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QUASI-OPTIMAL ADAPTIVE HYBRIDIZED MIXED FINITE ELEMENT
METHODS FOR LINEAR ELASTICITY

YUWEN L1*

Abstract. For the planar Navier—Lamé equation in mixed form with symmetric stress tensors, we
prove the uniform quasi-optimal convergence of an adaptive method based on the hybridized mixed
finite element proposed in Gong et al. [Numer. Math. 141 (2019) 569-604]. The main ingredients in the
analysis consist of a discrete a posteriori upper bound and a quasi-orthogonality result for the stress field
under the mixed boundary condition. Compared with existing adaptive methods, the proposed adaptive
algorithm could be directly applied to the traction boundary condition and be easily implemented.
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1. INTRODUCTION

Adaptive finite element methods for numerical solutions of partial differential equations has been an active
research area since 1980s. Using a sequence of self-adapted graded meshes, adaptive methods can achieve quasi-
optimal convergence rate even for problems with singularity arising from, e.g., irregular data or domains with
nonsmooth boundary. Convergence and optimality analysis of adaptive methods for symmetric and positive-
definite elliptic problems has now reached maturity, see, e.g., [7,16,21,22,38,39,41] and references therein.

An important model problem in linear elasticity is the Navier-Lamé equation, which could be discretized
by primal methods and mixed methods. Adaptive mesh refinement based on a posteriori error indicators is
essential to deal with nonsmooth boundaries of elastic bodies in practice. For conforming elasticity elements, a
robust error estimator could be found in [10]. In [13], a quasi-optimal nonconforming adaptive Crouzeix—Raviart
element method in primal form was developed under the pure displacement boundary condition.

Compared with primal methods, mixed methods could easily handle the traction boundary condition and
is more natural from a viewpoint of solid mechanics. Conservation of angular momentum is implied by the
symmetry of stress tensors of elasticity equations in mixed form. However, mixed methods with strongly imposed
symmetry usually leads to higher order polynomial shape functions [2,4,28,30] and a priori error estimates
relying on high solution regularity. In such situations, adaptivity is of great importance, see, e.g., [11,15,20,34,35]
for a posteriori error estimates of adaptive mixed finite element methods (AMFEMS) in linear elasticity.

For second order elliptic equations in mixed form, theoretical analysis of AMFEMs is extensive, see, e.qg.,
[6,12,18,23,27,31-33]. The optimality result of adaptive mixed methods for elasticity equations seems limited
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in the literature. One reason is that most finite elements for discretizing the symmetric stress tensors require C°
vertex continuity. As a result, stress finite element spaces on nested meshes are not nested as spaces. Recently
the work [29] develops a quasi-optimal AMFEM for mixed elasticity, based on a modified Hu—Zhang mixed
element [30] enriched carefully at each vertex on nested meshes. In the meantime, Gong et al. [25] presents a
hybridized mixed method for elasticity using complete piecewise polynomial stress space without any vertex
degrees of freedom. In this paper, we shall adopt the hybridization strategy in [25] and develop a quasi-optimal
adaptive mixed method for planar linear elasticity, see (1.4) and Algorithm 4.1. Without specific treatment,
our AMFEM could directly be applied to the (pure) traction boundary condition. Another advantage of this
AMFEM is its easy implementation because no explicit continuous local basis is needed in hybridization, see
Section 6.

The proposed AMFEM is designed to reduce the stress error || — op||4 with a convergence rate free of
volumetric locking. The framework of our analysis is similar to the convergence analysis of AMFEMs for Poisson’s
equation [18,31]. However, the C! nodal space W), used in our analysis (see Lem. 2.1) is much more complicated
than C° nodal spaces and the well-known C' Argyris spaces. As a consequence, the regularized local interpolation
onto W), is rather involved, especially when tailored to respect mixed boundary conditions. In addition, we
present a detailed construction of the discrete a posteriori upper bound in Theorem 3.3 for the stress error
under general boundary conditions, which seems missing in the literature.

In the rest of this section, we introduce the continuous and discrete mixed formulations of the linear elasticity
equation in R2. Let  be a simply connected polygonal domain. Let o and « denote the stress and displacement
fields produced by a body force acting on a linearly elastic body that occupies the region Q2 C R?. Then u takes
value in R? and o takes value in S, the space of symmetric 2 x 2 matrices. Given Lamé constants g > 0, A > 0,
define

() = 5 (Vu+ (Vu)T),
Co = 2uo + Atr(o)d,

where tr denotes the trace of square matrices, and § is the 2 x 2 identity matrix. The Navier—Lamé equation
for planar elasticity reads

div(Ce(u)) = f, (1.1)
where div is the divergence operator applied to each row of Ce(u). Given 7 € L?(£,S), the compliance tensor

is defined as )

A
=—|7———=(tr7)d ).
2% <T S T) )
Let 09 = T'p UT N with relatively open subsets I'p, I'y, and I'p N Ty = 0. The part 'y = U;-]:J‘j is the
disjoint union of several connected components {I'; }3]:1. Let n be the outward unit normal to 0€2. We consider
the mixed formulation of (1.1) under the mixed boundary condition
Ao =e(u),
dive = f,
U= ¢gp on FD7

Ar=C 7

on =gy on ['y.

