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UPSTREAM MOBILITY FINITE VOLUMES FOR THE RICHARDS EQUATION
IN HETEROGENOUS DOMAINS

SABRINA BASSETTO!, CLEMENT CANCES?, GUILLAUME ENCHERY*
AND QUANG-HUY TRAN!

Abstract. This paper is concerned with the Richards equation in a heterogeneous domain, each
subdomain of which is homogeneous and represents a rocktype. Our first contribution is to rigorously
prove convergence toward a weak solution of cell-centered finite-volume schemes with upstream mobility
and without Kirchhoff’s transform. Our second contribution is to numerically demonstrate the relevance
of locally refining the grid at the interface between subregions, where discontinuities occur, in order to
preserve an acceptable accuracy for the results computed with the schemes under consideration.
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1. PRESENTATION OF THE CONTINUOUS MODEL

The Richards equation [46] is one of the most well-known simplified models for water filtration in unsaturated
soils. While it has been extensively studied in the case of a homogeneous domain, the heterogeneous case seems
to have received less attention in the literature, at least from the numerical perspective. The purpose of this
paper is to investigate a class of discretization scheme for a special instance of heterogeneous domains, namely,
those with piecewise-uniform physical properties.

Before stating our objectives in a precise manner, a few prerequisites must be introduced regarding the model
in Sections 1.1, 1.2 and the scheme in Sections 2.1, 2.2. The goal of the paper is fully described in Section 1.3,
in relation with other works. Practical aspects related to the numerical resolution are detailed in Section 5 and
results on illustrative test cases are shown in Section 6. A summary of our main results is provided in Section 2.3,
together with the outline of the paper.

1.1. Richards’ equation in heterogeneous porous media

Let Q = RY, where d € {2, 3}, be a connected open polyhedral domain with Lipschitz boundary 6. A porous
medium defined over the region {2 is characterized by

— the porosity ¢ : Q — (0,1];
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— the permeability A : Q — R%;
— the mobility function 7 : [0,1] x 2 — Ry;
— the saturation law S : R x Q — [0, 1] function of the water pressure and the space location.

The conditions to be satisfied by ¢, A, n and S will be elaborated on later. In a homogeneous medium, these
physical properties are uniform over €2, i.e.,

d(z) = o, Az) =Xo,  n(s,x) =mo(s),  Spz)=3So(p)

for all x € . In a heterogeneous medium, the dependence of ¢, A\, n and S on x must naturally be taken into
account. The quantity s, called saturation, measures the relative volumic presence of water in the medium. The
quantity p is the water pressure, which in our case is the opposite of the capillary pressure.

Let T > 0 be a finite time horizon. We designate by Q1 = (0,7) x £ the space-time domain of interest. Our
task is to find the saturation field s : Qr — [0, 1] and the pressure field p : Q7 — R so as to satisfy

— the interior equations

d(x) s+ divF =0 in Qr, (1.1a)
s—=8(p,z)=0 in Qr; (1.1c)
— the boundary conditions
F-n(z)=0 on (0,T) x T'N, (1.1d)
p(t,.’l?) = pD(‘r) on (O7T) X FD; (116)
— the initial data
5(0,z) = s°(z) in Q. (1.1f)

The partial differential equation (1.1a) expresses the water volume balance. The flux F' involved in this
balance is given by the Darcy—Muskat law (1.1b), in which g is the gravity vector and p is the known constant
density of water, assumed to be incompressible. It is convenient to introduce

Y= —o0g-z, v =p+1, (1.2)

referred to respectively as gravity potential and hydraulic head. In this way, the Darcy—Muskat law (1.1b) can
be rewritten as
F+Ax)n(s,z) V(p+v) =F + Xz)n(s,z) VI = 0.

Equation (1.1c) connecting the saturation s and the pressure p is the capillary pressure relation. The boundary
09} is split into two non-overlapping parts, viz.,

=1rNurP  TNATP =g, (1.3)

where I'N is open and I'P is closed, the latter having a positive (d—1)-dimensional Hausdorff measure v¢~1(I'P) >
0. The no-flux Neumann condition (1.1d) is prescribed on (0,7T) x I'N, where n(z) is the outward normal unit
vector at € I'N. The Dirichlet condition (1.1e) with a known Lipschitz function pP € W*(Q) is imposed
on (0,T) x I'P. Note that, in our theoretical development, the function p® is assumed to be defined over the
whole domain €2, which is stronger than a data pP” € L®(I'®) given only on the boundary. The assumption that
pP does not depend on time can be removed by following the lines of [16], but we prefer here not to deal with
time-dependent boundary data in order to keep the presentation as simple as possible. Finally, the initial data
s% e L®(2;]0,1]) in (1.1f) is also a given data.
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In this work, we restrict ourselves to a specific type of heterogeneous media, defined as follows. We assume
that the domain €2 can be partitioned into several connected polyhedral subdomains €;, 1 < i < I. Technically,
this means that if I'; ; denotes the interface between Q; and €2; (which can be empty for some particular choices
of {i,5}), then

QiﬁQjZQ, ﬁiﬁﬁj:l—‘i’j, lf’LSAJ, Q= ( U Qz) UF, (].4)
1<i<I
with I =, oy I'; ;. Each of these subdomains corresponds to a distinctive rocktype. Inside each €2;, the physical

properties are homogeneous. In other words,

d)(fﬂ) = ¢, )‘(x) =\, 77(5755) = 771'(8)’ S(pax) = Sz(p)

for all « € Q;. Therefore, system (1.1) is associated with

$z) = Y dila(x),  als.e)= ) mi(s)le,(), (1.5a)

1<i<I 1<i<I

Ao)= Y Nla(@),  Spa)= Y Sip)le (), (L.5b)

1<i<I 1<i<I

where 1g, stands for the characteristic function of ;. For all ¢ € {1,...,I}, we assume that ¢; € (0,1] and
A; > 0. Furthermore, we require that

7; is increasing on [0,1], 7:(0) = 0, ni(1) = —, (1.6a)

where p > 0 is the (known) viscosity of water. In addition to the assumption that S(-,z), defined in (1.5b),
is absolutely continuous and nondecreasing, the functions S; are also subject to some generic requirements

commonly verified the models available in the literature: for each i € {1,..., I}, there exists p, < 0 such that
S; is increasing on (—o0,7;], limOO Si(p) =0, S; =1 on [p;, +0). (1.6b)
p——

This allows us to define an inverse S; ' : (0,1] — (—o0, p;] such that S;0S; ! (s) = s for all s € (0, 1]. We further
assume that for all i € {1,...,I} the function S; is bounded in L*(R_), or equivalently, that S;* € L1(0,1).
It thus makes sense to consider the capillary energy density functions €; : R x €; — R, defined by

€(s.2) = j 60 (87(0) — pP (@) de. (L.7)
Si(pP (x))

For all z € €, the function €,(-, ) is nonnegative, convex since S; ! is monotone, and bounded on [0,1] as a
consequence of the integrability of S;. For technical reasons that will appear clearly later on, we further assume

that
VmioSie LNRL),  Vie{l,...,I}. (1.8)
Let Q; v = (0,T) x £; be the space-time subdomains for 1 < i < I. The interior equations (1.1a)—(1.1c) then
boil down to

(bi atS +divF =0 in Qi,Ta (193)
F+AmVp+v¢)=0 inQr, (1.9b)
s—8i(p)=0 inQ;r. (1.9¢)

At the interface I'; ; between €2; and Q;, i # j, any solution of (1.1a)—(1.1c) satisfies the matching conditions

Fi-ni+F;-n; =0 on (0,7) x I'; ;, (1.10a)
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pi—p; =0 on (0,T) xI'; ;. (1.10b)

In the continuity of the normal fluxes (1.10a), which is enforced by the conservation of water volume, n; denotes
the outward normal to d€; and F; - n; stands for the trace of the normal component of Fj, L on (0,T) x 092;.

In the continuity of pressure (1.10b), which also results from (1.1a)—(1.1c), p; denotes the trace on (0,7) x 9€;
of the pressure py, . in the i¢-th domain.

1.2. Stability features and notion of weak solutions

We wish to give a proper sense to the notion of weak solution for problem (1.1). To achieve this purpose,
we need a few mathematical transformations the definition of which crucially relies on a fundamental energy
estimate at the continuous level. The calculations below are aimed at highlighting this energy estimate and will
be carried out in a formal way, in constrast to those in the fully discrete setting.

Multiplying (1.9a) by p — p®, invoking (1.7), integrating over €; and summing over 4, we end up with

I I
%ZJ €i(s,x)da:+Zf div F (p — pP) dz = 0. (1.11)
i=1Y%% i=19Y%%

We now integrate by parts the second term. Thanks to the matching conditions (1.10) and the regularity of pP,
we obtain

I I
A= Z;JQ divF(p—pD) dz = —Z;JQ/F-V (p—pD) dz.

