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UPSTREAM MOBILITY FINITE VOLUMES FOR THE RICHARDS EQUATION
IN HETEROGENOUS DOMAINS

Sabrina Bassetto1, Clément Cancès2, Guillaume Enchéry1,˚
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Abstract. This paper is concerned with the Richards equation in a heterogeneous domain, each
subdomain of which is homogeneous and represents a rocktype. Our first contribution is to rigorously
prove convergence toward a weak solution of cell-centered finite-volume schemes with upstream mobility
and without Kirchhoff’s transform. Our second contribution is to numerically demonstrate the relevance
of locally refining the grid at the interface between subregions, where discontinuities occur, in order to
preserve an acceptable accuracy for the results computed with the schemes under consideration.
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1. Presentation of the continuous model

The Richards equation [46] is one of the most well-known simplified models for water filtration in unsaturated
soils. While it has been extensively studied in the case of a homogeneous domain, the heterogeneous case seems
to have received less attention in the literature, at least from the numerical perspective. The purpose of this
paper is to investigate a class of discretization scheme for a special instance of heterogeneous domains, namely,
those with piecewise-uniform physical properties.

Before stating our objectives in a precise manner, a few prerequisites must be introduced regarding the model
in Sections 1.1, 1.2 and the scheme in Sections 2.1, 2.2. The goal of the paper is fully described in Section 1.3,
in relation with other works. Practical aspects related to the numerical resolution are detailed in Section 5 and
results on illustrative test cases are shown in Section 6. A summary of our main results is provided in Section 2.3,
together with the outline of the paper.

1.1. Richards’ equation in heterogeneous porous media

Let Ω Ă R𝑑, where 𝑑 P t2, 3u, be a connected open polyhedral domain with Lipschitz boundary BΩ. A porous
medium defined over the region Ω is characterized by

– the porosity 𝜑 : Ω Ñ p0, 1s;
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– the permeability 𝜆 : Ω Ñ R˚`;
– the mobility function 𝜂 : r0, 1s ˆ Ω Ñ R`;
– the saturation law 𝒮 : Rˆ Ω Ñ r0, 1s function of the water pressure and the space location.

The conditions to be satisfied by 𝜑, 𝜆, 𝜂 and 𝒮 will be elaborated on later. In a homogeneous medium, these
physical properties are uniform over Ω, i.e.,

𝜑p𝑥q “ 𝜑0, 𝜆p𝑥q “ 𝜆0, 𝜂p𝑠, 𝑥q “ 𝜂0p𝑠q, 𝒮p𝑝, 𝑥q “ 𝒮0p𝑝q

for all 𝑥 P Ω. In a heterogeneous medium, the dependence of 𝜑, 𝜆, 𝜂 and 𝒮 on 𝑥 must naturally be taken into
account. The quantity 𝑠, called saturation, measures the relative volumic presence of water in the medium. The
quantity 𝑝 is the water pressure, which in our case is the opposite of the capillary pressure.

Let 𝑇 ą 0 be a finite time horizon. We designate by 𝑄𝑇 “ p0, 𝑇 q ˆΩ the space-time domain of interest. Our
task is to find the saturation field 𝑠 : 𝑄𝑇 Ñ r0, 1s and the pressure field 𝑝 : 𝑄𝑇 Ñ R so as to satisfy

– the interior equations

𝜑p𝑥q B𝑡𝑠` div𝐹 “ 0 in 𝑄𝑇 , (1.1a)
𝐹 ` 𝜆p𝑥q 𝜂p𝑠, 𝑥q∇p𝑝´ 𝜚𝑔 ¨ 𝑥q “ 0 in 𝑄𝑇 , (1.1b)

𝑠´ 𝒮p𝑝, 𝑥q “ 0 in 𝑄𝑇 ; (1.1c)

– the boundary conditions

𝐹 ¨ 𝑛p𝑥q “ 0 on p0, 𝑇 q ˆ ΓN, (1.1d)

𝑝p𝑡, 𝑥q “ 𝑝Dp𝑥q on p0, 𝑇 q ˆ ΓD; (1.1e)

– the initial data

𝑠p0, 𝑥q “ 𝑠0p𝑥q in Ω. (1.1f)

The partial differential equation (1.1a) expresses the water volume balance. The flux 𝐹 involved in this
balance is given by the Darcy–Muskat law (1.1b), in which 𝑔 is the gravity vector and 𝜚 is the known constant
density of water, assumed to be incompressible. It is convenient to introduce

𝜓 “ ´𝜚𝑔 ¨ 𝑥, 𝜗 “ 𝑝` 𝜓, (1.2)

referred to respectively as gravity potential and hydraulic head. In this way, the Darcy–Muskat law (1.1b) can
be rewritten as

𝐹 ` 𝜆p𝑥q 𝜂p𝑠, 𝑥q∇p𝑝` 𝜓q “ 𝐹 ` 𝜆p𝑥q 𝜂p𝑠, 𝑥q∇𝜗 “ 0.

Equation (1.1c) connecting the saturation 𝑠 and the pressure 𝑝 is the capillary pressure relation. The boundary
BΩ is split into two non-overlapping parts, viz.,

BΩ “ ΓN Y ΓD, ΓN X ΓD “ H, (1.3)

where ΓN is open and ΓD is closed, the latter having a positive p𝑑´1q-dimensional Hausdorff measure 𝜈𝑑´1pΓDq ą

0. The no-flux Neumann condition (1.1d) is prescribed on p0, 𝑇 q ˆ ΓN, where 𝑛p𝑥q is the outward normal unit
vector at 𝑥 P ΓN. The Dirichlet condition (1.1e) with a known Lipschitz function 𝑝D P 𝑊 1,8pΩq is imposed
on p0, 𝑇 q ˆ ΓD. Note that, in our theoretical development, the function 𝑝D is assumed to be defined over the
whole domain Ω, which is stronger than a data 𝑝D P 𝐿8pΓDq given only on the boundary. The assumption that
𝑝D does not depend on time can be removed by following the lines of [16], but we prefer here not to deal with
time-dependent boundary data in order to keep the presentation as simple as possible. Finally, the initial data
𝑠0 P 𝐿8pΩ; r0, 1sq in (1.1f) is also a given data.
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In this work, we restrict ourselves to a specific type of heterogeneous media, defined as follows. We assume
that the domain Ω can be partitioned into several connected polyhedral subdomains Ω𝑖, 1 ď 𝑖 ď 𝐼. Technically,
this means that if Γ𝑖,𝑗 denotes the interface between Ω𝑖 and Ω𝑗 (which can be empty for some particular choices
of t𝑖, 𝑗u), then

Ω𝑖 X Ω𝑗 “ H, Ω𝑖 X Ω𝑗 “ Γ𝑖,𝑗 , if 𝑖 ‰ 𝑗, Ω “

˜

ď

1ď𝑖ď𝐼

Ω𝑖

¸

Y Γ, (1.4)

with Γ “
Ť

𝑖‰𝑗 Γ𝑖,𝑗 . Each of these subdomains corresponds to a distinctive rocktype. Inside each Ω𝑖, the physical
properties are homogeneous. In other words,

𝜑p𝑥q “ 𝜑𝑖, 𝜆p𝑥q “ 𝜆𝑖, 𝜂p𝑠, 𝑥q “ 𝜂𝑖p𝑠q, 𝒮p𝑝, 𝑥q “ 𝒮𝑖p𝑝q

for all 𝑥 P Ω𝑖. Therefore, system (1.1) is associated with

𝜑p𝑥q “
ÿ

1ď𝑖ď𝐼

𝜑𝑖 1Ω𝑖p𝑥q, 𝜂p𝑠, 𝑥q “
ÿ

1ď𝑖ď𝐼

𝜂𝑖p𝑠q1Ω𝑖p𝑥q, (1.5a)

𝜆p𝑥q “
ÿ

1ď𝑖ď𝐼

𝜆𝑖 1Ω𝑖p𝑥q, 𝒮p𝑝, 𝑥q “
ÿ

1ď𝑖ď𝐼

𝒮𝑖p𝑝q1Ω𝑖p𝑥q, (1.5b)

where 1Ω𝑖 stands for the characteristic function of Ω𝑖. For all 𝑖 P t1, . . . , 𝐼u, we assume that 𝜑𝑖 P p0, 1s and
𝜆𝑖 ą 0. Furthermore, we require that

𝜂𝑖 is increasing on r0, 1s, 𝜂𝑖p0q “ 0, 𝜂𝑖p1q “
1
𝜇
, (1.6a)

where 𝜇 ą 0 is the (known) viscosity of water. In addition to the assumption that 𝒮p¨, 𝑥q, defined in (1.5b),
is absolutely continuous and nondecreasing, the functions 𝒮𝑖 are also subject to some generic requirements
commonly verified the models available in the literature: for each 𝑖 P t1, . . . , 𝐼u, there exists 𝑝𝑖 ď 0 such that

𝒮𝑖 is increasing on p´8, 𝑝𝑖s, lim
𝑝Ñ´8

𝒮𝑖p𝑝q “ 0, 𝒮𝑖 ” 1 on r𝑝𝑖,`8q. (1.6b)

This allows us to define an inverse 𝒮´1
𝑖 : p0, 1s Ñ p´8, 𝑝𝑖s such that 𝒮𝑖 ˝𝒮´1

𝑖 p𝑠q “ 𝑠 for all 𝑠 P p0, 1s. We further
assume that for all 𝑖 P t1, . . . , 𝐼u the function 𝒮𝑖 is bounded in 𝐿1pR´q, or equivalently, that 𝒮´1

𝑖 P 𝐿1p0, 1q.
It thus makes sense to consider the capillary energy density functions e𝑖 : Rˆ Ω𝑖 Ñ R` defined by

e𝑖p𝑠, 𝑥q “

ż 𝑠

𝒮𝑖p𝑝Dp𝑥qq

𝜑𝑖

`

𝒮´1
𝑖 p𝜍q ´ 𝑝Dp𝑥q

˘

d𝜍. (1.7)

For all 𝑥 P Ω𝑖, the function e𝑖p¨, 𝑥q is nonnegative, convex since 𝒮´1
𝑖 is monotone, and bounded on r0, 1s as a

consequence of the integrability of 𝒮𝑖. For technical reasons that will appear clearly later on, we further assume
that

a

𝜂𝑖 ˝ 𝒮𝑖 P 𝐿
1pR´q, @𝑖 P t1, . . . , 𝐼u. (1.8)

Let 𝑄𝑖,𝑇 “ p0, 𝑇 qˆΩ𝑖 be the space-time subdomains for 1 ď 𝑖 ď 𝐼. The interior equations (1.1a)–(1.1c) then
boil down to

𝜑𝑖 B𝑡𝑠` div𝐹 “ 0 in 𝑄𝑖,𝑇 , (1.9a)
𝐹 ` 𝜆𝑖 𝜂𝑖∇p𝑝` 𝜓q “ 0 in 𝑄𝑖,𝑇 , (1.9b)

𝑠´ 𝒮𝑖p𝑝q “ 0 in 𝑄𝑖,𝑇 . (1.9c)

At the interface Γ𝑖,𝑗 between Ω𝑖 and Ω𝑗 , 𝑖 ‰ 𝑗, any solution of (1.1a)–(1.1c) satisfies the matching conditions

𝐹𝑖 ¨ 𝑛𝑖 ` 𝐹𝑗 ¨ 𝑛𝑗 “ 0 on p0, 𝑇 q ˆ Γ𝑖,𝑗 , (1.10a)
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𝑝𝑖 ´ 𝑝𝑗 “ 0 on p0, 𝑇 q ˆ Γ𝑖,𝑗 . (1.10b)

In the continuity of the normal fluxes (1.10a), which is enforced by the conservation of water volume, 𝑛𝑖 denotes
the outward normal to BΩ𝑖 and 𝐹𝑖 ¨ 𝑛𝑖 stands for the trace of the normal component of 𝐹|𝑄𝑖,𝑇

on p0, 𝑇 q ˆ BΩ𝑖.
In the continuity of pressure (1.10b), which also results from (1.1a)–(1.1c), 𝑝𝑖 denotes the trace on p0, 𝑇 q ˆ BΩ𝑖

of the pressure 𝑝|𝑄𝑖,𝑇
in the 𝑖-th domain.

1.2. Stability features and notion of weak solutions

We wish to give a proper sense to the notion of weak solution for problem (1.1). To achieve this purpose,
we need a few mathematical transformations the definition of which crucially relies on a fundamental energy
estimate at the continuous level. The calculations below are aimed at highlighting this energy estimate and will
be carried out in a formal way, in constrast to those in the fully discrete setting.

Multiplying (1.9a) by 𝑝´ 𝑝D, invoking (1.7), integrating over Ω𝑖 and summing over 𝑖, we end up with

d
d𝑡

𝐼
ÿ

𝑖“1

ż

Ω𝑖

e𝑖p𝑠, 𝑥qd𝑥`
𝐼
ÿ

𝑖“1

ż

Ω𝑖

div𝐹
`

𝑝´ 𝑝D
˘

d𝑥 “ 0. (1.11)

We now integrate by parts the second term. Thanks to the matching conditions (1.10) and the regularity of 𝑝D,
we obtain

A :“
𝐼
ÿ

𝑖“1

ż

Ω𝑖

div𝐹
`

𝑝´ 𝑝D
˘

d𝑥 “ ´
𝐼
ÿ

𝑖“1

ż

Ω𝑖

𝐹 ¨∇
`

𝑝´ 𝑝D
˘

d𝑥.

It follows from the flux value (1.9b) that

A “
𝐼
ÿ

𝑖“1

ż

Ω𝑖

𝜆𝑖𝜂𝑖p𝑠q∇p𝑝` 𝜓q ¨∇
`

𝑝´ 𝑝D
˘

d𝑥

“

𝐼
ÿ

𝑖“1

ż

Ω𝑖

𝜆𝑖𝜂𝑖p𝑠q|∇𝑝|2 d𝑥´
𝐼
ÿ

𝑖“1

ż

Ω𝑖

𝜆𝑖𝜂𝑖p𝑠q∇𝜓 ¨∇𝑝D d𝑥

`

𝐼
ÿ

𝑖“1

ż

Ω𝑖

𝜆𝑖𝜂𝑖p𝑠q∇𝑝 ¨∇
`

𝜓 ´ 𝑝D
˘

d𝑥.

