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QUASI-OPTIMAL ADAPTIVE HYBRIDIZED MIXED FINITE ELEMENT
METHODS FOR LINEAR ELASTICITY

Yuwen Li*

Abstract. For the planar Navier–Lamé equation in mixed form with symmetric stress tensors, we
prove the uniform quasi-optimal convergence of an adaptive method based on the hybridized mixed
finite element proposed in Gong et al. [Numer. Math. 141 (2019) 569–604]. The main ingredients in the
analysis consist of a discrete a posteriori upper bound and a quasi-orthogonality result for the stress field
under the mixed boundary condition. Compared with existing adaptive methods, the proposed adaptive
algorithm could be directly applied to the traction boundary condition and be easily implemented.
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1. Introduction

Adaptive finite element methods for numerical solutions of partial differential equations has been an active
research area since 1980s. Using a sequence of self-adapted graded meshes, adaptive methods can achieve quasi-
optimal convergence rate even for problems with singularity arising from, e.g., irregular data or domains with
nonsmooth boundary. Convergence and optimality analysis of adaptive methods for symmetric and positive-
definite elliptic problems has now reached maturity, see, e.g., [7, 16,21,22,38,39,41] and references therein.

An important model problem in linear elasticity is the Navier–Lamé equation, which could be discretized
by primal methods and mixed methods. Adaptive mesh refinement based on a posteriori error indicators is
essential to deal with nonsmooth boundaries of elastic bodies in practice. For conforming elasticity elements, a
robust error estimator could be found in [10]. In [13], a quasi-optimal nonconforming adaptive Crouzeix–Raviart
element method in primal form was developed under the pure displacement boundary condition.

Compared with primal methods, mixed methods could easily handle the traction boundary condition and
is more natural from a viewpoint of solid mechanics. Conservation of angular momentum is implied by the
symmetry of stress tensors of elasticity equations in mixed form. However, mixed methods with strongly imposed
symmetry usually leads to higher order polynomial shape functions [2, 4, 28, 30] and a priori error estimates
relying on high solution regularity. In such situations, adaptivity is of great importance, see, e.g., [11,15,20,34,35]
for a posteriori error estimates of adaptive mixed finite element methods (AMFEMs) in linear elasticity.

For second order elliptic equations in mixed form, theoretical analysis of AMFEMs is extensive, see, e.g.,
[6, 12, 18, 23, 27, 31–33]. The optimality result of adaptive mixed methods for elasticity equations seems limited
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in the literature. One reason is that most finite elements for discretizing the symmetric stress tensors require 𝐶0

vertex continuity. As a result, stress finite element spaces on nested meshes are not nested as spaces. Recently
the work [29] develops a quasi-optimal AMFEM for mixed elasticity, based on a modified Hu–Zhang mixed
element [30] enriched carefully at each vertex on nested meshes. In the meantime, Gong et al. [25] presents a
hybridized mixed method for elasticity using complete piecewise polynomial stress space without any vertex
degrees of freedom. In this paper, we shall adopt the hybridization strategy in [25] and develop a quasi-optimal
adaptive mixed method for planar linear elasticity, see (1.4) and Algorithm 4.1. Without specific treatment,
our AMFEM could directly be applied to the (pure) traction boundary condition. Another advantage of this
AMFEM is its easy implementation because no explicit continuous local basis is needed in hybridization, see
Section 6.

The proposed AMFEM is designed to reduce the stress error ‖𝜎 − 𝜎ℎ‖𝐴 with a convergence rate free of
volumetric locking. The framework of our analysis is similar to the convergence analysis of AMFEMs for Poisson’s
equation [18,31]. However, the 𝐶1 nodal space 𝑊ℎ used in our analysis (see Lem. 2.1) is much more complicated
than 𝐶0 nodal spaces and the well-known 𝐶1 Argyris spaces. As a consequence, the regularized local interpolation
onto 𝑊ℎ is rather involved, especially when tailored to respect mixed boundary conditions. In addition, we
present a detailed construction of the discrete a posteriori upper bound in Theorem 3.3 for the stress error
under general boundary conditions, which seems missing in the literature.

In the rest of this section, we introduce the continuous and discrete mixed formulations of the linear elasticity
equation in R2. Let Ω be a simply connected polygonal domain. Let 𝜎 and 𝑢 denote the stress and displacement
fields produced by a body force acting on a linearly elastic body that occupies the region Ω ⊂ R2. Then 𝑢 takes
value in R2 and 𝜎 takes value in S, the space of symmetric 2× 2 matrices. Given Lamé constants 𝜇 > 0, 𝜆 > 0,
define

𝜀(𝑢) =
1
2
(︀
∇𝑢+ (∇𝑢)⊤

)︀
,

C𝜎 = 2𝜇𝜎 + 𝜆 tr(𝜎)𝛿,

where tr denotes the trace of square matrices, and 𝛿 is the 2 × 2 identity matrix. The Navier–Lamé equation
for planar elasticity reads

div(C𝜀(𝑢)) = 𝑓, (1.1)

where div is the divergence operator applied to each row of C𝜀(𝑢). Given 𝜏 ∈ 𝐿2(Ω,S), the compliance tensor
is defined as

A𝜏 = C−1𝜏 =
1

2𝜇

(︂
𝜏 − 𝜆

2𝜇+ 2𝜆
(tr 𝜏)𝛿

)︂
.

Let 𝜕Ω = Γ𝐷 ∪ Γ𝑁 with relatively open subsets Γ𝐷, Γ𝑁 , and Γ𝐷 ∩ Γ𝑁 = ∅. The part Γ𝑁 = ∪𝐽
𝑗=1Γ𝑗 is the

disjoint union of several connected components {Γ𝑗}𝐽
𝑗=1. Let 𝑛 be the outward unit normal to 𝜕Ω. We consider

the mixed formulation of (1.1) under the mixed boundary condition

A𝜎 = 𝜀(𝑢),
div 𝜎 = 𝑓,

𝑢 = 𝑔𝐷 on Γ𝐷,

𝜎𝑛 = 𝑔𝑁 on Γ𝑁 .

(1.2)

Let ℛℳ be the space of rigid body motions

ℛℳ =
{︁

(𝑐1, 𝑐2)⊤ + 𝑐3(−𝑥2, 𝑥1)⊤ : 𝑐1, 𝑐2, 𝑐3 ∈ R
}︁
.

If Γ𝐷 = ∅, the load 𝑓 in (1.2) is required to satisfy the compatibility condition∫︁
Ω

𝑓 · 𝑣d𝑥 = 0, ∀𝑣 ∈ ℛℳ.
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Given a vector space V, let 𝐿2(Ω,V) denote the space of V-valued 𝐿2-functions on Ω. Similarly 𝐻𝑠(Ω,V) is
the V-valued 𝐻𝑠(Ω) Sobolev space. Define the spaces

𝑈 := 𝐿2(Ω,R2) if Γ𝐷 ̸= ∅, 𝑈 := 𝐿2(Ω,R2)/ℛℳ if Γ𝐷 = ∅,
Σ(𝑔) :=

{︀
𝜏 ∈ 𝐿2(Ω,S) : div 𝜏 ∈ 𝐿2(Ω,R2), 𝜏𝑛 = 𝑔 on Γ𝑁

}︀
.

Given a subdomain Ω0 ⊆ Ω, let (·, ·)Ω0 denote the 𝐿2(Ω0) inner product and (·, ·) = (·, ·)Ω. For a 1d submanifold
Γ0 ⊆ Ω, by ⟨·, ·⟩Γ0 we denote the 𝐿2(Γ0) inner product. The variational formulation of (1.2) seeks 𝜎 ∈ Σ(𝑔𝑁 )
and 𝑢 ∈ 𝑈 such that

(A𝜎, 𝜏) + (div 𝜏, 𝑢) = ⟨𝜏𝑛, 𝑔𝐷⟩Γ𝐷
, 𝜏 ∈ Σ := Σ(0), (1.3a)

(div 𝜎, 𝑣) = (𝑓, 𝑣), 𝑣 ∈ 𝑈. (1.3b)

Let 𝒯0 be a conforming initial macro-triangulation of Ω and be aligned with Γ𝐷, Γ𝑁 . Let T = {𝒯ℎ} denote a
forest of conforming refinement of 𝒯0 indexed by ℎ. For 𝒯ℎ, 𝒯𝐻 ∈ T, we say 𝒯𝐻 ≤ 𝒯ℎ provided 𝒯ℎ is a refinement
of 𝒯𝐻 . We assume T is shape regular, i.e., there exists a uniform constant 𝛾0 such that

max
𝒯ℎ∈T

max
𝑇∈𝒯ℎ

𝑟𝑇 /𝜌𝑇 < 𝛾0 <∞,

where 𝑟𝑇 and 𝜌𝑇 are radii of circumscribed and inscribed circles of 𝑇 , respectively. Let 𝒫𝑟(𝑇,V) denote the
space of V-valued polynomials of degree at most 𝑟 on 𝑇 . For an integer 𝑟 ≥ 0, the mixed finite element spaces
are

Σℎ(𝑔) := {𝜏ℎ ∈ Σ(𝑔) : 𝜏ℎ|𝑇 ∈ 𝒫𝑟+3(𝑇, S) ∀𝑇 ∈ 𝒯ℎ},
𝑈ℎ :=

{︀
𝑣ℎ ∈ 𝑈 : 𝑣ℎ|𝑇 ∈ 𝒫𝑟+2(𝑇,R2) ∀𝑇 ∈ 𝒯ℎ

}︀
.