It follows from the flux value (1.9b) that

=
I

2 L Aii($)V(p +¢) -V (p—pP) do

I I
Z J \ini(s)|Vp|? da — Z J \ini(s)Vip - VpP dz
=178 =178

I
+ Z f Aini(s)Vp -V (¢ — pP) dz.
i=1Y%
Young’s inequality, combined with the boundedness of VpP, V4, A and 7, yields
1 d
= 5 i *da —
Az g ZIL Aini(s)|Vp>da — C

for some C' > 0 depending only on X, 1, 1, i, Q and pP.
Let us define the energy €:[0,7] — R, by

I
ey = L €i(s(t.2),x)dz, 0<i<T
=1 i

Integrating (1.11) w.r.t. time results in

1 I
CUREDY HQ A (3)|Vpl2 da dt < €(0) + CT. (1.12)
i=1 0T
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Estimate (1.12) is the core of our analysis. However, it is difficult to use in its present form since n;(s) = 7;(Si(p))
vanishes as p tends to —o0, so that the control of Vp degenerates. To circumvent this difficulty, we resort to
the nonlinear functions (customarily referred to as the Kirchhoff transforms) 0, : R - R, ®; : R — R, and
T:R x Q — R respectively defined by

P
O:(p) - jo i o 8i(m) d, peR, (1.13a)

P

®i(p) = f Ain o 8;(m) dm, peR, (1.13b)
0
D

T(p) = L i, Aini o Si(m)dm,  peR, (1.13c)

the notion of T being due to [25]. Bearing in mind that (T") = 0, estimate (1.12) implies that
I
2 Jf IVOi(p)|? dz dt < 2(€(0) + CT) < +oo. (1.14)
i=19Qir

As ®; 0 ©;! is Lipschitz continuous, this also gives rise to a L?(Q; 7)-estimate on V®;(p). The functions
2. 0i(p)lg, and >, ®;(p)lq, are in general discontinuous across the interfaces I'; j, unlike Y(p). Since the
functions T o0 ©; ! are Lipschitz continuous, we can readily infer from (1.14) that

Jf ) IVY(p)|*dz < C (1.15)

for some C depending on T', Q, [[VpP||s, the [|Sil|1r_)’s and
_ B 1
A= [Mze) = Jnax i, n=lnlce@ = fg?é”ThHLoo(Q) =

the last equality being due to (1.6a).

Moreover, Y(p) — YT (pP) vanishes on (0,T) x T'P. Poincaré’s inequality provides a L?(Qr)-estimate on Y(p)
since I'P has positive measure and since T (pP) is bounded in €. In view of assumption (1.8), the functions ©; and
T are bounded on R_. Besides, for p = 0, n;08;(p) = 1/u, so that ©;(p) = p/Ai/uand Y (p) = minj<;<1 pr/Ni/pt-
It finally comes that

0,(p) < C1+Y(p)), VpeR, 1<i<, (1.16)

from which we infer a L?(Q; r)-estimate on ©;(p). Putting
V= {ue HY Q) | U p = 0}7
the above estimates suggest the following notion of weak solution for our problem.

Definition 1.1. A measurable function p : Q7 — R is said to be a weak solution to the problem (1.9a)—(1.9¢)
if
Qi(p) € L*((0,T); H*()),  for 1 <i<1, (1.17a)
Y(p) — T(p°) € L*((0,T); V) (1.17b)
and if for all p € CX([0,T) x (2 uTN)), there holds

J O S(p,x)0rpdaedt + f $5%0(-,0) dz + Jf F-Vedzdt =0, (1.17¢)
Qr Q T

with
F =-V®;(p) + \ini(Si(p)) 0g in Qr, 1<i<I. (1.17d)
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The expression (1.17d) is a reformulation of the original one (1.9b) in a quasilinear form which is suit-
able for analysis, even though the physical meaning of the Kirchhoff transform ®;(p) is unclear. While the
formulation (1.17c) should be thought of as a weak form of (1.9a), (1.10a), (1.1f), and (1.1d), the condition
Y(p) — Y(pP) € L?((0,T); V) contains (1.10b) and (1.1e).

1.3. Goal and positioning of the paper

We are now in a position to clearly state the two objectives of this paper.

The first objective is to put forward a rigorous proof that, for problem (1.1) with heterogeneous data (1.5),
cell-centered finite-volume schemes with upstream mobility such as described in Section 2.2, do converge towards
a weak solution (in the sense of Def. 1.1) as the discretization parameters tend to 0. Such mathematically assessed
convergence results are often dedicated to homogeneous cases: see for instance [4,28,45] for schemes involving
the Kirchhoff transforms for Richards’ equation, Ait Hammou Oulhaj et al. [1] for a upstream mobility CVFE
approximation of Richards’ equation in anisotropic domains, Chavent and Jaffré [19] and Chen and Ewing [20,21]
for schemes for two-phase flows involving the Kirchhoff transform, and [31,36] for upstream mobility schemes for
two-phase porous media flows. For flows in highly heterogeneous porous media, rigorous mathematical results
have been obtained for schemes involving the introduction of additional interface unknowns and Kirchhoff’s
transforms (see for instance [8,13,14,25]), or under the non-physical assumption that the mobilities are strictly
positive [30,33]. We also refer the reader to [3,44] where the assumption of the non-degeneracy of the mobility has
been made. It was established very recently in [10] that cell-centered finite-volumes with (hybrid) upwinding
also converge for two-phase flows in heterogeneous domains, but with a specific treatment of the interfaces
located at the heterogeneities. Here, the novelty lies in the fact that we do not consider any specific treatment
of the interface in the design of the scheme.

The second objective is of more practical nature. Even though our analysis still holds without any spe-
cific treatment of the interface, it is well-known that cell-centered upstream mobility finite-volumes can be
inaccurate in the presence of heterogeneities. This observation motivated several contributions (see for instance
[25,26,33,37]) where skeletal (i.e., edge or vertex) unknowns where introduced in order to enforce the continuity
of the pressures at the interfaces I'; ;. By means of extensive numerical simulations in Section 6, we will show
that without local refinement of the grid at the interface, the method still converges, but with a degraded order.
Our ultimate motivation is to propose an approach which consists in adding very thin cells on both sides of the
interface before using the cell centered scheme under study. Then the scheme appears to behave better, with
first-order accuracy. Moreover, one can still make use of the parametrized cut-Newton method proposed in [5]
to compute the solution to the nonlinear system corresponding to the scheme. This method appears to be very
efficient, while it avoids the possibly difficult construction of compatible parametrizations at the interfaces as
in [9-11]. An involved comparative study on the robustness of the Newton solver is presented in [6], where other
strategies to capture the discontinuities related to rock changes are also addressed.

2. FINITE-VOLUME DISCRETIZATION

The scheme we consider in this paper is based on two-point flux approximation (TPFA) finite-volumes. Hence,
it is subject to some restrictions on the mesh [32,35]. We first review the requirements on the mesh in Section 2.1.
Next, we construct the upstream mobility finite-volume scheme for Richards’ equation in Section 2.2. The main
mathematical results of the paper, which are the well-posedness of the nonlinear system corresponding to the
scheme and the convergence of the scheme, are then summarized in Section 2.3.

2.1. Admissible discretization of Qr
Let us start by discretizing w.r.t. space.

Definition 2.1. An admissible mesh of Q is a triplet (7, &, (xk) e ) such that the following conditions are
fulfilled:
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(i) Each control volume (or cell) K € 7 is non-empty, open, polyhedral and convex, with positive d-dimensional
Lebesgue measure myg > 0. We assume that

KnL=g ifK,Le 7 withK #L,  while |JK=20.
KeT

Moreover, we assume that the mesh is adapted to the heterogeneities of €2, in the sense that for all K € 7,
there exists ¢ € {1,...,I} such that K < Q.

(ii) Each face o € & is closed and is contained in a hyperplane of R?, with positive (d—1)-dimensional Hausdorff
measure v971(o) = m, > 0. We assume that v4"1(c no’) = 0 for 0,0’ € & unless ¢’ = 0. For all K € 7,
we assume that there exists a subset &x of & such that 0K = |, £, 0- Moreover, we suppose that
Ukes €k = &. Given two distinct control volumes K, L € .7, the intersection K n L either reduces to a
single face o € & denoted by K|L, or its (d — 1)-dimensional Hausdorff measure is 0.

(iii) The cell-centers (rx) ke are pairwise distinct with xx € K, and are such that, if K, L € J share a face
K|L, then the vector zj, — zk is orthogonal to K|L.

(iv) For the boundary faces o < 02, we assume that either o = I'P or ¢ = TN. For 0 < 0 with o € & for
some K € .7, we assume additionally that there exists z, € o such that z, — xk is orthogonal to o.

In our problem, the standard Definition 2.1 must be supplemented by a compatibility property between the
mesh and the subdomains. By “compatbility” we mean that each cell must lie entirely inside a single subregion.
Put another way,

VKeZ, Ni(K)e{l,... I} | Kc Q. (2.1)

This has two consequences. The first one is that, if we define
I, ={KeJ|K cQ} 1<i<I, (2.2)

then 7 = UiI:l ;. The second one is that the subdomain interfaces I'; ; for ¢ # j coincide necessarily with
some edges o € &. To express this more accurately, let &+ = {o € & | 0 < T'} be the set of the interface edges,
&P, = {0 € & | 0 = TP} be the set of Dirichlet boundary edges, and &Y, = {0 € & | 0 = TN} be the set of
Neumann boundary edges. Then, I' = | J, ., o, while I'P = Usesn, o and N = Uoesx, 0. For later use, it is
also convenient to introduce the subset & — & consisting of those edges that correspond to cells in .7; only, i.e.,

& = ( U 5’1{) \ér, I1<i<lI, (2.3a)

K€¢7i

and the subset & of the internal edges, i.e.,

e = E\E2 U EN) = | (o =EKILY. (2.3b)
K, LeT

Note that T < &ipt.
To each edge o € &, we associate a distance d, by setting

(2.4)

ltg —xs| ifoedkxn (56% U é"elit) )

J _{|a:K—xL| if 0 = K|L € &,

We also define di, = dist(zx, o) for all K €  and o € &k. The transmissivity of the edge o € & is defined by

Mg
=2 2.5
=T (2.5)
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Throughout the paper, many discrete quantities u will be dgﬁned either in cells K € .7 or on Dirichlet
boundary edges 0 € £5,, i.e. u = ((uk) ke s (ug)aegpt) € X7 Y¥exi | where X can be either R, £ > 1, or a space

of functions. Then for all K € . and o € &k, we define the mirror value ug, by

ur, ifU:K|Legint7
Uko =3 ug ifoe&x N EX,, (2.6)

u, ifoedxnED,.

The diamond cell A, corresponding to the edge o is defined as the convex hull of {zk,zk,,0} for K such
that o € &k, while the half-diamond cell Ak, is defined as the convex hull of {xx,c}. Denoting by ma, the
Lebesgue measure of A,, the elementary geometrical relation ma, = dm,d, where d stands for the dimension
will be used many times in what follows.