Let RM be the space of rigid body motions
RM = {(cl,cQ)T + 03(—x2,ac1)T i cp,C9,C3 € R}.
If I'p = 0, the load f in (1.2) is required to satisfy the compatibility condition

/f-vdsz, Yv € RM.
Q
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Given a vector space V, let L?(£, V) denote the space of V-valued L2-functions on (2. Similarly H*(£2,V) is
the V-valued H*(€2) Sobolev space. Define the spaces

U:=L*Q,R?)ifTp #0, U:=L*(QR*)/RMifTp =0,
Y(g) = {7 € L*(Q,S) : divr € L*(Q,R?),7n =g on 'y }.

Given a subdomain Qg C , let (-, -)q, denote the L?(€) inner product and (-,-) = (-, -)q. For a 1d submanifold
o C Q, by (-,-)r, we denote the L?(T'y) inner product. The variational formulation of (1.2) seeks o € X(gn)
and v € U such that

(Ao, 1) + (divr,u) = (Tn,9p)rp, T €Y :=%(0), (1.3a)
(dive,v) = (f,v), vel. (1.3b)

Let 7y be a conforming initial macro-triangulation of Q and be aligned with I'p, T'y. Let T = {7} denote a
forest of conforming refinement of 7 indexed by h. For 7,7y € T, we say Ty < 73, provided 7}, is a refinement
of 7. We assume T is shape regular, i.e., there exists a uniform constant -y such that

max max rr/pr < 70 < 00,
where rr and pr are radii of circumscribed and inscribed circles of T, respectively. Let P,.(T,V) denote the

space of V-valued polynomials of degree at most r on 7. For an integer r > 0, the mixed finite element spaces
are

Eh(g) = {Th S E(g) : Th|T € Pr+3(T, S) VT € ,Th},
Uy = {vh eU: 'Uh‘T S Pr+2(T,R2) VT € ’Th}

In the sequel, we assume that gy is a piecewise polynomial on I'y with gn|c € Pr13(e, R?) for each edge
e in 7y and gp is a piecewise polynomial on I'p aligned with 7y. The mixed method for (1.3) is to find
on € Xp(gn),up € Uy, such that

(Aop, ) + (div 7, un) = (Th1, gD) 1 s Th € Bp, = X4(0), (1.4a)
(divop, v) = (f,vn), vp € U, (1.4b)

when Ty < 7, it holds that Xy x Ug C X x Up,. Then using the nestedness and (1.4), we obtain the Galerkin
orthogonality

(A(Uh—UH),TH)-i-(diVTH,’LLh—’LLH):07 TH € XjH, (1.5&)
(diV(Jh — G'H),’UH) =0, wvygeUy. (15b)

It has been shown in [25,30] that X x Uy, fulfills the inf-sup condition

(div 73, vp)

|onl| < C  sup Yy, € Uy, (1.6)

0#ThE€EXR W’

where C' dependes only on r and ~,. However, the construction of the local basis of ¥}, is rather involved [25].
To overcome this difficulty, (1.4) is implemented using hybridization technique and iterative solvers, see [25]
and Section 6.

Let V}, denote the set of grid vertices in 7. For r > 0, the classic Arnold—-Winther mixed elasticity element
spaces are

Eﬁw = {Th € X 1h|r € Prys(T,S),divr € Pria (T, RQ) VT € T}, is continuous at each x € Vh},
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UMW = {vp € U vp|r € Prsa (T,R*) VT € T }.
The Hu-Zhang mixed elasticity element spaces are

EEZ ={m €X: 1|1 € Prys(T,S) VT € Ty, 73, is continuous at each x € Vi, },
U;EIZ = Uh.
Due to the continuity constraint of Z4W and $HZ at each vertex, we note that 24V ¢ W yHZ 7 $HZ Thig
non-nestedness is the motivation of our analysis of adaptive hybridized MFEM and a major difficulty arising
from the analysis of AMFEMs based on Arnold-Winther and Hu-Zhang elements.
The rest of this paper is organized as follows. In Section 2, we introduce preliminaries for deriving the discrete
a posteriori upper error bound. In Section 3, we derive the discrete reliability and quasi-orthogonality. Section 4

is devoted to the convergence and optimality analysis of the proposed adaptive algorithm. In Section 5, we give
proofs of technical results used in our analysis. The numerical experiment is presented in Section 6.

2. PRELIMINARIES

For T € Ty, let |T| denote the area of T and hy = |T| the size of T. On 9T let t be the counterclockwise
unit tangent and n the outward unit normal to 0T. On 02 let ¢ be the counterclockwise unit tangent to 9€2. In
Ty, let &, EF, EhD denote the set of edges, interior edges, and edges in I'p, respectively. Let

ENT)={ec&:eCc T}, EP(T)={ec&f :ecoT}.

We use | - |lo, to denote the L?(Q) norm and || - || = || - ||o. Each edge e in 7}, is assigned with a unit tangent ¢,
and a unit normal n.. In addition, t. is counterclockwise oriented and n. is outward pointing provided e C 9.
If e is an interior edge shared by two triangles T’y and T_, let [¢]|c = (¢|7, )|e — (¢|7_)|e denote the jump of ¢
over e, where n. is pointing from T to T_.

Given a scalar-valued function w and a R2-valued function ¢ = (¢1, ¢2), let

.
curlw:< Ow 5‘w> , rotgf,g%,%.