Young’s inequality, combined with the boundedness of ∇𝑝D, ∇𝜓, 𝜆 and 𝜂, yields

A ě
1
2

𝐼
ÿ

𝑖“1

ż

Ω𝑖

𝜆𝑖𝜂𝑖p𝑠q|∇𝑝|2 d𝑥´ 𝐶

for some 𝐶 ě 0 depending only on 𝜆, 𝜂, 𝜓, 𝜇, Ω and 𝑝D.
Let us define the energy E : r0, 𝑇 s Ñ R` by

Ep𝑡q “
𝐼
ÿ

𝑖“1

ż

Ω𝑖

e𝑖p𝑠p𝑡, 𝑥q, 𝑥qd𝑥, 0 ď 𝑡 ď 𝑇.

Integrating (1.11) w.r.t. time results in

Ep𝑇 q `
1
2

𝐼
ÿ

𝑖“1

żż

𝑄𝑖,𝑇

𝜆𝑖𝜂𝑖p𝑠q|∇𝑝|2 d𝑥d𝑡 ď Ep0q ` 𝐶𝑇. (1.12)
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Estimate (1.12) is the core of our analysis. However, it is difficult to use in its present form since 𝜂𝑖p𝑠q “ 𝜂𝑖p𝒮𝑖p𝑝qq
vanishes as 𝑝 tends to ´8, so that the control of ∇𝑝 degenerates. To circumvent this difficulty, we resort to
the nonlinear functions (customarily referred to as the Kirchhoff transforms) Θ𝑖 : R Ñ R, Φ𝑖 : R Ñ R, and
Υ : Rˆ Ω Ñ R respectively defined by

Θ𝑖p𝑝q “

ż 𝑝

0

a

𝜆𝑖𝜂𝑖 ˝ 𝒮𝑖p𝜋qd𝜋, 𝑝 P R, (1.13a)

Φ𝑖p𝑝q “

ż 𝑝

0

𝜆𝑖𝜂𝑖 ˝ 𝒮𝑖p𝜋qd𝜋, 𝑝 P R, (1.13b)

Υp𝑝q “
ż 𝑝

0

min
1ď𝑖ď𝐼

a

𝜆𝑖𝜂𝑖 ˝ 𝒮𝑖p𝜋qd𝜋, 𝑝 P R, (1.13c)

the notion of Υ being due to [25]. Bearing in mind that Ep𝑇 q ě 0, estimate (1.12) implies that

𝐼
ÿ

𝑖“1

żż

𝑄𝑖,𝑇

|∇Θ𝑖p𝑝q|
2 d𝑥d𝑡 ď 2pEp0q ` 𝐶𝑇 q ă `8. (1.14)

As Φ𝑖 ˝ Θ´1
𝑖 is Lipschitz continuous, this also gives rise to a 𝐿2p𝑄𝑖,𝑇 q-estimate on ∇Φ𝑖p𝑝q. The functions

ř

𝑖 Θ𝑖p𝑝q1Ω𝑖 and
ř

𝑖 Φ𝑖p𝑝q1Ω𝑖
are in general discontinuous across the interfaces Γ𝑖,𝑗 , unlike Υp𝑝q. Since the

functions Υ ˝Θ´1
𝑖 are Lipschitz continuous, we can readily infer from (1.14) that

żż

𝑄𝑇

|∇Υp𝑝q|2 d𝑥 ď 𝐶 (1.15)

for some 𝐶 depending on 𝑇 , Ω, ‖∇𝑝D‖8, the ‖𝒮𝑖‖𝐿1pR´q’s and

𝜆 “ ‖𝜆‖𝐿8pΩq “ max
1ď𝑖ď𝐼

𝜆𝑖, 𝜂 “ ‖𝜂‖𝐿8pΩq “ max
1ď𝑖ď𝐼

‖𝜂𝑖‖𝐿8pΩq “
1
𝜇
,

the last equality being due to (1.6a).
Moreover, Υp𝑝q ´Υp𝑝Dq vanishes on p0, 𝑇 q ˆ ΓD. Poincaré’s inequality provides a 𝐿2p𝑄𝑇 q-estimate on Υp𝑝q

since ΓD has positive measure and since Υp𝑝Dq is bounded in Ω. In view of assumption (1.8), the functions Θ𝑖 and
Υ are bounded on R´. Besides, for 𝑝 ě 0, 𝜂𝑖˝𝒮𝑖p𝑝q “ 1{𝜇, so that Θ𝑖p𝑝q “ 𝑝

a

𝜆𝑖{𝜇 and Υp𝑝q “ min1ď𝑖ď𝐼 𝑝
a

𝜆𝑖{𝜇.
It finally comes that

Θ𝑖p𝑝q ď 𝐶p1`Υp𝑝qq, @𝑝 P R, 1 ď 𝑖 ď 𝐼, (1.16)

from which we infer a 𝐿2p𝑄𝑖,𝑇 q-estimate on Θ𝑖p𝑝q. Putting

𝑉 “
!

𝑢 P 𝐻1pΩq | 𝑢|ΓD “ 0
)

,

the above estimates suggest the following notion of weak solution for our problem.

Definition 1.1. A measurable function 𝑝 : 𝑄𝑇 Ñ R is said to be a weak solution to the problem (1.9a)–(1.9c)
if

Θ𝑖p𝑝q P 𝐿
2pp0, 𝑇 q;𝐻1pΩ𝑖qq, for 1 ď 𝑖 ď 𝐼, (1.17a)

Υp𝑝q ´Υp𝑝Dq P 𝐿2pp0, 𝑇 q;𝑉 q (1.17b)

and if for all 𝜙 P 𝐶8𝑐 pr0, 𝑇 q ˆ pΩY ΓNqq, there holds
żż

𝑄𝑇

𝜑𝒮p𝑝, 𝑥qB𝑡𝜙d𝑥d𝑡`
ż

Ω

𝜑 𝑠0𝜙p¨, 0qd𝑥`
żż

𝑄𝑇

𝐹 ¨∇𝜙d𝑥d𝑡 “ 0, (1.17c)

with
𝐹 “ ´∇Φ𝑖p𝑝q ` 𝜆𝑖𝜂𝑖p𝒮𝑖p𝑝qq 𝜚𝑔 in 𝑄𝑖,𝑇 , 1 ď 𝑖 ď 𝐼. (1.17d)
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The expression (1.17d) is a reformulation of the original one (1.9b) in a quasilinear form which is suit-
able for analysis, even though the physical meaning of the Kirchhoff transform Φ𝑖p𝑝q is unclear. While the
formulation (1.17c) should be thought of as a weak form of (1.9a), (1.10a), (1.1f), and (1.1d), the condition
Υp𝑝q ´Υp𝑝Dq P 𝐿2pp0, 𝑇 q;𝑉 q contains (1.10b) and (1.1e).

1.3. Goal and positioning of the paper

We are now in a position to clearly state the two objectives of this paper.
The first objective is to put forward a rigorous proof that, for problem (1.1) with heterogeneous data (1.5),

cell-centered finite-volume schemes with upstream mobility such as described in Section 2.2, do converge towards
a weak solution (in the sense of Def. 1.1) as the discretization parameters tend to 0. Such mathematically assessed
convergence results are often dedicated to homogeneous cases: see for instance [4, 28, 45] for schemes involving
the Kirchhoff transforms for Richards’ equation, Ait Hammou Oulhaj et al. [1] for a upstream mobility CVFE
approximation of Richards’ equation in anisotropic domains, Chavent and Jaffré [19] and Chen and Ewing [20,21]
for schemes for two-phase flows involving the Kirchhoff transform, and [31,36] for upstream mobility schemes for
two-phase porous media flows. For flows in highly heterogeneous porous media, rigorous mathematical results
have been obtained for schemes involving the introduction of additional interface unknowns and Kirchhoff’s
transforms (see for instance [8,13,14,25]), or under the non-physical assumption that the mobilities are strictly
positive [30,33]. We also refer the reader to [3,44] where the assumption of the non-degeneracy of the mobility has
been made. It was established very recently in [10] that cell-centered finite-volumes with (hybrid) upwinding
also converge for two-phase flows in heterogeneous domains, but with a specific treatment of the interfaces
located at the heterogeneities. Here, the novelty lies in the fact that we do not consider any specific treatment
of the interface in the design of the scheme.

The second objective is of more practical nature. Even though our analysis still holds without any spe-
cific treatment of the interface, it is well-known that cell-centered upstream mobility finite-volumes can be
inaccurate in the presence of heterogeneities. This observation motivated several contributions (see for instance
[25,26,33,37]) where skeletal (i.e., edge or vertex) unknowns where introduced in order to enforce the continuity
of the pressures at the interfaces Γ𝑖,𝑗 . By means of extensive numerical simulations in Section 6, we will show
that without local refinement of the grid at the interface, the method still converges, but with a degraded order.
Our ultimate motivation is to propose an approach which consists in adding very thin cells on both sides of the
interface before using the cell centered scheme under study. Then the scheme appears to behave better, with
first-order accuracy. Moreover, one can still make use of the parametrized cut-Newton method proposed in [5]
to compute the solution to the nonlinear system corresponding to the scheme. This method appears to be very
efficient, while it avoids the possibly difficult construction of compatible parametrizations at the interfaces as
in [9–11]. An involved comparative study on the robustness of the Newton solver is presented in [6], where other
strategies to capture the discontinuities related to rock changes are also addressed.

2. Finite-volume discretization

The scheme we consider in this paper is based on two-point flux approximation (TPFA) finite-volumes. Hence,
it is subject to some restrictions on the mesh [32,35]. We first review the requirements on the mesh in Section 2.1.
Next, we construct the upstream mobility finite-volume scheme for Richards’ equation in Section 2.2. The main
mathematical results of the paper, which are the well-posedness of the nonlinear system corresponding to the
scheme and the convergence of the scheme, are then summarized in Section 2.3.

2.1. Admissible discretization of 𝑄𝑇

Let us start by discretizing w.r.t. space.

Definition 2.1. An admissible mesh of Ω is a triplet pT ,E , p𝑥𝐾q𝐾PT q such that the following conditions are
fulfilled:



FINITE VOLUMES FOR RICHARDS EQUATION 2107

(i) Each control volume (or cell)𝐾 P T is non-empty, open, polyhedral and convex, with positive 𝑑-dimensional
Lebesgue measure 𝑚𝐾 ą 0. We assume that

𝐾 X 𝐿 “ H if 𝐾,𝐿 P T with 𝐾 ‰ 𝐿, while
ď

𝐾PT

𝐾 “ Ω.

Moreover, we assume that the mesh is adapted to the heterogeneities of Ω, in the sense that for all 𝐾 P T ,
there exists 𝑖 P t1, . . . , 𝐼u such that 𝐾 Ă Ω𝑖.

(ii) Each face 𝜎 P E is closed and is contained in a hyperplane of R𝑑, with positive p𝑑´1q-dimensional Hausdorff
measure 𝜈𝑑´1p𝜎q “ 𝑚𝜎 ą 0. We assume that 𝜈𝑑´1p𝜎 X 𝜎1q “ 0 for 𝜎, 𝜎1 P E unless 𝜎1 “ 𝜎. For all 𝐾 P T ,
we assume that there exists a subset E𝐾 of E such that B𝐾 “

Ť

𝜎PE𝐾
𝜎. Moreover, we suppose that

Ť

𝐾PT E𝐾 “ E . Given two distinct control volumes 𝐾,𝐿 P T , the intersection 𝐾 X 𝐿 either reduces to a
single face 𝜎 P E denoted by 𝐾|𝐿, or its p𝑑´ 1q-dimensional Hausdorff measure is 0.

(iii) The cell-centers p𝑥𝐾q𝐾PT are pairwise distinct with 𝑥𝐾 P 𝐾, and are such that, if 𝐾,𝐿 P T share a face
𝐾|𝐿, then the vector 𝑥𝐿 ´ 𝑥𝐾 is orthogonal to 𝐾|𝐿.

(iv) For the boundary faces 𝜎 Ă BΩ, we assume that either 𝜎 Ă ΓD or 𝜎 Ă ΓN. For 𝜎 Ă BΩ with 𝜎 P E𝐾 for
some 𝐾 P T , we assume additionally that there exists 𝑥𝜎 P 𝜎 such that 𝑥𝜎 ´ 𝑥𝐾 is orthogonal to 𝜎.

In our problem, the standard Definition 2.1 must be supplemented by a compatibility property between the
mesh and the subdomains. By “compatbility” we mean that each cell must lie entirely inside a single subregion.
Put another way,

@𝐾 P T , D! 𝑖p𝐾q P t1, . . . , 𝐼u | 𝐾 Ă Ω𝑖p𝐾q. (2.1)

This has two consequences. The first one is that, if we define

T𝑖 “ t𝐾 P T | 𝐾 Ă Ω𝑖u, 1 ď 𝑖 ď 𝐼, (2.2)

then T “
Ť𝐼

𝑖“1 T𝑖. The second one is that the subdomain interfaces Γ𝑖,𝑗 for 𝑖 ‰ 𝑗 coincide necessarily with
some edges 𝜎 P E . To express this more accurately, let EΓ “ t𝜎 P E | 𝜎 Ă Γu be the set of the interface edges,
E D

ext “ t𝜎 P E | 𝜎 Ă ΓDu be the set of Dirichlet boundary edges, and E N
ext “ t𝜎 P E | 𝜎 Ă ΓNu be the set of

Neumann boundary edges. Then, Γ “
Ť

𝜎PEΓ
𝜎, while ΓD “

Ť

𝜎PE D
ext
𝜎 and ΓN “

Ť

𝜎PE N
ext
𝜎. For later use, it is

also convenient to introduce the subset E𝑖 Ă E consisting of those edges that correspond to cells in T𝑖 only, i.e.,

E𝑖 “

˜

ď

𝐾PT𝑖

E𝐾

¸

zEΓ, 1 ď 𝑖 ď 𝐼, (2.3a)

and the subset Eint of the internal edges, i.e.,

Eint “ E zpE D
ext Y E N

extq “
ď

𝐾,𝐿PT

t𝜎 “ 𝐾|𝐿u. (2.3b)

Note that EΓ Ă Eint.
To each edge 𝜎 P E , we associate a distance 𝑑𝜎 by setting

𝑑𝜎 “

#

|𝑥𝐾 ´ 𝑥𝐿| if 𝜎 “ 𝐾|𝐿 P Eint,

|𝑥𝐾 ´ 𝑥𝜎| if 𝜎 P E𝐾 X
`

E D
ext Y E N

ext

˘

.
(2.4)

We also define 𝑑𝐾𝜎 “ distp𝑥𝐾 , 𝜎q for all 𝐾 P T and 𝜎 P E𝐾 . The transmissivity of the edge 𝜎 P E is defined by

𝑎𝜎 “
𝑚𝜎

𝑑𝜎
¨ (2.5)
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Throughout the paper, many discrete quantities 𝑢 will be defined either in cells 𝐾 P T or on Dirichlet
boundary edges 𝜎 P E D

ext, i.e. 𝑢 “ pp𝑢𝐾q𝐾PT , p𝑢𝜎q𝜎PE D
ext
q P XT YE D

ext , where X can be either Rℓ, ℓ ě 1, or a space
of functions. Then for all 𝐾 P T and 𝜎 P E𝐾 , we define the mirror value 𝑢𝐾𝜎 by

𝑢𝐾𝜎 “

$

’

&

’

%

𝑢𝐿 if 𝜎 “ 𝐾|𝐿 P Eint,

𝑢𝐾 if 𝜎 P E𝐾 X E N
ext,

𝑢𝜎 if 𝜎 P E𝐾 X E D
ext.