In the sequel, we assume that 𝑔𝑁 is a piecewise polynomial on Γ𝑁 with 𝑔𝑁 |𝑒 ∈ 𝒫𝑟+3(𝑒,R2) for each edge
𝑒 in 𝒯0 and 𝑔𝐷 is a piecewise polynomial on Γ𝐷 aligned with 𝒯0. The mixed method for (1.3) is to find
𝜎ℎ ∈ Σℎ(𝑔𝑁 ), 𝑢ℎ ∈ 𝑈ℎ such that

(A𝜎ℎ, 𝜏ℎ) + (div 𝜏ℎ, 𝑢ℎ) = ⟨𝜏ℎ𝑛, 𝑔𝐷⟩Γ𝐷
, 𝜏ℎ ∈ Σℎ := Σℎ(0), (1.4a)

(div 𝜎ℎ, 𝑣) = (𝑓, 𝑣ℎ), 𝑣ℎ ∈ 𝑈ℎ, (1.4b)

when 𝒯𝐻 ≤ 𝒯ℎ, it holds that Σ𝐻 ×𝑈𝐻 ⊆ Σℎ×𝑈ℎ. Then using the nestedness and (1.4), we obtain the Galerkin
orthogonality

(A(𝜎ℎ − 𝜎𝐻), 𝜏𝐻) + (div 𝜏𝐻 , 𝑢ℎ − 𝑢𝐻) = 0, 𝜏𝐻 ∈ Σ𝐻 , (1.5a)
(div(𝜎ℎ − 𝜎𝐻), 𝑣𝐻) = 0, 𝑣𝐻 ∈ 𝑈𝐻 . (1.5b)

It has been shown in [25,30] that Σℎ × 𝑈ℎ fulfills the inf-sup condition

‖𝑣ℎ‖ ≤ 𝐶 sup
0̸=𝜏ℎ∈Σℎ

(div 𝜏ℎ, 𝑣ℎ)
‖𝜏ℎ‖+ ‖ div 𝜏ℎ‖

, ∀𝑣ℎ ∈ 𝑈ℎ, (1.6)

where 𝐶 dependes only on 𝑟 and 𝛾0. However, the construction of the local basis of Σℎ is rather involved [25].
To overcome this difficulty, (1.4) is implemented using hybridization technique and iterative solvers, see [25]
and Section 6.

Let 𝒱ℎ denote the set of grid vertices in 𝒯ℎ. For 𝑟 ≥ 0, the classic Arnold–Winther mixed elasticity element
spaces are

ΣAW
ℎ :=

{︀
𝜏ℎ ∈ Σ : 𝜏ℎ|𝑇 ∈ 𝒫𝑟+3(𝑇, S),div 𝜏 ∈ 𝒫𝑟+1

(︀
𝑇,R2

)︀
∀𝑇 ∈ 𝒯ℎ, 𝜏ℎ is continuous at each 𝑥 ∈ 𝒱ℎ

}︀
,



1924 Y. LI

𝑈AW
ℎ :=

{︀
𝑣ℎ ∈ 𝑈 : 𝑣ℎ|𝑇 ∈ 𝒫𝑟+1(𝑇,R2) ∀𝑇 ∈ 𝒯ℎ

}︀
.

The Hu–Zhang mixed elasticity element spaces are

ΣHZ
ℎ := {𝜏ℎ ∈ Σ : 𝜏ℎ|𝑇 ∈ 𝒫𝑟+3(𝑇, S) ∀𝑇 ∈ 𝒯ℎ, 𝜏ℎ is continuous at each 𝑥 ∈ 𝒱ℎ},

𝑈HZ
ℎ := 𝑈ℎ.

Due to the continuity constraint of ΣAW
ℎ and ΣHZ

ℎ at each vertex, we note that ΣAW
𝐻 ̸⊆ ΣAW

ℎ , ΣHZ
𝐻 ̸⊆ ΣHZ

ℎ . This
non-nestedness is the motivation of our analysis of adaptive hybridized MFEM and a major difficulty arising
from the analysis of AMFEMs based on Arnold–Winther and Hu–Zhang elements.

The rest of this paper is organized as follows. In Section 2, we introduce preliminaries for deriving the discrete
a posteriori upper error bound. In Section 3, we derive the discrete reliability and quasi-orthogonality. Section 4
is devoted to the convergence and optimality analysis of the proposed adaptive algorithm. In Section 5, we give
proofs of technical results used in our analysis. The numerical experiment is presented in Section 6.

2. Preliminaries

For 𝑇 ∈ 𝒯ℎ, let |𝑇 | denote the area of 𝑇 and ℎ𝑇 = |𝑇 | 12 the size of 𝑇. On 𝜕𝑇 let 𝑡 be the counterclockwise
unit tangent and 𝑛 the outward unit normal to 𝜕𝑇 . On 𝜕Ω let 𝑡 be the counterclockwise unit tangent to 𝜕Ω. In
𝒯ℎ, let ℰℎ, ℰ𝑜

ℎ, ℰ𝐷
ℎ denote the set of edges, interior edges, and edges in Γ𝐷, respectively. Let

ℰ𝑜
ℎ(𝑇 ) = {𝑒 ∈ ℰ𝑜

ℎ : 𝑒 ⊂ 𝜕𝑇}, ℰ𝐷
ℎ (𝑇 ) = {𝑒 ∈ ℰ𝐷

ℎ : 𝑒 ⊂ 𝜕𝑇}.

We use ‖ · ‖Ω0 to denote the 𝐿2(Ω0) norm and ‖ · ‖ = ‖ · ‖Ω. Each edge 𝑒 in 𝒯ℎ is assigned with a unit tangent 𝑡𝑒
and a unit normal 𝑛𝑒. In addition, 𝑡𝑒 is counterclockwise oriented and 𝑛𝑒 is outward pointing provided 𝑒 ⊂ 𝜕Ω.
If 𝑒 is an interior edge shared by two triangles 𝑇+ and 𝑇−, let J𝜑K|𝑒 = (𝜑|𝑇+)|𝑒 − (𝜑|𝑇−)|𝑒 denote the jump of 𝜑
over 𝑒, where 𝑛𝑒 is pointing from 𝑇+ to 𝑇−.

Given a scalar-valued function 𝑤 and a R2-valued function 𝜑 = (𝜑1, 𝜑2), let

curl𝑤 :=
(︂
− 𝜕𝑤

𝜕𝑥2
,
𝜕𝑤

𝜕𝑥1

)︂⊤
, rot𝜑 :=

𝜕𝜑2

𝜕𝑥1
− 𝜕𝜑1

𝜕𝑥2
·

For R2-valued 𝑣 = (𝑣1, 𝑣2)⊤ and R2×2-valued 𝜏 = (𝜏1, 𝜏2)⊤, let

curl 𝑣 := (curl 𝑣1, curl 𝑣2)⊤, rot 𝜏 := (rot 𝜏1, rot 𝜏2)⊤.

For a unit vector 𝑑, we use 𝜕𝑑 to denote the directional derivative along 𝑑. The stress error will be estimated
by 𝜂ℎ = 𝜂ℎ(𝜎ℎ) =

(︀∑︀
𝑇∈𝒯ℎ

𝜂2
ℎ(𝜎ℎ, 𝑇 )

)︀ 1
2 with the element-wise error indicator given as

𝜂ℎ(𝜎ℎ, 𝑇 ) =

⎧⎨⎩ℎ4
𝑇 ‖ rot rot A𝜎ℎ‖2𝑇 +

∑︁
𝑒∈ℰ𝑜

ℎ(𝑇 )

(︀
ℎ𝑒‖𝑡⊤𝑒 JA𝜎ℎK𝑡𝑒‖2𝑒

+ ℎ3
𝑒‖𝑛⊤𝑒 𝜕𝑡𝑒JA𝜎ℎK𝑡𝑒 − Jrot A𝜎ℎK · 𝑡𝑒‖2𝑒

)︀
+

∑︁
𝑒∈ℰ𝐷

ℎ (𝑇 )

(︀
ℎ𝑒‖𝑡⊤𝑒 ((A𝜎ℎ)𝑡𝑒 − 𝜕𝑡𝑒𝑔𝐷)‖2𝑒

+ ℎ3
𝑒‖𝑛⊤𝑒 𝜕𝑡𝑒

(A𝜎ℎ)𝑡𝑒 − (rot A𝜎ℎ) · 𝑡𝑒 − 𝑛𝑒 · 𝜕2
𝑡𝑒
𝑔𝐷‖2𝑒

)︀⎫⎬⎭
1
2

,

where ℎ𝑒 is the diameter of 𝑒. By 𝑃ℎ we denote the 𝐿2 projection onto 𝑈ℎ. The data oscillation is oscℎ =
oscℎ(𝑓) =

(︀∑︀
𝑇∈𝒯ℎ

osc2
ℎ(𝑓, 𝑇 )

)︀ 1
2 , where

oscℎ(𝑓, 𝑇 ) = ℎ𝑇 ‖𝑓 − 𝑃ℎ𝑓‖𝑇 .
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The expression of 𝜂ℎ is the same as existing a posteriori error estimators for the MFEM using the Arnold–
Winther and Hu–Zhang elements, see, e.g., [15, 20].

An indispensable ingredient of optimality analysis of AFEMs is the discrete upper bound for the finite element
error. To construct such a bound, we consider the 𝐶1-conforming space

𝑊ℎ =
{︀
𝑤ℎ ∈ 𝐶1(Ω) : 𝑤ℎ|𝑇 ∈ 𝒫𝑟+5(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, (curl𝑤ℎ)|Γ𝑗 is constant for 1 ≤ 𝑗 ≤ 𝐽

}︀
,

which is a subspace of the Morgan–Scott 𝐶1 element space [24,37]. Let 𝐽 denote the Airy stress function:

𝐽 = curl curl =

⎛⎝ 𝜕2

𝜕𝑥2
2

− 𝜕2

𝜕𝑥1𝜕𝑥2

− 𝜕2

𝜕𝑥1𝜕𝑥2

𝜕2

𝜕𝑥2
1

⎞⎠.
Due to 𝐽(𝑊ℎ) ⊂ Σℎ and div ∘𝐽 = 0, we obtain a well-defined discrete sequence:

𝑊ℎ
𝐽−−−−→ Σℎ

div−−−−→ 𝑈ℎ −−−−→ 0. (2.1)

Lemma 2.1. The sequence (2.1) is exact, i.e., ker(div |Σℎ
) = 𝐽(𝑊ℎ).

Proof. Given 𝜏ℎ ∈ Σℎ with div 𝜏ℎ = 0, there exists 𝜑 ∈ 𝐻1(Ω) such that curl𝜑 = 𝜏ℎ. Due to the symmetry
of 𝜏ℎ, it holds that div 𝜑 = 0 and thus 𝜑 = curl𝑤 for some 𝑤 ∈ 𝐻2(Ω). Therefore we obtain 𝜏ℎ = curl curl𝑤,
𝑤|𝑇 ∈ 𝒫𝑟+5(𝑇 ) for each 𝑇 ∈ 𝒯ℎ. The boundary condition 𝜏ℎ𝑛|Γ𝑁

= 0 implies 𝜕𝑡(curl𝑤)|Γ𝑁
= 0 and curl𝑤 is

constant on each Γ𝑗 . The proof is complete. �

The next theorem is a direct consequence of Lemma 2.1.

