(Q,Rd><d)
< e (0ge + llunllyn + Hwhlll,h)%; ler 177" ol
where we have used the (1; s A r) -Holder inequality (7.2) in the second bound and the global semi-

norm equivalence (7.4a) together with the fact that |Q]g < 1 (since Q2 is bounded) to conclude. For the
stabilization term, combining the Holder continuity (7.4b) of s, and the seminorm equivalence (7.4a) readily
gives .
st (wn v1) = s (@ v)| S (e + lwnllrn + lwnllnn) 7 llenlls s lonln, (7.8)

where we have additionally noticed that o, > 0 to add this term to the quantity inside parentheses. Using
the definition (4.4) of aj, a triangle inequality followed by (7.7) and (7.8), and recalling that v < op (cf.,
(4.5)), (7.6a) follows.

(ii) Strong monotonicity. Using the strong monotonicity (2.3d) of o and the (1; %}’:, @)-Hélder inequal-
ity (7.2), we get

_r
p——
Osm

k
Gs,hthET(Q,RdXd)

2—7 T
r k r k ro\TEF k k ok TF2=F
< /g (Ude +Gg pplasa + |Gs,hwh|d><d> ((0' (': Gs,hﬂh) - ('a Gs,hﬂh)) : Gs,hﬁh)
)
2—7

k k T+2-7
S (Uge + HGs,hHhHEr(Q,RdXd) + ||Gs,hﬂh||TLr(Q,RdXd)) Y

TTEF
X (/ (cr (-,Gf,hgh) - ('»Gf,hﬂh» 1 Gf,heh)
Q

r r Y i k k k T
< (Jde + w7 p + ||Qh||r,h) +2 (/Q (0' (‘aGs,hﬂh> -0 (‘7Gs,hwh)> : Gs,heh> )

(7.9)
where the conclusion follows from the global seminorm equivalence (7.4a). Additionally, using the strong
monotonicity (7.4c) of s, together with the fact that oy, <« (cf., (4.5)) and invoking again the seminorm
equivalence (7.4a), we readily obtain

_r
127

27 r
o’ sn(en en) S (0he + [luy, mh T ||Qh||:h> T (ysn(up, ep) — ysn(wy,, €))L (7.10)
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Finally, combining again the norm equivalence (7.4a) with (7.9) and (7.10), and using (6.4) yields

r _ 27?‘ T
s’ [l 17.0) 7727 (an (s ) — an (), €,)) 77

enlrn S (0 + lluy,

Raising this inequality to the power “=2=" yields (7.6b).

T

O
7.2.2. Stability of the pressure-velocity coupling
Lemma 7.4 (Inf-sup stability of by). It holds, for all q; € P,ff,
g L™ (Q,R) S sup bp(vy,, qn), (7.11)

Ehegﬁ,o"lﬂhllr‘h:l
with hidden constant depending only on d, k, r, , and the mesh reqularity parameter.

Proof. The proof follows the classical Fortin argument (cf., e.g., [9], Sect. 8.4), adapted here to the non-Hilbertian
setting.

(i) Fortin operator. We need to prove that the following properties hold for any v € W17 (Q,R?):

L5l S 10w o,ra), (7.12a)
bn (l’}iv, qh) =b(v,qn) Vay € P* (7., R) . (7.12b)
Property (7.12a) is obtained by raising both sides of (3.5) to the power r, summing over T € 7}, then

taking the rth root of the resulting inequality. The proof of (7.12b) is given, e.g., in Lemma 8.12 of [18].
(ii) Inf-sup condition on by. Let ¢, € P,’f and set ¢p, = fQ lgn|” ~2qy. Using the triangle and Hélder inequalities,

we get
’_ ’_ 1 ’_ ’_
lgnl” ~2an — enllLr@my < llanlly i p +lenll@ls < 0+ 1920a) lanly7 o p) S lanll7 (g p): (7.13)
’ 1
where we have used the fact that |cn| < ||qn] 2;(19 R)|Q\§/ along with £ + L = 1 in the second bound

and the fact that |Q|q < 1 to conclude. Thus, using the surjectivity of the continuous divergence operator
ViU — Ly(Q,R) == {qg € L"(QR) : [, ¢ =0}, (cf., [26] and also [10], Thm. 1), we infer that there exists
vg, € U such that

|r'72

~Vvg, =lgu|” g —cn and g, lwrroray S lllanl” 2an — enllir@up)- (7.14)