Another notational shorthand is worth introducing now, since it will come in handy in the sequel. Let

flom) = > fi()la,(@) (2.7a)

be a scalar quantity or a function whose dependence of = € € is of the type (1.5). Then, for K € 7, we slightly
abuse the notations in writing

fr ()= fox) = firo) (), (2.7b)

where the index i(K) is defined in (2.1). The last equality in the above equation holds by virtue of the compatibil-
ity property. For example, we will have not only ¢x = ¢(zx), Ak = Mzk), nx(s) = n(s,2x), Sk (p) = S(p, k)
but also €k (s) = €(s,zx). Likewise, we shall be writing fx,(-) = f(-,Zks) for the mirror cell without any
ambiguity: if o € &y U &Y, then 1k, is a cell-center; if o € &2, , then xx, lies on the boundary but does not
belong to an interface between subdomains.

The size hs and the regularity (s of the mesh are respectively defined by

. . 1 . dKo’
hy = max dism(K), (7 = min (Card £ Din diam(m) ' (2:8)

The time discretization is given by (t"))o; <y with0 =1° <! <-.. < tV = T. We denote by At™ = " —¢"—1
for all n € {1,..., N} and by At = (At"),_, <n-

2.2. Upstream mobility TPFA finite volume scheme

n—1

Given a discrete saturation profile (sK )Key € [0,1]7 at time t" ', n e {1,..., N}, we seck for a discrete

pressure profile (p% )., € R7 at time t" solution to the following nonlinear system of equations. Taking
advantage of the notational shorthand (2.7b), we define

sk = Sk(Pk)s KeZ,nzl. (2.9)

The volume balance (1.9a) is then discretized into

n—1

midx KK N m PR, =0, KeZ,n>1, (2.10)
At e
o€k
using the approximation
1
F}éazd—)\ang( Y —9%,), c€ék, Ke T, n=1, (2.11a)

for the flux (1.1b), with
Kk =Pk + VK, Uk =DPko + YKo, (2.11b)
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where the mirror values p}, . and ¥k, are given by (2.6). In the numerical flux (2.11a), the edge permeabilities
(As)oes are set to
AKALds
Ao =4 Axdr o+ ALdk,o
Ak if 0 € & N Eox,

if 0 = K|L € &,

while the edge mobilities are upwinded according to

Nk (s%) it 9% > 9%,
Ny =3 3 Mk (s%) + ko (sh,) 0% =0k, (2.11¢)
Nice (555) if 9 < 9.

In practice, the definition of 1]} when 9% = %, has no influence on the scheme. We choose here to give a
symmetric definition that does not depend on the orientation of the edge ¢ in order to avoid ambiguities.
The boundary condition pP is discretized into

PR = le § PP (z) dz for K € 7, (2.12)
py = 2§ pPx)dvi(z) foroe &l ’
whereas the initial condition is discretized into
1
89 = —f s(z) dz, for K € 7. (2.13)
mg K
The Dirichlet boundary condition is encoded in the fluxes (2.11a) by setting
pr = pP, Voe&L n=>1. (2.14)

Bearing in mind the definition (2.6) of the mirror values for o € &Y

~t, the no-flux boundary condition across
o € &Y, is automatically encoded, i.e., Fi, =0 forall 0 € & N &Y, K€ 7 and n > 1.

In what follows, we denote by p"™ = (p) x5 for 1 <n < N, and by s" = (s%) x5 for 0 <n < N. Besides,
we set p” = (PR ) ke : (P7)oesn)-

2.3. Main results and organization of the paper

The theoretical part of this paper includes two main results. The first one, which emerges from the analysis
at fixed grid, states that the schemes admits a unique solution (p™)1<n<n-

Theorem 2.2. For allne{1,..., N}, there exists a unique solution p™ to the scheme (2.9)—(2.11c).
With Theorem 2.2 at hand, we define the approximate pressure ps a: by

p7.aslt,z) =pk  for (t,x) e ("1, t"] x K. (2.15a)
We also define the approximate saturation as
s7.at = S(p7 at, T). (2.15b)

The second main result guarantees the convergence towards a weak solution of the sequence of approximate
solutions as the mesh size and the time steps tend to 0. Let (7, &, (TK) ke 7., )m=1 be a sequence of admissible
discretizations of the domain €2 in the sense of Definition 2.1 such that

hg,

m

— 0, sup Cz,, =: ¢ < 40, (2.16)
—© m=>=1
where the size hz, and the regularity (7 are defined in (2.8). Let (At,,)m>1 be time discretizations of (0,T)
such that

lim max At =0. (2.17)

m— 1<n<N,,
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Theorem 2.3. There exists a weak solution p : Qr — R in the sense of Definition 1.1 such that, up to a
subsequence,

5T Bt S(p,x) a.e. in Qr, (2.184)
Y(p7,, At.,) — T(p) weakly in L?(Qr). (2.18b)

The rest of this paper is outlined as follows. Section 3 is devoted to the numerical analysis at fixed grid.
This encompasses the existence and uniqueness result stated in Theorem 2.2 as well as a priori estimates
that will help proving Theorem 2.3. The convergence of the scheme, which is taken up in Section 4, relies on
compactness arguments, which require a priori estimates that are uniform w.r.t. the grid. These estimates are
mainly adaptations to the discrete setting of their continuous counterparts that arised in the stability analysis
sketched out in Section 1.2. These estimates are shown in Section 4.1 to provide some compactness on the
sequence of approximate solutions. In Section 4.2, we show that these compactness properties together with
the a priori estimates are sufficient to identify any limit of an approximate solution as a weak solution to the
problem.

In Section 5, we provide some details about the practical numerical resolution by laying emphasis on the
switch of variable for selecting the primary unknown and on the mesh refinement at an interface in order to
better enforce pressure continuity. Finally, in Section 6, numerical experiments on two configurations (drying
and filling cases) for two capillary pressure models (Brooks—Corey and van Genuchten—Mualem) testify to the
relevance of the local refinement strategy as a simple technique to preserve accuracy.

Remark 2.4. Theorem 2.3 only states the convergence of the scheme up to a subsequence. In the case where
the weak solution is unique, then the whole sequence of approximate solutions would converge towards this
solution. As far as we know, uniqueness of the weak solutions to Richards’ equation is in general an open
problem for heterogeneous media where x — S(p, z) is discontinuous. Uniqueness results are however available
in the one-dimensional setting for a slightly more restrictive notion of solutions, cf., [14], or under additional
assumptions on the nonlinearities n;, S;, cf., [13].

3. ANALYSIS AT FIXED GRID

3.1. Some uniform a priori estimates

In this section, our aim is to derive a priori estimates on the solutions to the scheme (2.9)—(2.13). These
estimates will be at the core of the existence proof of a solution to the scheme. They will also play a key role in
proving the convergence of the scheme.

The main estimate on which our analysis relies is a discrete counterpart of (1.12). We recall that a, is the
transmissivity introduced in (2.5).

Proposition 3.1. There exist two constants Cy, Co depending only on X, pu, p°, 1, ¢, Q, T, ¢, and ||S;|| 11 (=)
such that

N

DAY aghomlt (P — Phe,)? < Ch, (3.1a)
n=1 €S

N

DUA D aghon (Vi — V5,)? < Ca. (3.1b)
n=1 g€ef

In (3.1), the relationship between o and K is to be understood as follows. For an inner edge o € &, although
it can be written as 0 = K|L or L|K, only one of these contributes to the sum. For a boundary edge o € &uyt,
there is only one cell K such that o € &k, so there is no ambiguity in the sum.
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Proof. Multiplying (2.10) by At"(p% —p%), summing over K € 7 and n € {1,..., N}, and carrying out discrete
integration by parts yield

A+ B =0, (3.2)
where we have set
N
= Z Z micox (si = si ") (v = pR) (3.30)
n=1KeJ
N
= Z " acheny (95 — V%,) (Pk — PR — Plo + PRy) - (3.3b)

el

The discrete energy density function €k : [0, 1] — R, defined by means of the notation (2.7) from the functions
fi = €; introduced in (1.7), is convex by construction. Consequently,

€k (i) —€x (sk) = €k (%) (sk ' — sk) = o (i —PR) (%' —sk) -
Therefore, the quantity A of (3.3a) can be bounded below by
N
A > Z Z mg (€K(57]L() €K( n- 1)) = Z mg (€K (SK) €K (SK)) = *CA, (34)

n=1Ke7 KeT

the last inequality being a consequence of the boundedness of €5 on [0, 1].
Writing ¢ = p + ¢ and expanding each summand of (3.3b), we can split B into

B =B; + By + Bg,

with

2
ag Aoy (P — Pro)” s

|
Mz
M

n=1 o€l
N

By = Z Z Gg oTla pK pKU)(wK_,(/)KU_p]IDf_Fp]I)(U)’
v

B3 = Z Z aa 0770 7/}K wKU) (p% 7pl'i'a) :

g€l

3
Il
—

It follows from Lemma 9.4 of [29] and from the boundedness of n that there exists a constant C' depending only
on A, i, (7 and € such that

2
Z Ao Aoy (p% - p%a) <C HVPDH%Q(Q)OH (3.5a)
cE&
N aodonl (Vi — Yio)’ < C VY30 (qa- (3.5b)
oe&

Thanks to these estimates and to the Cauchy—Schwarz inequality, we have
—CT [|VP® |l 2(ye Ve oo 0y

On the other hand, Young’s inequality provides

1
By = —§B1 - CT (”VPD”%z(Q)d + ||V¢H%°O(Q)d> :
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Hence,

B >

N | =

N
DAY aghon (P — Plis)” — Ch, (3.6)
n=1 oe&

by setting Cp = C’T(||VpD||2Lz(Q)d + ||V1/)||2w(9)d + IVPPll 2y IV 1o (0)2)- Inserting (3.4) and (3.6) into
(3.2), we recover (3.1a) with Cy = 2(Cy + Cs).
From (3.1a), we can deduce (3.1b) by elementary manipulations. O

So far, we have not used the upwind choice (2.11¢) for the mobilities 7. This will be done in the next lemma,
where we derive a more useful variant of estimate (3.1a), in which n? is replaced by 7 defined below. In a
homogeneous medium, 77> = 72 so that the new estimate (3.8) seems to be stronger than (3.1a).