Theorem 2.2 (Discrete Helmholtz decomposition).

Σℎ = 𝐽(𝑊ℎ)⊕ 𝜀ℎ
C(𝑈ℎ),

where 𝜀ℎ
C : 𝑈ℎ → Σℎ is the adjoint operator of −div : Σℎ → 𝑈ℎ, i.e.,(︀

A𝜀ℎ
C(𝑣ℎ), 𝜏ℎ

)︀
= −(𝑣ℎ,div 𝜏ℎ) for all 𝜏ℎ ∈ Σℎ.

Proof. Let ker(div |Σℎ
)⊥ be the orthogonal complement of ker(div |Σℎ

) in Σℎ with respect to the weighted inner
product (A·, ·). Elementary linear algebra shows that

ker(div |Σℎ
)⊥ = 𝜀ℎ

C(𝑈ℎ).

Combining it with the exactness ker(div |Σℎ
) = 𝐽(𝑊ℎ) in Lemma 2.1, we obtain

Σℎ = ker(div |Σℎ
)⊕ ker(div |Σℎ

)⊥ = 𝐽(𝑊ℎ)⊕ 𝜀ℎ
C(𝑈ℎ),

which completes the proof. �

Remark 2.3. For the Arnold–Winther and Hu–Zhang elements under Γ𝑁 = ∅, the correct discrete elasticity
sequences are ̂︁𝑊ℎ

𝐽−−−−→ ΣAW
ℎ

div−−−−→ 𝑈AW
ℎ −−−−→ 0,

and ̂︁𝑊ℎ
𝐽−−−−→ ΣHZ

ℎ
div−−−−→ 𝑈ℎ −−−−→ 0,

respectively, wherê︁𝑊ℎ =
{︀
𝑤ℎ ∈ 𝐻2(Ω) : 𝑤ℎ|𝑇 ∈ 𝒫𝑟+5(𝑇 ) for each 𝑇 ∈ 𝒯ℎ,∇2𝑤ℎ is continuous at each 𝑥 ∈ 𝒱ℎ

}︀
,

when 𝑟 = 0, ̂︁𝑊ℎ is the well-known quintic Argyris finite element space. Due to the extra vertex continuity, it is
relatively easy to construct a local basis of ̂︁𝑊ℎ and interpolation onto ̂︁𝑊ℎ.
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It is noted that𝑊ℎ is not a standard finite element space. The work [37] gives a set of unisolvent nodal variables
and locally supported dual nodal basis of 𝑊ℎ, although those degrees of freedom are much more complicated
than the Argyris-type 𝐶1 space ̂︁𝑊ℎ. Based on a slightly modified (but complicated) nodal variables, Girault and
Scott [24] constructed a locally defined and 𝐻1-bounded interpolation preserving the homogeneous boundary
condition. To derive the discrete reliability of (1.4), we present an interpolation 𝐼𝐻 : 𝑊ℎ → 𝑊𝐻 , which is a
slight variation of the interpolation in [24]. Throughout the rest of this paper, we say 𝑐1 . 𝑐2 provided 𝑐1 ≤ 𝑐𝑐2
for some generic constant 𝑐 depending only on 𝜇,Ω, 𝛾0, 𝑟.

Lemma 2.4. For 𝒯ℎ, 𝒯𝐻 ∈ T with 𝒯𝐻 ≤ 𝒯ℎ, let ℛ𝐻 := 𝒯𝐻∖𝒯ℎ be the set of refinement elements and̃︀ℛ𝐻 := {𝑇 ∈ 𝒯𝐻 : 𝑇 ∩ 𝑇 ′ ̸= ∅ for some 𝑇 ′ ∈ ℛ𝐻}

denote the enriched collection of refinement elements. There exists an interpolation 𝐼𝐻 : 𝑊ℎ → 𝑊𝐻 such that
for 𝑤ℎ ∈𝑊ℎ,

𝑤ℎ − 𝐼𝐻𝑤ℎ = 0 at 𝑥 ∈ 𝒱𝐻 , (2.2a)

𝑤ℎ − 𝐼𝐻𝑤ℎ = 0 on 𝑇 ∈ 𝒯𝐻∖ ̃︀ℛ𝐻 , (2.2b)
𝑤ℎ − 𝐼𝐻𝑤ℎ = 0 on Γ𝑁 , (2.2c)

𝜕𝑛(𝑤ℎ − 𝐼𝐻𝑤ℎ) = 0 on Γ𝑁 . (2.2d)

In addition,∑︁
𝑇∈𝒯𝐻

ℎ−4
𝑇 ‖𝑤ℎ−𝐼𝐻𝑤ℎ‖2𝑇 +ℎ−2

𝑇 |𝑤ℎ−𝐼𝐻𝑤ℎ|2𝐻1(𝑇 )+ℎ
−3
𝑇 ‖𝑤ℎ−𝐼𝐻𝑤ℎ‖2𝜕𝑇 +ℎ−1

𝑇 ‖∇(𝑤ℎ−𝐼𝐻𝑤ℎ)‖2𝜕𝑇 . |𝑤ℎ|2𝐻2(Ω). (2.3)

The proof of Proposition 2.4 is postponed in Section 5.

3. Discrete reliability and quasi-orthogonality

Let ‖ · ‖A denote the norm corresponding to (A·, ·). For ℳ⊆ 𝒯ℎ, let

𝜂ℎ(𝜎ℎ,ℳ) =

(︃∑︁
𝑇∈ℳ

𝜂2
ℎ(𝜎ℎ, 𝑇 )

)︃ 1
2

,

oscℎ(𝑓,ℳ) =

(︃∑︁
𝑇∈ℳ

osc2
ℎ(𝑓, 𝑇 )

)︃ 1
2

·

We shall prove the discrete reliability of the estimator 𝜂ℎ and quasi-orthogonality between 𝜎−𝜎ℎ and 𝜎ℎ−𝜎𝐻 .
The analysis relies on the following discrete approximation result, whose proof is left in Section 5.

Lemma 3.1. Let 𝒯ℎ, 𝒯𝐻 ∈ T with 𝒯𝐻 ≤ 𝒯ℎ and 𝑄𝐻 denote the 𝐿2-projection onto the space of piecewise rigid
body motions

ℛℳ𝐻 =
{︀
𝑣 ∈ 𝐿2

(︀
Ω,R2

)︀
: 𝑣|𝑇 ∈ ℛℳ for all 𝑇 ∈ 𝒯𝐻

}︀
.

It holds that (︃ ∑︁
𝑇∈𝒯𝐻

ℎ−2
𝑇 ‖𝑣ℎ −𝑄𝐻𝑣ℎ‖2𝑇

)︃ 1
2

. ‖𝜀ℎ
C(𝑣ℎ)‖A.

The space ℛℳ𝐻 can be viewed as a broken rotated Raviart–Thomas finite element space. Here we are
interested in 𝑄𝐻 instead of 𝑃𝐻 because we will use the fact ℛℳ ⊂ ker(𝜀), see the proof of Lemma 5.2 for
details.

The next lemma is used to remove the Lamé coefficient 𝜆 in error bounds. The proof can be found in
Lemmas 3.1 and 3.2 of [3].
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Lemma 3.2. There exists a constant 𝐶rb depends only on 𝜇 and Ω, such that

‖𝜏‖ ≤ 𝐶rb

(︀
‖𝜏‖A + ‖ div 𝜏‖𝐻−1(Ω)

)︀
for all 𝜏 ∈ Σ with

∫︀
Ω

tr 𝜏d𝑥 = 0.

For 𝑤 ∈ 𝐻1(𝑇 ) and 𝜑 ∈ 𝐻1(𝑇,R2), we have the integration-by-parts formula:

(curl𝑤, 𝜑)𝑇 = ⟨𝑤, 𝜑 · 𝑡⟩𝜕𝑇 − (𝑤, rot𝜑)𝑇 . (3.1)

With the above preparations, we are able to prove the discrete reliability of 𝜂ℎ.

Theorem 3.3 (Discrete reliability). Let 𝒯ℎ, 𝒯𝐻 ∈ T with 𝒯𝐻 ≤ 𝒯ℎ. There exists a constant 𝐶drel depending
only on 𝜇,Ω, 𝛾0, such that

‖𝜎𝐻 − 𝜎ℎ‖2A ≤ 𝐶drel

(︁
𝜂2

𝐻

(︁
𝜎𝐻 , ̃︀ℛ𝐻

)︁
+ osc2

𝐻(𝑓,ℛ𝐻)
)︁
.

Proof. Applying Theorem 2.2 to 𝜎𝐻 − 𝜎ℎ ∈ Σ𝐻 gives

𝜎𝐻 − 𝜎ℎ = 𝐽(𝑤ℎ) + 𝜀ℎ
C(𝑣ℎ) (3.2)

for some 𝑤ℎ ∈𝑊ℎ and 𝑣ℎ ∈ 𝑈ℎ. Taking 𝜏𝐻 = 𝛿 in (1.5a) leads to∫︁
Ω

tr(𝜎𝐻 − 𝜎ℎ)d𝑥 = 0. (3.3)

Direct calculation shows that∫︁
Ω

1
2(𝜇+ 𝜆)

tr 𝜀ℎ
C(𝑣ℎ)d𝑥 =

(︀
A𝜀ℎ

C(𝑣ℎ), 𝛿
)︀

= −(𝑣ℎ,div 𝛿) = 0. (3.4)

Then a combination of (3.2)–(3.4) yields ∫︁
Ω

tr 𝐽(𝑤ℎ)d𝑥 = 0. (3.5)

Hence using Lemma 3.2, div ∘𝐽 = 0, (3.5) and the A-orthogonality between 𝐽𝑤ℎ and 𝜀ℎ
C(𝑣ℎ), we obtain the

following robust bound
‖𝐽𝑤ℎ‖ . ‖𝐽𝑤ℎ‖A ≤ ‖𝜎𝐻 − 𝜎ℎ‖A. (3.6)

Let 𝐸ℎ = 𝑤ℎ − 𝐼𝐻𝑤ℎ. Using (1.4a), (1.5a), div ∘𝐽 = 0, (2.2b), we have

(A(𝜎𝐻 − 𝜎ℎ), 𝐽𝑤ℎ) = (A(𝜎𝐻 − 𝜎ℎ), 𝐽𝐸ℎ)
= (A𝜎𝐻 , 𝐽𝐸ℎ) + ⟨𝜕𝑡 curl𝐸ℎ, 𝑔𝐷⟩Γ𝐷

=
∑︁

𝑇∈ ̃︀ℛ𝐻

(A𝜎𝐻 , 𝐽𝐸ℎ)𝑇 − ⟨curl𝐸ℎ, 𝜕𝑡𝑔𝐷⟩Γ𝐷
.