787@’ 87.’171 - 81’1 8332
For R2-valued v = (v1,v2) " and R?*2-valued 7 = (11, 72) ", let
curlv := (curlvy, curlvg) ', rot 7 := (rot 71,10t 72) |

For a unit vector d, we use d; to denote the directional derivative along d. The stress error will be estimated

by nn = nnlon) = (X rer, 17 (on,T))

1
* with the element-wise error indicator given as

mn(on, T) = { bl votrot Aoy |7+ > (helit] [Aon]te|?
ec&p(T)

+ h¥|Inl 0 [Aon]te — [rot Aow] - te|2) + Y (hellt! (Aow)te — Bi.gn)2
eGS,?(T)

+ h3||n) 0, (Aop)te — (rot Aay) - te — ne -8fegD||§) ,

where h. is the diameter of e. By P, we denote the L? projection onto U,. The data oscillation is osc;, =
1
oscp(f) = (ZTGTh oscs (f, T)) 2, where

oscy(f,T) = hr||f — Puf|r.
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The expression of 7, is the same as existing a posteriori error estimators for the MFEM using the Arnold-
Winther and Hu-Zhang elements, see, e.g., [15,20].

An indispensable ingredient of optimality analysis of AFEMs is the discrete upper bound for the finite element
error. To construct such a bound, we consider the C'-conforming space

Wy, = {wy € CY(Q) : wy|7 € Prys(T) VT € Ty, (curlwy,)|r, is constant for 1 < j < J},

which is a subspace of the Morgan—Scott C'! element space [24,37]. Let J denote the Airy stress function:

9?2 9
ox2 T Ox10x4
J = curlcurl = 622 52
- 8581 6332 Bzf

Due to J(W}) C £, and divoJ = 0, we obtain a well-defined discrete sequence:

w, —7 @, v, 0. (2.1)

2
Lemma 2.1. The sequence (2.1) is exact, i.e., ker(div |z, ) = J(Wh).

Proof. Given 1, € ¥) with divr, = 0, there exists ¢ € H'(2) such that curl¢ = 75,. Due to the symmetry
of 75,, it holds that div¢ = 0 and thus ¢ = curlw for some w € H?(f2). Therefore we obtain 75, = curl curlw,
w|p € Prys(T) for each T € Tp,. The boundary condition m,n|r, = 0 implies 0;(curlw)|r, = 0 and curlw is
constant on each I';. The proof is complete. (I

The next theorem is a direct consequence of Lemma 2.1.
Theorem 2.2 (Discrete Helmholtz decomposition).
Sh = J(Wh) & et (Un),
where 5% : Up — Xy, is the adjoint operator of —div : X — Uy, i.e.,
(As{é(vh),m) = —(vp,divry,) for all 7, € Xy,

Proof. Let ker(div|s, )* be the orthogonal complement of ker(div |, ) in X5 with respect to the weighted inner
product (A-,-). Elementary linear algebra shows that

ker(div |x, )t = el (Up).
Combining it with the exactness ker(div|s,) = J(W},) in Lemma 2.1, we obtain
¥y = ker(div s, ) @ ker(div |s, )= = J(Wh) @ e (Uy),
which completes the proof. O

Remark 2.3. For the Arnold—Winther and Hu—Zhang elements under I'y = (J, the correct discrete elasticity
sequences are

_ J
Wh,

di
Efw v UAW
and

fem J HZ div
Wy, ——— X§

Uh 07
respectively, where

Wh = {wh € H*(Q) : wy|r € Pprys(T) for each T € Ty, V2w, is continuous at each x € Vh},

when r = 0, Wh is the well-known quintic Argyris finite element space. Due to the extra vertex continuity, it is
relatively easy to construct a local basis of W), and interpolation onto W,.
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It is noted that W}, is not a standard finite element space. The work [37] gives a set of unisolvent nodal variables
and locally supported dual nodal basis of Wy, although those degrees of freedom are much more complicated
than the Argyris-type C! space W},. Based on a slightly modified (but complicated) nodal variables, Girault and
Scott [24] constructed a locally defined and H!-bounded interpolation preserving the homogeneous boundary
condition. To derive the discrete reliability of (1.4), we present an interpolation Iy : W), — Wy, which is a
slight variation of the interpolation in [24]. Throughout the rest of this paper, we say ¢; < ¢o provided ¢; < ccy
for some generic constant ¢ depending only on u, 2, v, 7.

Lemma 2.4. For T, Ty € T with Ty < Ty, let Ry := T\, be the set of refinement elements and
Ry :={T €Ty : TNT #0 for some T' € Ry}

denote the enriched collection of refinement elements. There exists an interpolation Iy : Wy — Wy such that
for wy, € Wh,
wp — Igwp, =0 at x € Vy, (2.2a
wyp, — Igwp, =0 OHTGTH\ﬁH, (
Wwhp — IHwh =0 on FN, (2.2(3
8n(wh — IHw;L) =0 on FN. (2.2d
In addition,
hytlwp—1I F+hp P wy—Igwy|? hy?|lwp—1I Srthrt |V (w,—1 20 S lwnl? 2.3
7 llwn—Igwp||7+hgp"|wp Hwh|H1(T)+ 7" lwn—Inwnl|5p+he (|V(wn—Inws)|[5r < |wh|H2(Q)- (2.3)
TETy

The proof of Proposition 2.4 is postponed in Section 5.

3. DISCRETE RELIABILITY AND QUASI-ORTHOGONALITY

Let || - ||a denote the norm corresponding to (A-,-). For M C 7p,, let

nh(thM) = (Z n}ZL(Uh’T)> ’

TeM

oscp(f, M) = (Z OSC%L(faT)> :
TeM

We shall prove the discrete reliability of the estimator 7, and quasi-orthogonality between o — o}, and o —op.
The analysis relies on the following discrete approximation result, whose proof is left in Section 5.