(2.6)

The diamond cell ∆𝜎 corresponding to the edge 𝜎 is defined as the convex hull of t𝑥𝐾 , 𝑥𝐾𝜎, 𝜎u for 𝐾 such
that 𝜎 P E𝐾 , while the half-diamond cell ∆𝐾𝜎 is defined as the convex hull of t𝑥𝐾 , 𝜎u. Denoting by 𝑚Δ𝜎

the
Lebesgue measure of ∆𝜎, the elementary geometrical relation 𝑚Δ𝜎

“ 𝑑𝑚𝜎𝑑𝜎 where 𝑑 stands for the dimension
will be used many times in what follows.

Another notational shorthand is worth introducing now, since it will come in handy in the sequel. Let

𝑓p¨, 𝑥q “
ÿ

1ď𝑖ď𝐼

𝑓𝑖p¨q1Ω𝑖p𝑥q (2.7a)

be a scalar quantity or a function whose dependence of 𝑥 P Ω is of the type (1.5). Then, for 𝐾 P T , we slightly
abuse the notations in writing

𝑓𝐾p¨q :“ 𝑓p¨, 𝑥𝐾q “ 𝑓𝑖p𝐾qp¨q, (2.7b)

where the index 𝑖p𝐾q is defined in (2.1). The last equality in the above equation holds by virtue of the compatibil-
ity property. For example, we will have not only 𝜑𝐾 “ 𝜑p𝑥𝐾q, 𝜆𝐾 “ 𝜆p𝑥𝐾q, 𝜂𝐾p𝑠q “ 𝜂p𝑠, 𝑥𝐾q, 𝒮𝐾p𝑝q “ 𝒮p𝑝, 𝑥𝐾q

but also e𝐾p𝑠q “ ep𝑠, 𝑥𝐾q. Likewise, we shall be writing 𝑓𝐾𝜎p¨q “ 𝑓p¨, 𝑥𝐾𝜎q for the mirror cell without any
ambiguity: if 𝜎 P Eint Y E N

ext, then 𝑥𝐾𝜎 is a cell-center; if 𝜎 P E D
ext, then 𝑥𝐾𝜎 lies on the boundary but does not

belong to an interface between subdomains.
The size ℎT and the regularity 𝜁T of the mesh are respectively defined by

ℎT “ max
𝐾PT

diamp𝐾q, 𝜁T “ min
𝐾PT

ˆ

1
Card E𝐾

min
𝜎PE𝐾

𝑑𝐾𝜎

diamp𝐾q

˙

¨ (2.8)

The time discretization is given by p𝑡𝑛q0ď1ď𝑁 with 0 “ 𝑡0 ă 𝑡1 ă ¨ ¨ ¨ ă 𝑡𝑁 “ 𝑇 . We denote by ∆𝑡𝑛 “ 𝑡𝑛´𝑡𝑛´1

for all 𝑛 P t1, . . . , 𝑁u and by Δ𝑡 “ p∆𝑡𝑛q1ď𝑛ď𝑁 .

2.2. Upstream mobility TPFA finite volume scheme

Given a discrete saturation profile
`

𝑠𝑛´1
𝐾

˘

𝐾PT
P r0, 1sT at time 𝑡𝑛´1, 𝑛 P t1, . . . , 𝑁u, we seek for a discrete

pressure profile p𝑝𝑛
𝐾q𝐾PT P RT at time 𝑡𝑛 solution to the following nonlinear system of equations. Taking

advantage of the notational shorthand (2.7b), we define

𝑠𝑛
𝐾 “ 𝒮𝐾p𝑝

𝑛
𝐾q, 𝐾 P T , 𝑛 ě 1. (2.9)

The volume balance (1.9a) is then discretized into

𝑚𝐾𝜑𝐾
𝑠𝑛

𝐾 ´ 𝑠
𝑛´1
𝐾

∆𝑡𝑛
`

ÿ

𝜎PE𝐾

𝑚𝜎𝐹
𝑛
𝐾𝜎 “ 0, 𝐾 P T , 𝑛 ě 1, (2.10)

using the approximation

𝐹𝑛
𝐾𝜎 “

1
𝑑𝜎
𝜆𝜎𝜂

𝑛
𝜎 p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q , 𝜎 P E𝐾 , 𝐾 P T , 𝑛 ě 1, (2.11a)

for the flux (1.1b), with
𝜗𝑛

𝐾 “ 𝑝𝑛
𝐾 ` 𝜓𝐾 , 𝜗𝑛

𝐾𝜎 “ 𝑝𝑛
𝐾𝜎 ` 𝜓𝐾𝜎, (2.11b)
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where the mirror values 𝑝𝑛
𝐾𝜎 and 𝜓𝐾𝜎 are given by (2.6). In the numerical flux (2.11a), the edge permeabilities

p𝜆𝜎q𝜎PE are set to

𝜆𝜎 “

$

&

%

𝜆𝐾𝜆𝐿𝑑𝜎

𝜆𝐾𝑑𝐿,𝜎 ` 𝜆𝐿𝑑𝐾,𝜎
if 𝜎 “ 𝐾|𝐿 P Eint,

𝜆𝐾 if 𝜎 P E𝐾 X Eext,

while the edge mobilities are upwinded according to

𝜂𝑛
𝜎 “

$

’

&

’

%

𝜂𝐾 p𝑠
𝑛
𝐾q if 𝜗𝑛

𝐾 ą 𝜗𝑛
𝐾𝜎,

1
2 p𝜂𝐾p𝑠

𝑛
𝐾q ` 𝜂𝐾𝜎 p𝑠

𝑛
𝐾𝜎qq if 𝜗𝑛

𝐾 “ 𝜗𝑛
𝐾𝜎,

𝜂𝐾𝜎 p𝑠
𝑛
𝐾𝜎q if 𝜗𝑛

𝐾 ă 𝜗𝑛
𝐾𝜎.

(2.11c)

In practice, the definition of 𝜂𝑛
𝜎 when 𝜗𝑛

𝐾 “ 𝜗𝑛
𝐾𝜎 has no influence on the scheme. We choose here to give a

symmetric definition that does not depend on the orientation of the edge 𝜎 in order to avoid ambiguities.
The boundary condition 𝑝D is discretized into

#

𝑝D
𝐾 “ 1

𝑚𝐾

ş

𝐾
𝑝Dp𝑥qd𝑥 for 𝐾 P T ,

𝑝D
𝜎 “

1
𝑚𝜎

ş

𝜎
𝑝Dp𝑥qd𝜈𝑑´1p𝑥q for 𝜎 P E D

ext,
(2.12)

whereas the initial condition is discretized into

𝑠0𝐾 “
1
𝑚𝐾

ż

𝐾

𝑠0p𝑥qd𝑥, for 𝐾 P T . (2.13)

The Dirichlet boundary condition is encoded in the fluxes (2.11a) by setting

𝑝𝑛
𝜎 “ 𝑝D

𝜎 , @𝜎 P E D
ext, 𝑛 ě 1. (2.14)

Bearing in mind the definition (2.6) of the mirror values for 𝜎 P E N
ext, the no-flux boundary condition across

𝜎 P E N
ext is automatically encoded, i.e., 𝐹𝑛

𝐾𝜎 “ 0 for all 𝜎 P E𝐾 X E N
ext, 𝐾 P T and 𝑛 ě 1.

In what follows, we denote by 𝑝𝑛 “ p𝑝𝑛
𝐾q𝐾PT for 1 ď 𝑛 ď 𝑁 , and by 𝑠𝑛 “ p𝑠𝑛

𝐾q𝐾PT for 0 ď 𝑛 ď 𝑁 . Besides,
we set 𝑝D “ pp𝑝D

𝐾q𝐾PT , p𝑝
D
𝜎 q𝜎PE Dq.

2.3. Main results and organization of the paper

The theoretical part of this paper includes two main results. The first one, which emerges from the analysis
at fixed grid, states that the schemes admits a unique solution p𝑝𝑛q1ď𝑛ď𝑁 .

Theorem 2.2. For all 𝑛 P t1, . . . , 𝑁u, there exists a unique solution 𝑝𝑛 to the scheme (2.9)–(2.11c).

With Theorem 2.2 at hand, we define the approximate pressure 𝑝T ,Δ𝑡 by

𝑝T ,Δ𝑡p𝑡, 𝑥q “ 𝑝𝑛
𝐾 for p𝑡, 𝑥q P p𝑡𝑛´1, 𝑡𝑛s ˆ𝐾. (2.15a)

We also define the approximate saturation as

𝑠T ,Δ𝑡 “ 𝒮p𝑝T ,Δ𝑡, 𝑥q. (2.15b)

The second main result guarantees the convergence towards a weak solution of the sequence of approximate
solutions as the mesh size and the time steps tend to 0. Let pT𝑚,E𝑚, p𝑥𝐾q𝐾PT𝑚

q𝑚ě1 be a sequence of admissible
discretizations of the domain Ω in the sense of Definition 2.1 such that

ℎT𝑚
ÝÑ

𝑚Ñ8
0, sup

𝑚ě1
𝜁T𝑚

“: 𝜁 ă `8, (2.16)

where the size ℎT𝑚
and the regularity 𝜁T𝑚

are defined in (2.8). Let pΔ𝑡𝑚q𝑚ě1 be time discretizations of p0, 𝑇 q
such that

lim
𝑚Ñ8

max
1ď𝑛ď𝑁𝑚

∆𝑡𝑛𝑚 “ 0. (2.17)
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Theorem 2.3. There exists a weak solution 𝑝 : 𝑄𝑇 Ñ R in the sense of Definition 1.1 such that, up to a
subsequence,

𝑠T𝑚,Δ𝑡𝑚
ÝÑ

𝑚Ñ8
𝒮p𝑝, 𝑥q a.e. in 𝑄𝑇 , (2.18a)

Υp𝑝T𝑚,Δ𝑡𝑚
q ÝÑ

𝑚Ñ8
Υp𝑝q weakly in 𝐿2p𝑄𝑇 q. (2.18b)

The rest of this paper is outlined as follows. Section 3 is devoted to the numerical analysis at fixed grid.
This encompasses the existence and uniqueness result stated in Theorem 2.2 as well as a priori estimates
that will help proving Theorem 2.3. The convergence of the scheme, which is taken up in Section 4, relies on
compactness arguments, which require a priori estimates that are uniform w.r.t. the grid. These estimates are
mainly adaptations to the discrete setting of their continuous counterparts that arised in the stability analysis
sketched out in Section 1.2. These estimates are shown in Section 4.1 to provide some compactness on the
sequence of approximate solutions. In Section 4.2, we show that these compactness properties together with
the a priori estimates are sufficient to identify any limit of an approximate solution as a weak solution to the
problem.

In Section 5, we provide some details about the practical numerical resolution by laying emphasis on the
switch of variable for selecting the primary unknown and on the mesh refinement at an interface in order to
better enforce pressure continuity. Finally, in Section 6, numerical experiments on two configurations (drying
and filling cases) for two capillary pressure models (Brooks–Corey and van Genuchten–Mualem) testify to the
relevance of the local refinement strategy as a simple technique to preserve accuracy.

Remark 2.4. Theorem 2.3 only states the convergence of the scheme up to a subsequence. In the case where
the weak solution is unique, then the whole sequence of approximate solutions would converge towards this
solution. As far as we know, uniqueness of the weak solutions to Richards’ equation is in general an open
problem for heterogeneous media where 𝑥 ÞÑ 𝒮p𝑝, 𝑥q is discontinuous. Uniqueness results are however available
in the one-dimensional setting for a slightly more restrictive notion of solutions, cf., [14], or under additional
assumptions on the nonlinearities 𝜂𝑖,𝒮𝑖, cf., [13].

3. Analysis at fixed grid

3.1. Some uniform a priori estimates

In this section, our aim is to derive a priori estimates on the solutions to the scheme (2.9)–(2.13). These
estimates will be at the core of the existence proof of a solution to the scheme. They will also play a key role in
proving the convergence of the scheme.

The main estimate on which our analysis relies is a discrete counterpart of (1.12). We recall that 𝑎𝜎 is the
transmissivity introduced in (2.5).

Proposition 3.1. There exist two constants 𝐶1, 𝐶2 depending only on 𝜆, 𝜇, 𝑝D, 𝜓, 𝜁, Ω, 𝑇 , 𝜑, and ‖𝒮𝑖‖𝐿1pR´q
such that

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2
ď 𝐶1, (3.1a)

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q

2
ď 𝐶2. (3.1b)

In (3.1), the relationship between 𝜎 and 𝐾 is to be understood as follows. For an inner edge 𝜎 P Eint, although
it can be written as 𝜎 “ 𝐾|𝐿 or 𝐿|𝐾, only one of these contributes to the sum. For a boundary edge 𝜎 P Eext,
there is only one cell 𝐾 such that 𝜎 P E𝐾 , so there is no ambiguity in the sum.
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Proof. Multiplying (2.10) by ∆𝑡𝑛p𝑝𝑛
𝐾´𝑝

D
𝐾q, summing over 𝐾 P T and 𝑛 P t1, . . . , 𝑁u, and carrying out discrete

integration by parts yield
A` B “ 0, (3.2)

where we have set

A “
𝑁
ÿ

𝑛“1

ÿ

𝐾PT

𝑚𝐾𝜑𝐾

`

𝑠𝑛
𝐾 ´ 𝑠

𝑛´1
𝐾

˘ `

𝑝𝑛
𝐾 ´ 𝑝

D
𝐾

˘

, (3.3a)

B “
𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q

`

𝑝𝑛
𝐾 ´ 𝑝

D
𝐾 ´ 𝑝

𝑛
𝐾𝜎 ` 𝑝

D
𝐾𝜎

˘

. (3.3b)

The discrete energy density function e𝐾 : r0, 1s Ñ R`, defined by means of the notation (2.7) from the functions
𝑓𝑖 “ e𝑖 introduced in (1.7), is convex by construction. Consequently,

e𝐾

`

𝑠𝑛´1
𝐾

˘

´ e𝐾 p𝑠
𝑛
𝐾q ě e

1
𝐾 p𝑠

𝑛
𝐾q

`

𝑠𝑛´1
𝐾 ´ 𝑠𝑛

𝐾

˘

“ 𝜑𝐾

`

𝑝𝑛
𝐾 ´ 𝑝

D
𝐾

˘ `

𝑠𝑛´1
𝐾 ´ 𝑠𝑛

𝐾

˘

.