(3.7)

In the last equality, we integrate by parts on Γ𝐷 and use the fact curl𝐸ℎ = 0 on 𝜕Γ𝐷 ⊂ Γ𝑁 (see (2.2c), (2.2d)).
For each 𝑇 ∈ ̃︀ℛ𝐻 , using the formula (3.1), we have

(A𝜎𝐻 , 𝐽𝐸ℎ)𝑇 = ⟨(A𝜎𝐻)𝑡, curl𝐸ℎ⟩𝜕𝑇 − (rot A𝜎𝐻 , curl𝐸ℎ)𝑇

= ⟨(A𝜎𝐻)𝑡, curl𝐸ℎ⟩𝜕𝑇 − ⟨(rot A𝜎𝐻) · 𝑡, 𝐸ℎ⟩𝜕𝑇 + (rot rot A𝜎𝐻 , 𝐸ℎ)𝑇 .
(3.8)
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Integrating by parts on each edge of 𝑇 , we have

⟨(A𝜎𝐻)𝑡, curl𝐸ℎ⟩𝜕𝑇 =
⟨︀
𝑡⊤(A𝜎𝐻)𝑡, 𝜕𝑛𝐸ℎ

⟩︀
𝜕𝑇
−
⟨︀
𝑛⊤(A𝜎𝐻)𝑡, 𝜕𝑡𝐸ℎ

⟩︀
𝜕𝑇

=
⟨︀
𝑡⊤(A𝜎𝐻)𝑡, 𝜕𝑛𝐸ℎ

⟩︀
𝜕𝑇

+
⟨︀
𝑛⊤𝜕𝑡(A𝜎𝐻)𝑡, 𝐸ℎ

⟩︀
𝜕𝑇
.

(3.9)

In the last equality, we use the property (2.2a), i.e., 𝐸ℎ = 0 at each vertex of 𝑇 . Similarly, for the boundary
term in (3.7),

−⟨curl𝐸ℎ, 𝜕𝑡𝑔𝐷⟩Γ𝐷
= −⟨𝜕𝑛𝐸ℎ, 𝑡 · 𝜕𝑡𝑔𝐷⟩Γ𝐷

+ ⟨𝜕𝑡𝐸ℎ, 𝑛 · 𝜕𝑡𝑔𝐷⟩Γ𝐷

= −⟨𝜕𝑛𝐸ℎ, 𝑡 · 𝜕𝑡𝑔𝐷⟩Γ𝐷
−
⟨︀
𝐸ℎ, 𝑛 · 𝜕2

𝑡 𝑔𝐷

⟩︀
Γ𝐷
.

(3.10)

Let ℰ𝑜
𝐻( ̃︀ℛ𝐻) = {𝑒 ∈ ℰ𝑜

𝐻 : 𝑒 ⊂ 𝜕𝑇 for some 𝑇 ∈ ̃︀ℛ𝐻} and ℰ𝐷
𝐻 ( ̃︀ℛ𝐻) = {𝑒 ∈ ℰ𝐻 : 𝑒 ⊂ 𝜕𝑇 for some 𝑇 ∈ ̃︀ℛ𝐻 , 𝑒 ⊂

Γ𝐷}. Note that 𝐸ℎ and 𝜕𝑛𝐸ℎ are continuous over each edge in 𝒯𝐻 . Combining (3.8)–(3.10) and using (2.2b),
(2.2c), (2.2d), we obtain

(A(𝜎𝐻 − 𝜎ℎ), 𝐽𝑤ℎ) =
∑︁

𝑇∈ ̃︀ℛ𝐻

{︀⟨︀
𝑡⊤(A𝜎𝐻)𝑡, 𝜕𝑛𝐸ℎ

⟩︀
𝜕𝑇

+ (rot rot A𝜎𝐻 , 𝐸ℎ)𝑇 +
⟨︀
𝑛⊤𝜕𝑡(A𝜎𝐻)𝑡− (rot A𝜎𝐻) · 𝑡, 𝐸ℎ

⟩︀
𝜕𝑇

}︀
−

∑︁
𝑒∈ℰ𝐷

𝐻 ( ̃︀ℛ𝐻)

{︀
⟨𝜕𝑛𝑒

𝐸ℎ, 𝑡𝑒 · 𝜕𝑡𝑒
𝑔𝐷⟩𝑒 +

⟨︀
𝐸ℎ, 𝑛𝑒 · 𝜕2

𝑡𝑒
𝑔𝐷

⟩︀
𝑒

}︀
=

∑︁
𝑒∈ℰ𝑜

𝐻( ̃︀ℛ𝐻)

{︀⟨︀
𝑡⊤𝑒 JA𝜎𝐻K𝑡𝑒, 𝜕𝑛𝑒𝐸ℎ

⟩︀
𝑒

+
⟨︀
𝑛⊤𝑒 𝜕𝑡𝑒JA𝜎𝐻K𝑡𝑒 − Jrot A𝜎𝐻K · 𝑡𝑒, 𝐸ℎ

⟩︀
𝑒

}︀
+
∑︁

𝑇∈ ̃︀ℛ𝐻

(rot rot A𝜎𝐻 , 𝐸ℎ)𝑇 +
∑︁

𝑒∈ℰ𝐷
𝐻 ( ̃︀ℛ𝐻)

{︀⟨︀
𝑡⊤𝑒 (A𝜎𝐻𝑡𝑒 − 𝜕𝑡𝑒

𝑔𝐷), 𝜕𝑛𝑒
𝐸ℎ

⟩︀
𝑒

+
⟨︀
𝑛⊤𝑒 𝜕𝑡𝑒(A𝜎𝐻)𝑡𝑒 − (rot A𝜎𝐻) · 𝑡𝑒 − 𝑛⊤𝑒 𝜕

2
𝑡𝑒
𝑔𝐷, 𝐸ℎ

⟩︀
𝑒

}︀
.

(3.11)

Using the expression (3.11) and the Cauchy–Schwarz inequality, we have

(A(𝜎𝐻 − 𝜎ℎ), 𝐽𝑤ℎ) . 𝜂𝐻

(︁
𝜎𝐻 , ̃︀ℛ𝐻

)︁(︃ ∑︁
𝑇∈𝒯𝐻

ℎ−4
𝑇 ‖𝐸ℎ‖2𝑇 + ℎ−1

𝑇 ‖𝜕𝑛𝐸ℎ‖2𝜕𝑇 + ℎ−3
𝑇 ‖𝐸ℎ‖2𝜕𝑇

)︃ 1
2

· (3.12)

It then follows from (3.12), (2.3) and (3.6) that

(A(𝜎𝐻 − 𝜎ℎ), 𝐽𝑤ℎ) . 𝜂𝐻

(︁
𝜎𝐻 , ̃︀ℛ𝐻

)︁
|𝑤ℎ|𝐻2(Ω)

. 𝜂𝐻

(︁
𝜎𝐻 , ̃︀ℛ𝐻

)︁
‖𝜎ℎ − 𝜎𝐻‖A.

(3.13)

On the other hand, equation (1.4b) implies(︀
A(𝜎𝐻 − 𝜎ℎ), 𝜀ℎ

C(𝑣ℎ)
)︀

= −(div(𝜎𝐻 − 𝜎ℎ), 𝑣ℎ) = (𝑃ℎ𝑓 − 𝑃𝐻𝑓, 𝑣ℎ)

= (𝑓 − 𝑃𝐻𝑓, 𝑣ℎ −𝑄𝐻𝑣ℎ) =
∑︁

𝑇∈ℛ𝐻

(𝑓 − 𝑃𝐻𝑓, 𝑣ℎ −𝑄𝐻𝑣ℎ)𝑇 .
(3.14)

Using (3.14), Lemma 3.1, and ‖𝜀ℎ
C(𝑣ℎ)‖A ≤ ‖𝜎𝐻 − 𝜎ℎ‖A, we obtain

(︀
A(𝜎𝐻 − 𝜎ℎ), 𝜀ℎ

C(𝑣ℎ)
)︀
≤ osc𝐻(𝑓,ℛ𝐻)

(︃ ∑︁
𝑇∈ℛ𝐻

ℎ−2
𝑇 ‖𝑣ℎ −𝑄𝐻𝑣ℎ‖2𝑇

)︃ 1
2

. osc𝐻(𝑓,ℛ𝐻)‖𝜀ℎ
C(𝑣ℎ)‖A ≤ osc𝐻(𝑓,ℛ𝐻)‖𝜎𝐻 − 𝜎ℎ‖A.

(3.15)

Finally, a combination of (3.13) and (3.15) completes the proof. �
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Let 𝒯ℎ be a uniform refinement of 𝒯𝐻 and let the maximum mesh size of 𝒯ℎ go to 0 in Theorem 3.3. In this
case, ̃︀ℛ𝐻 = ℛ𝐻 = 𝒯𝐻 and 𝜎ℎ → 𝜎, 𝑢ℎ → 𝑢 in Σ× 𝑈 . Therefore, we obtain the continuous upper bound

‖𝜎 − 𝜎𝐻‖2A ≤ 𝐶rel

(︀
𝜂2

𝐻(𝜎𝐻) + osc2
𝐻(𝑓)

)︀
, (3.16)

where 𝐶rel ∈ (0, 𝐶drel] is a constant depending only on 𝜇,Ω, 𝛾0.
The quasi-orthogonality on the variable 𝜎 follows with a similar argument as in the proof of Theorem 3.3.

Theorem 3.4 (Quasi-orthogonality). Let 𝒯ℎ, 𝒯𝐻 ∈ T with 𝒯𝐻 ≤ 𝒯ℎ. For any 𝜈 ∈ (0, 1), it holds that

(1− 𝜈)‖𝜎 − 𝜎ℎ‖2A ≤ ‖𝜎 − 𝜎𝐻‖2A − ‖𝜎ℎ − 𝜎𝐻‖2A + 𝐶𝜈 osc2
𝐻(𝑓,ℛ𝐻),

where 𝐶𝜈 = 𝜈−1𝐶𝜎 and 𝐶𝜎 is a constant depending only on 𝜇,Ω, 𝛾0.