Lemma 3.1. Let 7;,, Ty € T with Ty < Ty, and Qg denote the L?-projection onto the space of piecewise rigid
body motions
RMp = {ve L*(QR?) :v|p € RM for all T € Ty }.

It holds that .
( > hiPlvn - QHUh||2T> < lle ()]l a-

TeETy
The space RMp can be viewed as a broken rotated Raviart—-Thomas finite element space. Here we are
interested in Qg instead of Py because we will use the fact RM C ker(e), see the proof of Lemma 5.2 for
details.
The next lemma is used to remove the Lamé coefficient A in error bounds. The proof can be found in
Lemmas 3.1 and 3.2 of [3].
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Lemma 3.2. There exists a constant Cyp depends only on p and Q, such that
Il < Con (7l + 1 div 7]l r-1.0))
for all T € ¥ with [, trrdz = 0.
For w € HY(T) and ¢ € H'(T,R?), we have the integration-by-parts formula:
(curlw, @) = (w, d - t)ar — (w,rot ). (3.1)
With the above preparations, we are able to prove the discrete reliability of ny,.

Theorem 3.3 (Discrete reliability). Let 7y, Ty € T with Ty < T;,. There exists a constant Cqrel depending
only on p,Q, 9, such that

st = onlt < Carer (m (o1, Rir) + 0563 (f, Ra) )
Proof. Applying Theorem 2.2 to o — o), € Xy gives
o —on = J(wp) + ek (vn) (3.2)

for some wy, € W}, and vy, € Uy,. Taking 74 = § in (1.5a) leads to

/ tr(og — op)dz = 0. (3.3)
Q
Direct calculation shows that
1

/Q TSN trel(vy)dz = (As@(vh), ) = —(vp,divd) =0. (3.4)

Then a combination of (3.2)—(3.4) yields
/ tr J(wp)dz = 0. (3.5)
Q

Hence using Lemma 3.2, divoJ = 0, (3.5) and the A-orthogonality between Jwy, and e(v;), we obtain the
following robust bound
[Jwnll S [Jwalla < llow — onlla. (3.6)

Let Ep, = wp, — Igwy,. Using (1.4a), (1.5a), diveJ = 0, (2.2b), we have
(A(O’H - O’h), th) == (A(O’H - O’h), JEh)
= (AO’H, JEh) + <6t curl Ey, 9D>FD

= > (Aou,JEy)y — (curl By, 0igp)y, -
T€7€H

(3.7)

In the last equality, we integrate by parts on I'p and use the fact curl B, = 0 on 9T'p C Ty (see (2.2¢), (2.2d)).
For each T' € Ry, using the formula (3.1), we have

(Ao, JEL)p = ((Aog)t,curl Ey)or — (rot Aoy, curl Ey ),

3.8
((Aog)t,curl Ey) o — ((rot Aoy ) - t, Ep)or + (rotrot Aoy, Ep) . (38)
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Integrating by parts on each edge of T', we have
(Aom)t,curl Ep) o = <tT(AUH)t,8nEh>6T - <nT(A0H)t, atEh>aT

= <tT(A0'H)t,8nEh>aT + <nT8t(AaH)t,Eh>aT. (39)

In the last equality, we use the property (2.2a), i.e., E;, = 0 at each vertex of T'. Similarly, for the boundary
term in (3.7),
—(curl B, 0igp)r, = —(OnLhn,t - Ogp)p, + (OtEn,n - Orgp)r

= _<8nEh7t ' 8th>FD - <Eh7n ! ang>FD

Let 51"{(7%1{) ={ec &y :eCOT for some T € ﬁH} and 55(ﬁﬂ) ={e€ &y :eCOT for some T € ﬁH,e -
I'p}. Note that Ej, and 0, E) are continuous over each edge in Tr. Combining (3.8)—(3.10) and using (2.2b),
(2.2¢), (2.2d), we obtain

(Alom —on), Jwp) = > {(tT(Aou)t,00En)
TEﬁH
+ (rotrot Aoy, Ep)r + <nT8t(A0H)t — (rot Aog) .t,Eh>

- Z {(0n.En.te - 01.9p), + (En,ne - 8;:269D>e}

(3.10)

ot}

6655(7%}1) (3 11)
= Y {tTAou]te, 0, En), + (n] 0 [Ack]te — [rot Aoy] - te, Er), } '
ec&y(Ru)
+ Z (rotrot Aoy, Ep)r + Z {<t€T(A0Hte — 0:.9D), 6neEh>e
TeRy eESE(ﬁH)
+ (ng 0, (Aoy)te — (rot Aog) - te —nl 07 gp, En),}.
Using the expression (3.11) and the Cauchy—Schwarz inequality, we have
N 3
(Aos — on). Jwn) S i (o1, R ( S Bl + 9 Bl + hTﬂEh%T) SENCRE)
TeETy
It then follows from (3.12), (2.3) and (3.6) that
(Alom —on), Jwn) S nu (UH, ﬁH) |wn|r2 ()
_ (3.13)
S nH (UH,RH) lon —omla-
On the other hand, equation (1.4b) implies
(Ao —on),et(vn)) = —(div(oy — o1),vn) = (Puf — P f,vn)
= (f —Puf,on—Quup) = Z (f — Puf,vn — Quon)p- (3.14)
TERH
Using (3.14), Lemma 3.1, and ||el(vs)||a < [|on — onlla, we obtain
%
(Alor —on),et(vn)) < oscu(f, RH)( > bl - QthH?r) (3.15)
TERy ’

Soser (f,Ru)llet(vn)lla < oscu(f,Ru)llon — onlla-

Finally, a combination of (3.13) and (3.15) completes the proof. O
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Let 7, be a uniform refinement of 7y and let the maximum mesh size of 7;, go to 0 in Theorem 3.3. In this
case, Ry = Ry = 7y and o}, — o,u;, — w in X x U. Therefore, we obtain the continuous upper bound

lo —oal3 < Crat (1 (010) + 053 (1), (3.16)

where Cre1 € (0, Carel] is a constant depending only on g, 2, 7.
The quasi-orthogonality on the variable o follows with a similar argument as in the proof of Theorem 3.3.