Therefore, the quantity A of (3.3a) can be bounded below by

A ě
𝑁
ÿ

𝑛“1

ÿ

𝐾PT

𝑚𝐾

`

e𝐾p𝑠
𝑛
𝐾q ´ e𝐾

`

𝑠𝑛´1
𝐾

˘˘

“
ÿ

𝐾PT

𝑚𝐾

`

e𝐾

`

𝑠𝑁
𝐾

˘

´ e𝐾

`

𝑠0𝐾
˘˘

ě ´𝐶A, (3.4)

the last inequality being a consequence of the boundedness of e𝐾 on r0, 1s.
Writing 𝜗 “ 𝑝` 𝜓 and expanding each summand of (3.3b), we can split B into

B “ B1 ` B2 ` B3,

with

B1 “

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2
,

B2 “

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

`

𝜓𝐾 ´ 𝜓𝐾𝜎 ´ 𝑝
D
𝐾 ` 𝑝

D
𝐾𝜎

˘

,

B3 “ ´

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝜓𝐾 ´ 𝜓𝐾𝜎q

`

𝑝D
𝐾 ´ 𝑝

D
𝐾𝜎

˘

.

It follows from Lemma 9.4 of [29] and from the boundedness of 𝜂 that there exists a constant 𝐶 depending only
on 𝜆, 𝜇, 𝜁T and Ω such that

ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎

`

𝑝D
𝐾 ´ 𝑝

D
𝐾𝜎

˘2
ď 𝐶 ‖∇𝑝D‖2

𝐿2pΩq𝑑 , (3.5a)

ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝜓𝐾 ´ 𝜓𝐾𝜎q

2
ď 𝐶 ‖∇𝜓‖2

𝐿8pΩq𝑑 . (3.5b)

Thanks to these estimates and to the Cauchy–Schwarz inequality, we have

B3 ě ´𝐶𝑇 ‖∇𝑝D‖𝐿2pΩq𝑑 ‖∇𝜓‖𝐿8pΩq𝑑 .

On the other hand, Young’s inequality provides

B2 ě ´
1
2
B1 ´ 𝐶𝑇

´

‖∇𝑝D‖2
𝐿2pΩq𝑑 ` ‖∇𝜓‖2

𝐿8pΩq𝑑

¯

.
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Hence,

B ě
1
2

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2
´ 𝐶B, (3.6)

by setting 𝐶B “ 𝐶𝑇 p‖∇𝑝D‖2
𝐿2pΩq𝑑 ` ‖∇𝜓‖2

𝐿8pΩq𝑑 ` ‖∇𝑝D‖𝐿2pΩq𝑑 ‖∇𝜓‖𝐿8pΩq𝑑q. Inserting (3.4) and (3.6) into
(3.2), we recover (3.1a) with 𝐶1 “ 2p𝐶A ` 𝐶Bq.

From (3.1a), we can deduce (3.1b) by elementary manipulations. �

So far, we have not used the upwind choice (2.11c) for the mobilities 𝜂𝑛
𝜎 . This will be done in the next lemma,

where we derive a more useful variant of estimate (3.1a), in which 𝜂𝑛
𝜎 is replaced by 𝜂𝑛

𝜎 defined below. In a
homogeneous medium, 𝜂𝑛

𝜎 ě 𝜂𝑛
𝜎 so that the new estimate (3.8) seems to be stronger than (3.1a).

We begin by introducing the functions q𝜂𝜎 : R Ñ p0, 1{𝜇s defined for 𝜎 P E by

q𝜂𝜎p𝑝q “ min
 

𝜂𝐾 ˝ 𝒮𝐾p𝑝q, 𝜂𝐾𝜎 ˝ 𝒮𝐾𝜎p𝑝q
(

, @𝑝 P R. (3.7a)

By virtue of assumptions (1.6), each argument of the minimum function is nondecreasing and positive function
of 𝑝 P R. As a result, q𝜂𝜎 is also a nondecreasing and positive function of 𝑝 P R. Note that q𝜂𝜎 “ 𝜂𝑖 ˝ 𝒮𝑖 for all
𝜎 P E𝑖, while for interface edges 𝜎 Ă Γ𝑖,𝑗 , the mere inequality q𝜂𝜎 ď 𝜂𝑖 ˝𝒮𝑖 holds. Next, we consider the intervals

J𝑛
𝜎 “ r𝑝

𝑛
𝐾K𝑝

𝑛
𝐾𝜎, 𝑝

𝑛
𝐾J𝑝

𝑛
𝐾𝜎s, for 𝜎 P E𝐾 , 𝐾 P T , 1 ď 𝑛 ď 𝑁, (3.7b)

with the notations 𝑎K𝑏 “ minp𝑎, 𝑏q and 𝑎J𝑏 “ maxp𝑎, 𝑏q. At last, we set

𝜂𝑛
𝜎 “ max

𝑝PJ𝑛
𝜎

q𝜂𝜎p𝑝q, for 𝜎 P E , 1 ď 𝑛 ď 𝑁. (3.7c)

Lemma 3.2. There exists a constant 𝐶3 depending on the same data as 𝐶1 such that

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜂
𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2
ď 𝐶3. (3.8)

Proof. We partition the set E of edges into three subsets, namely,

E 𝑛
` “

 

𝜎 | 𝜗𝑛
𝐾 ą 𝜗𝑛

𝐾𝜎

(

, E 𝑛
´ “

 

𝜎 | 𝜗𝑛
𝐾 ă 𝜗𝑛

𝐾𝜎

(

, E 𝑛
0 “

 

𝜎 | 𝜗𝑛
𝐾 “ 𝜗𝑛

𝐾𝜎

(

.

Invoking q𝜂𝜎 “ minp𝜂𝐾 ˝ 𝒮𝐾 , 𝜂𝐾𝜎 ˝ 𝒮𝐾𝜎q, we can minorize the left-hand side of (3.1a) to obtain

𝑁
ÿ

𝑛“1

∆𝑡𝑛

»

–

ÿ

𝜎PE 𝑛
`

𝑎𝜎𝜆𝜎q𝜂𝜎 p𝑝
𝑛
𝐾q p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2
`

ÿ

𝜎PE 𝑛
´

𝑎𝜎𝜆𝜎q𝜂𝜎 p𝑝
𝑛
𝐾𝜎q p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2

`
ÿ

𝜎PE 𝑛
0

𝑎𝜎𝜆𝜎
1
2 pq𝜂𝜎p𝑝

𝑛
𝐾q ` q𝜂𝜎 p𝑝

𝑛
𝐾𝜎qq p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2

fi

fl ď 𝐶1.

Starting from this inequality and using the boundedness of 𝜂𝑖 and 𝜓, we can readily show that there exists a
constant 𝐶 depending on the same data as 𝐶1 such that

D1 :“
𝑁
ÿ

𝑛“1

∆𝑡𝑛

»

–

ÿ

𝜎PE 𝑛
`

𝑎𝜎𝜆𝜎q𝜂𝜎p𝑝
𝑛
𝐾q p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q `

ÿ

𝜎PE 𝑛
´

𝑎𝜎𝜆𝜎q𝜂𝜎 p𝑝
𝑛
𝐾𝜎q p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q

fi

fl ď 𝐶,
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in which the sum over E 𝑛
0 was omitted because all of its summands vanish. Simlarly to what was pointed out

in equation (2.9) in [1], we notice that since 𝜂𝜎 is nondecreasing w.r.t. 𝑝, it is straightforward to check that the
definition

q𝜂𝑛
𝜎 :“

$

’

&

’

%

q𝜂𝜎 p𝑝
𝑛
𝐾q if 𝜗𝑛

𝐾 ą 𝜗𝑛
𝐾𝜎,

1
2 pq𝜂𝜎 p𝑝

𝑛
𝐾q ` q𝜂𝜎 p𝑝

𝑛
𝐾𝜎qq if 𝜗𝑛

𝐾 “ 𝜗𝑛
𝐾𝜎,

q𝜂𝜎 p𝑝
𝑛
𝐾𝜎q if 𝜗𝑛

𝐾 ă 𝜗𝑛
𝐾𝜎

(3.9)

exactly amounts to

q𝜂𝑛
𝜎 “

$

’

&

’

%

max𝑝PJ𝑛
𝜎
q𝜂𝜎p𝑝q if p𝑝𝑛

𝐾 ´ 𝑝
𝑛
𝐾𝜎q p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q ą 0,

1
2 pq𝜂𝜎 p𝑝

𝑛
𝐾q ` q𝜂𝜎p𝑝

𝑛
𝐾𝜎qq if p𝑝𝑛

𝐾 ´ 𝑝
𝑛
𝐾𝜎q p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q “ 0,

min𝑝PJ𝑛
𝜎
q𝜂𝜎p𝑝q if p𝑝𝑛

𝐾 ´ 𝑝
𝑛
𝐾𝜎q p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q ă 0.

(3.10)

Taking advantage of this equivalence, we can transform D1 into

D1 “

𝑁
ÿ

𝑛“1

∆𝑡𝑛

»

–

ÿ

𝜎PE 𝑛
ą

𝑎𝜎𝜆𝜎 max
J𝑛

𝜎

q𝜂𝜎 p𝑝
𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q `

ÿ

𝜎PE 𝑛
ă

𝑎𝜎𝜆𝜎 min
J𝑛

𝜎

q𝜂𝜎 p𝑝
𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q

fi

fl ď 𝐶,

(3.11)

where E 𝑛
ą “ t𝜎 | p𝑝𝑛

𝐾 ´ 𝑝𝑛
𝐾𝜎qp𝜗

𝑛
𝐾 ´ 𝜗𝑛

𝐾𝜎q ą 0u and E 𝑛
ă “ t𝜎 | p𝑝𝑛

𝐾 ´ 𝑝𝑛
𝐾𝜎qp𝜗

𝑛
𝐾 ´ 𝜗𝑛

𝐾𝜎q ă 0u. The second sum
over E 𝑛

ă contains only negative summands and can be further minorized if minJ𝑛
𝜎
q𝜂𝜎 is replaced by maxJ𝑛

𝜎
q𝜂𝜎.

In other words,

D2 :“
𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎qp𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q ď D1 ď 𝐶.

Writing 𝜗 “ 𝑝` 𝜓, expanding each summand of D2 and applying Young’s inequality, we end up with

1
2

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 rp𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2 ´ p𝜓𝑛
𝐾 ´ 𝜓

𝑛
𝐾𝜎q

2s ď D2 ď 𝐶.

Estimate (3.8) finally follows from the boundedness of 𝜂, 1{𝜆 and 𝜓. �

The above lemma has several important consequences for the analysis. Let us start with discrete counterparts
to estimations (1.14) and (1.15).

Corollary 3.3. Let 𝐶3 be the constant in Lemma 3.2. Then,

𝑁
ÿ

𝑛“1

∆𝑡𝑛
𝐼
ÿ

𝑖“1

ÿ

𝜎PE𝑖

𝑎𝜎 pΘ𝑖 p𝑝
𝑛
𝐾q ´Θ𝑖 p𝑝

𝑛
𝐾𝜎qq

2
ď 𝐶3, (3.12a)

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎 pΥ p𝑝𝑛
𝐾q ´Υ p𝑝𝑛

𝐾𝜎qq
2
ď 𝐶3. (3.12b)

Moreover, there exists two constants 𝐶4, 𝐶5 depending on the same data as 𝐶1 and additionnally on
‖
?
𝜂𝑖 ˝ 𝒮𝑖‖𝐿1pR´q, 1 ď 𝑖 ď 𝐼, such that

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝐾PT

𝑚𝐾 |Υp𝑝𝑛
𝐾q|

2 ď 𝐶4, (3.13a)

𝑁
ÿ

𝑛“1

∆𝑡𝑛
𝐼
ÿ

𝑖“1

ÿ

𝐾PT𝑖

𝑚𝐾 |Θ𝑖p𝑝
𝑛
𝐾q|

2 ď 𝐶5. (3.13b)
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Proof. Consider those edges 𝜎 P E𝑖 – defined in (2.3a) – corresponding to some fixed 𝑖 P t1, . . . , 𝐼u, for which
q𝜂𝜎 “ 𝜂𝑖 ˝ 𝒮𝑖 “ |Θ1𝑖|

2 and 𝜂𝑛
𝜎 “ maxJ𝑛

𝜎
|Θ1𝑖|

2 due to (1.13a). By summing the elementary inequality

pΘ𝑖p𝑝
𝑛
𝐾q ´Θ𝑖p𝑝

𝑛
𝐾𝜎qq

2 ď 𝜂𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2,

over 𝜎 P E𝑖, 𝑖 P t1, . . . , 𝐼u and 𝑛 P t1, . . . , 𝑁u using appropriate weights, we get

𝑁
ÿ

𝑛“1

∆𝑡𝑛
𝐼
ÿ

𝑖“1

ÿ

𝜎PE𝑖

𝑎𝜎pΘ𝑖p𝑝
𝑛
𝐾q ´Θ𝑖p𝑝

𝑛
𝐾𝜎qq

2 ď

𝑁
ÿ

𝑛“1

∆𝑡𝑛
𝐼
ÿ

𝑖“1

ÿ

𝜎PE𝑖

𝑎𝜎𝜂
𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2,

whose right-hand side is obviously less than 𝐶3, thanks to (3.8). This proves (3.12a).
Similarly, the respective definitions of 𝜂𝑛

𝜎 and Υ have been tailored so that maxJ𝑛
𝜎
|Υ1|2 ď 𝜂𝑛

𝜎 for all 𝜎 P E .
As a consequence,

pΥp𝑝𝑛
𝐾q ´Υp𝑝𝑛

𝐾𝜎qq
2 ď 𝜂𝑛

𝜎p𝑝
𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2.

Summing these inequalities over 𝜎 P E and 𝑛 P t1, . . . , 𝑁u with appropriate weights and invoking (3.8), we
prove (3.12b).