Proof. Combining (3.2) and (1.3a), (1.4a) yields

(A(𝜎 − 𝜎ℎ), 𝜎𝐻 − 𝜎ℎ) =
(︀
A(𝜎 − 𝜎ℎ), 𝜀ℎ

C(𝑣ℎ)
)︀
≤ ‖𝜎 − 𝜎ℎ‖A‖𝜀ℎ

C(𝑣ℎ)‖A. (3.17)

Following the same analysis in (3.14), we have

‖𝜀ℎ
C(𝑣ℎ)‖2A = −

(︀
div 𝜀ℎ

C(𝑣ℎ), 𝑣ℎ

)︀
= −(div(𝜎𝐻 − 𝜎ℎ), 𝑣ℎ)

=
∑︁

𝑇∈ℛ𝐻

(𝑓 − 𝑃𝐻𝑓, 𝑣ℎ −𝑄𝐻𝑣ℎ)𝑇 ≤ 𝐶
1
2
𝜎 osc𝐻(𝑓,ℛ𝐻)‖𝜀ℎ

C(𝑣ℎ)‖A.
(3.18)

A combination of (3.17) and (3.18) shows that

(A(𝜎 − 𝜎ℎ), 𝜎𝐻 − 𝜎ℎ) ≤ 𝐶
1
2
𝜎 ‖𝜎 − 𝜎ℎ‖A osc𝐻(𝑓,ℛ𝐻)

≤ 𝜈

2
‖𝜎 − 𝜎ℎ‖2A +

𝜈−1

2
𝐶𝜎 osc2

𝐻(𝑓,ℛ𝐻),

where 0 < 𝜈 < 1. Therefore

‖𝜎 − 𝜎ℎ‖2A = ‖𝜎 − 𝜎𝐻‖2A − ‖𝜎ℎ − 𝜎𝐻‖2A + 2(A(𝜎 − 𝜎ℎ), 𝜎𝐻 − 𝜎ℎ)
≤ ‖𝜎 − 𝜎𝐻‖2A − ‖𝜎ℎ − 𝜎𝐻‖2A + 𝜈‖𝜎 − 𝜎ℎ‖2A + 𝜈−1𝐶𝜎 osc2

𝐻(𝑓,ℛ𝐻).

The proof is complete. �

4. Quasi-optimality

Define

𝜂ℎ(𝜎ℎ, 𝑇 ) =
(︀
𝜂2

ℎ(𝜎ℎ, 𝑇 ) + osc2
ℎ(𝑓, 𝑇 )

)︀ 1
2 ,

𝜂ℎ(𝜎ℎ,ℳ) =

(︃∑︁
𝑇∈ℳ

𝜂2
ℎ(𝜎ℎ, 𝑇 )

)︃ 1
2

, ℳ⊆ 𝒯ℎ.

Our adaptive algorithm is based on the classical feedback loop

SOLVE −−−−→ ESTIMATE −−−−→ MARK −−−−→ REFINE.

In the procedure REFINE, we use the newest vertex bisection [5, 36,40] to ensure the shape regularity of T.

Algorithm 4.1. Input the initial mesh 𝒯ℎ0 = 𝒯0 and 𝜃 ∈ (0, 1). Set ℓ = 0.
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SOLVE: Solve (1.4) on 𝒯ℎℓ
to obtain the finite element solution (𝜎ℎℓ

, 𝑢ℎℓ
).

ESTIMATE: Calculate error indicators {𝜂ℎℓ
(𝜎ℎℓ

, 𝑇 )}𝑇∈𝒯ℎℓ
.

MARK: Select a subset ℳℓ ⊂ 𝒯ℎℓ
with minimal cardinality such that

𝜂ℎℓ
(𝜎ℎℓ

,ℳℓ) ≥ 𝜃𝜂ℎℓ
.

REFINE: Refine all elements in ℳℓ and minimal number of neighboring elements to remove hanging nodes.
The resulting conforming mesh is 𝒯ℎℓ+1 . Set ℓ = ℓ+ 1. Go to SOLVE.

In the procedure ESTIMATE, the actual estimator is
(︀
𝜂2

ℎℓ
+ osc2

ℎℓ

)︀ 1
2 instead of 𝜂ℎℓ

. Due to this strategy, an
extra marking step for data oscillation can be avoided, see, e.g., [27, 31]. Since the data oscillation oscℎℓ

is
completely local, its behavior can be easily described by the following lemma, see, e.g., Lemma 5.2 in [27].

Lemma 4.2. For ℓ ≥ 0, let ℛℓ = 𝒯ℎℓ
∖𝒯ℎℓ+1 denote the collection of refinement elements from 𝒯ℎℓ

to 𝒯ℎℓ+1 . It
holds that

osc2
ℎℓ+1

≤ osc2
ℎℓ
−1

2
osc2

ℎℓ
(𝑓,ℛℓ).

Once the theoretical results in Section 3 are available, the convergence and complexity analysis of Algo-
rithm 4.1 follows from classical and systematic arguments, see, e.g., [14, 16, 39] for axioms of adaptivity. To be
self-contained, we still briefly outlined the rest of adaptivity analysis.

The estimator reduction is a standard ingredient in the convergence analysis of AFEMs, see [16]. Since 𝜂ℎ

involves data oscillation, we refer to Lemma 5.1 in [27] for a detailed proof. The only new ingredient in the
proof of Lemma 4.3 is the robust inequality ‖A𝜏‖ . ‖𝜏‖A.

Lemma 4.3. There exists a constant 𝛾 ∈ (0, 1) and 𝐶re > 0 depending only on 𝜇,Ω, 𝛾0, 𝜃 such that

𝜂2
ℎℓ+1

≤ 𝛾𝜂2
ℎℓ

+ 𝐶re‖𝜎ℎℓ
− 𝜎ℎℓ+1‖2A.

For convenience, let

𝑒ℓ = ‖𝜎 − 𝜎ℎℓ
‖A, 𝐸ℓ = ‖𝜎ℎℓ

− 𝜎ℎℓ+1‖A.

The next theorem gives the contraction property of Algorithm 4.1.

Theorem 4.4 (Contraction). There exists constants 𝜈, 𝛼 ∈ (0, 1) depending only on 𝜃, 𝜇,Ω, 𝛾0 such that

(1− 𝜈)𝑒2ℓ+1 + 2𝐶𝜈 osc2
ℎℓ+1

+𝐶−1
re 𝜂

2
ℎℓ+1

≤ 𝛼
(︀
(1− 𝜈)𝑒2ℓ + 2𝐶𝜈 osc2

ℎℓ
+𝐶−1

re 𝜂
2
ℎℓ

)︀
.

Proof. A combination of Theorem 3.4 and Lemma 4.2 shows that

(1− 𝜈)𝑒2ℓ+1 + 2𝐶𝜈 osc2
ℎℓ+1

≤ 𝑒2ℓ + 2𝐶𝜈 osc2
ℎℓ
−𝐸2

ℎℓ
. (4.1)

On the other hand, the reliability (3.16) gives

𝑒2ℓ ≤ 𝐶rel𝜂
2
ℎℓ
, osc2

ℎℓ
≤ 𝜂2

ℎℓ
. (4.2)

Let 𝛼 ∈ (0, 1) be a constant. Using (4.1) and Lemma 4.3, we have

(1− 𝜈)𝑒2ℓ+1 + 2𝐶𝜈 osc2
ℎℓ+1

+𝐶−1
re 𝜂

2
ℎℓ+1

≤ 𝑒2ℓ + 2𝐶𝜈 osc2
ℎℓ

+𝐶−1
re 𝛾𝜂

2
ℎℓ

≤ 𝛼(1− 𝜈)𝑒2ℓ + 2𝛼𝐶𝜈 osc2
ℎℓ

+(1− 𝛼(1− 𝜈))𝑒2ℓ + 2(1− 𝛼)𝐶𝜈 osc2
ℎℓ

+𝐶−1
re 𝛾𝜂

2
ℎℓ
.
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Combining it with (4.2) yields

(1− 𝜈)𝑒2ℓ+1 + 2𝐶𝜈 osc2
ℎℓ+1

+𝐶−1
re 𝜂

2
ℎℓ+1

≤ 𝛼(1− 𝜈)𝑒2ℓ + 2𝛼𝐶𝜈 osc2
ℎℓ

+
{︀

(1− 𝛼(1− 𝜈))𝐶rel + 2(1− 𝛼)𝐶𝜈 + 𝐶−1
re 𝛾

}︀
𝜂2

ℎℓ
.

(4.3)

Let (1− 𝛼(1− 𝜈))𝐶rel + 2(1− 𝛼)𝐶𝜈 + 𝐶−1
re 𝛾 = 𝛼𝐶−1

re , i.e.,

𝛼 =
𝐶rel + 2𝐶𝜈 + 𝐶−1

re 𝛾

(1− 𝜈)𝐶rel + 2𝐶𝜈 + 𝐶−1
re

·

Clearly 𝛼 < 1 provided 0 < 𝜈 < 1−𝛾
𝐶re𝐶rel

. The contraction follows from (4.3). �

The efficiency of 𝜂ℎ follows with the same bubble function technique in [15,20]:

𝐶eff𝜂
2
ℎ(𝜎ℎ) ≤ ‖𝜎 − 𝜎ℎ‖2A + osc2

ℎ(𝑓), (4.4)

where the constant 𝐶eff > 0 depends only on 𝜇,Ω, 𝛾0, 𝑟. An essential ingredient in the complexity analysis is
the following cardinality estimate

#𝒯ℎℓ
−#𝒯ℎ0 .

ℓ−1∑︁
𝑗=0

ℳ𝑗 . (4.5)

It has been shown in [7] that (4.5) holds provided the newest vertices in the initial mesh 𝒯ℎ0 are suitably chosen.
In addition, the marking parameter 𝜃 is required to be below the threshold

𝜃* = min
(︂

1,
𝐶eff

3𝐶drel

)︂ 1
2

,

which can be derived in the next lemma.