Theorem 3.4 (Quasi-orthogonality). Let Ty, Ty € T with Ty < Tp. For any v € (0,1), it holds that
(L =v)llo—onli < llo—oullz = lon — oullz + Cy osci; (f, Ra),

where C, = v1C, and C, is a constant depending only on p,$2, .

Proof. Combining (3.2) and (1.3a), (1.4a) yields
(A(c = on),om —on) = (Ao — on),e¢(vn)) < [lo — onllalled (vn)a- (3.17)

Following the same analysis in (3.14), we have

et (vn)[[Z = —(diveg(vn),vn) = —(div(oy — on), va)
= > (f = Pufivn— Quun)y < C2 oscrr (£, Rap)llel (o). (3.18)
TERy

A combination of (3.17) and (3.18) shows that
1
(Alo —on),on —on) < C3|lo —onl|laoscu(f,Ru)
v 2 v-1 2
< §HU —opllx + TC" oscy (f, Ru),
where 0 < v < 1. Therefore

lo = onllz =llo —ouli = llon — onlli + 2(Ale — on),om — on)

<llo—oulli —llon —orli +viio —onllz + v~ Co oscqr(f, Rar).

The proof is complete. O

4. QUASI-OPTIMALITY

Define

n(onT) = (2 (on, T) + 0sc2 (£, 7)) ?

1

fn(on, M) = (Z ﬁl%(ahaT)> , MCT.

TeM
Our adaptive algorithm is based on the classical feedback loop
SOLVE —— ESTIMATE —— MARK ——— REFINE.
In the procedure REFINE, we use the newest vertex bisection [5,36,40] to ensure the shape regularity of T.

Algorithm 4.1. Input the initial mesh 7, = 75 and 0 € (0,1). Set £ = 0.
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SOLVE: Solve (1.4) on 75, to obtain the finite element solution (o, up, ).
ESTIMATE: Calculate error indicators {7, (on,, T)}re,, -
MARK: Select a subset M, C 75, with minimal cardinality such that

The (The s M) > 07,

REFINE: Refine all elements in My and minimal number of neighboring elements to remove hanging nodes.
The resulting conforming mesh is 7, ,. Set £ = £+ 1. Go to SOLVE.

1
In the procedure ESTIMATE, the actual estimator is (n}%e + oscfu) * instead of np,. Due to this strategy, an
extra marking step for data oscillation can be avoided, see, e.g., [27,31]. Since the data oscillation oscy, is
completely local, its behavior can be easily described by the following lemma, see, e.g., Lemma 5.2 in [27].

Lemma 4.2. For { >0, let Ry = T,\Th,,, denote the collection of refinement elements from Ty, to Ty, . It
holds that

1
2 2 2
0SC},,,, < 08Cj, ~5 oscy, (f, Re)-

Once the theoretical results in Section 3 are available, the convergence and complexity analysis of Algo-
rithm 4.1 follows from classical and systematic arguments, see, e.g., [14,16,39] for axioms of adaptivity. To be
self-contained, we still briefly outlined the rest of adaptivity analysis.

The estimator reduction is a standard ingredient in the convergence analysis of AFEMs, see [16]. Since 7,
involves data oscillation, we refer to Lemma 5.1 in [27] for a detailed proof. The only new ingredient in the
proof of Lemma 4.3 is the robust inequality ||A7T|| < ||7||a-

Lemma 4.3. There exists a constant v € (0,1) and Cro > 0 depending only on u, 2, v0,0 such that
Thysr < VT, + Crellon, = T lI7-
For convenience, let
ec = |lo—onlla, Ee=llon, —0on,,lla-
The next theorem gives the contraction property of Algorithm 4.1.
Theorem 4.4 (Contraction). There exists constants v,a € (0,1) depending only on 6, u,$2, v such that
(1 —v)ef,q +2C, OSC%ZH —|—C;C177,2w+1 <a((l-v)e; +20, osc%le —1—0;0177,2%)‘

Proof. A combination of Theorem 3.4 and Lemma 4.2 shows that

(1 —v)ej,, +2C, osc,QWrl < e} +2C, osc;, —Ej,. (4.1)
On the other hand, the reliability (3.16) gives

el < C’mlﬁ,zw, osc,2“Z < 17,21[. (4.2)

Let oo € (0,1) be a constant. Using (4.1) and Lemma 4.3, we have

(1- V)@?_H +2C, osc,%,prl +Cr;177}2le+1 < ef + 20, osc%u JrCr;l'yﬁ;QLe
< a(l —v)ej +2aC, osci, +(1 — a(l —v))e + 2(1 — a)C, oscy, +Cr 'y,
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Combining it with (4.2) yields

(1 —v)ef,, +2C, OSC%eJrl —1—0;0177;2%“ < a(l —v)el +2aC, osc%e

+{(1 = al —v))Cra +2(1 — @)C, + Crty}1R,.

Let (1 —a(l —v))Cra +2(1 — a)C, + Cly = aCLl, i.e.,

o= C'rel + 201/ + 0@1’7 .
(1 = v)Cre1 + 20, + Cre!