The argument for (3.13a) is subtler. Starting from the basic inequality
`

Υ p𝑝𝑛
𝐾q ´Υ

`

𝑝D
𝐾

˘

´Υ p𝑝𝑛
𝐾𝜎q `Υ

`

𝑝D
𝐾𝜎

˘˘2
ď 2 pΥp𝑝𝑛

𝐾q ´Υp𝑝𝑛
𝐾𝜎qq

2
` 2

`

Υ
`

𝑝D
𝐾

˘

´Υ
`

𝑝D
𝐾𝜎

˘˘2
,

we apply the discrete Poincaré inequality of Lemma 9.1 from [29] – which is legitimate since ΓD has positive
measure – followed by Lemma 9.4 of [29] to obtain

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝐾PT

𝑚𝐾pΥp𝑝𝑛
𝐾q ´Υp𝑝D

𝐾qq
2 ď 2𝐶P,T

`

𝐶3 ` 𝐶𝜁𝑇‖Υ1‖8‖∇𝑝D‖2
˘

,

where 𝐶P,T denotes the discrete Poincaré constant, and 𝐶𝜁 is the quantity appearing in Lemma 9.4 of [29] and
only depends on 𝜁T . This entails (3.13a) with 𝐶4 “ 4𝐶P,T

`

𝐶3 ` 𝐶𝜁𝑇‖Υ1‖8‖∇𝑝D‖2
˘

` 2𝑚Ω𝑇‖Υp𝑝Dq‖2
8.

The last estimate (3.13b) results from the comparison (1.16) of the nonlinearities Θ𝑖 and Υ. �

The purpose of the next lemma is to work out a weak estimate on the discrete counterpart of B𝑡𝑠, which will
lead to compactness properties in Section 4.1. For 𝜙 P 𝐶8𝑐 p𝑄𝑇 q, let

𝜙𝑛
𝐾 “

1
𝑚𝐾

ż

𝐾

𝜙p𝑡𝑛, 𝑥qd𝑥, @𝐾 P T , 1 ď 𝑛 ď 𝑁.

Lemma 3.4. There exists a constant 𝐶6 depending on the same data as 𝐶1 such that

𝑁
ÿ

𝑛“1

ÿ

𝐾PT

𝑚𝐾𝜑𝐾

`

𝑠𝑛
𝐾 ´ 𝑠

𝑛´1
𝐾

˘

𝜙𝑛
𝐾 ď 𝐶6‖∇𝜙‖𝐿8p𝑄𝑇 q𝑑

, @𝜙 P 𝐶8𝑐 p𝑄𝑇 q. (3.14)

Proof. Multiplying (2.10) by ∆𝑡𝑛 𝜙𝑛
𝐾 , summing over 𝐾 P T and 𝑛 P t1, ¨ ¨ ¨ , 𝑁u and carrying out discrete

integration by parts, we end up with

A :“
𝑁
ÿ

𝑛“1

ÿ

𝐾PT

𝑚𝐾𝜑𝐾

`

𝑠𝑛
𝐾 ´ 𝑠

𝑛´1
𝐾

˘

𝜙𝑛
𝐾 “ ´

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q p𝜙

𝑛
𝐾 ´ 𝜙

𝑛
𝐾𝜎q .

Applying the Cauchy–Schwarz inequality and using (3.1b), we get

A2 ď 𝐶2
max𝑖 𝜆𝑖

𝜇

ÿ

𝑛

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎p𝜙
𝑛
𝐾 ´ 𝜙

𝑛
𝐾𝜎q

2. (3.15)
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The conclusion (3.14) is then reached by means of the property (see [2], Sect. 4.4)

𝑁
ÿ

𝑛“1

∆𝑡𝑛
ÿ

𝜎PE

𝑎𝜎p𝜙
𝑛
𝐾 ´ 𝜙

𝑛
𝐾𝜎q

2 ď 𝐶‖∇𝜙‖2
𝐿8p𝑄𝑇 q𝑑

for some 𝐶 depending only on Ω, 𝑇 and the mesh regularity 𝜁T . �

3.2. Existence of a solution to the scheme

The statements of the previous section are all uniform w.r.t. the mesh and are meant to help us passing to
the limit in the next section. In contrast, the next lemma provides a bound on the pressure that depends on the
mesh size and on the time-step. This property is needed in the process of ensuring the existence of a solution
to the numerical scheme.

Lemma 3.5. There exist two constants 𝐶7, 𝐶8 depending on T , ∆𝑡𝑛 as well as on the data of the continuous
model 𝜆, 𝜇, 𝑝D, 𝜓, 𝜁, Ω, 𝑇 , 𝜑, ‖𝒮𝑖‖𝐿1pR´q and ‖

?
𝜂𝑖 ˝ 𝒮𝑖‖𝐿1pR´q, 1 ď 𝑖 ď 𝐼, such that

´𝐶7 ď 𝑝𝑛
𝐾 ď 𝐶8, @𝐾 P T , 𝑛 P t1, . . . , 𝑁u. (3.16)

Proof. From (3.13a) and from Υp𝑝q “ 𝑝
a

min𝑖 𝜆𝑖{𝜇 for 𝑝 ě 0, we deduce that

𝑝𝑛
𝐾 ď

c

𝜇𝐶4

∆𝑡𝑛𝑚𝐾 min𝑖 𝜆𝑖
, @𝐾 P T , 1 ď 𝑛 ď 𝑁.

Hence, the upper-bound 𝐶8 is found by maximizing the right-hand side over 𝐾 P T and 𝑛 P t1, . . . , 𝑁u.
To show that 𝑝𝑛

𝐾 is bounded from below, we employ a strategy that was developed in [15] and extended to
the case of Richards’ equation in Lemma 3.10 of [1]. From (2.12), (2.14) and the boundedness of 𝑝D, it is easy
to see that

𝑝𝑛
𝜎 ě inf

𝑥PBΩ
𝑝Dp𝑥q, @𝜎 P E D

ext.

Estimate (3.8) then shows that for all 𝐾 P T such that E𝐾 X E D
ext ‰ H, we have

𝑝𝑛
𝐾 ě 𝑝𝑛

𝜎 ´

d

𝐶3

∆𝑡𝑛𝑎𝜎q𝜂𝜎p𝑝𝑛
𝜎q
“: 𝜋𝑛

𝐾 , @𝜎 P E𝐾 X E D
ext.

The quantity 𝜋𝑛
𝐾 is well-defined, since q𝜂𝜎p𝑝

𝑛
𝜎q ą 0 for 𝑝𝑛

𝜎 ą ´8, and does not depend on time, as 𝑝D does not
either. Furthermore, if 𝑝𝑛

𝐾 is bounded from below by some 𝜋𝐾 , then the pressure in all its neighboring cells
𝐿 P T such that 𝜎 “ 𝐾|𝐿 P E𝐾 is bounded from below by

𝑝𝑛
𝐿 ě 𝜋𝑛

𝐾 ´

d

𝐶3

∆𝑡𝑛𝑎𝜎q𝜂𝜎p𝜋𝑛
𝐾q

“: 𝜋𝑛
𝐿.

Again, 𝜋𝑛
𝐿 is well-defined owing to q𝜂𝜎p𝜋

𝑛
𝐾q ą 0. Since the mesh is finite and since the domain is connected,

only a finite number of edge-crossings is required to create a path from a Dirichlet boundary edge 𝜎 P E D
ext

to any prescribed cell 𝐾 P T . Hence, the lower bound 𝐶7 is found by minimizing 𝜋𝑛
𝐾 over 𝐾 P T and

𝑛 P t1, . . . , 𝑁u. �

Lemma 3.5 is a crucial step in the proof of the existence of a solution 𝑝𝑛 “ p𝑝𝑛
𝐾q𝐾PT to the scheme

(2.9)–(2.14).

Proposition 3.6. Given 𝑠𝑛´1 “ p𝑠𝑛´1
𝐾 q𝐾PT P r0, 1sT , there exists a solution 𝑝𝑛 P RT to the scheme

(2.9)–(2.14).
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The proof relies on a standard topological degree argument and is omitted here. However, we make the homo-
topy explicit for readers’ convenience. Let 𝛾 P r0, 1s be the homotopy parameter. We define the nondecreasing
functions 𝜂p𝛾q𝑖 : r0, 1s Ñ R` by setting 𝜂

p𝛾q
𝑖 p𝑠q “ p1 ´ 𝛾q{𝜇 ` 𝛾𝜂𝑖p𝑠q for 𝑠 P r0, 1s, and we seek a solution

𝑝p𝛾q “ p𝑝
p𝛾q
𝐾 q𝐾PT to the problem

𝛾𝑚𝐾𝜑𝐾
𝒮𝐾p𝑝

p𝛾q
𝐾 q ´ 𝑠𝑛´1

𝐾

∆𝑡𝑛
`

ÿ

𝜎PE𝐾

𝑚𝜎𝐹
p𝛾q
𝐾𝜎 “ 0, 𝐾 P T , 𝛾 P r0, 1s, (3.17a)

where the fluxes 𝐹 p𝛾q𝐾𝜎 are defined by

𝐹
p𝛾q
𝐾𝜎 “

1
𝑑𝜎
𝜆𝜎𝜂

p𝛾q
𝜎

´

𝜗
p𝛾q
𝐾 ´ 𝜗

p𝛾q
𝐾𝜎

¯

, 𝜎 P E𝐾 , 𝐾 P T , 𝛾 P r0, 1s (3.17b)

with 𝜗p𝛾q “ 𝑝p𝛾q ` 𝜓 and using the upwind mobilities

𝜂p𝛾q𝜎 “

$

’

’

’

&

’

’

’

%

𝜂
p𝛾q
𝐾

´

𝒮𝐾

´

𝑝
p𝛾q
𝐾

¯¯

if 𝜗
p𝛾q
𝐾 ą 𝜗

p𝛾q
𝐾𝜎,

1
2

´

𝜂
p𝛾q
𝐾

´

𝒮𝐾

´

𝑝
p𝛾q
𝐾

¯¯

` 𝜂
p𝛾q
𝐾𝜎

´

𝒮𝐾𝜎

´

𝑝
p𝛾q
𝐾

¯¯¯

if 𝜗
p𝛾q
𝐾 “ 𝜗

p𝛾q
𝐾𝜎,

𝜂
p𝛾q
𝐾𝜎

´

𝒮𝐾𝜎

´

𝑝
p𝛾q
𝐾

¯¯

if 𝜗
p𝛾q
𝐾 ă 𝜗

p𝛾q
𝐾𝜎.

(3.17c)

At the Dirichlet boundary edges, we still set 𝑝p𝛾q𝜎 “ 𝑝D
𝜎 . For 𝛾 “ 0, the system is linear and invertible, while for

𝛾 “ 1, system (3.17) coincides with the original system (2.9)–(2.14). A priori estimates on 𝑝p𝛾q that are uniform
w.r.t. 𝛾 P r0, 1s (but not uniform w.r.t. T nor ∆𝑡𝑛) can be derived on the basis of what was exposed previously,
so that one can unfold Leray–Schauder’s machinery [22, 39] to prove the existence of (at least) one solution to
the scheme.

3.3. Uniqueness of the discrete solution

To complete the proof of Theorem 2.2, it remains to show that the solution to the scheme is unique. This is
the purpose of the following proposition.

Proposition 3.7. Given 𝑠𝑛´1 “ p𝑠𝑛´1
𝐾 q𝐾PT P r0, 1sT , the solution 𝑝𝑛 P RT to the scheme (2.9)–(2.14) is

unique.

Proof. The proof heavily rests upon the monotonicity properties inherited from the upwind choice (2.11c) for
the mobilities. Indeed, due to the upwind choice of the mobility, the flux 𝐹𝑛

𝐾𝜎 is a function of 𝑝𝑛
𝐾 and 𝑝𝑛

𝐾𝜎 that
is nondecreasing w.r.t. 𝑝𝑛

𝐾 and nonincreasing w.r.t. 𝑝𝑛
𝐾𝜎. Moreover, by virtue of the monotonicity of 𝒮𝐾 , the

discrete volume balance (2.10) can be cast under the abstract form

ℋ𝑛
𝐾

`

𝑝𝑛
𝐾 , p𝑝

𝑛
𝐾𝜎q𝜎PE𝐾

˘

“ 0, @𝐾 P T , (3.18)

where ℋ𝑛
𝐾 is nondecreasing w.r.t. its first argument 𝑝𝑛

𝐾 and nonincreasing w.r.t. each of the remaining variables
p𝑝𝑛

𝐾𝜎q𝜎PE𝐾
.