Denote by $ the supremum in (7.11). Using the fact that g, has zero mean value over €2, the equality in
(7.14) together with the definition (2.7) of b, and the second Fortin property (7.12b), we have

’ 17 k k /_
H%”ZT'(Q,R):/Q (‘Qhr an — Ch) an =b(vg,,qn) =bn (lh”th]h) < 8| Lyvg, llrn S $|\Qh||z,«/(197R),

where, to conclude, we have used (7.12a) followed by (7.14) and (7.13). Simplifying yields (7.11).
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7.2.3. Proof of Theorem /.6
Proof of Theorem 4.6. (i) Existence. Denote by P,’f’* the dual space of P} and let B, : Qi,o — P,f’* be such
that, for all v;, € QZ,O?
(Bhwy,, qn) == —bn(vy,qn)  Van € PY.

Here and in what follows, (-, -) denotes the appropriate duality pairing as inferred from its arguments. Define
the following subspace of QZ’O spanned by vectors of discrete unknowns with zero discrete divergence:

W} = Ker(By) = {v, € Uk bulwp,a) =0 Van € P}, (7.15)
and consider the following problem: Find u, € W such that

ah(ﬂh’yh):/ﬂf'vh Vo, € Wiy (7.16)

Existence of a solution to this problem for a fixed h can be proved adapting the arguments of Theorem 4.5
from [16]. Specifically, equip W with an inner product (-, -)w 5 (which need not be further specified), denote
by ||-|lw . the induced norm, and let ®;, : W5 — W5 be such that, for all w, € W, (®,(w),),v;,)w.n =
an(wy,,v,) for all v, € WF. The strong monotonicity (7.6b) of aj yields, for any v, € W/ such that
||Qh||r,h > Ode;

P2 .
(®n(n), v)wn = Osm (0he + l2allin) ™ w7327 2 gamllwpllrn > Cowmllvplliw p,

where C' denotes the constant (possibly depending on h) in the equivalence of the norms ||-||, 5 and [|-||w »
(which holds since W} is finite-dimensional). This shows that ®;, is coercive hence, by Theorem 3.3 of [15],
surjective. Let now w, € EZ be such that (w;,,v,)w.n = fQ f-op forall v, € Eﬁ By the surjectivity of
®,,, there exists u;, € EIZ such that ®,(u;,) = w,;, which, by definition of w;, and ®}, is a solution to the
discrete problem (7.16).

The proof of existence now continues as in the linear case; see, e.g., Theorem 4.2.1 of [9]. Denote by Q]ZB

the dual space of Qi,o and consider the linear mapping ¢, € U ZZ such that, for all v, € QZ’O,

%&M:LfmwﬂMmm)

Thanks to (7.16), £, vanishes identically for every v, € W, that is to say, £ lies in the polar space of W¥
which, denoting by Bj : P} — Qﬁg the adjoint operator of By, coincides in our case with Im(B;) (see, e.g.,
[9], Thm. 4.14). Hence, ¢, € Im(B}), and there exists therefore a py, € P,’f such that Bjpj = ¢;. This means
that, for all v;, € QQ’O,

by (v, pn) = (Bipn,vy,) = (bh,vy) = /Qf vy — ap (U, vp),

i.e., the (uy,,pr) satisfies the discrete momentum equation (4.15a). On the other hand, since u; € E,ﬁ, we
also have, by the definition (7.15) of W, by (wy,, qn) = 0 for all g, € PF, which shows that the discrete mass
equation (4.15b) is also verified. In conclusion, (w;,,ps) € QZ’,O x PF solves (4.15).