Clearly oo < 1 provided 0 < v < Cie_(;’el. The contraction follows from (4.3).

The efficiency of 7;, follows with the same bubble function technique in [15,20]:

Cenfli(on) < llo = onli + osci(f),

1931

(4.3)

(4.4)

where the constant Cog > 0 depends only on pu, 2,79, 7. An essential ingredient in the complexity analysis is

the following cardinality estimate
-1

4T — #T0y S 3 M,

Jj=0

(4.5)

It has been shown in [7] that (4.5) holds provided the newest vertices in the initial mesh 7;,, are suitably chosen.

In addition, the marking parameter € is required to be below the threshold

1
. Ceff 2
0. = 1, )
e ( 3Cdrcl )
which can be derived in the next lemma.
Lemma 4.5 (Optimal marking). Let 7y, Ty € T with Ty < Tp. Set p = %(1 — z—z). If

lo = onll +osch(f) < u{llo — oull +osct (f)}-
Then the set ﬁH i Lemma 2.4 verifies the Dérfler marking property
nH <0H77€H> > 0y .
Proof. Using (4.4) and (4.6), we have

(1= 2p)Ceniyy < (1= 2p)(lo — om |l + osct (f))
<llo —onlli —2llo - onli + osck () — 2osci(f)
< 2|lon — onli + osck (f, Rur)-

In the last step, we use the obvious inequality

osc; (f) — 2oscj (f) < oscty(f) — osci(f) < oscty(f, Rar)-

It then follows from (4.7) and Theorem 3.3 that
(1= 241)Cesy < 3Cavaiy (o1, Rt )

The proof is then complete by 2 < %Z“l

(4.6)



1932 Y. LI

Under these assumptions, the convergence rate of can be characterized by the nonlinear approximation
property of ¢ and f. Let T be the collection of grids created by newest vertex bisection from 7;,. For s > 0,
define the semi-norms

l|o|s = supq N°  min min |lo— 7la ¢,
N>0 Th €T, #Th —#Thg <N ThEZR

Lf13 Sup{Ns min osch(f)}.

N>0 Th €T # T —#Tny <N

One can also define the coupled approximation semi-norm

(o, s = sup{Ns _ min (o = onllZ + oscn(f)?)
N>0 T5, €T, #Th —# Ty <N

=
—

Since A, u are constants, we have the following equivalence
(0, f)]s < o0 & |ofs + | flg < o0

as argued in Lemma 5.3 of [16]. The quasi-optimal convergence rate of Algorithm 4.1 follows from the contraction
and previous assumptions, see, e.g., [16], Lemma 5.10 and Theorems 5.1 for details.

Theorem 4.6 (Quasi-optimality). Let {(op,, un,, Tn,) }e>0 be a sequence of finite element solutions and meshes
generated by Algorithm 4.1. Assume |o|s + |f|2 < 00, 0 € (0,6,), and (4.5) hold. There exists a constant Copt
depending only on 0,0, a, 1,2, o, such that

1 —5
(o= on, I +o05¢3,)* < Copn(lols + [F12)(#Th, — #T50) ™"

5. LOCAL INTERPOLATION AND DISCRETE APPROXIMATION

In this section, we give proofs of Proposition 2.4 and Lemma 3.1. The H'-bounded regularized interpolation
in [24] does not satisfy the property (2.2a). For our purpose, an H2-bounded interpolation is enough and we
will not regularize the degrees of freedom based on point evaluation.

Proof of Proposition 2.4. Given x € Vy, e € €y, wy € Wy, we say 0.0, wy(z) = 0?wy(x) is a second edge
derivative at x, where 0, = 9;_ is the directional derivative along t.. For two edges e, e’ of T € Ty having z,
0.0 (wpr|T)(x) is called a cross derivative at x. A vertex z is called singular if all edges in £y meeting at x
fall on two straight lines. The nodal variables (global degrees of freedom) of w € Wiy given in [24] are briefly
described as follows.

1) the value of w and Vw at each vertex = € Vy;
) the edge normal derivative 0,,,w at r + 1 distinct interior points of each edge e € Eg;
) the value of w at r distinct interior points of each edge e € Ex;
4) the value of w at r(r + 1)/2 distinct interior points of each triangle T' € Ty;
) one cross derivative of w at each vertex x € Vg and two cross derivatives of w at each nonsingular boundary
vertex x € Vy;
(6) the second edge derivatives of w for all edges meeting at each vertex x € Vg, with the exception of one
interior edge per nonsingular vertex.

To preserve boundary conditions, for each boundary vertex, one edge used for defining edge and cross deriva-
tives at that vertex is chosen to be on 9f).
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Let {w — D;w(a;)}Y.; denote the collection of the above nodal variables, where a node a; could be a vertex
in 7y or an interior point of an edge/triangle in 7Tz, D; is a differential operator of order |D;| = 0 (point
evaluation), 1 (edge normal derivative), or 2 (second edge derivative and cross derivative). Note that {a;}¥;
are not distinct since a node may be associated with multiple differential operators.

If a; € Vg and D; = 0, 6 2 is a second edge derivative or cross derivative, let e; = el 3 a;. If a; € Vi and

i = Oy, OT Oy,, let e; 2 aZ be any edge in £y. If a; is an interior point of e € £y, we choose e; = e. Moreover,
e; is chosen to be in 01 if a; is a boundary vertex. By Riesz’s representation theorem, there exists a polynomial
¥; € Pris(e;), such that

/ wip;b;ds = w(a;) for all w € Pris5(e;), (5.1)

where b; is the edge bubble polynomial of unit size vanishing on the boundary of e;. For a second edge derivative
or cross derivative 9.10,2, using (5.1) and integrating by parts formula on e;, we have

(aegaefw) (a;) = / 01 Oc2w(a;)hibids
(5.2)
/ 0, 2w (a;)0 w, b;)ds for all w € Pry5(e;).