Let r𝑝𝑛
“ pr𝑝𝑛

𝐾q𝐾PT be another solution to the system (2.9)–(2.14), i.e.,

ℋ𝑛
𝐾

`

r𝑝𝑛
𝐾 , pr𝑝

𝑛
𝐾𝜎q𝜎PE𝐾

˘

“ 0, @𝐾 P T . (3.19)

The nonincreasing behavior of ℋ𝑛
𝐾 w.r.t. all its variables except the first one implies that

ℋ𝑛
𝐾

`

𝑝𝑛
𝐾 , p𝑝

𝑛
𝐾𝜎Jr𝑝

𝑛
𝐾𝜎q𝜎PE𝐾

˘

ď 0, ℋ𝑛
𝐾

`

r𝑝𝑛
𝐾 , p𝑝

𝑛
𝐾𝜎Jr𝑝

𝑛
𝐾𝜎q𝜎PE𝐾

˘

ď 0,
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for all 𝐾 P T , where 𝑎J𝑏 “ maxp𝑎, 𝑏q. Since 𝑝𝑛
𝐾Jr𝑝

𝑛
𝐾 is either equal to 𝑝𝑛

𝐾 or to r𝑝𝑛
𝐾 , we infer from the above

inequalities that
ℋ𝑛

𝐾

`

𝑝𝑛
𝐾Jr𝑝

𝑛
𝐾 , p𝑝

𝑛
𝐾𝜎Jr𝑝

𝑛
𝐾𝜎q𝜎PE𝐾

˘

ď 0, @𝐾 P T . (3.20)

By a similar argument, we can show that

ℋ𝑛
𝐾

`

𝑝𝑛
𝐾Kr𝑝

𝑛
𝐾 , p𝑝

𝑛
𝐾𝜎Kr𝑝

𝑛
𝐾𝜎q𝜎PE𝐾

˘

ě 0, @𝐾 P T , (3.21)

where 𝑎K𝑏 “ minp𝑎, 𝑏q. Subtracting (3.21) from (3.20) and summing over 𝐾 P T , we find
ÿ

𝐾PT

𝑚𝐾𝜑𝐾
|𝑠𝑛

𝐾 ´ r𝑠𝑛
𝐾 |

∆𝑡𝑛
`

ÿ

𝜎PE D
ext

𝑎𝜎𝜆𝜎R
𝑛
𝜎 ď 0, (3.22)

where 𝑠𝑛
𝐾 “ 𝒮𝐾p𝑝

𝑛
𝐾q, r𝑠

𝑛
𝐾 “ 𝒮𝐾 pr𝑝

𝑛
𝐾q and

R𝑛
𝜎 “ 𝜂𝐾 p𝑠

𝑛
𝐾Jr𝑠

𝑛
𝐾q

´

𝜗𝑛
𝐾J

r𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝜎

¯`

´ 𝜂𝐾 p𝑠
𝑛
𝜎q

´

𝜗𝑛
𝜎 ´ 𝜗

𝑛
𝐾J

r𝜗𝑛
𝐾

¯`

´ 𝜂𝐾 p𝑠
𝑛
𝐾Kr𝑠

𝑛
𝐾q

´

𝜗𝑛
𝐾K

r𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝜎

¯`

` 𝜂𝐾 p𝑠
𝑛
𝜎q

´

𝜗𝑛
𝜎 ´ 𝜗

𝑛
𝐾K

r𝜗𝑛
𝐾

¯`

, (3.23)

with 𝑠𝑛
𝜎 “ 𝒮𝐾p𝑝

𝑛
𝜎q. The top line of (3.23) expresses the upwinded flux of (3.20), while the bottom line of (3.23)

is the opposite of the upwinded flux of (3.21). Note that, since 𝑝𝑛
𝜎 “ 𝑝D

𝜎 is prescribed at 𝜎 P E D
ext, we have

𝜗𝑛
𝜎 “ 𝜗𝑛

𝜎J
r𝜗𝑛

𝜎 “ 𝜗𝑛
𝜎K

r𝜗𝑛
𝜎. Upon inspection of the rearrangement

R𝑛
𝜎 “ r𝜂𝐾 p𝑠

𝑛
𝐾Jr𝑠

𝑛
𝐾q ´ 𝜂𝐾 p𝑠

𝑛
𝐾Kr𝑠

𝑛
𝐾qs

´

𝜗𝑛
𝐾J

r𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝜎

¯`

` 𝜂𝐾 p𝑠
𝑛
𝐾Kr𝑠

𝑛
𝐾q

„

´

𝜗𝑛
𝐾J

r𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝜎

¯`

´

´

𝜗𝑛
𝐾K

r𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝜎

¯`


` 𝜂𝐾 p𝑠
𝑛
𝜎q

„

´

𝜗𝑛
𝜎 ´ 𝜗

𝑛
𝐾K

r𝜗𝑛
𝐾

¯`

´

´

𝜗𝑛
𝜎 ´ 𝜗

𝑛
𝐾J

r𝜗𝑛
𝐾

¯`


, (3.24)

it is trivial that R𝑛
𝜎 ě 0. As a consequence, (3.22) implies that R𝑛

𝜎 “ 0 for all 𝜎 P E D
ext and that 𝑠𝑛

𝐾 “ r𝑠𝑛
𝐾 for all

𝐾 P T . At this stage, however, we cannot yet claim that 𝑝𝑛
𝐾 “ r𝑝𝑛

𝐾 , as the function 𝒮𝐾 is not invertible.
Taking into account 𝑠𝑛

𝐾 “ r𝑠𝑛
𝐾 , the residue (3.24) becomes

R𝑛
𝜎 “ 𝜂𝐾p𝑠

𝑛
𝐾q

„

´

𝜗𝑛
𝐾J

r𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝜎

¯`

´

´

𝜗𝑛
𝐾K

r𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝜎

¯`


` 𝜂𝐾 p𝑠
𝑛
𝜎q

„

´

𝜗𝑛
𝜎 ´ 𝜗

𝑛
𝐾K

r𝜗𝑛
𝐾

¯`

´

´

𝜗𝑛
𝜎 ´ 𝜗

𝑛
𝐾J

r𝜗𝑛
𝐾

¯`


, (3.25)

which can be lower-bounded by

R𝑛
𝜎 ě minp𝜂𝐾p𝑠

𝑛
𝐾q, 𝜂𝐾p𝑠

𝑛
𝜎qq|𝜗

𝑛
𝐾 ´

r𝜗𝑛
𝐾 | (3.26)

thanks to the algebraic identities 𝑎` ´ p´𝑎q` “ 𝑎 and 𝑎J𝑏´ 𝑎K𝑏 “ |𝑎´ 𝑏|. In view of the lower-bound on the
discrete pressures of Lemma 3.5, we deduce from (1.6b) that 𝑠𝑛

𝐾 ą 0 and r𝑠𝑛
𝐾 ą 0. The increasing behavior of

𝜂𝐾 implies, in turn, that 𝜂𝐾p𝑠
𝑛
𝐾q ą 0 and 𝜂𝐾pr𝑠

𝑛
𝐾q ą 0. Therefore, the conjunction of R𝑛

𝜎 “ 0 and (3.26) yields
𝜗𝑛

𝐾 “ r𝜗𝑛
𝐾 and hence 𝑝𝑛

𝐾 “ r𝑝𝑛
𝐾 for all cells 𝐾 having a Dirichlet boundary edge, i.e., E𝐾 X E D

ext ‰ H.
It remains to check that 𝑝𝑛

𝐾 “ r𝑝𝑛
𝐾 , or equivalently 𝜗𝑛

𝐾 “ r𝜗𝑛
𝐾 for those cells 𝐾 P T that are far away from

the Dirichlet part of the boundary. Subtracting (3.19) from (3.18) and recalling that 𝑠𝑛
𝐾 “ r𝑠𝑛

𝐾 , we arrive at

ÿ

𝜎PE𝐾

𝑎𝜎𝜆𝜎

"

𝜂𝐾 p𝑠
𝑛
𝐾q

„

p𝜗𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q

`
´

´

r𝜗𝑛
𝐾 ´

r𝜗𝑛
𝐾𝜎

¯`


` 𝜂𝐾𝜎 p𝑠
𝑛
𝐾𝜎q

„

´

r𝜗𝑛
𝐾𝜎 ´

r𝜗𝑛
𝐾

¯`

´ p𝜗𝑛
𝐾𝜎 ´ 𝜗

𝑛
𝐾q
`

*

“ 0.

(3.27)
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Consider a cell 𝐾 P T where 𝜗𝑛
𝐾 ´

r𝜗𝑛
𝐾 achieves its maximal value, i.e.,

𝜗𝑛
𝐾 ´

r𝜗𝑛
𝐾 ě 𝜗𝑛

𝐿 ´
r𝜗𝑛

𝐿, @𝐿 P T . (3.28)

This entails that
𝜗𝑛

𝐾 ´ 𝜗
𝑛
𝐾𝜎 ě

r𝜗𝑛
𝐾 ´

r𝜗𝑛
𝐾𝜎, @𝜎 P E𝐾 ,

so that the two brackets in the right-hand side of (3.27) are nonnegative. In fact, they both vanish by the
positivity of 𝜂𝐾p𝑠

𝑛
𝐾q and 𝜂𝐾𝜎p𝑠

𝑛
𝐾𝜎q. As a result, 𝜗𝑛

𝐾 ´ 𝜗𝑛
𝐾𝜎 “

r𝜗𝑛
𝐾 ´ r𝜗𝑛

𝐾𝜎 for all 𝜎 P E𝐾 . This implies that
𝜗𝑛

𝐾 ´
r𝜗𝑛

𝐾 “ 𝜗𝑛
𝐿 ´

r𝜗𝑛
𝐿 for all the cells 𝐿 P T sharing an edge 𝜎 “ 𝐾|𝐿 with 𝐾, and thus that the cell 𝐿 also

achieves the maximality condition (3.28). The process can then be repeated over and over again. Since Ω is
connected, we deduce that 𝜗𝑛

𝐾´
r𝜗𝑛

𝐾 is constant over 𝐾 P T . The constant is finally equal to zero since 𝜗𝑛
𝐾 “ r𝜗𝑛

𝐾

on the cells having a Dirichlet edge. �

4. Convergence analysis

Once existence and uniqueness of the discrete solution have been settled, the next question to be addressed
is the convergence of the discrete solution towards a weak solution of the continuous problem, as the mesh-size
and the time-step are progressively refined. In accordance with the general philosophy expounded in [29], the
proof is built on compactness arguments. We start by highlighting compactness properties in Section 4.1, before
identifying the limit values as weak solutions in Section 4.2.

4.1. Compactness properties

Let us define 𝐺E𝑚,Δ𝑡𝑚 : 𝑄𝑇 Ñ R𝑑 and 𝐽E𝑚,Δ𝑡𝑚 : 𝑄𝑇 Ñ R𝑑 by

𝐺E𝑚,Δ𝑡𝑚
p𝑡, 𝑥q “

$

&

%

𝑑
Θ𝑖p𝑝

𝑛
𝐾𝜎q ´Θ𝑖p𝑝

𝑛
𝐾q

𝑑𝜎
𝑛𝐾𝜎, if p𝑡, 𝑥q P p𝑡𝑛´1

𝑚 , 𝑡𝑛𝑚s ˆ∆𝜎,

0 otherwise,
(4.1)

for 𝜎 P E𝑖,𝑚, 1 ď 𝑛 ď 𝑁𝑚 and, respectively,

𝐽E𝑚,Δ𝑡𝑚
p𝑡, 𝑥q “ 𝑑

Υp𝑝𝑛
𝐾𝜎q ´Υp𝑝𝑛

𝐾q

𝑑𝜎
𝑛𝐾𝜎, if p𝑡, 𝑥q P p𝑡𝑛´1

𝑚 , 𝑡𝑛𝑚s ˆ∆𝜎, (4.2)

for 𝜎 P E𝑚, 1 ď 𝑛 ď 𝑁𝑚. We remind that 𝑠T𝑚,Δ𝑡𝑚
“ 𝒮p𝑝T𝑚,Δ𝑡𝑚

, 𝑥q is the sequence of approximate saturation
fields computed from that of approximate pressure fields 𝑝T𝑚,Δ𝑡𝑚

by (2.15b).

Proposition 4.1. There exists a measurable function 𝑝 : 𝑄𝑇 Ñ R such that Υp𝑝q ´Υp𝑝Dq P 𝐿2pp0, 𝑇 q;𝑉 q and
Θ𝑖p𝑝q P 𝐿

2pp0, 𝑇 q;𝐻1pΩ𝑖qq, 1 ď 𝑖 ď 𝐼, such that, up to a subsequence,

𝑠T𝑚,Δ𝑡𝑚 ÝÑ
𝑚Ñ`8

𝒮p𝑝, 𝑥q a.e. in 𝑄𝑇 , (4.3a)

𝐺E𝑚,Δ𝑡𝑚 ÝÑ
𝑚Ñ`8

∇Θ𝑖p𝑝q weakly in 𝐿2p𝑄𝑖,𝑇 q
𝑑, (4.3b)

𝐽E𝑚,Δ𝑡𝑚
ÝÑ

𝑚Ñ`8
∇Υp𝑝q weakly in 𝐿2p𝑄𝑇 q

𝑑. (4.3c)

Proof. We know from Corollary 3.3 that Θ𝑖p𝑝T𝑚,Δ𝑡𝑚
q and Υp𝑝T𝑚,Δ𝑡𝑚

q are bounded w.r.t. 𝑚 in 𝐿2p𝑄𝑖,𝑇 q

and 𝐿2p𝑄𝑇 q respectively, while 𝐺E𝑚,Δ𝑡𝑚 and 𝐽E𝑚,Δ𝑡𝑚 are respectively bounded in 𝐿2p𝑄𝑖,𝑇 q
𝑑 and 𝐿2p𝑄𝑇 q

𝑑. In
particular, there exist pΘ𝑖 P 𝐿

2p𝑄𝑖,𝑇 q, pΥ P 𝐿2p𝑄𝑇 q, 𝐽 P 𝐿2p𝑄𝑖,𝑇 q
𝑑, and 𝐽 P 𝐿2p𝑄𝑇 q

𝑑 such that

Θ𝑖p𝑝T𝑚,Δ𝑡𝑚q ÝÑ
𝑚Ñ`8

pΘ𝑖 weakly in 𝐿2p𝑄𝑖,𝑇 q, (4.4a)
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Υp𝑝T𝑚,Δ𝑡𝑚
q ÝÑ

𝑚Ñ`8
pΥ weakly in 𝐿2p𝑄𝑇 q, (4.4b)

𝐺E𝑚,Δ𝑡𝑚
ÝÑ

𝑚Ñ`8
𝐺 weakly in 𝐿2p𝑄𝑖,𝑇 q

𝑑, (4.4c)

𝐽E𝑚,Δ𝑡𝑚 ÝÑ
𝑚Ñ`8

𝐽 weakly in 𝐿2p𝑄𝑇 q
𝑑. (4.4d)

Establishing that pΘ𝑖 P 𝐿2pp0, 𝑇 q;𝐻1pΩ𝑖qq and pΥ P 𝐿2pp0, 𝑇 q;𝐻1pΩqq with 𝐺 “ ∇pΘ𝑖 and 𝐽 “ ∇pΥ is now
classical, see for instance Lemma 2 of [27] or Lemma 4.4 of [18].

The key points of this proof are the identification pΘ𝑖 “ Θ𝑖p𝑝q and pΥ “ Υp𝑝q for some measurable 𝑝, as well as
the proofs of the almost everywhere convergence property (4.3a). The identification of the limit and the almost
everywhere convergence can be handled simultaneously by using twice ([2], Thm. 3.9), once for Θ𝑖p𝑝q and once
for Υp𝑝q. More precisely, Lemma 3.4 provides a control on the time variations of the approximate saturation
𝑠T𝑚,Δ𝑡𝑚

, whereas Corollary 3.3 provides some compactness w.r.t. space on Θ𝑖p𝑝T𝑚,Δ𝑡𝑚
q and Υp𝑝T𝑚,Δ𝑡𝑚

q.
Using further that 𝑠T𝑚,Δ𝑡𝑚

“ 𝒮𝑖 ˝ Θ´1
𝑖 pΘ𝑖p𝑝T𝑚,Δ𝑡𝑚

qq with 𝒮𝑖 ˝ Θ´1
𝑖 nondecreasing and continuous, then one

infers from Theorem 3.9 of [2] that

𝑠T𝑚,Δ𝑡𝑚 ÝÑ
𝑚Ñ`8

𝒮𝑖 ˝Θ´1
𝑖 ppΘ𝑖q a.e. in 𝑄𝑖,𝑇 .