(ii) Uniqueness. We start by proving uniqueness for the velocity. Let (wy,pn), (u},p)) € Qi,o x P be two
solutions of (4.15). Making v;, = w;, —u}, in (4.15a) written first for (w,,, p) then for (u},p} ), then taking
the difference and observing that by, (w; — w),,pr) = by (w), — u},, p),) = 0 by (4.15b), we infer that

an(wy,, wy, —up,) — an(wy,, w, —uy,) = 0.
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Thus, the strong monotonicity (7.6b) of aj, yields |lw;, — uy, ||, n = 0, which implies w;, = wj, since ||-||, 5 is
a norm on U¥ ,. Moreover, using the inf-sup stability (7.11) of b, and (4.15a) written first for w, then for
u),, we get ’

lpn — p;L”LT'(QJR) S sup br (g, pr — D)

Ehegﬁ,ovﬂﬂh,ﬂ'mh:l

= sup (an (Q;wyh) —ap (u,,v,)) =0,
Ehegﬁ_’m”ﬂh”hhzl

hence p;, = p),.
(iii) A priori estimates. Using the strong monotonicity (7.6b) of a;, (with w;, = 0), equation (4.15a) together
with (4.15b), and the Holder inequality together with the discrete Korn inequality (6.5), we obtain

O (e 4l 120) 7 g 17527 < gy = /Q foun Sl ma e (7.17)

We then conclude as in the continuous case to infer (4.16a) (see Rem. 2.7). To prove the bound (4.16b) on
the pressure, we use the inf-sup stability (7.11) of by, to write

L (R) > sup br(vy,, Pr)
v, €UF o, llvyllr,n=1

= sup </ fron—ap ("%K%))
EheQZ‘O’HEh”T,’Lzl Q

SNl (@ ray + Ohe (0he + llunllrn) ™ HHhHi;Ll

lln]

r—2|(F—1) — THI=7
sahc(bm||f||m(w>+a' O (o Al me) ) )

where we have used the discrete momentum equation (4.15a) to pass to the second line, the Holder and
discrete Korn (6.5) inequalities together with the Holder continuity (7.6a) of a; to pass to the third line,
and the a priori bound (4.16a) on the velocity together with 2t > 1 (see (2.4)) to conclude.

d

7.3. Error estimate

In this section, after studying the consistency of the viscous and pressure-velocity coupling terms, we prove
Theorem 4.7.

7.8.1. Consistency of the viscous function

Lemma 7.5 (Consistency of ap). Let w € U N WHE27(T, RY) be such that o(-, Viw) € Wh' (Q,R¥*4) 0
W=D (7 RIXD) . Define the viscous consistency error linear form Eqp(w;-) : UF — R such that, for
all KN S Qh’

Ean (Wi wy,) = /Q (V-0 (-, Vw)) - vp, + ay, (lgw,gh) . (7.18)

Then, under Assumptions 2.1 and 4.1, we have

r—'F

. k+1 F—1 . .
sup Ean (Wivp,) S ) [Uhc (Uée + ‘wH/VL"(Q,Rd)) |’w|Wk+2 o (Tp,,RY)
v, €UF ol llrn=1

+ |U('7V5w)W(k+1)(F—1)‘r’(Th,Rd><d):| . (719)
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Proof. Let @, = ITw and v, € Qﬁyo. Expanding a;, according to its definition (4.4) in the expression (7.18)
of &, p, inserting + (fQ o(,Vw): Gf’hgh + [omhio(-, Viw) : Gf’hgh), and rearranging, we obtain

Ean(wivy)
:/ (V-o (.7V5w)).vh—|—/ ﬂ'Za (, Vsw) : Gf’hyh +/ (o- (-, Viw) = ket Sw)) :Gf’hgh
Q Q Q
T
+/ (‘7 ('va,h,@h) - U(O,sz)) : Gf,h,ﬂh + s (@, vy,), (7.20)
Q
Tz T3

where have used the definition (3.1) of ¥ together with the fact that Gfﬁhgh € P*(75,, RE*?) in the cancellation.
We proceed to estimate the terms in the right-hand side. For the first term, we start by noticing that

> D /F”F'(U(stw)nTF)ZO (7.21)

TeT, FeEFr

as a consequence of the continuity of the normal trace of o (-, Vsw) together with the single-valuedness of vp
across each interface F' € Fi and of the fact that vF = 0 for every boundary face F' € FP. Using an element by

element integration by parts on the first term of 77 along with the definitions (4.3) of nyh and (4.1) of G‘r:T7
we can write