Lemma 4.5 (Optimal marking). Let 𝒯ℎ, 𝒯𝐻 ∈ T with 𝒯𝐻 ≤ 𝒯ℎ. Set 𝜇 = 1
2

(︁
1− 𝜃2

𝜃2
*

)︁
. If

‖𝜎 − 𝜎ℎ‖2A + osc2
ℎ(𝑓) ≤ 𝜇

{︀
‖𝜎 − 𝜎𝐻‖2A + osc2

𝐻(𝑓)
}︀
. (4.6)

Then the set ̃︀ℛ𝐻 in Lemma 2.4 verifies the Dörfler marking property

𝜂𝐻

(︁
𝜎𝐻 , ̃︀ℛ𝐻

)︁
≥ 𝜃𝜂𝐻 .

Proof. Using (4.4) and (4.6), we have

(1− 2𝜇)𝐶eff𝜂
2
𝐻 ≤ (1− 2𝜇)

(︀
‖𝜎 − 𝜎𝐻‖2A + osc2

𝐻(𝑓)
)︀

≤ ‖𝜎 − 𝜎𝐻‖2A − 2‖𝜎 − 𝜎ℎ‖2A + osc2
𝐻(𝑓)− 2 osc2

ℎ(𝑓)
≤ 2‖𝜎𝐻 − 𝜎ℎ‖2A + osc2

𝐻(𝑓,ℛ𝐻).

(4.7)

In the last step, we use the obvious inequality

osc2
𝐻(𝑓)− 2 osc2

ℎ(𝑓) ≤ osc2
𝐻(𝑓)− osc2

ℎ(𝑓) ≤ osc2
𝐻(𝑓,ℛ𝐻).

It then follows from (4.7) and Theorem 3.3 that

(1− 2𝜇)𝐶eff𝜂
2
𝐻 ≤ 3𝐶drel𝜂

2
𝐻

(︁
𝜎𝐻 , ̃︀ℛ𝐻

)︁
.

The proof is then complete by 𝜃2* ≤ 𝐶eff
3𝐶drel

. �
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Under these assumptions, the convergence rate of can be characterized by the nonlinear approximation
property of 𝜎 and 𝑓 . Let ̃︀T be the collection of grids created by newest vertex bisection from 𝒯ℎ0 . For 𝑠 > 0,
define the semi-norms

|𝜎|𝑠 = sup
𝑁>0

{︃
𝑁𝑠 min

𝒯ℎ∈̃︀T,#𝒯ℎ−#𝒯ℎ0≤𝑁
min

𝜏ℎ∈Σℎ

‖𝜎 − 𝜏ℎ‖A

}︃
,

|𝑓 |𝑜𝑠 = sup
𝑁>0

{︃
𝑁𝑠 min

𝒯ℎ∈̃︀T,#𝒯ℎ−#𝒯ℎ0≤𝑁
oscℎ(𝑓)

}︃
.

One can also define the coupled approximation semi-norm

|(𝜎, 𝑓)|𝑠 := sup
𝑁>0

{︃
𝑁𝑠 min

𝒯ℎ∈̃︀T,#𝒯ℎ−#𝒯ℎ0≤𝑁

(︀
‖𝜎 − 𝜎ℎ‖2A + oscℎ(𝑓)2

)︀ 1
2

}︃
.

Since 𝜆, 𝜇 are constants, we have the following equivalence

|(𝜎, 𝑓)|𝑠 <∞⇔ |𝜎|𝑠 + |𝑓 |𝑜𝑠 <∞

as argued in Lemma 5.3 of [16]. The quasi-optimal convergence rate of Algorithm 4.1 follows from the contraction
and previous assumptions, see, e.g., [16], Lemma 5.10 and Theorems 5.1 for details.

Theorem 4.6 (Quasi-optimality). Let {(𝜎ℎℓ
, 𝑢ℎℓ

, 𝒯ℎℓ
)}ℓ≥0 be a sequence of finite element solutions and meshes

generated by Algorithm 4.1. Assume |𝜎|𝑠 + |𝑓 |𝑜𝑠 < ∞, 𝜃 ∈ (0, 𝜃*), and (4.5) hold. There exists a constant 𝐶opt

depending only on 𝜃, 𝜃*, 𝛼, 𝜇,Ω, 𝛾0, such that(︀
‖𝜎 − 𝜎ℎℓ

‖2A + osc2
ℎℓ

)︀ 1
2 ≤ 𝐶opt(|𝜎|𝑠 + |𝑓 |𝑜𝑠)(#𝒯ℎℓ

−#𝒯ℎ0)−𝑠
.

5. Local interpolation and discrete approximation

In this section, we give proofs of Proposition 2.4 and Lemma 3.1. The 𝐻1-bounded regularized interpolation
in [24] does not satisfy the property (2.2a). For our purpose, an 𝐻2-bounded interpolation is enough and we
will not regularize the degrees of freedom based on point evaluation.

Proof of Proposition 2.4. Given 𝑥 ∈ 𝒱𝐻 , 𝑒 ∈ ℰ𝐻 , 𝑤𝐻 ∈ 𝑊𝐻 , we say 𝜕𝑒𝜕𝑒𝑤𝐻(𝑥) = 𝜕2
𝑒𝑤𝐻(𝑥) is a second edge

derivative at 𝑥, where 𝜕𝑒 = 𝜕𝑡𝑒
is the directional derivative along 𝑡𝑒. For two edges 𝑒, 𝑒′ of 𝑇 ∈ 𝒯𝐻 having 𝑥,

𝜕𝑒𝜕𝑒′(𝑤𝐻 |𝑇 )(𝑥) is called a cross derivative at 𝑥. A vertex 𝑥 is called singular if all edges in ℰ𝐻 meeting at 𝑥
fall on two straight lines. The nodal variables (global degrees of freedom) of 𝑤 ∈ 𝑊𝐻 given in [24] are briefly
described as follows.

(1) the value of 𝑤 and ∇𝑤 at each vertex 𝑥 ∈ 𝒱𝐻 ;
(2) the edge normal derivative 𝜕𝑛𝑒𝑤 at 𝑟 + 1 distinct interior points of each edge 𝑒 ∈ ℰ𝐻 ;
(3) the value of 𝑤 at 𝑟 distinct interior points of each edge 𝑒 ∈ ℰ𝐻 ;
(4) the value of 𝑤 at 𝑟(𝑟 + 1)/2 distinct interior points of each triangle 𝑇 ∈ 𝒯𝐻 ;
(5) one cross derivative of 𝑤 at each vertex 𝑥 ∈ 𝒱𝐻 and two cross derivatives of 𝑤 at each nonsingular boundary

vertex 𝑥 ∈ 𝒱𝐻 ;
(6) the second edge derivatives of 𝑤 for all edges meeting at each vertex 𝑥 ∈ 𝒱𝐻 , with the exception of one

interior edge per nonsingular vertex.

To preserve boundary conditions, for each boundary vertex, one edge used for defining edge and cross deriva-
tives at that vertex is chosen to be on 𝜕Ω.
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Let {𝑤 → 𝐷𝑖𝑤(𝑎𝑖)}𝑁
𝑖=1 denote the collection of the above nodal variables, where a node 𝑎𝑖 could be a vertex

in 𝒯𝐻 or an interior point of an edge/triangle in 𝒯𝐻 , 𝐷𝑖 is a differential operator of order |𝐷𝑖| = 0 (point
evaluation), 1 (edge normal derivative), or 2 (second edge derivative and cross derivative). Note that {𝑎𝑖}𝑁

𝑖=1

are not distinct since a node may be associated with multiple differential operators.
If 𝑎𝑖 ∈ 𝒱𝐻 and 𝐷𝑖 = 𝜕𝑒1

𝑖
𝜕𝑒2

𝑖
is a second edge derivative or cross derivative, let 𝑒𝑖 = 𝑒1𝑖 ∋ 𝑎𝑖. If 𝑎𝑖 ∈ 𝒱𝐻 and

𝐷𝑖 = 𝜕𝑥1 or 𝜕𝑥2 , let 𝑒𝑖 ∋ 𝑎𝑖 be any edge in ℰ𝐻 . If 𝑎𝑖 is an interior point of 𝑒 ∈ ℰ𝐻 , we choose 𝑒𝑖 = 𝑒. Moreover,
𝑒𝑖 is chosen to be in 𝜕Ω if 𝑎𝑖 is a boundary vertex. By Riesz’s representation theorem, there exists a polynomial
𝜓𝑖 ∈ 𝒫𝑟+5(𝑒𝑖), such that ∫︁

𝑒𝑖

𝑤𝜓𝑖𝑏𝑖d𝑠 = 𝑤(𝑎𝑖) for all 𝑤 ∈ 𝒫𝑟+5(𝑒𝑖), (5.1)

where 𝑏𝑖 is the edge bubble polynomial of unit size vanishing on the boundary of 𝑒𝑖. For a second edge derivative
or cross derivative 𝜕𝑒1

𝑖
𝜕𝑒2

𝑖
, using (5.1) and integrating by parts formula on 𝑒𝑖, we have(︁
𝜕𝑒1

𝑖
𝜕𝑒2

𝑖
𝑤
)︁

(𝑎𝑖) =
∫︁

𝑒𝑖

𝜕𝑒1
𝑖
𝜕𝑒2

𝑖
𝑤(𝑎𝑖)𝜓𝑖𝑏𝑖d𝑠

= −
∫︁

𝑒𝑖

𝜕𝑒2
𝑖
𝑤(𝑎𝑖)𝜕𝑒1

𝑖
(𝜓𝑖𝑏𝑖)d𝑠 for all 𝑤 ∈ 𝒫𝑟+5(𝑒𝑖).

(5.2)

Let {𝜑𝑖}𝑁
𝑖=1 be the basis dual to the unisolvent set {𝑤 → 𝐷𝑖𝑤(𝑎𝑖)}𝑁

𝑖=1. For 𝑤ℎ ∈𝑊ℎ, we define the interpolant
𝐼𝐻𝑤ℎ as

𝐼𝐻𝑤ℎ =
∑︁
|𝐷𝑖|=0

𝑤ℎ(𝑎𝑖)𝜑𝑖 +
∑︁
|𝐷𝑖|=1

(︂∫︁
𝑒𝑖

(𝐷𝑖𝑤ℎ)𝜓𝑖𝑏𝑖d𝑠
)︂
𝜑𝑖

−
∑︁
|𝐷𝑖|=2

(︂∫︁
𝑒𝑖

𝜕𝑒2
𝑖
𝑤ℎ(𝑎𝑖)𝜕𝑒1

𝑖
(𝜓𝑖𝑏𝑖)d𝑠

)︂
𝜑𝑖.