Let 𝑝 “ Θ´1
𝑖 ppΘ𝑖q. Then, (4.3a) and (4.3b) hold. Proving (4.3a) and (4.3c) is similar, and the properties (4.3)

can be assumed to hold for the same function 𝑝 up to the extraction of yet another subsequence.
Finally, by applying the arguments developed in Section 4.2 of [8], we show that Υp𝑝q and Υp𝑝Dq share the

same trace on p0, 𝑇 q ˆ ΓD, hence Υp𝑝q ´Υp𝑝Dq P 𝐿2pp0, 𝑇 q;𝑉 q. �

Let us now define
𝜂E𝑚,Δ𝑡𝑚p𝑡, 𝑥q “ 𝜂𝑛

𝜎 if p𝑡, 𝑥q P p𝑡𝑛´1
𝑚 , 𝑡𝑛𝑚s ˆ∆𝜎 (4.5)

for 𝜎 P E𝑚, 1 ď 𝑛 ď 𝑁𝑚.

Lemma 4.2. Up to a subsequence, the function 𝑝 whose existence is guaranteed by Proposition 4.1 satisfies

𝜂E𝑚,Δ𝑡𝑚 ÝÑ
𝑚Ñ8

𝜂p𝒮p𝑝, 𝑥qq in 𝐿𝑞 p𝑄𝑇 q , 1 ď 𝑞 ă `8. (4.6)

Proof. Because of (4.3a), 𝜂T𝑚,Δ𝑡𝑚
“ 𝜂p𝑠T𝑚,Δ𝑡𝑚

, 𝑥q converges almost everywhere to 𝜂p𝒮p𝑝, 𝑥q, 𝑥q. Since 𝜂 is
bounded, Lebesgue’s dominated convergence theorem ensures that the convergence holds in 𝐿𝑞p𝑄𝑇 q for all
𝑞 P r1,`8q. The reconstruction 𝜂E𝑚,Δ𝑡𝑚

of the mobility is also uniformly bounded, so we have just to show
that ‖𝜂T𝑚,Δ𝑡𝑚 ´ 𝜂E𝑚,Δ𝑡𝑚‖𝐿1p𝑄𝑇 q Ñ 0 as 𝑚 Ñ `8. Letting ∆𝐾𝜎 “ 𝐾 X∆𝜎 denote the half-diamond cell, we
have

‖𝜂T𝑚,Δ𝑡𝑚 ´ 𝜂E𝑚,Δ𝑡𝑚‖𝐿1p𝑄𝑇 q ď

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝐾PT𝑚

ÿ

𝜎PE𝐾

𝑚Δ𝐾𝜎
|𝜂𝐾p𝑠

𝑛
𝐾q ´ 𝜂

𝑛
𝜎 |

ď

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑚

𝑚Δ𝜎
|𝜂𝐾p𝑠

𝑛
𝐾q ´ 𝜂𝐾𝜎p𝑠

𝑛
𝐾𝜎q| ď

𝐼
ÿ

𝑖“1

R𝑖,𝑚 ` RΓ,𝑚,

where

R𝑖,𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑖,𝑚

𝑚Δ𝜎
|𝜂𝐾p𝑠

𝑛
𝐾q ´ 𝜂𝐾𝜎p𝑠

𝑛
𝐾𝜎q|,

RΓ,𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PEΓ,𝑚

𝑚Δ𝜎
|𝜂𝐾p𝑠

𝑛
𝐾q ´ 𝜂𝐾𝜎p𝑠

𝑛
𝐾𝜎q|.
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Let us define
𝑟E𝑚,Δ𝑡𝑚

p𝑡, 𝑥q “ |𝜂𝑛
𝐾 ´ 𝜂

𝑛
𝐾𝜎| “ 𝑟𝑛

𝜎 if p𝑡, 𝑥q P p𝑡𝑛´1
𝑚 , 𝑡𝑛𝑚s ˆ∆𝜎,

then 𝑟E𝑚,Δ𝑡𝑚
is uniformly bounded by ‖𝜂‖8 “ 1{𝜇. Therefore,

RΓ,𝑚 ď
𝑇

𝜇

ÿ

𝜎PEΓ,𝑚

𝑚Δ𝜎
ď

2𝑇 𝜈𝑑´1pΓq
𝜇𝑑

ℎT𝑚

where ℎT𝑚
is the size of T𝑚 as defined in (2.8). Besides, for 𝑖 P t1, . . . , 𝐼u, 𝜂𝑖 ˝𝒮𝑖 ˝Θ´1

𝑖 is continuous, monotone
and bounded, hence uniformly continuous. This provides the existence of a modulus of continuity 𝜛𝑖 : R` Ñ R`
with 𝜛𝑖p0q “ 0 such that

𝑟𝑛
𝜎 :“ |𝜂 ˝ 𝒮 ˝Θ´1

𝑖 pΘ𝑛
𝐾q ´ 𝜂 ˝ 𝒮 ˝Θ´1

𝑖 pΘ𝑛
𝐾𝜎q | ď 𝜛𝑖 p|Θ𝑛

𝐾 ´Θ𝑛
𝐾𝜎|q (4.7)

for 𝜎 P E𝑖,𝑚. Therefore, if the function

𝑞E𝑖,𝑚,Δ𝑡𝑚p𝑡, 𝑥q “

#

|Θ𝑖p𝑝
𝑛
𝐾q ´Θ𝑖p𝑝

𝑛
𝐾𝜎q| if p𝑡, 𝑥q P p𝑡𝑛´1

𝑚 , 𝑡𝑛𝑚s ˆ∆𝜎,

0 otherwise,
(4.8a)

for 𝜎 P E𝑖,𝑚, 1 ď 𝑛 ď 𝑁𝑚, could be proven to converge to 0 almost everywhere in 𝑄𝑖,𝑇 , then it would also
be the case for 𝑟E𝑚,Δ𝑡𝑚

and R𝑖,𝑚 as 𝑚 Ñ `8, thanks to Lebesgue’s dominated convergence theorem. Now, it
follows from (3.12a) and from the elementary geometric relation

𝑚Δ𝜎
“
𝑎𝜎

𝑑
𝑑2

𝜎 ď 4
𝑎𝜎

𝑑
ℎ2

T𝑚
,

that

‖𝑞E𝑖,𝑚,Δ𝑡𝑚‖2
𝐿2p𝑄𝑖,𝑇 q

“

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑖,𝑚

𝑚Δ𝜎 |Θ𝑖p𝑝
𝑛
𝐾q ´Θ𝑖p𝑝

𝑛
𝐾𝜎q|

2 ď
4𝐶3

𝑑
ℎ2

T𝑚
.

Therefore, 𝑞E𝑖,𝑚,Δ𝑡𝑚
Ñ 0 in 𝐿2p𝑄𝑖,𝑇 q, thus also almost everywhere up to extraction of a subsequence. This

provides the desired result. �

4.2. Identification of the limit

So far, we have exhibited some “limit” value 𝑝 for the approximate solution 𝑝T𝑚,Δ𝑡𝑚
in Proposition 4.1.

Next, we show that the scheme is consistent with the continuous problem by showing that any limit value is a
weak solution.

Proposition 4.3. The function 𝑝 whose existence is guaranteed by Proposition 4.1 is a weak solution of the
problem (1.9a)–(1.9c) in the sense of Definition 1.1.

Proof. Let 𝜙 P 𝐶8𝑐 ptΩY ΓNu ˆ r0, 𝑇 qq and denote by 𝜙𝑛
𝐾 “ 𝜙p𝑡𝑛𝑚, 𝑥𝐾q, for all 𝐾 P T𝑚 and all 𝑛 P t0, . . . , 𝑁𝑚u.

We multiply (2.10) by ∆𝑡𝑛𝑚𝜙
𝑛´1
𝐾 and sum over 𝑛 P t1, . . . , 𝑁𝑚u and 𝐾 P T𝑚 to obtain

A𝑚 ` B𝑚 “ 0, 𝑚 ě 1, (4.9)

where we have set

A𝑚 “

𝑁𝑚
ÿ

𝑛“1

ÿ

𝐾PT𝑚

𝑚𝐾𝜑𝐾

`

𝑠𝑛
𝐾 ´ 𝑠

𝑛´1
𝐾

˘

𝜙𝑛´1
𝐾 , (4.10a)

B𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑚

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝜗

𝑛
𝐾 ´ 𝜗

𝑛
𝐾𝜎q

`

𝜙𝑛´1
𝐾 ´ 𝜙𝑛´1

𝐾𝜎

˘

. (4.10b)
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The quantity A𝑚 in (4.10a) can be rewritten as

A𝑚 “ ´

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝐾PT𝑚

𝑚𝐾𝜑𝐾𝑠
𝑛
𝐾

𝜙𝑛
𝐾 ´ 𝜙

𝑛´1
𝐾

∆𝑡𝑛𝑚
´

ÿ

𝐾PT𝑚

𝑚𝐾𝜑𝐾𝑠
0
𝐾𝜙

0
𝐾

“ ´

żż

𝑄𝑇

𝜑 𝑠T𝑚,Δ𝑡𝑚𝛿𝜙T𝑚,Δ𝑡𝑚 d𝑥d𝑡´
ż

Ω

𝜑 𝑠0T𝑚
𝜙0

T𝑚
d𝑥

where

𝛿𝜙T𝑚,Δ𝑡𝑚
p𝑡, 𝑥q “

𝜙𝑛
𝐾 ´ 𝜙

𝑛´1
𝐾

∆𝑡𝑛𝑚
, if p𝑡, 𝑥q P p𝑡𝑛´1

𝑚 , 𝑡𝑛𝑚q ˆ𝐾,

𝜙0
T𝑚

“ 𝜙p0, 𝑥𝐾q if 𝑥 P 𝐾.

Thanks to the regularity of 𝜙, the function 𝛿𝜙T𝑚,Δ𝑡𝑚 converges uniformly to B𝑡𝜙 on Ω ˆ r0, 𝑇 s. Moreover, by
virtue of (4.3a) and the boundedness of 𝑠T𝑚,Δ𝑡𝑛

we can state that
żż

𝑄𝑇

𝜑 𝑠T𝑚,Δ𝑡𝑚
𝛿𝜙T𝑚,Δ𝑡𝑚

d𝑥d𝑡 ÝÑ
𝑚Ñ`8

żż

𝑄𝑇

𝜑𝒮p𝑝, 𝑥qB𝑡𝜙d𝑥d𝑡,

and, in view of the definition (2.13) of 𝑠0T𝑚
and of the uniform convergence of 𝜙0

T𝑚
towards 𝜙p0, ¨q,

ż

Ω

𝜑T𝑚
𝑠0T𝑚

𝜙0
T𝑚

d𝑥 ÝÑ
𝑚Ñ`8

ż

Ω

𝜑 𝑠0𝜙p0, ¨q d𝑥.

From the above, we draw that

lim
𝑚Ñ`8

A𝑚 “ ´

żż

𝑄𝑇

𝜑𝒮p𝑝, 𝑥qB𝑡𝜙d𝑥d𝑡´
ż

Ω

𝜑 𝑠0𝜙p0, ¨qd𝑥. (4.11)

Let us now turn our attention to the quantity B𝑚 of (4.10b), which can be split into B𝑚 “ B1
𝑚 ` B2

𝑚 using

B1
𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑚

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

`

𝜙𝑛´1
𝐾 ´ 𝜙𝑛´1

𝐾𝜎

˘

,

B2
𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑚

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 p𝜓𝐾 ´ 𝜓𝐾𝜎q

`

𝜙𝑛´1
𝐾 ´ 𝜙𝑛´1

𝐾𝜎

˘

.

Consider first the convective term B2
𝑚. It follows from the definition of the discrete gravitational potential

𝜓𝐾 “ ´𝜚𝑔 ¨ 𝑥𝐾 , 𝜓𝜎 “ ´𝜚𝑔 ¨ 𝑥𝜎, 𝐾 P T𝑚, 𝜎 P E D
ext,𝑚

and from the orthogonality of the mesh that

𝜓𝐾 ´ 𝜓𝐾𝜎 “ 𝑑𝜎𝜚𝑔 ¨ 𝑛𝐾𝜎, @𝜎 P E𝐾zE
N
ext, 𝐾 P T𝑚.

Therefore, B2
𝑚 can be transformed into

B2
𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑚

𝑚Δ𝜎
𝜆𝜎𝜂

𝑛
𝜎𝑑
𝜙𝑛´1

𝐾 ´ 𝜙𝑛´1
𝐾𝜎

𝑑𝜎
𝑛𝐾𝜎 ¨ 𝜚𝑔

“´

żż

𝑄𝑇

𝜆E𝑚
𝜂E𝑚,Δ𝑡𝑚

𝐻E𝑚,Δ𝑡𝑚
¨ 𝜚𝑔 d𝑥d𝑡, (4.12)
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where

𝜆E𝑚
p𝑥q “ 𝜆𝜎 if 𝑥 P ∆𝜎, 𝜎 P E𝑚,

𝐻E𝑚,Δ𝑡𝑚p𝑡, 𝑥q “ p𝑑{𝑑𝜎qp𝜙
𝑛´1
𝐾𝜎 ´ 𝜙𝑛´1

𝐾 q𝑛𝐾𝜎 if p𝑡, 𝑥q P r𝑡𝑛´1
𝑚 , 𝑡𝑛𝑚q ˆ∆𝜎.

After ([18], Lem. 4.4), 𝐻E𝑚,Δ𝑡𝑚
converges weakly in 𝐿2p𝑄𝑇 q

𝑑 towards ∇𝜙, while 𝜆E𝑚
and 𝜂E𝑚,Δ𝑡𝑚

converge
strongly in 𝐿4pΩq and 𝐿4p𝑄𝑇 q towards 𝜆 and 𝜂p𝒮p𝑝, 𝑥qq respectively (cf., Lem. 4.2). Thus, we can pass to the
limit in (4.12) and

lim
𝑚Ñ`8

B2
𝑚 “ ´

żż

𝑄𝑇

𝜆𝜂p𝒮p𝑝, 𝑥qq𝜚𝑔 ¨∇𝜙d𝑥d𝑡. (4.13)

The capillary diffusion term B1
𝑚 appears to be the most difficult one to deal with. Taking inspiration from [15],

we introduce the auxiliary quantity

rB1
𝑚 “

𝐼
ÿ

𝑖“1

rB1
𝑖,𝑚

“

𝐼
ÿ

𝑖“1

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑖,𝑚

𝑎𝜎

a

𝜆𝑖𝜂𝑛
𝜎 pΘ𝑖p𝑝

𝑛
𝐾q ´Θ𝑖 p𝑝

𝑛
𝐾𝜎qq

`

𝜙𝑛´1
𝐾 ´ 𝜙𝑛´1

𝐾𝜎

˘

.