T :/ (71']20' (-, Vsw) = Sw)):Vs,hvh
Q

+ Z Z (/F (vp —vr)- (”?U('avsw)) nrr +/

TeT, FeFr F

vr - (o (’vvsw)nTF)>

= Z Z (vp —vr) - (ho (-, Viw) — o (-, Vsw)) nrr,

TeT, Ferr V' F

where we have used the definition (3.1) of rﬁ together with the fact that Vg pv, € PF1(7,,RIXY) C
P* (T}, R4*4) to cancel the term in the first line, and we have inserted (7.21) and rearranged to conclude.
Therefore, applying the Holder inequality together with the bound hr < hy, we infer

1
77| < (Z hrlo (-, Vow) —wi;a(.,sz)”g’ﬂ(anwxd)) (Z S bk or — vrl

E'r(FJRd))
ret, 1T, FeFr (7.22)

S h(k+1)(71_1)|0'('7 VS“’)|W(’€+1>('F*1>v”"(Th,]RdXd) [2p I,

where the conclusion follows using the ((k + 1)(7 — 1),7’)-trace approximation properties (3.2b) of m%. along
with hp < h for the first factor and the definition (3.4) of the [|-||, ;-norm for the second.

For the second term, using the Holder inequality and again (7.4a), we get

Tl < |0 (- Ghuy) - o (. V)

o 7.23
U 1 (7.23)
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We estimate the first factor as follows:

HO’ (-, Gf’h@h) —o (- sz)’

Lr'(QRdxd)

r—7

S Ohc

koo v ko
(Jge +|Gg p @y Ggxa + |sz|:l><d) |G pay, — V w|d><d

L™ (,R)

. ko _ k.
S One (O{ie + HGs,thHZT(Q,RdXd) + ||sz||7LT(Q,]Rd><d)) ||Gs,hwh \Y% w”LT‘(Q RaXd)

S e (0 + [allnn + [Wlyrr@pn ) I7E(Vaw) = Vowl7 g po)

r—i‘

Ohe (Uge + |W‘;V1,T(Q’]Rd)) |w|Wk+2 7 (Th R4)?

< pkHD)E-1)

where we have used the Hélder continuity (2.3c) of o in the first bound, the (r'; ==, =5 )-Holder inequality

r—777

(7.2) in the second, the boundedness of Q along with (7.4a) and the commutation property (4.2) of Gf,h in
the third, and we have concluded invoking the (k + 1,7,0)-approximation property (3.2a) of 7%. Plugging this
estimate into (7.23), we get

r—7

T3] < REHDE-D g (gge + |w|TW”(Q’Rd)) " \M@;&Hm&h&d)||Qh||r’h. (7.24)

Finally, using the fact that v < oy, together with the consistency (7.5) of s;, and the norm equivalence (7.4a),
we obtain for the third term

T3] < WY (7.25)

(F=1) O-hc|w‘W1 r Rd)|w|wk+2 T (Th,
Plug the bounds (7.22), (7.24), and (7.25) into (7.20) and pass to the supremum to conclude. O

7.8.2. Consistency of the pressure-velocity coupling bilinear form

Lemma 7.6 (Consistency of by,). Let ¢ € W' (Q,R) N WEHDT=D" (T3 R). Let &, u(q;-) : UF — R be the
pressure consistency error linear form such that, for all v, € QZ,

Evn(gvy,) = / Vq-vyp —by (Qha WZQ) . (7.26)
Q
Then, we have that

sup Eon(q;v) SAFDVEV gl e (7, p)- (7.27)

2h€Qﬁ,07H2h Hv‘,hzl

Proof. Let v;, € QZ’O. Integrating by parts element by element, we can reformulate the first term in the right-
hand side of (7.26) as follows:

/qu Svp = —T;h (/ (V-ur) Z / vp — vU7) nTF> (7.28)

FeFr

where the introduction of v in the boundary term is justified by the fact that the jumps of ¢ vanish across
interfaces by the assumed regularity and that vy = 0 on every boundary face F € .7-'}3. On the other hand,
expanding, for each T € T;,, D% according to its definition (4.13), we get