Let {¢;}}¥., be the basis dual to the unisolvent set {w — D;w(a;)}¥_,. For w;, € W},, we define the interpolant

IH’LUh as
Igwn = Y wala)gi+ (/ (Diwh)'l/}ibids)(bi

|D;|=0 [Ds|=1

(/ de2wn(a;) g(i/Jibi)dS)@-

The definition of Iy implies wy, — Igw, = 0 at each node a; and in particular (2.2a). For T € ’TH\ﬁH, the
choice of e; i e; € Prys(er), e; € Pria(e;). Using this fact and (5.1), (5.2), we obtain

(5.3)

|Ds|=2

Di(IHwh) = D;wy, for all a; C T. (54)

Due to (5.4) and the unisolvence of {D;},,cr (see the analysis in [24,37]), we have (wp, — Igwp)|r = 0 and thus
verify the property (2.2b).

We note that wy, € Wj, implies (Vwy)|r; is constant and thus Dyw, = DiIgwy, with [D;] = 1 for each
boundary node a; € T';. It could also be observed from (5.3), (5.2), and constancy of (Vwy,)|r, that 9., 0c, [nwy, =
Oe; 0c, wy, for each boundary e; C I';. Therefore enough nodal variables vanish to enforce wy, = Igwy, on I'; and
(2.2¢) is confirmed.

For the same reason above, 0,10, 2w, = 0,10, z[ gwy, for each cross derivative assigned to boundary node
a; € T'j. Therefore enough nodal variables vanish to enforce On(wp, — Igwp)|r; = 0.

The interpolation estimate (2.3) directly follows from the same proof of Theorem 7.3 in [24] together with a
trace inequality. |

The rest of this section is devoted to the proof of Lemma 3.1. First we present a modified Korn’s inequality
on each local triangle T € 7},.

Lemma 5.1. Given T, € T, T € Tj, and v € H*(T,R?), we have
[0la1(1) < Crom ()l + b7 |Qrollr),

where Qv is the L? projection of v onto RM, and Cxorm is a constant relying only on ~q.
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Proof. The standard compactness argument (cf. [9], Thm. 11.2.16) implies

[l ey < Cr(lle() |7 + |QTvllT), (5:5)

where C'r is a constant depending on 7. It remains to estimate C'r by a homogeneity argument. Consider a
reference triangle K and the affine mapping Fr : K — T given by Fr(x) = Brx + by. Define

®(Br) = b A
vEH (K R?), 0]l g1 (=1

where

|UOF;1|H1(T) )
le(v o Fx )iz + ht|Qr(v o Fy )z

Note that ®, is independent of by. Due to (5.5), the function @ is well-defined. It is straightforward to check
that

®,(Br) =

{®u()boer (2 10l 1 1) =1
is a family of equicontinuous functions on GL(2,R). Hence ® defined by taking the supremum of this family
must be continuous on GL(2,R). Let T = {h;'x : x € T} be the scaled triangle of unit size. Since 7, is shape
regular, {Bs : T' € 75} is contained in a compact subset of GL(2,R), see, e.g., [9]. Combining the continuity
and compactness, we obtain

sup ®(Bz) = Coup < 00, (5.6)
TeTy

where Csy,p depends on the shape regularity of 7. Therefore using a scaling transformation and (5.6), we obtain

o F s
®(Br) = sup ; H (1) -
we (K B2, o] 1 g0 =1 He(v o F7 ) - HQf (u o F7 ) ’ i
S ®(Bz) < Coup.
The proof is complete. O

Then we present a modified discrete Korn’s inequality on a triangle 7.

Lemma 5.2. Let 7,7y € T with Ty < Tp,. For any T € Ty, let T,(T) ={T" € T, : T' C T} and Sh(f) =
{eeé&h:eCT,eZ IT}. Then for vy € Up|r, we have

hellon = Qronll: S D0 llewn)liz + Y A Toalllz.

T'€Tn(T) e€&,(T)
Proof. Let w = vy — Qrvp, and |w\fq}11(T) = et (T) |w|§{1(T/). Let
Sp(T) = {v € CUT) : B|l1v € Prya(T") for T' € T,(T)}

be the usual Lagrange element space of degree r+ 2. Following the analysis in [8,9,31], we construct a continuous
piecewise polynomial function Fw € Sy (T") by setting the nodal value as

Bo@) =—— Y (wlr)@),

#wh,a: T/ E€wn.o
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where z is a Lagrange node for the space Sy(T) and wy, = {T" € T;,(T) : « € T’}. An elementary estimate
shows that

hp?lw = Bw|}+ [w = Bwllp ey S > b Twlll?, (5.7)
e€&, (T)

see, e.g., the proof of Lemma 10.6.6 in [9] and Lemma 2.8 in [31]. For the continuous function Ew, the Poincaré
inequality implies

|Bw — QrEw|r S hr|Ew|g (1), (5.8)
Using (5.7), (5.8), the triangle inequality, and Qrw = 0, we have
[wl|F S llw — Ew|F + [|Qr(w — Bw)||7 + ||Bw — QrEw||7
Stz Y Rl + 1| Bl - (5.9)
e€&n (1)
It remains to estimate |Ew|g1 (7). Lemma 5.1 implies
|Ewlmi(ry S lle(Bw)|r + het |Qr Ewl|r. (5.10)
It then follows from the triangle inequality, (5.10), e(Qrvr) = 0, and Qr(w) = 0 that