We begin by introducing the functions 7, : R — (0,1/u] defined for o € & by

7o (p) = min {ng o Sk (p), NKs © Ska(p)}, Vp e R. (3.7a)

By virtue of assumptions (1.6), each argument of the minimum function is nondecreasing and positive function
of p € R. As a result, 7}, is also a nondecreasing and positive function of p € R. Note that 7, = n; o S; for all
o € &;, while for interface edges ¢ < I'; ;, the mere inequality 7, < 1; 0S; holds. Next, we consider the intervals

30 = [Pl P TPY,],  for o€ bk, Ke T, 1<n<N, (3.7b)
with the notations aLb = min(a,b) and aTb = max(a,b). At last, we set
7" = maxi,(p), for ce&, 1<n<N. (3.7¢)

PEJY

Lemma 3.2. There exists a constant Cs depending on the same data as C1 such that
N
_ 2
DAY agly (i — Pik,)” < Cs. (3.8)
n=1 geé

Proof. We partition the set & of edges into three subsets, namely,
& = {U| Ve > 19?(0}, E" = {J| I < 19’}(0}, & = {a\ I = an}
Invoking 77, = min(nk o Sk, ke © Skos), we can minorize the left-hand side of (3.1a) to obtain

N
DSIA D andoilo (0F) (Pl — Pleo)’ + Y oMol (Do) (Pl — Plo)’
n=1

n n
aeé”Jr gEE™

2

+ Y e} (o (%) + 7o (P,)) (P — Piy)” | < Ch.

o
oeS

Starting from this inequality and using the boundedness of 7; and v, we can readily show that there exists a
constant C depending on the same data as C; such that

N
Dii= Y A" | Y agdoilo (Dk) (Pl — Plico) Vi = Vi) + . o dolle (Piy) (P — Dicy) (0 — iy | < C,
n=1

oeSY oesm



FINITE VOLUMES FOR RICHARDS EQUATION 2113

in which the sum over &' was omitted because all of its summands vanish. Simlarly to what was pointed out
in equation (2.9) in [1], we notice that since 7, is nondecreasing w.r.t. p, it is straightforward to check that the
definition

o (Pkc) if V5 > I,
Ty =\ & O 05) + 70 (k) 105 = D, (3.9)
o (Pko) if U <V,
exactly amounts to
maxpe3n 7o () if (pk — ko) (Vi —V%,) >0,
o =19 30 (0%) + (ko)) if (0% — Pik,) (V% = Vi,) =0, (3.10)
minpegy 7o (p) if (P — Pio) (Vi — Vk,) < 0.

Taking advantage of this equivalence, we can transform D; into

Z aU}‘O'n%%XﬁU (an_pTIL(U)( TIL(_ 7IL(J)+ Z aU)‘UnalilnﬁU (an_pTIL(U)( TIL(_ 111(17) <C’

ocesr ocesr

N
D, = Z A"
=1
(3.11)

where &7 = {o|(p% — P, (V% — V%) > 0} and &2 = {o| (p%k — P%,) (V% — ¥%,) < 0}. The second sum
over &2 contains only negative summands and can be further minorized if ming. 17, is replaced by maxgn 7o
In other words,

N
Dy i= Y At" Y ag AW (P — Pheo) (Vi — Vk,) <D1 < C.

n=1 el

Writing ¥ = p + 9, expanding each summand of Do and applying Young’s inequality, we end up with

1 a n =n n n n n
5 Z At Z aa’)‘ﬂno [(pK 7pK0‘)2 - (%{ - l/}KU)Q] < D2 < C.
n=1

og€es

Estimate (3.8) finally follows from the boundedness of 1, 1/A and . O

The above lemma has several important consequences for the analysis. Let us start with discrete counterparts
to estimations (1.14) and (1.15).

Corollary 3.3. Let C5 be the constant in Lemma 3.2. Then,

N I
YA a0 (01 (k) — ©i (W) < Cs, (3.12a)
n=1 =1 0€ed&;
N
n n n 2
DAY ag (T (k) = T (Pk,))* < Cs. (3.12b)
n=1 oeé

Moreover, there exists two constants Cy, Cs depending on the same data as Cy and additionnally on
[vni o SillLr@_y, 1 <i <1, such that

N
DAY mu| Y(pk)® < Cu, (3.13a)
n=1 KeZ

N I

DAY Y milOi(pk)® < Cs. (3.13b)

n=1 i=1 KeJ;
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Proof. Consider those edges o € &; — defined in (2.3a) — corresponding to some fixed i € {1,..., I}, for which
o = 1; 0S; = |©}]? and 7} = maxyn [©}]? due to (1.13a). By summing the elementary inequality

(Gl(p?() - Gi(pTIL{U»Q < ﬁg (p?( _ana)27

over o € &,1€{l,...,I} and n € {1,..., N} using appropriate weights, we get

N I
Z Ath Z a5 (Oi(Pk) = ©i(Pks)) Z At" Z Z asMy (Pic — Pko)’s
i=10es;

n=1 i=10€ed&;

whose right-hand side is obviously less than Cj5, thanks to (3.8). This proves (3.12a).
Similarly, the respective definitions of 77 and T have been tailored so that maxgn | Y’
As a consequence,

P<nlforalloeé&.
(Y(pk) = Y(io))® < Ty (P — Pico)”
Summing these inequalities over o € & and n € {1,..., N} with appropriate weights and invoking (3.8), we

prove (3.12b).
The argument for (3.13a) is subtler. Starting from the basic inequality

(T () =T (%) = T o) + T (02,))" <2(C W) — Yo))? +2 (Y (0R) = T (2,)) 7,

we apply the discrete Poincaré inequality of Lemma 9.1 from [29] — which is legitimate since I'P has positive
measure — followed by Lemma 9.4 of [29] to obtain

N
DAY mi(Y(pk) = T(pR))* < 20p,7 (Ca + CT| Y| VPP |17),

n=1 KeT

where Cp 7 denotes the discrete Poincaré constant, and C¢ is the quantity appearing in Lemma 9.4 of [29] and
only depends on (7. This entails (3.13a) with Cy = 4Cp 7 (C5 + CcT|| Y ||| VPP ||?) + 2maT || Y (pP)]/2.
The last estimate (3.13b) results from the comparison (1.16) of the nonlinearities ©; and Y. O

The purpose of the next lemma is to work out a weak estimate on the discrete counterpart of d;s, which will
lead to compactness properties in Section 4.1. For ¢ € CL(Qr), let

1
di= [ ema)as  vKeT 1<n<N.
mg K

Lemma 3.4. There exists a constant Cg depending on the same data as Cy such that

N
DD miok (s — 55 ) ok < Coll Vel e, Yo e CF(Qr). (3.14)
n=1Ke7

Proof. Multiplying (2.10) by At" ¢%, summing over K € 7 and n € {1,---, N} and carrying out discrete
integration by parts, we end up with

N N
=3 N mgon (sh — s ) o = = > A aghon (5 — Iiep) (P — Pl -
n=1KeJ n=1 gEE

Applying the Cauchy—Schwarz inequality and using (3.1b), we get

maxz n
A? < ZAt Z ag (% — %)% (3.15)

oef
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The conclusion (3.14) is then reached by means of the property (see [2], Sect. 4.4)

N
DAY ap(Pk — Po)® < ClVOITw (e
n=1

el

for some C' depending only on €2, T" and the mesh regularity (5. O

3.2. Existence of a solution to the scheme

The statements of the previous section are all uniform w.r.t. the mesh and are meant to help us passing to
the limit in the next section. In contrast, the next lemma provides a bound on the pressure that depends on the
mesh size and on the time-step. This property is needed in the process of ensuring the existence of a solution
to the numerical scheme.

Lemma 3.5. There exist two constants Cr;, Cg depending on 7, At" as well as on the data of the continuous
model )\7 s pD; 1/); C} Q) T7 ¢7 ||SiHL1(R,) and || Vi OSiHLl(R,ﬁ I<i< I7 such that

—Cr <pi <Cs, VKe T, ne{l,...,N}L (3.16)
Proof. From (3.13a) and from Y (p) = p4/min; A\;/u for p = 0, we deduce that

n 14 C4

<p—, VKeZ7,1<n<N.
Px Atan mini )\,L "

Hence, the upper-bound Cs is found by maximizing the right-hand side over K €  and n € {1,..., N}.

To show that p7 is bounded from below, we employ a strategy that was developed in [15] and extended to
the case of Richards’ equation in Lemma 3.10 of [1]. From (2.12), (2.14) and the boundedness of pP, it is easy
to see that

py > inf pP(x), Voe by,
€I

Estimate (3.8) then shows that for all K € .7 such that &x N &2, # &, we have

n n

C
Dr = Do — 2 ] = Tk, Vcreé”Kmé"eBt.

Atnaa'ﬁa (pg

The quantity 7% is well-defined, since %, (p2) > 0 for p? > —oo, and does not depend on time, as pP does not
either. Furthermore, if pj is bounded from below by some 7y, then the pressure in all its neighboring cells
L €  such that 0 = K|L € &k is bounded from below by

/ Cs
P>y — 4| = =: 7}
PL K Atnaana(ﬂjf() L

Again, 77 is well-defined owing to 7, (%) > 0. Since the mesh is finite and since the domain is connected,
only a finite number of edge-crossings is required to create a path from a Dirichlet boundary edge o € &2,

to any prescribed cell K € .7. Hence, the lower bound C; is found by minimizing 7} over K € J and

ne{l,...,N}L O
Lemma 3.5 is a crucial step in the proof of the existence of a solution p” = (p%)kes to the scheme
(2.9)—(2.14).

n—1

Proposition 3.6. Given s = (s Nkrer € [0,1]7, there exists a solution p* € R7 to the scheme

(2.9)(2.14).
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The proof relies on a standard topological degree argument and is omitted here. However, we make the homo-

topy explicit for readers’ convenience. Let 7 € [0, 1] be the homotopy parameter. We define the nondecreasing
functions nl-m : [0,1] —» R4 by setting nh)

?