(5.3)

The definition of 𝐼𝐻 implies 𝑤ℎ − 𝐼𝐻𝑤ℎ = 0 at each node 𝑎𝑖 and in particular (2.2a). For 𝑇 ∈ 𝒯𝐻∖ ̃︀ℛ𝐻 , the
choice of 𝑒𝑖 implies 𝑤ℎ|𝑒𝑖 ∈ 𝒫𝑟+5(𝑒𝑖),∇𝑤ℎ|𝑒𝑖 ∈ 𝒫𝑟+4(𝑒𝑖). Using this fact and (5.1), (5.2), we obtain

𝐷𝑖(𝐼𝐻𝑤ℎ) = 𝐷𝑖𝑤ℎ for all 𝑎𝑖 ⊂ 𝑇 . (5.4)

Due to (5.4) and the unisolvence of {𝐷𝑖}𝑎𝑖∈𝑇 (see the analysis in [24,37]), we have (𝑤ℎ− 𝐼𝐻𝑤ℎ)|𝑇 = 0 and thus
verify the property (2.2b).

We note that 𝑤ℎ ∈ 𝑊ℎ implies (∇𝑤ℎ)|Γ𝑗 is constant and thus 𝐷𝑖𝑤ℎ = 𝐷𝑖𝐼𝐻𝑤ℎ with |𝐷𝑖| = 1 for each
boundary node 𝑎𝑖 ∈ Γ𝑗 . It could also be observed from (5.3), (5.2), and constancy of (∇𝑤ℎ)|Γ𝑗

that 𝜕𝑒𝑖
𝜕𝑒𝑖
𝐼𝐻𝑤ℎ =

𝜕𝑒𝑖
𝜕𝑒𝑖
𝑤ℎ for each boundary 𝑒𝑖 ⊂ Γ𝑗 . Therefore enough nodal variables vanish to enforce 𝑤ℎ = 𝐼𝐻𝑤ℎ on Γ𝑗 and

(2.2c) is confirmed.
For the same reason above, 𝜕𝑒1

𝑖
𝜕𝑒2

𝑖
𝑤ℎ = 𝜕𝑒1

𝑖
𝜕𝑒2

𝑖
𝐼𝐻𝑤ℎ for each cross derivative assigned to boundary node

𝑎𝑖 ∈ Γ𝑗 . Therefore enough nodal variables vanish to enforce 𝜕𝑛(𝑤ℎ − 𝐼𝐻𝑤ℎ)|Γ𝑗 = 0.
The interpolation estimate (2.3) directly follows from the same proof of Theorem 7.3 in [24] together with a

trace inequality. �

The rest of this section is devoted to the proof of Lemma 3.1. First we present a modified Korn’s inequality
on each local triangle 𝑇 ∈ 𝒯ℎ.

Lemma 5.1. Given 𝒯ℎ ∈ T, 𝑇 ∈ 𝒯ℎ and 𝑣 ∈ 𝐻1(𝑇,R2), we have

|𝑣|𝐻1(𝑇 ) ≤ 𝐶Korn

(︀
‖𝜀(𝑣)‖𝑇 + ℎ−1

𝑇 ‖𝑄𝑇 𝑣‖𝑇

)︀
,

where 𝑄𝑇 𝑣 is the 𝐿2 projection of 𝑣 onto ℛℳ, and 𝐶Korn is a constant relying only on 𝛾0.
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Proof. The standard compactness argument (cf. [9], Thm. 11.2.16) implies

‖𝑣‖𝐻1(𝑇 ) ≤ 𝐶𝑇 (‖𝜀(𝑣)‖𝑇 + ‖𝑄𝑇 𝑣‖𝑇 ), (5.5)

where 𝐶𝑇 is a constant depending on 𝑇. It remains to estimate 𝐶𝑇 by a homogeneity argument. Consider a
reference triangle 𝐾 and the affine mapping 𝐹𝑇 : 𝐾 → 𝑇 given by 𝐹𝑇 (𝑥) = 𝐵𝑇𝑥+ 𝑏𝑇 . Define

Φ(𝐵𝑇 ) = sup
𝑣∈𝐻1(𝐾,R2),‖𝑣‖𝐻1(𝐾)=1

Φ𝑣(𝐵𝑇 ),

where

Φ𝑣(𝐵𝑇 ) =
|𝑣 ∘ 𝐹−1

𝑇 |𝐻1(𝑇 )

‖𝜀(𝑣 ∘ 𝐹−1
𝑇 )‖𝑇 + ℎ−1

𝑇 ‖𝑄𝑇 (𝑣 ∘ 𝐹−1
𝑇 )‖𝑇

·

Note that Φ𝑣 is independent of 𝑏𝑇 . Due to (5.5), the function Φ is well-defined. It is straightforward to check
that

{Φ𝑣(·)}𝑣∈𝐻1(𝐾,R2),‖𝑣‖𝐻1(𝐾)=1

is a family of equicontinuous functions on 𝐺𝐿(2,R). Hence Φ defined by taking the supremum of this family
must be continuous on 𝐺𝐿(2,R). Let ̂︀𝑇 = {ℎ−1

𝑇 𝑥 : 𝑥 ∈ 𝑇} be the scaled triangle of unit size. Since 𝒯ℎ is shape
regular, {𝐵̂︀𝑇 : 𝑇 ∈ 𝒯ℎ} is contained in a compact subset of 𝐺𝐿(2,R), see, e.g., [9]. Combining the continuity
and compactness, we obtain

sup
𝑇∈𝒯ℎ

Φ(𝐵̂︀𝑇 ) = 𝐶sup <∞, (5.6)

where 𝐶sup depends on the shape regularity of 𝒯ℎ. Therefore using a scaling transformation and (5.6), we obtain

Φ(𝐵𝑇 ) = sup
𝑣∈𝐻1(𝐾,R2),‖𝑣‖𝐻1(𝐾)=1

⃒⃒⃒
𝑣 ∘ 𝐹−1

̂︀𝑇

⃒⃒⃒
𝐻1(̂︀𝑇 )⃦⃦⃦

𝜀
(︁
𝑣 ∘ 𝐹−1

̂︀𝑇

)︁⃦⃦⃦
̂︀𝑇

+
⃦⃦⃦
𝑄̂︀𝑇

(︁
𝑣 ∘ 𝐹−1

̂︀𝑇

)︁⃦⃦⃦
̂︀𝑇

. Φ
(︀
𝐵̂︀𝑇
)︀
≤ 𝐶sup.

The proof is complete. �

Then we present a modified discrete Korn’s inequality on a triangle 𝑇 .

Lemma 5.2. Let 𝒯ℎ, 𝒯𝐻 ∈ T with 𝒯𝐻 ≤ 𝒯ℎ. For any 𝑇 ∈ 𝒯𝐻 , let 𝒯ℎ(𝑇 ) = {𝑇 ′ ∈ 𝒯ℎ : 𝑇 ′ ⊂ 𝑇} and ℰℎ(𝑇 ) =
{𝑒 ∈ ℰℎ : 𝑒 ⊂ 𝑇, 𝑒 ̸⊆ 𝜕𝑇}. Then for 𝑣ℎ ∈ 𝑈ℎ|𝑇 , we have

ℎ−2
𝑇 ‖𝑣ℎ −𝑄𝑇 𝑣ℎ‖2𝑇 .

∑︁
𝑇 ′∈𝒯ℎ(𝑇 )

‖𝜀(𝑣ℎ)‖2𝑇 ′ +
∑︁

𝑒∈ℰℎ(𝑇 )

ℎ−1
𝑒 ‖J𝑣ℎK‖2𝑒.

Proof. Let 𝑤 = 𝑣ℎ −𝑄𝑇 𝑣ℎ and |𝑤|2
𝐻1

ℎ(𝑇 )
:=
∑︀

𝑇 ′∈𝒯ℎ(𝑇 ) |𝑤|2𝐻1(𝑇 ′). Let

𝑆ℎ(𝑇 ) =
{︀
𝑣 ∈ 𝐶0(𝑇 ) : 𝑣|𝑇 ′ ∈ 𝒫𝑟+2(𝑇 ′) for 𝑇 ′ ∈ 𝒯ℎ(𝑇 )

}︀
be the usual Lagrange element space of degree 𝑟+2. Following the analysis in [8,9,31], we construct a continuous
piecewise polynomial function 𝐸𝑤 ∈ 𝑆ℎ(𝑇 ) by setting the nodal value as

𝐸𝑤(𝑥) =
1

#𝜔ℎ,𝑥

∑︁
𝑇 ′∈𝜔ℎ,𝑥

(𝑤|𝑇 ′)(𝑥),
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where 𝑥 is a Lagrange node for the space 𝑆ℎ(𝑇 ) and 𝜔ℎ,𝑥 = {𝑇 ′ ∈ 𝒯ℎ(𝑇 ) : 𝑥 ∈ 𝑇 ′}. An elementary estimate
shows that

ℎ−2
𝑇 ‖𝑤 − 𝐸𝑤‖2𝑇 + |𝑤 − 𝐸𝑤|2𝐻1

ℎ(𝑇 ) .
∑︁

𝑒∈ℰℎ(𝑇 )

ℎ−1
𝑒 ‖J𝑤K‖2𝑒, (5.7)

see, e.g., the proof of Lemma 10.6.6 in [9] and Lemma 2.8 in [31]. For the continuous function 𝐸𝑤, the Poincaré
inequality implies

‖𝐸𝑤 −𝑄𝑇𝐸𝑤‖𝑇 . ℎ𝑇 |𝐸𝑤|𝐻1(𝑇 ), (5.8)

Using (5.7), (5.8), the triangle inequality, and 𝑄𝑇𝑤 = 0, we have

‖𝑤‖2𝑇 . ‖𝑤 − 𝐸𝑤‖2𝑇 + ‖𝑄𝑇 (𝑤 − 𝐸𝑤)‖2𝑇 + ‖𝐸𝑤 −𝑄𝑇𝐸𝑤‖2𝑇
. ℎ2

𝑇

∑︁
𝑒∈ℰℎ(𝑇 )