—by (Qh,wﬁq) = Z (/TﬁTq (V-vr) Z /7rTq VE — vT) - nTF> (7.29)

TeTn FeFr
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Summing (7.28) and (7.29) and observing that the first terms in parentheses cancel out by the definition (3.1)
of 7k since V-wr € PF~1(T,R) C P¥(T,R) for all T € 7j,, we can write

Eon(Guy) = ) <W+ > / (7hq = q) (vr — vr) 'nTF>
TeT, FeFr ¥

1 1
< Z hTH’/T’IIC’q - Q‘ 2"'(8T,R)> < Z Z h};THUF - vT”E”(F,HW))

TeTn TeTy FEFT

IA

S h(kﬂ)@_l)|q|w<k+1)<fv—1>,r/(7h,R) g s

where we have used the Holder inequality along with hp > hp whenever F' € Fr in the second line and the
((k+1)(F—1),r')-trace approximation property (3.2b) of 7% together with the bound hr < h and the definition
(3.4) of the ||||;,,-norm to conclude. Passing to the supremum yields (7.27). O
7.8.8. Proof of Theorem 4.7

Proof of Theorem 4.7. Let (e, €n) = (w;, — @y, php — Pn) € Qﬁ,o X P,’f where @, = lﬁu € QZO and py, == W,’fp €
Pr.

Step 1. Consistency error. Let &, : Qi’O — R be the consistency error linear form such that, for all v;, € Qio,

En (vy,) = / fon —an (dy,v,) — bp (v, Pr) - (7.30)
Q
Using in the above expression the fact that f = —V-.o(-, Vsu) + Vp almost everywhere in Q to write
En(vy) = Ean(u;vy) + Ebn(p;vy,), and invoking the consistency properties (7.19) of aj, and (7.27) of by, we
obtain )
$:= sup En (v),) SAEHDE=DAL (7.31)

Ehegﬁyov‘lﬂh, ”nhzl

Step 2. Error estimate for the velocity. Using the strong monotonicity (7.6b) of a,, we get

HQh”:,J;rLQfT S 0o (006 + 1wy, wn) T (an (g, ep) —an (@, e,))

S o NG (an (s ) — an (4, )

T4 a
rh ||fh| (732)

where we have used the a priori bound (4.16a) on the discrete solution along with the boundedness (7.12a)
of the global interpolator and the a priori bound (2.8) on the continuous solution to conclude. Using then
the discrete mass equation (4.15b) along with (7.12b) (written for v = u) and the continuous mass equation
(2.6b) to write by, (Ifu, qn) = b(u,qn) = 0, we get by(e,, gn) = 0 for all g, € PF. Hence, combining this
result with (7.30) and the discrete momentum equation (4.15a) (with v;, = e;), we obtain

an (up, e,) — an (4, e,) = / I -en—ap(dy,ep) _M: Enlen)- (7.33)
Q
Plugging (7.33) into (7.32), we get
len ;52 ™" < oamNGSllenllrn-

Simplifying, using (7.31), and taking the (r + 1 — 7)th root of the resulting inequality yields (4.17a).
Step 3. Error estimate for the pressure. Using the Holder continuity (7.6a) of as, we have, for all v, € Qﬁ)o,

lan (@, vy) — an (W, v,)| S One (Uge + [y, |75 + ||Hh||7r~h)T len 5,711||Qh| rh

el (7.34)
50110/\/’; THQ}L”:?h HQ}L”TJH
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where the first factor is estimated as in (7.32). Thus, using the inf-sup condition (7.11), we can write

HehHLT'(Q,R) S sup by, (v, €n)
Qhegzﬁoa‘lgh”ﬂh:l
= sup (En(vy) + an (@, vy,) — an (wy, vy))
Bh,egz‘oa‘lﬂhllr,hzl (735)

<8+ oG lenllr !
. L2 ol _ o1
S h(k+1)(7’71)Na7u’p + h(k+1)(rfl) o_hCN}T 2|(7—1) (USH}Ngvuﬁp) P ’
where we have used the definition (7.30) of the consistency error together with equation (4.15a) to pass to

the second line, (7.34) to pass to the third line (recall that $ denotes here the supremum in the left-hand
side of (7.31)), and the bounds (7.31) and (4.17a) (proved in Step 2) to conclude.