Boltiry S Y, (le)lF + lle(w — Bw)|3) + b77|Qr(Bw — w)|7
T'eTy(T)

(5.11)
< D el +lw = Bwli gy + h’llw = Bwl3.
T'€Tu(T)
Combining (5.9), (5.11), (5.7), and [w]. = [vn]e completes the proof. O
For vy, € Uy, define the mesh-dependent norm
%
onlin = (Z leCon)lIF+ h;1||[[vh]}§> :
TeT), ec&y
It has been shown in [19] that the following discrete inf-sup condition holds:
a4
lvp|in < sup M for all vy, € Up,. (5.12)
mesiz 7l
With the above preparation, we are able to prove Lemma 3.1.
Proof of Lemma 3.1. Using the inf-sup condition (5.12) and the inclusion $1# C ¥, we obtain
di ATy, el
[Unl1,n S sup (div h, o) = sup 7( i C(vh))' (5.13)
mezn 7l mez,  I7all
It then follows from (5.13) and ||7||a < ||7s] that
onlin S et (on)a- (5.14)

Combining it with Lemma 5.2, we have

Yoo hPlon = QuunlF S Do | D0 e+ Yo Ao Ileall2

TeTn T€Tu \T'€Ti(T) ec&n(T)
Slonlin < llet(wn)lZ,

which completes the proof. O
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6. IMPLEMENTATION AND NUMERICAL EXPERIMENT
The method (1.4) can be implemented using the hybridization technique. Consider the multiplier space
M, = {ph “in]e € Prys(e, R?) for all e € 5,3},
and the broken discrete stress space
St = {1 € L*(Q,S) : 7|7 € Prys(T) for all T € T, }.

The hybridized mixed method seeks (G, @, An) € Z;l x Up, x M, such that

(Adp, ) + Z (div s, Up)p + Z An - [Th]neds = (Tan, gp)p s

TeT, 665,‘: €
> (diven, vn)p = (f,vn), (6.1)
TeT,,
Z /uh [6r]neds =0,
ee&y ¢

for all T € X L wn € Un, pn € My, In fact, (6.1) is a hybridized version of (1.4), i.e., &), = op,in = up, see
[1,25]. Because X, L U, My, are completely broken, it is straightforward to construct their local basis. In matrix

notation, (6.1) reads
(50)(3) - () 62

where O is a zero matrix or vector, X and A are vectors corresponding to the coordinates of (6, uy) and Ap,
respectively.

Due to the discontinuity of E;l and Uy, the matrix A is block diagonal and easily invertible. Hence solving
(6.2) is equivalent to solving the smaller Schur complement system

BTA'BA=BTA™'F. (6.3)

Here BTA™!'B is a sparse and positive semi-definite matrix and the size of BT A~'B is much smaller than
(6.1) or (1.4). However, the Schur complement BT A~!B has a small kernel provided 7;, has singular vertices
and/or pure traction boundary condition (I'p = ) is considered. The key point is that such kernel could
be easily resolved by iterative methods such as the preconditioned conjugate gradient method. An optimal
preconditioner for the Schur complement system (6.3) is presented in [25].

In the experiment, let Q = [—1,1]%\([0, 1] x [ ,0]) be the L-shaped domain. Let (r,8) be the polar coordinate
with respect to the origin, where 0 < 6 < w = 7 Let

(e DO+ ) + 4p)sin(:0) — 2(A+ i

®,(0) = ( z2(A+ p)(cos(28) — cos((z — 2)6))
B 2(A+ p)(cos((z — 2)0) — cos(z0

Dy(0) = (_((2 — z)()\<+ u)/ﬁ(él,u) <sin(z9))—)z(/\ + ) g

)

n((z - 2)9)>

in((z — 2)9)>
and ) )
B(6) = {2(A+ ) sin((z — 2)) + (2 = 2)(A + p) + 4p2) s (210)} 84 (0)
— z(A+ p)(cos((z — 2)w) — cos(zw))Po(6).
where z € (0,1) is a root of (A + 3u)?sin®(zw) = (A + p)?2%sin?(w). The most singular part of the solution to
(1.2) behaves like 7*®(0) in the neighborhood of (0, 0), see, e.g., [26]. Therefore we choose

L (@2~ )2 — 1) a(0)

un 0= 5
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FIGURE 2. Error curve.

as the exact solution in the test problem. The boundary condition is based on pure displacement (I'y = 0).
The Lamé constants are A = 10* and p = 1. The method (1.4) or (6.1) is implemented using the package iFEM
[17] in Matlab 2019a. We start with the initial mesh in Figure 1 and set the marking parameter § = 0.3. The
algebraic system (6.3) is solved by the conjugate gradient method preconditioned by the incomplete Cholesky
decomposition. Numerical results are presented in Figure 2, where nt denotes the number of triangles.

It can be observed from Figure 1(right) that the adaptive Algorithm 4.1 captures the corner singularity.
Figure 2 shows that Algorithm 4.1 has optimal and robust rate of convergence with respect to very large Lamé
constant A starting from coarse initial grid, which validates our convergence and complexity analysis.

Acknowledgements. The author would like to thank Dr. Shihua Gong for generously sharing his Matlab code and
comments on iterative methods.
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