(s) = (1 —v)/p+ vymi(s) for s € [0,1], and we seek a solution
p() = (p(lg))Keg to the problem

(’Y)) n—1

S —
vmxcﬁKK(pKA—tsK + Y mF =0, KeZ, yelo1], (3.17a)
n O'EéDK
where the fluxes FI(J; are defined by
1
F) = d*)\oﬁ((ﬂ) (19?) - ?9%)7) ., 0€ék, KeT,vel0,1] (3.17b)

with 90 = p(¥) 4+ ¢ and using the upwind mobilities

e (SK (pﬁ?’ )) it 9% >0,
=131 (nﬁ?) (SK (p?))) + i) <5Ka (é?))) it 9% =0, (3.17c)
) (SKU (pﬁy)) it 99 <)

At the Dirichlet boundary edges, we still set pt(;’) = pP. For v = 0, the system is linear and invertible, while for

v = 1, system (3.17) coincides with the original system (2.9)—(2.14). A priori estimates on p(?) that are uniform
w.r.t. v € [0, 1] (but not uniform w.r.t. 7 nor At™) can be derived on the basis of what was exposed previously,
so that one can unfold Leray—Schauder’s machinery [22,39] to prove the existence of (at least) one solution to
the scheme.

3.3. Uniqueness of the discrete solution

To complete the proof of Theorem 2.2, it remains to show that the solution to the scheme is unique. This is
the purpose of the following proposition.

Proposition 3.7. Given s" ' = (s% )ges € [0,1]7, the solution p* € R7 to the scheme (2.9)~(2.14) is
unique.

Proof. The proof heavily rests upon the monotonicity properties inherited from the upwind choice (2.11c) for
the mobilities. Indeed, due to the upwind choice of the mobility, the flux F} is a function of p} and p%, that
is nondecreasing w.r.t. p}% and nonincreasing w.r.t. pj_ . Moreover, by virtue of the monotonicity of Sk, the
discrete volume balance (2.10) can be cast under the abstract form

Hie (0%, (Pko) ges,) = 0, VK € 7, (3.18)

where H; is nondecreasing w.r.t. its first argument p% and nonincreasing w.r.t. each of the remaining variables

(p?(o)a'eéa;( .
Let p" = (D) ges be another solution to the system (2.9)-(2.14), i.e.,

Hie (0%, Pho) ges,) = 0, VK € 7. (3.19)

The nonincreasing behavior of H w.r.t. all its variables except the first one implies that

H?{ (p?(a (pYIL(oTﬁ?(U)aegK) < 0’ H?( (ﬁ?(’ (pYIL(UTﬁ?{U)aeé’K) < O’
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for all K € 7, where aTb = max(a,b). Since p} Tp} is either equal to p} or to P, we infer from the above
inequalities that

Hic (Pi D, (Pico TPico)oes, ) <O, VK €T (3.20)
By a similar argument, we can show that
My (PiLDlc, PkodlPio)oce,) 20, VK €T, (3.21)
where alb = min(a,b). Subtracting (3.21) from (3.20) and summing over K € .7, we find
> L S < D e AR <0 (3.22)
Atn (el ?
Ke7 ce&sD

ext

where s% = Sk (p), §% = Sk (D) and
R’O’ =TK (SKTSK> ( KT,&K - 190) — K (Sa) (190 - KT,&K>
— 1 (sxL5%) ( KLUk — 190) +1x (54) (190 - KiﬂK) ) (3.23)

with s% = Sk (p?). The top line of (3.23) expresses the upwinded flux of (3.20), while the bottom line of (3.23)

is the opposite of the upwinded flux of (3.21). Note that, since p? = p? is prescribed at o € &2, we have
I =90 TIY =97 197, Upon inspection of the rearrangement
~ +
RY = [ (55 T8%) — mic (5 L330)] (95 Tk — 02
~ + ~ +
e (55 1330 | (93T~ o) " = (LT - 0z) |
N ~ Nt
+ i (1) [(19:; — 05 10%) — (92 - 9k TO) ] , (3.24)

it is trivial that R? > 0. As a consequence, (3.22) implies that R? = 0 for all o € &, and that s = 3% for all

K e 7. At this stage, however, we cannot yet claim that p} = p, as the function Sk is not invertible.
Taking into account s} = 5%, the residue (3.24) becomes

R = (i) | (05T - 02) " (950 - 02) |
e 53) | (92 = 0L 5) " = (03 - 05 TIR) (3.25)
which can be lower-bounded by

Ry > min(nx (s%), ni (s3)|9% — 0| (3.26)

thanks to the algebraic identities at — (—a)* = a and aTb — aLb = |a — b|. In view of the lower-bound on the
discrete pressures of Lemma 3.5, we deduce from (1.6b) that s > 0 and §% > 0. The increasing behavior of
Nk implies, in turn, that g (s%) > 0 and ni (5% ) > 0. Therefore, the conjunction of R? = 0 and (3.26) yields
I = 5’}{ and hence p7% = p% for all cells K having a Dirichlet boundary edge, i.e., &k N &R, # .

It remains to check that p} = D%, or equivalently 9% = 5’}( for those cells K € J that are far away from
the Dirichlet part of the boundary. Subtracting (3.19) from (3.18) and recalling that s% = 3%, we arrive at

o e 650 | 03 = 030 = (T = T |+ v )| (P = i) " = 0o = 00" |} =0

(3.27)
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Consider a cell K € . where 9}, — 57}( achieves its maximal value, i.e.,
n_ =9y~ VLeJ. (3.28)

This entails that
n n n n
K~ Vke Z Vg = Vkos Vo € &k,

so that the two brackets in the right-hand side of (3.27) are nonnegative. In fact, they both vanish by the
positivity of nx(s%) and nis(sk,). As a result, 9% — V%, = on — 5’;(0 for all 0 € &k. This implies that
V5 — 5}% =97 — 5’5 for all the cells L € 7 sharing an edge 0 = K|L with K, and thus that the cell L also
achieves the maximality condition (3.28). The process can then be repeated over and over again. Since  is
connected, we deduce that ¥’ —5?{ is constant over K € .7. The constant is finally equal to zero since ¥}, = 157}(
on the cells having a Dirichlet edge. O

4. CONVERGENCE ANALYSIS

Once existence and uniqueness of the discrete solution have been settled, the next question to be addressed
is the convergence of the discrete solution towards a weak solution of the continuous problem, as the mesh-size
and the time-step are progressively refined. In accordance with the general philosophy expounded in [29], the
proof is built on compactness arguments. We start by highlighting compactness properties in Section 4.1, before
identifying the limit values as weak solutions in Section 4.2.

4.1. Compactness properties

Let us define Ge,, a¢,, : Qr — R? and Jg,, at,, : Qr — R? by

¢QilPie) =Oule) | e e (1 ] x A,

G, at,, (t,7) = do (4.1)
0 otherwise,
for o € & 1, 1 < n < N,, and, respectively,
T(p? —T(p™
Je, at, (t,x) =d (Pics) (pK)an, if (t,x) et th] x A,, (4.2)

do

for o € &,,, 1 < n < N,,. We remind that sz, a¢,, = S(p7,, At,., ) is the sequence of approximate saturation

fields computed from that of approximate pressure fields pz,, a¢,, by (2.15b).

Proposition 4.1. There exists a measurable function p : Qr — R such that Y(p) — Y(pP) € L2((0,T); V) and
©,(p) € L2((0,T); H* (%)), 1 < i < I, such that, up to a subsequence,

SgﬁmaAtm, m:’OO S(p7 .'L’) a.e. in QT7 (4.384)
Gty =2 VOi(p)  weakly in L*(Q;r)?, (4.3b)
Je.. At e VTY(p) weakly in LQ(QT)d. (4.3c)

Proof. We know from Corollary 3.3 that ©;(pz,, at,,) and Y(pz,, at, ) are bounded w.r.t. m in L*(Q;r)
and L?(Qr) respectively, while G, a¢, and Jg, at, are respectively bounded in L?(Q; 7)% and L?(Qr)?. In
particular, there exist ©; € L2(Q;.r), T € L*(Qr), J € L*(Qir)?, and J € L*(Qr)? such that

©i(p7, at,) — ©;  weakly in L2(Qi 1), (4.4a)

m—+o0
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Y(p7,.at,) —> T weakly in L*(Qr), (4.4b)
Gear, — G weaklyin L*(Qir)", (4.4c)
T it =2 ] weakly in L?(Qr)%. (4.4d)

Establishing that ©; € L2((0,T); H'(€)) and T € L2((0,T); H*(Q)) with G = VO; and J = VT is now
classical, see for instance Lemma 2 of [27] or Lemma 4.4 of [18].

The key points of this proof are the identification 0, = 0;(p) and T = Y (p) for some measurable p, as well as
the proofs of the almost everywhere convergence property (4.3a). The identification of the limit and the almost
everywhere convergence can be handled simultaneously by using twice ([2], Thm. 3.9), once for ©;(p) and once
for Y(p). More precisely, Lemma 3.4 provides a control on the time variations of the approximate saturation
$7, At,,, whereas Corollary 3.3 provides some compactness w.r.t. space on ©;(pz, at,,) and Y(pz, At )
Using further that sz, a¢,, = Si 0 0; ' (0,(p7,, at,,)) With S; 0 ©; ' nondecreasing and continuous, then one
infers from Theorem 3.9 of [2] that

—“1/A .
ST At T2 S§,007°(0;) a.e inQ;r.

Let p = @;1((:31»). Then, (4.3a) and (4.3b) hold. Proving (4.3a) and (4.3c) is similar, and the properties (4.3)
can be assumed to hold for the same function p up to the extraction of yet another subsequence.

