Upstream mobility finite volumes for the Richards equation in heterogenous domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2101-2139

This paper is concerned with the Richards equation in a heterogeneous domain, each subdomain of which is homogeneous and represents a rocktype. Our first contribution is to rigorously prove convergence toward a weak solution of cell-centered finite-volume schemes with upstream mobility and without Kirchhoff’s transform. Our second contribution is to numerically demonstrate the relevance of locally refining the grid at the interface between subregions, where discontinuities occur, in order to preserve an acceptable accuracy for the results computed with the schemes under consideration.

DOI : 10.1051/m2an/2021047
Classification : 65M08, 65M12, 76S05
Keywords: Richards’ equation, heterogeneous domains, finite-volume schemes, mobility upwinding
@article{M2AN_2021__55_5_2101_0,
     author = {Bassetto, Sabrina and Canc\`es, Cl\'ement and Ench\'ery, Guillaume and Tran, Quang-Huy},
     title = {Upstream mobility finite volumes for the {Richards} equation in heterogenous domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2101--2139},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021047},
     mrnumber = {4323405},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021047/}
}
TY  - JOUR
AU  - Bassetto, Sabrina
AU  - Cancès, Clément
AU  - Enchéry, Guillaume
AU  - Tran, Quang-Huy
TI  - Upstream mobility finite volumes for the Richards equation in heterogenous domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2101
EP  - 2139
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021047/
DO  - 10.1051/m2an/2021047
LA  - en
ID  - M2AN_2021__55_5_2101_0
ER  - 
%0 Journal Article
%A Bassetto, Sabrina
%A Cancès, Clément
%A Enchéry, Guillaume
%A Tran, Quang-Huy
%T Upstream mobility finite volumes for the Richards equation in heterogenous domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2101-2139
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021047/
%R 10.1051/m2an/2021047
%G en
%F M2AN_2021__55_5_2101_0
Bassetto, Sabrina; Cancès, Clément; Enchéry, Guillaume; Tran, Quang-Huy. Upstream mobility finite volumes for the Richards equation in heterogenous domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 2101-2139. doi: 10.1051/m2an/2021047

[1] A. Ait Hammou Oulhaj, C. Cancès and C. Chainais-Hillairet, Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy. ESAIM: M2AN 52 (2018) 1532–1567. | MR | Numdam | DOI

[2] B. Andreianov, C. Cancès and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273 (2017) 3633–3670. | MR | DOI

[3] T. Arbogast, M. Obeyesekere and M. F. Wheeler, Numerical methods for the simulation of flow in root-soil systems. SIAM J. Numer. Anal. 30 (1993) 1677–1702. | MR | Zbl | DOI

[4] T. Arbogast, M. F. Wheeler and N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33 (1996) 1669–1687. | MR | Zbl | DOI

[5] S. Bassetto, C. Cancès, G. Enchéry and Q. H. Tran, Robust Newton solver based on variable switch for a finite volume discretization of Richards equation, In: Finite Volumes for Complex Applications IX – Methods, Theoretical Aspects, Examples edited by Examples R. Klöfkorn, E. Keilegavlen, F.A. Radu and J. Fuhrmann Vol. 323 of Springer Proceedings in Mathematics & Statistics (2020) 385–394. | MR | DOI

[6] S. Bassetto, C. Cancès, G. Enchéry and Q. H. Tran, On several numerical strategies to solve Richards’ equation in heterogeneous media with Finite Volumes. Working paper or preprint (2021) . | HAL | MR

[7] K. Brenner and C. Cancès, Improving Newton’s method performance by parametrization: the case of the Richards equation. SIAM J. Numer. Anal. 55 (2017) 1760–1785. | MR | DOI

[8] K. Brenner, C. Cancès and D. Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 17 (2013) 573–597. | MR | DOI

[9] K. Brenner, M. Groza, L. Jeannin, R. Masson and J. Pellerin, Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media. Comput. Geosci. 21 (2017) 1075–1094. | MR | DOI

[10] K. Brenner, R. Masson, E. H. Quenjel and J. Droniou, Total velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure. IMA Journal of Numerical Analysis (2021) . | DOI | MR

[11] K. Brenner, R. Masson and E. H. Quenjel, Vertex approximate gradient discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media. J. Comput. Phys. 409 (2020) 109357. | MR | DOI

[12] R. H. Brooks and A. T. Corey, Hydraulic properties of porous media. Hydrol. Paper 7 (1964) 26–28.