]

APPENDIX A. POWER-FRAMED FUNCTIONS

In the following theorem, we introduce the notion of power-framed function and discuss sufficient conditions
for this property to hold.

Theorem A.1 (Power-framed function). Let U be a measurable subset of R™ with n > 1, (W, (-,-)w) an inner
product space, and o : U x W — W. Assume that there exists a Carathéodory function ¢ : U X [0,00) — R such
that, for all T € W and almost every x € U,

o(x,7) =<z, ||T||w)T, (A.1a)

where ||-||w is the norm induced by (-, )w. Additionally assume that, for almost every x € U, ¢(x,-) is dif-
ferentiable on (0,00) and there exist ¢ge € [0,00) and Ssm,she € (0,00) independent of x such that, for all
a € (0,00),

w2 _ das(x,0)) -

Gm(Sge +0") 7 < < GhelShe + ") 7 . (A.1b)

Oa

Then, o is an r-power-framed function, i.e., for all (7,m) € W? with T # n and almost every x € U, the
function o verifies the Holder continuity property

r—2
lo(z,7) = o(@n)llw < one (0a. + [ITllw + Inllw) 17 —nllw, (A.2a)

and the strong monotonicity property

r—2
I

(o(@,7) = a(@,n), T =)y > osm (04 + [T + [Inll5) I =0l (A.2Db)
with 0ge = Sde, Ohe ‘= 92—7+r[2-7] (F— 1) Yehe, and ogm = or—r= [rHr=7)] (r+1—7)"tum, where 7 is given
by (2.2) and [-] is the ceiling function.

Remark A.2 (Notation). The boldface notation for the elements of W is reminiscent of the fact that Theo-
rem A.1 is used with W = R%*? in Corollary A.3 to characterize the Carreau—Yasuda law as an r-power-framed
function and in Lemma 4.3 with W = R? to study the local stabilization function sy.

Proof of Theorem A.1. Let & € U be such that (A.1) holds, and 7,7 € W. By symmetry of inequalities (A.2)
and the fact that o is continuous, we can assume, without loss of generality, that || 7|w > |n|lw > 0.



2070

(i)

M. BOTTI ET AL.

Strong monotonicity. Let B € (0,00) and let g : [3,00) — R be such that, for all « € [3, 00),

r—2 .

9(@) = as (z, @) — fs (%, 8) = Com (she +@" +87) 7 (a =), with Con = Z—=Gm-
Differentiating ¢g and using the first inequality in (A.1b), we obtain, for all a € [3, 00),

0 r—2 _2 r—2
59(0) = G (o +07) T = Com (= 2) (Sl + 0" +8) 7 (a=B)a" ™ + (o +a” + )T

r—2 r—2
r

> Gm (She + ") 7 = (r+1=7)Csm (g + " + ")

> em2 (. a4 67)

r—2 r—2
T r

—(r4+1=7)Csm (e + " + ") =0,

where, to pass to the second line, we have removed negative contributions if » < 2 and used the fact that
(a — ﬂ)of_1 <Gl o + 47 if r > 2, to pass to the third line we have used the fact that ¢ — 72 ig
non-increasing if r < 2, and the fact that § < « otherwise, while the conclusion follows from the definition
of Cym. This shows that g is non-decreasing. Hence, for all « € [3, 00), g(«) > g(8) =0, i.e.,

as(@,a) — Bs(@, ) > Com (she + 0" +57) 7 (a — B). (A.3)

Moreover, for all a, 3 € (0,00), using (A.3) (with 8 = 0) along with the fact that ¢ — ¢"~2 is decreasing if
r < 2 and inequality (6.4) if > 2, we infer that

r—2

<(@,0) +5(@,8) 2 Com ((she +0") T + (5 + 807 ) 2 Can2 TN (Gtam+807 - (A9)
We conclude that o verifies (A.2b) by using (A.3) and (A.4) with a = ||7||lw and B = ||n||w as follows:

(o(x,7)—0o(z,m), T—n)y
= (15 (z, [|Tllw) —ns (2, [nllw) , T — 1)y
= [I7l%vs (@, ITllw) + [nlFs (2, Inllw) = (7, m)w [s (@ [I7]w) + < (@, [n]lw)]
= [lIllws (. ITlw) = Inllws (@, [[0llw)] (I7llw = [Inlw)
+ s (@, [|Tllw) + < (z, [Inllw)] (ITllwlnllw — (7.7)w)

—[=t r r ro 2 2
> Can2” 71 (e + 175y + Imll5) ™ [(irllw = mllw)? + 2 (el Il — (Tm)W)}
r—7 r—2
= Con2 17 (e + Il + imlli) = Il =l
Holder continuity. Now, setting Ch. = =4 and reasoning in a similar way as for the proof of (A.3) to

leverage the second inequality in (A.1b), we have, for all « € [, 00),

as(@,a) = Bs(@, ) < Che (Sho + " +87) T (a— ). (A.5)

First, let » > 2. Using (A.5) (with 3 = 0) and the fact that ¢ — ¢"~2 is non-decreasing, we have, for all
a, € (0,00),

r—2
T

(@, a)s(@.8) € O (e +07) T (ot )T < [Cre sl +am +8) 7] (A.6)
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Thus, using inequalities (A.5) and (A.6) with o = ||7||w and 8 = ||n|lw, we infer

lor (e, 7) — o, 0|3y
= (rs (@, I7llw) —ns (2 [nllw) , 7 (, [IT]lw) — ns (@, [nllw))w
= [Irllws @ lIllw) = Inllws (2, [[nllw))*
+ 26 (@, ITllw) < (. [Inllw) [ITllwlnlw = (7.m)w] (A7)

r—2

2
< [Che (o + 17l + i) = | [(rllw = lmllw)? + 2 (e llw Il = (. mw)

r—2 2
= |Gl (<o + Il + Imlli) T Nl = mllw |

hence o verifies (A.2a) for r > 2. Assume now r < 2. Using a triangle inequality followed by (A.5) and the
left inequality in (6.4), it is inferred that

lo(x,7) = o(@,n)llw <@ |rlw)lTlw + <@, [nlw)lnllw

r r =t r TR
< Che (g + IT1w) T + (s + i) =)

r—1
T

r—2 1
-

< 27 Cne(264e + 1Tl + [Imllw)
1 r T r ' r '

=27 Che(264e + 1Tl + [Imllw) 7 (25ge + (171w + [Imllw) ™,
1 2

<27 Che(Sde + 1Tl + Inliw) ™ (26ae + I 7llw + lInllw),

where the last line follows from the fact that ¢ — ¢"~2 is decreasing and again (6.4). If 2¢qe+||7||w +||n||w <
2277||7 — n||w, from the previous bound we directly get the conclusion, i.e., (A.2a) with oy, = 227 Che.
Otherwise, using (6.4) and a triangle inequality yields

(5 + 17 15) 7 (e + Im5) ™ = 277 (sae + 17w (Sae + Imllw)
= 272 [(2ae + [Irllw + mll)® = (il — ]
> 2265 [ + [Irllow + llw)? — 17— mly (A4.8)
> 2727+ (1-472) (2ae + I7llw + [mllw)?
> 275 2 (¢ + Il + Il )

where we concluded with (6.4) together with the fact that 2727 +1) (1—-4772)>2 e 2, Finally, raising
both sides of (A.8) to the power r — 2, we get a relation analogous to (A.6). Hence, proceeding as in (A.7),
we infer (A.2a).

O

Corollary A.3 (Carreau—Yasuda). The strain rate-shear stress law of the (u,d,a,r)-Carreau—Yasuda fluid
defined in Example 2.5 is an r-power-framed function.
Proof. Let € Q and ¢ : (0,00) — R be such that, for all « € (0, 00),
4 a(@) 4 ga@)) 7 a(@) 4 ga@) T ! (ga(@) a(@)

g(a) = % ap(x) (5 +a ) = p(x) (5 +a ) (5 +(r—1a ) .
We have for all a € (0, 00),
r—=2 r—2
a(x) a(x)

p_(F —1) (5‘1@) + a“@)) <gla) S ps(r+1-7) (5““” + a“(w))

and we conclude using (6.4) together with Theorem A.1. O
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