Finally, by applying the arguments developed in Section 4.2 of [8], we show that Y(p) and Y (pP) share the
same trace on (0,7) x TP, hence Y(p) — Y (pP) € L2((0,T); V). O

Let us now define
Ném At (tx) =) if (tz) e (' tn] x A, (4.5)
foroce &,, 1 <n<N,,.

Lemma 4.2. Up to a subsequence, the function p whose existence is gquaranteed by Proposition 4.1 satisfies

Nem Aty —> N(Sp,x))  in LT(Qr), 1 <g<+o. (4.6)
Proof. Because of (4.3a), nz,, at,, = 1(S7,, .At,,,%) converges almost everywhere to n(S(p,z),z). Since 7 is
bounded, Lebesgue’s dominated convergence theorem ensures that the convergence holds in L(Qr) for all
q € [1,+). The reconstruction ns, at, of the mobility is also uniformly bounded, so we have just to show
that |97, At,, = N6n.atllL1(Qr) — 0 as m — +00. Letting Axs = K n A, denote the half-diamond cell, we
have

2

m

1170 Aty = Nt L @r) < D A DT Y mag, Ink(sk) —ny]
n=1 KeZ,, ce€k

2

3

m

I
< ALY ma k() — nko(5o)| € Y Ra + R,
=1

n=1 0EEm

where

Aty 5 ma, ik (sk) = xo(s5c,)],

O’E(goi,m

)

=
3
Il
3
iz

Roa = O AL ) ma, Ink(s) — o (5,

1 OEET,m

3
Il
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Let us define
T8 Aty (82) = |0 — M, | = i (t2) € (1 th] x A,

then ¢, ag,, is uniformly bounded by ||9]|e = 1/u. Therefore,

T 2T vi=1(T)
Rpom < — Z ma, < T hz,,

O'Eéar’m

where h is the size of 7, as defined in (2.8). Besides, for i € {1,...,I}, 7;08;00; " is continuous, monotone

and bounded, hence uniformly continuous. This provides the existence of a modulus of continuity w; : Ry — R
with @;(0) = 0 such that

rgi=oS00; " (0)) —noSo0;" (O%,)| < wi (|0 — O, |) (4.7)

for o € & ,,. Therefore, if the function

0:(pf) — Oilpf,)| if (t,2) € (1,7 0] x Ao,

| ‘o) — 4.8
46, . Aty (1, ) {0 otherwise, (45

for 0 € &im, 1 < n < N, could be proven to converge to 0 almost everywhere in @; 7, then it would also
be the case for r¢, at,, and R;,, as m — 400, thanks to Lebesgue’s dominated convergence theorem. Now, it
follows from (3.12a) and from the elementary geometric relation

as Uy o
ma, = Edo_ < 4Eh )
that
N 4C,
050t By = . At S ma, [O:(0) — Oulple, )P < 202
n=1 0€E,m

Therefore, qg, .. at,, — 0 in L*(Q; 1), thus also almost everywhere up to extraction of a subsequence. This
provides the desired result. O

4.2. Identification of the limit

So far, we have exhibited some “limit” value p for the approximate solution pz, a¢, in Proposition 4.1.
Next, we show that the scheme is consistent with the continuous problem by showing that any limit value is a
weak solution.

Proposition 4.3. The function p whose existence is guaranteed by Proposition 4.1 is a weak solution of the
problem (1.9a)—(1.9¢) in the sense of Definition 1.1.

Proof. Let p € CX({Q U TN} x [0,7)) and denote by ¢% = p(t?,z), for all K € Z,,, and all n € {0,..., Ny, }.
We multiply (2.10) by At ¢% " and sum over n € {1,...,N,,} and K € 7, to obtain

A, +Bn=0, m3>1, (4.9)
where we have set
N,
A= D, D mxox (sk— sk ) i (4.10a)
n=1Ke7,,
Nop,
B = D, Aty Y acheny (0 — %,) (P — 97" - (4.10b)
n=1 o€Em



FINITE VOLUMES FOR RICHARDS EQUATION 2121

The quantity A, in (4.10a) can be rewritten as

N
Yk — Pr
A == DAL, Y midish KATK — ) midrskeh
KeTm m KeTm

0 0
- J $57,,At,007, At,, dzdt — f sy, ¢z, dr
Qr Q

where
507, At (t,2) = %, it (t,2) € (t ) x K,
0% =¢(0,2k) if ze K.

Thanks to the regularity of ¢, the function d¢z,, A, converges uniformly to dyp on © x [0,T]. Moreover, by

virtue of (4.3a) and the boundedness of sz at, we can state that

m—+00

Jf b 57, At 007, At dedt —> Jf ¢ S(p, z)0rpdrdt,
T QT

and, in view of the definition (2.13) of SP%L and of the uniform convergence of cpf)qm towards (0, -),

Jaﬁy 55,97, mﬁmf ¢s°(0

From the above, we draw that

m—+0

lim A, = —J ¢ S(p,z)0rpdadt — J $5%0(0, ) dz. (4.11)
Qr Q

Let us now turn our attention to the quantity B,, of (4.10b), which can be split into B,, = B, + B2, using

Nop,
By, = D, AL D aghon) Pk — Py (05 — @11
n=1

0EEm
N,
BQ:ZAthG)\nnW—lP )(*_nl)
m m oNollg K Ko) \P QOKU .
n=1 oEE

Consider first the convective term B2,.

It follows from the definition of the discrete gravitational potential
wK:_Qg'xKv 1%:—@9'%, Keymvaege]))ctm

and from the orthogonality of the mesh that

wK - wKa = dcfgg MK, Vo e @@K\gelit, Ke 9m~

Therefore, B2, can be transformed into

-1
K% ke - 09

Z Aty Z ma, Aan”d@K @

0EEm

=— ﬂ A6 AL, He,, at, - 09 dzdt, (4.12)
T
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where
Ae, () = Ao if xel,, 0€én,
He,, At (tx) = (d/ds) (5, — of ne  if (t,x) € [th ' th) x A,

After ([18], Lem. 4.4), Hg, at, converges weakly in L?(Qr)? towards Vg, while \g,, and ns,, a¢,, converge
strongly in L*(Q2) and L*(Qr) towards A and n(S(p, z)) respectively (cf., Lem. 4.2). Thus, we can pass to the
limit in (4.12) and

m—+00

lim B, = — Jf A (S(p,x))og - Ve dz dt. (4.13)

The capillary diffusion term B}, appears to be the most difficult one to deal with. Taking inspiration from [15],
we introduce the auxiliary quantity

B'}n = Z Bz m
i=1
I Np
=Y D A, Z VAN (0i(pk) — i (Pk,)) (#5" — i) -
i=1n=1 0€E m
Analogously to [24], we can define a piecewise-constant vector field Hg, ag, such that
Ffm,Atm (t,l‘) "NKo = 907[1(;1 - (p?{il’ if (t,z)e [t?n_lat?n) XAy, 0€ b,

and such that Hg, a¢, converges uniformly towards Vo on Q. Under these circumstances, ﬁ})m reads

T

~q J—

B ,1M = J‘ J V )\inéanuAtnL GéanuAtnL . Hg7VL7At'r7L d’r dt
0 JQ m

where Qi = Uyes, . Ao © . The strong convergence of |/7s, At,, in L*(Qi.r) towards /7:(Si(p)) directly
follows from the boundedness of 7; combined with (4.3a). Combining this with (4.3b) results in

f \/ Ni(Si(p))VO;(p) - Vodx dt :J Vo,(p) - Veodazdt. (4.14)

Qi1

1mm—>+oo

Therefore, to finish the proof of Proposition 4.3, it only remains to check that B}, and E}n share the same limit.
To this end, we observe that, by the triangle inequality, we have

I

B}, —B),| <Rrm + ). Rim, (4.15)
1=1

where

Rr.m = Z Aty D achemp |k — Do |li — 05,

UE(pr‘m
Nom
Z Atp > ag/Ainp0i(ph) — Oi(Piey) — VAR (P — Pt — o5
n=1 O’Eéal m

Applying the Cauchy—Schwarz inequality and using Proposition 3.1, we find

N‘rn
|RI‘,m| <Oy Z Atn Z Qg ana|90 *SD}L(glF 2ClT”v H2

O’Egr‘ m

% )\z —

m)
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so Rp m, — 0 as m — +00. Besides, we also apply the Cauchy—Schwarz inequality to R; ,, in order to obtain

N7Yl
Riml? < C1 Y AL S ag Ml/mz — /i et — it
n=1 0€E,m

Niy
< ANCUIVelS Y At Y ma, Iy =5

n=1 o€ m

where we have set
ni(s%k) , if pl = Py
o — ®i ny\ _ ®i n
Mo [ (];\ K( ) — (fK)" ) ] otherwise.
VAP — Pko

Define
JUN _ I
N6, At (8, 7) = {772 if (t,2) € (th, ', th] < Ao, 0 € Uiy Giim,
my m ’ O

otherwise.

Reproducing the proof of Lemma 4.2, we can show that

Nomaty, —> N(Sp,x))  in LUQr), 1 < g <+
Therefore, R;,, — 0 as m — +oo. Putting things together in (4.15), we conclude that B!, and B}, share the
same limit, which completes the proof of Proposition 4.3. (]

5. PRACTICAL ASPECTS OF NUMERICAL RESOLUTION

We provide some details on the resolution strategy for the discrete problem (2.9)—(2.11¢). Different techniques
have been proposed in the literature to numerically solve the Richards equation (e.g., see [40,43]). Our strategy
is based on a parametrization technique to automatically choose the most convenient variable during the Newton
iterations (Sect. 5.1) to enhance Newton’s convergence and on the addition of cells on the interfaces between
different rock types (Sect. 5.2) to improve the pressure continuity.