[13] C. Cancès, Nonlinear parabolic equations with spatial discontinuities. Nonlinear Diff. Equ. Appl. 15 (2008) 427–456. | MR | Zbl | DOI

[14] C. Cancès, Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: M2AN 43 (2009) 973–1001. | MR | Zbl | Numdam | DOI

[15] C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. | MR | DOI

[16] C. Cancès, F. Nabet and M. Vohralk, Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. Math. Comput. 90 (2021) 517–563. | MR | DOI

[17] V. Casulli and P. Zanolli, A nested Newton-type algorithm for finite volume methods solving Richards’ equation in mixed form. SIAM J. Sci. Comput. 32 (2010) 2255–2273. | MR | Zbl | DOI

[18] C. Chainais-Hillairet, J.-G. Liu and Y.-J. Peng, Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. ESAIM: M2AN 37 (2003) 319–338. | MR | Zbl | Numdam | DOI

[19] G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media. In: Vol. 17 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (1986). | Zbl

[20] Z. Chen and R. E. Ewing, Fully discrete finite element analysis of multiphase flow in groundwater hydrology. SIAM J. Numer. Anal. 34 (1997) 2228–2253. | MR | Zbl | DOI

[21] Z. Chen and R. E. Ewing, Degenerate two-phase incompressible flow. III. Sharp error estimates. Numer. Math. 90 (2001) 215–240. | MR | Zbl | DOI

[22] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). | MR | Zbl | DOI

[23] H.-J. G. Diersch and P. Perrochet, On the primary variable switching technique for simulating unsaturated–saturated flows. Adv. Water Resour. 23 (1999) 271–301. | DOI

[24] J. Droniou and R. Eymard, The asymmetric gradient discretisation method, edited by C. Cancès and P. Omnes. In: Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects. Vol. 199 of Springer Proc. Math. Stat. Springer, Cham (2017) 311–319. | MR | DOI

[25] G. Enchéry, R. Eymard and A. Michel, Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal. 43 (2006) 2402–2422. | MR | Zbl | DOI

[26] B. G. Ersland, M. S. Espedal and R. Nybø, Numerical methods for flow in a porous medium with internal boundaries. Comput. Geosci. 2 (1998) 217–240. | MR | Zbl | DOI

[27] R. Eymard and T. Gallouët, H -convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41 (2003) 539–562. | MR | Zbl | DOI

[28] R. Eymard, M. Gutnic and D. Hilhorst, The finite volume method for Richards equation. Comput. Geosci. 3 (1999) 259–294. | MR | Zbl | DOI

[29] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, In: Techniques of Scientific Computing (Part 3) edited by P. G. Ciarlet and J.-L. Lions. Vol. VII of Handbook of Numerical Analysis. North-Holland, Elsevier, Amsterdam (2000) 713–1018. | MR | Zbl

[30] R. Eymard, T. Gallouët, R. Herbin, M. Gutnic and D. Hilhorst, Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies. M3AS: Math. Models Meth. Appl. Sci. 11 (2001) 1505–1528. | MR | Zbl

[31] R. Eymard, R. Herbin and A. Michel, Mathematical study of a petroleum-engineering scheme. ESAIM: M2AN 37 (2003) 937–972. | MR | Zbl | Numdam | DOI

[32] R. Eymard, T. Gallouët, C. Guichard, R. Herbin and R. Masson, TP or not TP, that is the question. Comput. Geosci. 18 (2014) 285–296. | MR | DOI

[33] R. Eymard, C. Guichard, R. Herbin and R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. Z. Angew. Math. Mech. 94 (2014) 560–585. | MR | Zbl | DOI

[34] P. A. Forsyth, Y. S. Wu and K. Pruess, Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media. Adv. Water Resour. 18 (1995) 25–38. | DOI

[35] K. Gärtner and L. Kamenski, Why do we need Voronoi cells and Delaunay meshes?In: Numerical Geometry, Grid Generation and Scientific Computing edited by V. A. Garanzha, L. Kamenski and H. Si. Lecture Notes in Computational Science and Engineering. Springer International Publishing, Cham (2019) 45–60. | MR | DOI

[36] V. Girault, B. Riviere and L. Cappanera, A finite element method for degenerate two-phase flow in porous media. Part II: Convergence. Journal of Numerical Mathematics (2021). | DOI | MR

[37] H. Hoteit and A. Firoozabadi, Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Resour. 31 (2008) 56–73. | DOI

[38] M. R. Kirkland, R. G. Hills and P. J. Wierenga, Algorithms for solving Richards equation for variably saturated soils. Water Resour. Res. 28 (1992) 2049–2058. | DOI

[39] J. Leray and J. Schauder, Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51 (1934) 45–78. | MR | JFM | Numdam | DOI

[40] F. List and F. A. Radu, A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20 (2016) 341–353. | MR | DOI

[41] F. Marinelli and D. S. Dunford, Semianalytical solution to Richards equation for layered porous media. J. Irrig. Drain. Eng. 124 (1998) 290–299. | DOI

[42] D. Mcbride, M. Cross, N. Croft, C. Bennett and J. Gebhardt, Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries. Int. J. Numer. Meth. Fluids 50 (2006) 1085–1117. | MR | Zbl | DOI

[43] I. S. Pop, F. A. Radu and P. Knabner, Mixed finite elements for the Richards’ equation: linearization procedure. J. Comput. Appl. Math. 168 (2004) 365–373. | MR | Zbl | DOI

[44] F. A. Radu and W. Wang, Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media. Nonlin. Anal.: Real World Appl. 15 (2014) 266–275. | MR | Zbl | DOI

[45] F. A. Radu, I. S. Pop and P. Knabner, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal. 42 (2004) 1452–1478. | MR | Zbl | DOI

[46] L. A. Richards, Capillary conduction of liquids through porous mediums. Physics 1 (1931) 318–333. | Zbl | DOI

[47] M. T. Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44 (1980) 892–898. | DOI

Cité par Sources :