ℎ−1
𝑒 ‖J𝑤K‖2𝑒 + ℎ2

𝑇 |𝐸𝑤|2𝐻1(𝑇 ).
(5.9)

It remains to estimate |𝐸𝑤|𝐻1(𝑇 ). Lemma 5.1 implies

|𝐸𝑤|𝐻1(𝑇 ) . ‖𝜀(𝐸𝑤)‖𝑇 + ℎ−1
𝑇 ‖𝑄𝑇𝐸𝑤‖𝑇 . (5.10)

It then follows from the triangle inequality, (5.10), 𝜀(𝑄𝑇 𝑣ℎ) = 0, and 𝑄𝑇 (𝑤) = 0 that

|𝐸𝑤|2𝐻1(𝑇 ) .
∑︁

𝑇 ′∈𝒯ℎ(𝑇 )

(︀
‖𝜀(𝑤)‖2𝑇 ′ + ‖𝜀(𝑤 − 𝐸𝑤)‖2𝑇 ′

)︀
+ ℎ−2

𝑇 ‖𝑄𝑇 (𝐸𝑤 − 𝑤)‖2𝑇

≤
∑︁

𝑇 ′∈𝒯ℎ(𝑇 )

‖𝜀(𝑣ℎ)‖2𝑇 ′ + |𝑤 − 𝐸𝑤|2𝐻1
ℎ(𝑇 ) + ℎ−2

𝑇 ‖𝑤 − 𝐸𝑤‖2𝑇 .
(5.11)

Combining (5.9), (5.11), (5.7), and J𝑤K𝑒 = J𝑣ℎK𝑒 completes the proof. �

For 𝑣ℎ ∈ 𝑈ℎ, define the mesh-dependent norm

|𝑣ℎ|1,ℎ :=

(︃∑︁
𝑇∈𝒯ℎ

‖𝜀(𝑣ℎ)‖2𝑇 +
∑︁
𝑒∈ℰℎ

ℎ−1
𝑒 ‖J𝑣ℎK‖2𝑒

)︃ 1
2

.

It has been shown in [19] that the following discrete inf-sup condition holds:

|𝑣ℎ|1,ℎ . sup
𝜏ℎ∈ΣHZ

ℎ

(div 𝜏ℎ, 𝑣ℎ)
‖𝜏ℎ‖

for all 𝑣ℎ ∈ 𝑈ℎ. (5.12)

With the above preparation, we are able to prove Lemma 3.1.

Proof of Lemma 3.1. Using the inf-sup condition (5.12) and the inclusion ΣHZ
ℎ ⊂ Σℎ, we obtain

|𝑣ℎ|1,ℎ . sup
𝜏ℎ∈Σℎ

(div 𝜏ℎ, 𝑣ℎ)
‖𝜏ℎ‖

= sup
𝜏ℎ∈Σℎ

(︀
A𝜏ℎ, 𝜀ℎ

C(𝑣ℎ)
)︀

‖𝜏ℎ‖
· (5.13)

It then follows from (5.13) and ‖𝜏ℎ‖A . ‖𝜏ℎ‖ that

|𝑣ℎ|1,ℎ . ‖𝜀ℎ
C(𝑣ℎ)‖A. (5.14)

Combining it with Lemma 5.2, we have

∑︁
𝑇∈𝒯𝐻

ℎ−2
𝑇 ‖𝑣ℎ −𝑄𝐻𝑣ℎ‖2𝑇 .

∑︁
𝑇∈𝒯𝐻

⎛⎝ ∑︁
𝑇 ′∈𝒯ℎ(𝑇 )

‖𝜀(𝑣ℎ)‖2𝑇 ′ +
∑︁

𝑒∈ℰℎ(𝑇 )

ℎ−1
𝑒 ‖J𝑣ℎK‖2𝑒

⎞⎠
. |𝑣ℎ|21,ℎ . ‖𝜀ℎ

C(𝑣ℎ)‖2A,
which completes the proof. �
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6. Implementation and numerical experiment

The method (1.4) can be implemented using the hybridization technique. Consider the multiplier space

𝑀ℎ =
{︀
𝜇ℎ : 𝜇ℎ|𝑒 ∈ 𝒫𝑟+3(𝑒,R2) for all 𝑒 ∈ ℰ𝑜

ℎ

}︀
,

and the broken discrete stress space

Σ−1
ℎ =

{︀
𝜏ℎ ∈ 𝐿2(Ω,S) : 𝜏ℎ|𝑇 ∈ 𝒫𝑟+3(𝑇 ) for all 𝑇 ∈ 𝒯ℎ

}︀
.

The hybridized mixed method seeks (𝜎̃ℎ, 𝑢̃ℎ, 𝜆ℎ) ∈ Σ−1
ℎ × 𝑈ℎ ×𝑀ℎ such that

(A𝜎̃ℎ, 𝜏ℎ) +
∑︁

𝑇∈𝒯ℎ

(div 𝜏ℎ, 𝑢̃ℎ)𝑇 +
∑︁
𝑒∈ℰ𝑜

ℎ

∫︁
𝑒

𝜆ℎ · J𝜏ℎK𝑛𝑒d𝑠 = ⟨𝜏ℎ𝑛, 𝑔𝐷⟩Γ𝐷
,

∑︁
𝑇∈𝒯ℎ

(div 𝜎̃ℎ, 𝑣ℎ)𝑇 = (𝑓, 𝑣ℎ),

∑︁
𝑒∈ℰ𝑜

ℎ

∫︁
𝑒

𝜇ℎ · J𝜎̃ℎK𝑛𝑒d𝑠 = 0,

(6.1)

for all 𝜏 ∈ Σ−1
ℎ , 𝑣ℎ ∈ 𝑈ℎ, 𝜇ℎ ∈ 𝑀ℎ. In fact, (6.1) is a hybridized version of (1.4), i.e., 𝜎̃ℎ = 𝜎ℎ, 𝑢̃ℎ = 𝑢ℎ, see

[1,25]. Because Σ−1
ℎ , 𝑈ℎ, 𝑀ℎ are completely broken, it is straightforward to construct their local basis. In matrix

notation, (6.1) reads (︂
𝐴 𝐵
𝐵⊤ 𝑂

)︂(︂
𝑋
Λ

)︂
=
(︂
𝐹
𝑂

)︂
, (6.2)

where 𝑂 is a zero matrix or vector, 𝑋 and Λ are vectors corresponding to the coordinates of (𝜎̃ℎ, 𝑢̃ℎ) and 𝜆ℎ,
respectively.

Due to the discontinuity of Σ−1
ℎ and 𝑈ℎ, the matrix 𝐴 is block diagonal and easily invertible. Hence solving

(6.2) is equivalent to solving the smaller Schur complement system

𝐵⊤𝐴−1𝐵Λ = 𝐵⊤𝐴−1𝐹. (6.3)

Here 𝐵⊤𝐴−1𝐵 is a sparse and positive semi-definite matrix and the size of 𝐵⊤𝐴−1𝐵 is much smaller than
(6.1) or (1.4). However, the Schur complement 𝐵⊤𝐴−1𝐵 has a small kernel provided 𝒯ℎ has singular vertices
and/or pure traction boundary condition (Γ𝐷 = ∅) is considered. The key point is that such kernel could
be easily resolved by iterative methods such as the preconditioned conjugate gradient method. An optimal
preconditioner for the Schur complement system (6.3) is presented in [25].

In the experiment, let Ω = [−1, 1]2∖([0, 1]×[−1, 0]) be the L-shaped domain. Let (𝑟, 𝜃) be the polar coordinate
with respect to the origin, where 0 ≤ 𝜃 ≤ 𝜔 = 3𝜋

2 . Let

Φ1(𝜃) =
(︂

((𝑧 + 2)(𝜆+ 𝜇) + 4𝜇) sin(𝑧𝜃)− 𝑧(𝜆+ 𝜇) sin((𝑧 − 2)𝜃)
𝑧(𝜆+ 𝜇)(cos(𝑧𝜃)− cos((𝑧 − 2)𝜃))

)︂
,

Φ2(𝜃) =
(︂

𝑧(𝜆+ 𝜇)(cos((𝑧 − 2)𝜃)− cos(𝑧𝜃))
−((2− 𝑧)(𝜆+ 𝜇) + 4𝜇) sin(𝑧𝜃)− 𝑧(𝜆+ 𝜇) sin((𝑧 − 2)𝜃)

)︂
,

and
Φ(𝜃) = {𝑧(𝜆+ 𝜇) sin((𝑧 − 2)𝜔) + ((2− 𝑧)(𝜆+ 𝜇) + 4𝜇) sin(𝑧𝜔)}Φ1(𝜃)

− 𝑧(𝜆+ 𝜇)(cos((𝑧 − 2)𝜔)− cos(𝑧𝜔))Φ2(𝜃).

where 𝑧 ∈ (0, 1) is a root of (𝜆+ 3𝜇)2 sin2(𝑧𝜔) = (𝜆+ 𝜇)2𝑧2 sin2(𝜔). The most singular part of the solution to
(1.2) behaves like 𝑟𝑧Φ(𝜃) in the neighborhood of (0, 0), see, e.g., [26]. Therefore we choose

𝑢(𝑟, 𝜃) =
1

(𝜆+ 𝜇)2
(𝑥2

1 − 1)(𝑥2
2 − 1)𝑟𝑧Φ(𝜃)
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Figure 1. Left: initial grid. Right: adaptive grid, 5290 elements.
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Figure 2. Error curve.

as the exact solution in the test problem. The boundary condition is based on pure displacement (Γ𝑁 = ∅).
The Lamé constants are 𝜆 = 104 and 𝜇 = 1. The method (1.4) or (6.1) is implemented using the package iFEM
[17] in Matlab 2019a. We start with the initial mesh in Figure 1 and set the marking parameter 𝜃 = 0.3. The
algebraic system (6.3) is solved by the conjugate gradient method preconditioned by the incomplete Cholesky
decomposition. Numerical results are presented in Figure 2, where nt denotes the number of triangles.

It can be observed from Figure 1(right) that the adaptive Algorithm 4.1 captures the corner singularity.
Figure 2 shows that Algorithm 4.1 has optimal and robust rate of convergence with respect to very large Lamé
constant 𝜆 starting from coarse initial grid, which validates our convergence and complexity analysis.

Acknowledgements. The author would like to thank Dr. Shihua Gong for generously sharing his Matlab code and
comments on iterative methods.
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