5.1. Switch of variable and parametrization technique

A natural choice to solve the nonlinear system (2.9)—(2.11c) is to select the pressure (px)kes as primary
unknown and to solve it via an iterative method such as Newton’s one. Nevertheless, the pressure variable is
known to be an inefficient choice for s « 1 because of the degeneracy of Richards’ equation. For dry soils,
this strategy is outperformed by schemes in which saturation is the primary variable. On the other hand, the
knowledge of the saturation is not sufficient to describe the pressure curve in saturated regions where the
pressure-saturation relation cannot be inverted. This motivated the design of schemes involving a switch of
variable [23,34]. In this work, we adopt the technique proposed in [7], in which a third generic variable 7 is
introduced to become the primary unknown of the system. Then the idea is to choose a parametrization of the
graph {p,S(p)}, i.e., to construct two functions s : I — [Syw,1 — smn] and p : I — R such that s(7) = S(p(7))
and §'(7) + p’(7) > 0 for all 7 € I ¢ R. Such a parametrization is not unique, for instance one can take I = R,
p = Id which amounts to solving the system always in pressure, but this is not recommended as explained
before. Here, we set I = (8, +00) and
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FIGURE 1. Mesh refinement on both sides of an interface face for a 2D case.

where §'(p; ) denotes the limit as p tends to ps = S(ss) from below of §’'(p). Since the switch point s is taken
as the inflexion point of S, both s and p are C! and concave, and even C? if S is given by the van Genuchten—
Mualem model. Moreover, for all p € R, there exists a unique 7 € (8yy, +00) such that (p, S(p)) = (p(7),s(7)).
The resulting system F,(7") = 0 made up of Ny = Card(.7) nonlinear equations admits a unique solution
7", since it is fully equivalent to (2.9)—(2.11c). The stopping criterion for Newton iterations is based on the
L®-norm of the residual with a convergence threshold fixed to e = 10712, A direct linear solver based on the LU
factorization has been used. More details about the practical resolution of this nonlinear system via the Newton
method can be found in [5].

5.2. Pressure continuity at rock type interfaces

Physically, the pressure should remain continuous on both sides of an interface between two different rock
types. But this continuity is here not imposed at the discrete level. The two-point flux approximation based
on the cell unknowns is strongly dependent on the mesh resolution and can induce a large error close to the
rock type interface. We here propose a very simple method to improve this continuity condition in pressure. It
consists in adding two thin cells of resolution § on each side of the rock-type interface with § « Ax as shown in
Figure 1.

The idea is here to add two cells unknowns in the neighborhood of the interface to have a more precise
approximation of the pressure gradient on each side of the faces where changes of rock types occur. In this way,
we avoid the introduction of face unknowns in our solver which remains unchanged. For these interface cells,
tangential fluxes are neglected.

Readers who are interested in a more advanced discussion on numerical strategies (among which the one
briefly described in the current section and referred as Method B in what follows) to solve the transmission
problem (1.10) shall refer to [6]. The study presented therein in particular covers the robustness of the nonlinear
solvers.

6. NUMERICAL RESULTS

In this section, we present the results obtained for different test cases. For all these cases, we consider a
two-dimensional layered domain Q = [0m,5m] x [-3m,0m] made up of two rock types denoted by RT0 and
RT1 respectively, RTO being less permeable than RT1. Using these two lithologies, the domain € is partitioned
into three connected subdomains: €3 = [1m,4m] x [-1m,0m], Q3 = [0m,5m] x [-3m,—2m] and Q3 =
Q\ (21 U Q2), as depicted in Figure 2.

The Brooks—Corey [12] and van Genuchten-Mualem [47] petro-physical models are used to model the flow
characteristics of both rock types. In these models, the water saturation and the water pressure are linked
pointwise by the relation s = S(p) where § : R — [0, 1] is nondecreasing and satisfies S(p) = 1 — sy if p = pp
and S(p) — Syw as p — —0, Sy being the residual wetting saturation, s, the residual non-wetting saturation
and pp the entry pressure. More precisely, we have,
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Depth (m)

Q.

Width (m)

FIGURE 2. Simulation domain 2 = [0m,5m] x [-3m,0m].

TABLE 1. Parameters used for the Brooks—Corey model.

1— Sm Srw pu[Pa] n )\[m2] 1)
RTO 1.0 0.1 —1.4708 x 10> 3.0 1071 0.35
RT1 1.0 0.2 —3.4301 x 10® 1.5 10713 0.35

TABLE 2. Parameters used for the van Genuchten—Mualem model.

1— Sm Srw n A [m?] a[m™] ¢
RTO (Sand) 1.0 0.0782 2239  6.3812x 1072 28 0.3658
RT1 (Clay) 1.0 0.2262  1.3954  1.5461 x 107**  1.04 0.4686

Water pressure

FIGURE 3. Water pressure and relative permeability curves for the Brooks—Corey model.
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Water saturation Water saturation

FIGURE 4. Water pressure and relative permeability curves for the van Genuchten-Mualem model.

Flux 0.5 m/day

Rock Type 0
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FI1GURE 5. Boundary condition for the filling case.

— for the van Genuchten—Mualem model,

nq—m
5= Sp) = srw+(1—sm—srw)[1+‘ﬁp‘ ] if p<O,
1—5sm if p>0,

k 3 21m™ S = Srw 1
T(S):Seff{l_[l_seﬁ‘] }7 Seﬁzm, m:1_ﬁ’

where 7(+) = k,.(-)/u, 1 = 1072 Pa-s being water viscosity, is the relative permeability. The parameters used for
both rock types are given in Table 1 for the Brooks—Corey model and in Table 2 for the van Genuchten—Mualem
model. With these choices of parameters, water is more likely to be in RT1 than in RTO0, in the sense tha,
at a given pressure, the water saturation is higher in RT1 than in RTO, as it can be seen on the plots of the
capillary-pressure functions depicted in Figures 3 and 4 for these two petro-physical models. Figures 3 and 4 also
show the relative permeability functions. Note the non-Lipschitz character of the relative permeability in the
van Genuchten—Mualem framework.For the numerical tests, in order to avoid infinite values for the derivative
of k.(s) when s — 1 — s,,,, we approximate it for s € [sim, 1 — $;n| using a second degree polynomial k,(s).
Such a polynomial satisfies the following constraints: k. (sjm) = k?(slim) and k:(l — $m) = 1. The value $jin,
corresponds to Seg = 0.998.

6.1. Configurations of the test cases

For both petro-physical models, we consider two configurations further referred as filling and drainage cases,
which are described in the following.
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o8
x

Water Saturation
1.0e-01 02 03 04 05 06 07 08 09 1.0e+00
— L eee—

FIGURE 6. Evolution of the saturation profile for ¢ € {0s,20 x 10%s,40 x 10%s,60 x 105,86 x
103 s} for filling case, using the Brooks—Corey model, method B and the 50 x 30 cells mesh.

Water Saturation
7.8e-02 0.2 0.4 0.6 0.8 1.0e+00

—— Ce—

FIGURE 7. Evolution of the saturation profile for ¢ € {0s,20 x 10%s,40 x 10%s,60 x 105,86 x
103 s} for filling case using the van Genuchten-Mualem model, method B and the 50 x 30 cells
mesh.
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F1GURE 8. Boundary condition for the drainage test.

Water Saturation

1.2e-01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0e+00
— !  T—

FIGURE 9. Evolution of the saturation profile for ¢t € {0s,26.2 x 10*s,52.4 x 10%s,78.6 x
10%s,105 x 10%s} for drying case, using the Brooks-Corey model, method B and the 50 x 30
cells mesh.

6.1.1. Filling case

The filling test case has already been considered in [17, 34, 38,42]. Starting from an initially dry domain
), whose layers’ composition is reported in Figure 5, water flows from a part of the top boundary during
the entire simulation time that is equal to one day. A no-flow boundary condition is applied elsewhere. More
precisely, the initial capillary pressure is set to —47.088 x 10° Pa and the water flux rate to 0.5m/day through
'y ={(z,y) |z € [1m,4m],y = Om}. For this simulation a uniform time-step At = 1000s is prescribed for the
test using the Brooks—Corey model and At = 500s for the one using the van Genuchten—Mualem model.

The test case follows the following dynamics. Water starts invading the void porous space in ;. When it
reaches the interface with 3, capillarity involves a suction force on water from €y to Q3. Since clay (RT1) has
low permeability, water encounters difficulties to progress within 23. This yields a front moving downward in
Q1 which is stiffer for the Brooks—Corey model than for the van Genuchten—Mualem one. In both cases, the
simulation is stopped before water reaches the bottom part corresponding to €25. In Figure 6 we can observe the
evolution of the saturation profile during the simulation performed on a 50 x 30 cells mesh with the Brooks—Corey
model, whereas the evolution corresponding to van Genuchten—Mualem nonlinearities is depicted in Figure 7.
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Water Saturation
21e01 03 04 05 0.6 07 0.8 09  1.0e+00

—— O ee—

FIGURE 10. Evolution of the saturation profile for ¢t € {0s,26.16 x 10*s,52.4 x 10*s, 78.56 x
10%s,105 x 10%s} for drying case using the van Genuchten—Mualem model, method B and the
50 x 30 cells mesh.
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FIGURE 11. L%(Qr) relative error in saturation for the drainage case using the Brooks—Corey
model.

