Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1921-1939

For the planar Navier–Lamé equation in mixed form with symmetric stress tensors, we prove the uniform quasi-optimal convergence of an adaptive method based on the hybridized mixed finite element proposed in Gong et al. [Numer. Math. 141 (2019) 569–604]. The main ingredients in the analysis consist of a discrete a posteriori upper bound and a quasi-orthogonality result for the stress field under the mixed boundary condition. Compared with existing adaptive methods, the proposed adaptive algorithm could be directly applied to the traction boundary condition and be easily implemented.

DOI : 10.1051/m2an/2021048
Classification : 65N12, 65N15, 65N30, 65N50
Keywords: linear elasticity, mixed finite element, hybridization, convergence, quasi-optimality
@article{M2AN_2021__55_5_1921_0,
     author = {Li, Yuwen},
     title = {Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1921--1939},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021048},
     mrnumber = {4315955},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021048/}
}
TY  - JOUR
AU  - Li, Yuwen
TI  - Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1921
EP  - 1939
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021048/
DO  - 10.1051/m2an/2021048
LA  - en
ID  - M2AN_2021__55_5_1921_0
ER  - 
%0 Journal Article
%A Li, Yuwen
%T Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1921-1939
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021048/
%R 10.1051/m2an/2021048
%G en
%F M2AN_2021__55_5_1921_0
Li, Yuwen. Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1921-1939. doi: 10.1051/m2an/2021048

[1] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO: M2AN 19 (1985) 7–32. | MR | Zbl | Numdam

[2] D. N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. | MR | Zbl | DOI

[3] D. N. Arnold, J. Douglas Jr and C. P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. | MR | Zbl | DOI

[4] D. N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three dimensions. Math. Comput. 77 (2008) 1229–1251. | MR | Zbl | DOI

[5] E. Bänsch, Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3 (1991) 181–191. | MR | Zbl | DOI

[6] R. Becker and S. Mao, An optimally convergent adaptive mixed finite element method. Numer. Math. 111 (2008) 35–54. | MR | Zbl | DOI

[7] P. Binev, W. Dahmen and R. Devore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | MR | Zbl | DOI

[8] S. C. Brenner, Korn’s inequalities for piecewise H 1 vector fields. Math. Comput. 73 (2003) 1067–1087. | MR | Zbl | DOI

[9] S. C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3 edition. In: Vol. 35 of Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl

[10] C. Carstensen, A unifying theory of a posteriori finite element error control. Numer. Math. 100 (2005) 617–637. | MR | Zbl | DOI

[11] C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. | MR | Zbl | DOI

[12] C. Carstensen and R. H. W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75 (2006) 1033–1042. | MR | Zbl | DOI

[13] C. Carstensen and H. Rabus, The adaptive nonconforming FEM for the pure displacement problem in linear elasticity is optimal and robust. SIAM J. Numer. Anal. 50 (2012) 1264–1283. | MR | Zbl | DOI

[14] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity. Comput. Math. Appl. 67 (2014) 1195–1253. | MR | DOI

[15] C. Carstensen, D. Gallistl and J. Gedicke, Residual-based a posteriori error analysis for symmetric mixed Arnold-Winther FEM. Numer. Math. 142 (2019) 205–234. | MR | DOI

[16] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. | MR | Zbl | DOI

[17] L. Chen, iFEM: an innovative finite element method package in Matlab. University of California Irvine, Technical report (2009).

[18] L. Chen, M. Holst and J. Xu, Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78 (2009) 35–53. | MR | Zbl | DOI

[19] L. Chen, J. Hu and X. Huang, Fast auxiliary space preconditioners for linear elasticity in mixed form. Math. Comput. 78 (2018) 1601–1633. | MR

[20] L. Chen, J. Hu, X. Huang and H. Man, Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems. Sci. China Math. 61 (2018) 973–992. | MR | DOI

[21] L. Diening, C. Kreuzer and R. Stevenson, Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16 (2016) 33–68. | MR | DOI

[22] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl | DOI

[23] M. Feischl, T. Führer and D. Praetorius, Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems. SIAM J. Numer. Anal. 52 (2014) 601–625. | MR | Zbl | DOI

[24] V. Girault and L. R. Scott, Hermite interpolation of nonsmooth functions preserving boundary conditions. Math. Comput. 71 (2002) 1043–1074. | MR | Zbl | DOI

[25] S. Gong, S. Wu and J. Xu, New hybridized mixed methods for linear elasticity and optimal multilevel solvers. Numer. Math. 141 (2019) 569–604. | MR | DOI

[26] P. Grisvard, Singularities in boundary value problems. In: Vol. 22 of Research in Applied Mathematics. Springer-Verlag, Berlin (1992). | MR | Zbl

[27] M. Holst, Y. Li, A. Mihalik and R. Szypowski, Convergence and optimality of adaptive mixed methods for Poisson’s equation in the FEEC framework. J. Comput. Math. 38 (2020) 748–767. | MR | DOI

[28] J. Hu, Finite element approximations of symmetric tensors on simplicial grids in n : the higher order case. J. Comput. Math. 33 (2015) 283–296. | MR | DOI

[29] J. Hu and R. Ma, Partial relaxation of C 0 vertex continuity of stresses of conforming mixed finite elements for the elasticity problem. Comput. Methods Appl. Math. 21 (2021) 89–108. | MR | DOI

[30] J. Hu and S. Zhang, A family of conforming mixed finite elements for linear elasticity on triangular grids. Preprint (2014). | arXiv | MR

[31] J. Huang and Y. Xu, Convergence and complexity of arbitrary order adaptive mixed element methods for the poisson equation. Sci. China Math. 55 (2012) 1083–1098. | MR | Zbl | DOI

[32] Y. Li, Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus. SIAM J. Numer. Anal. 57 (2019) 2019–2042. | MR | DOI

[33] Y. Li, Quasi-optimal adaptive mixed finite element methods for controlling natural norm errors. Math. Comput. 90 (2021) 565–593. | MR | DOI

[34] Y. Li and L. Zikatanov, Nodal auxiliary a posteriori error estimates. Preprint (2020). | arXiv

[35] M. Lonsing and R. Verfürth, A posteriori error estimators for mixed finite element methods in linear elasticity. Numer. Math. 97 (2004) 757–778. | MR | Zbl | DOI

[36] W. F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15 (1989) 326–347. | MR | Zbl | DOI

[37] J. Morgan and R. Scott, A nodal basis for C 1 piecewise polynomials of degree n 5 . Math. Comput. 29 (1975) 736–740. | MR | Zbl

[38] P. Morin, R. H. Nochetto and K. G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488. | MR | Zbl | DOI

[39] R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. | MR | Zbl | DOI

[40] R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | MR | Zbl | DOI

[41] R. Verfürth, A posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl

Cité par Sources :