6.1.2. Drainage case

This test case is designed as a two-dimensional extension of a one-dimensional test case proposed by [41] and
addressed in [17,42]. We simulate a vertical drainage starting from initially and boundary saturated conditions
during 105 x 10*s. At the initial time, the pressure varies with depth with p°(z) = —pgz. A Dirichlet boundary
condition pp = 0 Pa is imposed on the bottom of the domain, more precisely on I'p = {(2,y) |z € [0m,5m],y =
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TABLE 3. Newton’s iterations for the mesh 200 x 120 for the drainage case using the Brooks—
Corey model.

f total f avg f max
Method A 1927 3 29
Method B 2038 3 29
1 ‘ ‘ ‘ - Method A 11 eescssss T Method A
—e— Method B Mt —e— Method B
- 0.8 = - 0.8 - a
2 2
Z 06| - 2 0.6 :
£ £
g g
= 04) | S 04p |
0.2 g 0.2 - .
| | | | | | | | | | | | | |
-3 -25 -2 -15 -1 -05 0 -3 -25 -2 -15 -1 -05 0
Depth Depth
(a) (B)
T T T
1 oommoT - 1F -
= 0.8 . = 0.8 .
2 2
E E
3 S
T 06| | £ 06 .
B B
04| | 0.4+ =
—#— Method A 021 | —+— Method A
0.2 | | | | | —6— Method B —6— Method B
-3 -25 -2 -15 -1 =05 0 —0.5 0
Depth
()

FIGURE 12. Water saturation profile obtained in the drainage test case with the Brooks—Corey
model using methods A and B along vertical cross-sections at different times. (A) Cross-section
at z = 0.85m, t = 53.2x10%s. (B) Cross-section at z = 0.85m, ¢ = 105x10*s. (C) Cross-section
at z = 2.55m, t = 53.2 x 10*s. (D) Cross-section at x = 2.55m, ¢t = 105 x 10*s.

—3m}. The layers’ composition of € is reported in Figure 8. For this simulation a uniform time-step At = 2000s
is used for the test with the Brooks—Corey model and At = 800 s for the one with the van Genuchten—Mualem
model.
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FIGURE 13. L?(Qr) relative error in saturation for the filling case using the Brooks—Corey model.

TABLE 4. Newton’s iterations for the mesh 200 x 120 for the filling case using the Brooks—Corey

model.
f total i avg f max
Method A 659 7 31
Method B 788 9 32

At the top interface between 1 and Qg3, capillarity acts in opposition to gravity and to the evolution of the
system into a dryer configuration. The interface between 25 and 23 acts in the reverse way: suction accelerates
the gravity driven drainage of RTO.

In Figure 9 we can observe the evolution of the saturation profile during the simulation performed on a
50 x 30 cells mesh with the Brooks—Corey model, whereas the evolution corresponding to van Genuchten—
Mualem nonlinearities is depicted in Figure 10.

6.2. Comparisons of the numerical treatments of the interfaces

For each petro-physical model and configuration, a numerical convergence analysis is carried out for the
schemes with (method B) or without (method A) thin cells, whose thickness is fixed to § = 10~%m, at rock
type interfaces. Five structured meshes with the following resolutions are considered for this analysis: 50 x 30,
100 x 60, 200 x 120, 400 x 240, 800 x 480. The evolution of the error is measured using the L?(Q7)-norm of
the relative difference between the saturations obtained on a given mesh and the ones computed with Method
A and a mesh of resolution 800 x 480. The number of Newton iterations obtained with both methods is also
compared.
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FI1GURE 14. Water saturation profile obtained in the filling test case with the Brooks—Corey
model using Method A and B along vertical cross-sections at different times. (A) Cross-section
at z = 0.95m, t = 30 x 10®s. (B) Cross-section at z = 0.95m, ¢t = 86.4 x 103 s. (C) Cross-section
at x = 2.55m, t = 30 x 10%s. (D) Cross-section at x = 2.55m, t = 86.4 x 10%s.

6.2.1. Brooks—Corey model: drainage case

For the drainage case with the Brooks—Corey model, the convergence error is given in Figure 11. First we
notice that, for all meshes, the error is smaller with method B than with method A and that we have a linear
rate of convergence with the first one whereas this rate is smaller with the latter one. The total, average and
maximal number of Newton iterations are also given in Table 3. Method B appears to be slightly more expensive.

Let us now look into the results obtained with Method A and Method B. In Figure 12 we plot the saturation
profile at x € {0.85m,2.55 m} (see Fig. 2) for two different times, namely when the cells line in Q5 below its
interface with Q3 starts drying and at the final time.

6.2.2. Brooks—Corey model: filling case

For the filling case with the Brooks—Corey model, the convergence error is given in Figure 13. As for the
previous case, Method B enables to recover a linear convergence rate. Except for the first two meshes where
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FIGURE 15. L?(Qr) relative error in saturation for the filling case using the van Genuchten—
Mualem model.

TABLE 5. Newton’s iterations for the mesh 200 x 120 for the filling case using the van Genuchten—
Mualem model.

f total i avg f max
Method A 782 4 15
Method B 959 5 15

the error obtained with Method B is slightly larger, for all other meshes, this error is smaller than the one
obtained with method A. The total, average and maximal number of Newton iterations are given in Table 4.
The algorithm behaves here in the same way as before.

Let us now look into the results obtained with Method A and Method B. In Figure 14 we plot the saturation
profile at = € {0.95m,2.55m} (see Fig. 2) for two different times: when cells around the interface between
and ()3 are almost saturated and at the final time.

6.2.3. Van Genuchten—Mualem model: filling case

For the filling case with the van Genuchten—-Mualem model, the convergence error is given in Figure 15. Both
methods exhibit a linear rate of convergence. On the other hand, the error is slightly larger with method B than
with method A. The total, average and maximal number of Newton iterations are given in Table 5.

Figure 16 shows the localization of the differences between the numerical solutions provided by methods A
and B. In the picture we report the vertical section of the saturation solution at x € {0.65m,0.85m, 2.55m} (see
Fig. 2) for two different times: when the line of cells below and above the interface between €2 and Q3 are almost
saturated and at the final time. Unsurprisingly, the difference is located in the neighborhood of the interfaces.
Moreover, as suggested by Figures 13 and 15, the influence of the introduction of additional interface unknowns
(method B) has a lower impact for van Genuchten—Mualem nonlinearities than for Brook—Corey nonlinearities.
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FIGURE 16. Water saturation profile obtained in the filling test case with the van Genuchten
Mualem model using Method A and B along vertical cross-sections at different times. (A)
Cross-section at z = 0.65m, t = 45 x 103s. (B) Cross-section at x = 0.65m, t = 86.4 x 10%s.
(C) Cross-section at x = 0.85m, t = 45 x 10%s. (D) Cross-section at z = 0.85m, t = 86.4x 103 s.
(E) Cross-section at x = 2.55m, t = 45 x 10%s. (F) Cross-section at x = 2.55m, t = 86.4 x 103 s.
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FIGURE 17. L?(Qr) relative error in saturation for the drainage case using the van Genuchten—
Mualem model.

TABLE 6. Newton’s iterations for the mesh 200 x 120 for the filling case using the van Genuchten—
Mualem model.

f total f avg f max
Method A 2845 2 29
Method B 3523 2 20

6.2.4. Van Genuchten—Mualem model: drainage case

For the drainage case with the van Genuchten—-Mualem model, the convergence error is given in Figure 17.
Both methods exhibit a linear rate of convergence. Moreover, the error is slightly larger with method A than
with method B. The total, average and maximal number of Newton iterations are given in Table 6.

Let us now look into the results obtained with method A and method B. In Figure 18 we plot the saturation
profile at x € {0.95m,2.55m} (see Fig. 2) for two different times: when the cell line in Qs below its interface
with Qg significantly starts drying and at the final time.

6.2.5. Influence of the parameter §

Let us now analyze how the thickness of the thin cells employed in method B affects the accuracy of the
solution obtained with this method. We consider the filling and drainage cases along with the Brooks—Corey
model and evaluate the relative L?(Qr) error between the solution obtained on the 200 x 120 cells mesh using
§€{1072m, 107 m, 1075 m} with respect to the reference solution obtained on the 800 x 480 cells mesh using
dref = 1075 m. As shown in Figure 19, the value of § does not have a significant influence on the overall error
as soon as ¢ is small enough. We also observe a moderate influence on the robustness of the non-linear solver
for the values considered here.
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This article aimed at proving that standard upstream mobility finite volume schemes for variable saturated
porous media flows still converge in highly heterogeneous contexts without any specific treatment of the rock
type discontinuities. The scheme is indeed shown to satisfy some energy stability which provides enough a priori
estimates to carry out its numerical analysis. First, the existence of a unique solution to the nonlinear system
stemming from the scheme is established thanks to a topological degree argument and from the monotonicity of
the scheme. Besides, a rigorous mathematical convergence proof is conducted, based on compactness arguments.
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F1GURE 18. Water saturation profile obtained in the drainage test case with the van Genuchten
Mualem model using method A and B along vertical cross-sections at different times. (A) Cross-

section at # = 0.95m, t = 52 x 10*s. (B) Cross-section at x

= 0.95m, ¢ = 105 x 10*s. (C)

Cross-section at x = 2.55m, t = 52 x 10*s. (D) Cross-section at x = 2.55m, t = 105 x 10*s.

7. CONCLUSIONS AND PERSPECTIVES

No error estimate can then be deduced from our analysis.

Because of the choice of a backward Euler in time discretization and from the upwind choice of the mobilities,
a first order in time and space accuracy is expected in the case of homogeneous computational domains. We show
in numerical experiments that without any particular treatment of the interfaces at rock discontinuities, this first
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FIGURE 19. L?(Qr) relative error in saturation as a function of the thickness § of the thin cells
with Method B using the 200 x 120 cells mesh.

order accuracy can be lost, especially in the case of Brooks—Corey nonlinearities. This motivates the introduction
of a specific treatment of the interfaces. The approach we propose here is based on the introduction of additional
unknowns located in fictitious small additional cells on both sides of each interface. Even though the rigorous
convergence proof of this approach is not provided here in the multidimensional setting — such a proof can for
instance be done by writing the scheme with the specific treatment of the interface (method B) as a perturbation
of the scheme without any particular treatment of the interface (method A) —, the numerical experiments show
that it allows to recover the first order accuracy without having major impacts on the implementation and on
the behavior of the numerical solver.

For future researches, we suggest to test the so-called method B on a two-phase flow test and to compare it to
the approaches presented in [10]. Moreover, in [6], we propose two other methods to really impose the pressure
continuity condition at interfaces. A comparison between all methods will be shown.
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