Analogously to [24], we can define a piecewise-constant vector field 𝐻E𝑚,Δ𝑡𝑚
such that

𝐻E𝑚,Δ𝑡𝑚
p𝑡, 𝑥q ¨ 𝑛𝐾𝜎 “ 𝜙𝑛´1

𝐾𝜎 ´ 𝜙𝑛´1
𝐾 , if p𝑡, 𝑥q P r𝑡𝑛´1

𝑚 , 𝑡𝑛𝑚q ˆ∆𝜎, 𝜎 P E𝑚,

and such that 𝐻E𝑚,Δ𝑡𝑚
converges uniformly towards ∇𝜙 on 𝑄𝑇 . Under these circumstances, rB1

𝑖,𝑚 reads

rB1
𝑖,𝑚 “

ż 𝑇

0

ż

Ω𝑖,𝑚

a

𝜆𝑖𝜂E𝑚,Δ𝑡𝑚
𝐺E𝑚,Δ𝑡𝑚

¨𝐻E𝑚,Δ𝑡𝑚
d𝑥d𝑡

where Ω𝑖,𝑚 “
Ť

𝜎PE𝑖,𝑚
∆𝜎 Ă Ω𝑖. The strong convergence of ?𝜂E𝑚,Δ𝑡𝑚

in 𝐿2p𝑄𝑖,𝑇 q towards
a

𝜂𝑖p𝒮𝑖p𝑝qq directly
follows from the boundedness of 𝜂𝑖 combined with (4.3a). Combining this with (4.3b) results in

rB1
𝑖,𝑚 ÝÑ

𝑚Ñ`8

żż

𝑄𝑖,𝑇

a

𝜆𝑖𝜂𝑖p𝒮𝑖p𝑝qq∇Θ𝑖p𝑝q ¨∇𝜙d𝑥 d𝑡 “
żż

𝑄𝑖,𝑇

∇Φ𝑖p𝑝q ¨∇𝜙d𝑥d𝑡. (4.14)

Therefore, to finish the proof of Proposition 4.3, it only remains to check that 𝐵1
𝑚 and r𝐵1

𝑚 share the same limit.
To this end, we observe that, by the triangle inequality, we have

|B1
𝑚 ´

rB1
𝑚| ď RΓ,𝑚 `

𝐼
ÿ

𝑖“1

R𝑖,𝑚, (4.15)

where

RΓ,𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PEΓ,𝑚

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 |𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎||𝜙

𝑛´1
𝐾 ´ 𝜙𝑛´1

𝐾𝜎 |,

R𝑖,𝑚 “

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑖,𝑚

𝑎𝜎

a

𝜆𝑖𝜂𝑛
𝜎 |Θ𝑖p𝑝

𝑛
𝐾q ´Θ𝑖p𝑝

𝑛
𝐾𝜎q ´

a

𝜆𝑖𝜂𝑛
𝜎 p𝑝

𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q||𝜙

𝑛´1
𝐾 ´ 𝜙𝑛´1

𝐾𝜎 |.

Applying the Cauchy–Schwarz inequality and using Proposition 3.1, we find

|RΓ,𝑚|
2 ď 𝐶1

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PEΓ,𝑚

𝑎𝜎𝜆𝜎𝜂
𝑛
𝜎 |𝜙

𝑛´1
𝐾 ´ 𝜙𝑛´1

𝐾𝜎 |
2 ď 2𝐶1𝑇‖∇𝜙‖2

8

max𝑖 𝜆𝑖

𝜇
𝜈𝑑´1pΓqℎT𝑚 ,
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so RΓ,𝑚 Ñ 0 as 𝑚Ñ `8. Besides, we also apply the Cauchy–Schwarz inequality to R𝑖,𝑚 in order to obtain

|R𝑖,𝑚|
2 ď 𝐶1

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑖,𝑚

𝑎𝜎 𝜆𝑖

ˇ

ˇ

a

𝜂𝑛
𝜎 ´

a

r𝜂𝑛
𝜎

ˇ

ˇ

2 ˇ
ˇ𝜙𝑛´1

𝐾 ´ 𝜙𝑛´1
𝐾𝜎

ˇ

ˇ

2

ď 𝑑𝜆𝑖𝐶1‖∇𝜙‖2
8

𝑁𝑚
ÿ

𝑛“1

∆𝑡𝑛𝑚
ÿ

𝜎PE𝑖,𝑚

𝑚Δ𝜎
|𝜂𝑛

𝜎 ´ r𝜂𝑛
𝜎 | ,

where we have set

r𝜂𝑛
𝜎 “

$

’

&

’

%

𝜂𝑖p𝑠
𝑛
𝐾q if 𝑝𝑛

𝐾 “ 𝑝𝑛
𝐾𝜎,

„

Θ𝑖p𝑝
𝑛
𝐾q ´Θ𝑖p𝑝

𝑛
𝐾𝜎q?

𝜆𝑖p𝑝𝑛
𝐾 ´ 𝑝

𝑛
𝐾𝜎q

2

otherwise.

Define

r𝜂E𝑚,Δ𝑡𝑚
p𝑡, 𝑥q “

#

r𝜂𝑛
𝜎 if p𝑡, 𝑥q P p𝑡𝑛´1

𝑚 , 𝑡𝑛𝑚s ˆ∆𝜎, 𝜎 P
Ť𝐼

𝑖“1 E𝑖,𝑚,

0 otherwise.

Reproducing the proof of Lemma 4.2, we can show that

r𝜂E𝑚,Δ𝑡𝑚 ÝÑ
𝑚Ñ8

𝜂p𝒮p𝑝, 𝑥qq in 𝐿𝑞p𝑄𝑇 q, 1 ď 𝑞 ă `8.

Therefore, R𝑖,𝑚 Ñ 0 as 𝑚 Ñ `8. Putting things together in (4.15), we conclude that B1
𝑚 and rB1

𝑚 share the
same limit, which completes the proof of Proposition 4.3. �

5. Practical aspects of numerical resolution

We provide some details on the resolution strategy for the discrete problem (2.9)–(2.11c). Different techniques
have been proposed in the literature to numerically solve the Richards equation (e.g., see [40,43]). Our strategy
is based on a parametrization technique to automatically choose the most convenient variable during the Newton
iterations (Sect. 5.1) to enhance Newton’s convergence and on the addition of cells on the interfaces between
different rock types (Sect. 5.2) to improve the pressure continuity.

5.1. Switch of variable and parametrization technique

A natural choice to solve the nonlinear system (2.9)–(2.11c) is to select the pressure p𝑝𝐾q𝐾PT as primary
unknown and to solve it via an iterative method such as Newton’s one. Nevertheless, the pressure variable is
known to be an inefficient choice for 𝑠 ! 1 because of the degeneracy of Richards’ equation. For dry soils,
this strategy is outperformed by schemes in which saturation is the primary variable. On the other hand, the
knowledge of the saturation is not sufficient to describe the pressure curve in saturated regions where the
pressure-saturation relation cannot be inverted. This motivated the design of schemes involving a switch of
variable [23, 34]. In this work, we adopt the technique proposed in [7], in which a third generic variable 𝜏 is
introduced to become the primary unknown of the system. Then the idea is to choose a parametrization of the
graph t𝑝,𝒮p𝑝qu, i.e., to construct two functions s : 𝐼 Ñ r𝑠rw, 1 ´ 𝑠rns and p : 𝐼 Ñ R such that sp𝜏q “ 𝒮ppp𝜏qq
and s1p𝜏q ` p1p𝜏q ą 0 for all 𝜏 P 𝐼 Ă R. Such a parametrization is not unique, for instance one can take 𝐼 “ R,
p “ 𝐼𝑑 which amounts to solving the system always in pressure, but this is not recommended as explained
before. Here, we set 𝐼 “ p𝑠rw,`8q and

sp𝜏q “

$

&

%

𝜏 if 𝜏 ď 𝑠s,

𝒮
ˆ

𝑝s `
𝜏 ´ 𝑠s

𝒮 1p𝑝´s q

˙

if 𝜏 ě 𝑠s,
pp𝜏q “

$

&

%

𝒮´1p𝜏q if 𝜏 ď 𝑠s,

𝑝s `
𝜏 ´ 𝑠s

𝒮 1p𝑝´s q
if 𝜏 ě 𝑠s,
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Figure 1. Mesh refinement on both sides of an interface face for a 2D case.

where 𝒮 1p𝑝´s q denotes the limit as 𝑝 tends to 𝑝s “ 𝒮p𝑠sq from below of 𝒮 1p𝑝q. Since the switch point 𝑠s is taken
as the inflexion point of 𝒮, both s and p are 𝐶1 and concave, and even 𝐶2 if 𝒮 is given by the van Genuchten–
Mualem model. Moreover, for all 𝑝 P R, there exists a unique 𝜏 P p𝑠rw,`8q such that p𝑝,𝒮p𝑝qq “ ppp𝜏q, sp𝜏qq.
The resulting system ℱ𝑛p𝜏

𝑛q “ 0 made up of 𝑁T “ CardpT q nonlinear equations admits a unique solution
𝜏𝑛, since it is fully equivalent to (2.9)–(2.11c). The stopping criterion for Newton iterations is based on the
𝐿8-norm of the residual with a convergence threshold fixed to 𝜖 “ 10´12. A direct linear solver based on the LU
factorization has been used. More details about the practical resolution of this nonlinear system via the Newton
method can be found in [5].

5.2. Pressure continuity at rock type interfaces

Physically, the pressure should remain continuous on both sides of an interface between two different rock
types. But this continuity is here not imposed at the discrete level. The two-point flux approximation based
on the cell unknowns is strongly dependent on the mesh resolution and can induce a large error close to the
rock type interface. We here propose a very simple method to improve this continuity condition in pressure. It
consists in adding two thin cells of resolution 𝛿 on each side of the rock-type interface with 𝛿 ! ∆𝑥 as shown in
Figure 1.

The idea is here to add two cells unknowns in the neighborhood of the interface to have a more precise
approximation of the pressure gradient on each side of the faces where changes of rock types occur. In this way,
we avoid the introduction of face unknowns in our solver which remains unchanged. For these interface cells,
tangential fluxes are neglected.

Readers who are interested in a more advanced discussion on numerical strategies (among which the one
briefly described in the current section and referred as Method B in what follows) to solve the transmission
problem (1.10) shall refer to [6]. The study presented therein in particular covers the robustness of the nonlinear
solvers.

6. Numerical results

In this section, we present the results obtained for different test cases. For all these cases, we consider a
two-dimensional layered domain Ω “ r0 m, 5 ms ˆ r´3 m, 0 ms made up of two rock types denoted by RT0 and
RT1 respectively, RT0 being less permeable than RT1. Using these two lithologies, the domain Ω is partitioned
into three connected subdomains: Ω1 “ r1 m, 4 ms ˆ r´1 m, 0 ms, Ω2 “ r0 m, 5 ms ˆ r´3 m,´2 ms and Ω3 “

Ω z pΩ1 Y Ω2q, as depicted in Figure 2.
The Brooks–Corey [12] and van Genuchten–Mualem [47] petro-physical models are used to model the flow

characteristics of both rock types. In these models, the water saturation and the water pressure are linked
pointwise by the relation 𝑠 “ 𝒮p𝑝q where 𝒮 : R Ñ r0, 1s is nondecreasing and satisfies 𝒮p𝑝q “ 1 ´ 𝑠rn if 𝑝 ě 𝑝𝑏

and 𝒮p𝑝q Ñ 𝑠rw as 𝑝Ñ ´8, 𝑠rw being the residual wetting saturation, 𝑠rn the residual non-wetting saturation
and 𝑝𝑏 the entry pressure. More precisely, we have,
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Figure 2. Simulation domain Ω “ r0 m, 5 ms ˆ r´3 m, 0 ms.

Table 1. Parameters used for the Brooks–Corey model.

1´ 𝑠rn 𝑠rw 𝑝𝑏rPas 𝑛 𝜆rm2
s 𝜑

RT0 1.0 0.1 ´1.4708ˆ 103 3.0 10´11 0.35
RT1 1.0 0.2 ´3.4301ˆ 103 1.5 10´13 0.35

Table 2. Parameters used for the van Genuchten–Mualem model.

1´ 𝑠rn 𝑠rw 𝑛 𝜆 rm2
s 𝛼 rm´1

s 𝜑

RT0 (Sand) 1.0 0.0782 2.239 6.3812ˆ 10´12 2.8 0.3658
RT1 (Clay) 1.0 0.2262 1.3954 1.5461ˆ 10´13 1.04 0.4686

Figure 3. Water pressure and relative permeability curves for the Brooks–Corey model.

– for the Brooks–Corey model,

𝑠 “ 𝒮p𝑝q “

#

𝑠rw ` p1´ 𝑠rn ´ 𝑠rwq
´

𝑝
𝑝𝑏

¯´𝑛

if 𝑝 ď 𝑝𝑏,

1´ 𝑠rn if 𝑝 ą 𝑝𝑏,

𝑘𝑟p𝑠q “ 𝑠
3` 2

𝑛

eff , 𝑠eff “
𝑠´ 𝑠rw

1´ 𝑠rn ´ 𝑠rw
;
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Figure 4. Water pressure and relative permeability curves for the van Genuchten–Mualem model.

Figure 5. Boundary condition for the filling case.

– for the van Genuchten–Mualem model,

𝑠 “ 𝒮p𝑝q “

$

&

%

𝑠rw ` p1´ 𝑠rn ´ 𝑠rwq
”

1`
ˇ

ˇ

ˇ

𝛼
𝜌𝑔𝑝

ˇ

ˇ

ˇ

𝑛ı´𝑚

if 𝑝 ď 0,

1´ 𝑠rn if 𝑝 ą 0,

𝑘𝑟p𝑠q “ 𝑠
1
2
eff

!

1´
”

1´ 𝑠
1
𝑚

eff

ı𝑚)2

, 𝑠eff “
𝑠´ 𝑠rw

1´ 𝑠rn ´ 𝑠rw
, 𝑚 “ 1´

1
𝑛

;

where 𝜂p¨q “ 𝑘𝑟p¨q{𝜇, 𝜇 “ 10´3 Pa ¨ s being water viscosity, is the relative permeability. The parameters used for
both rock types are given in Table 1 for the Brooks–Corey model and in Table 2 for the van Genuchten–Mualem
model. With these choices of parameters, water is more likely to be in RT1 than in RT0, in the sense tha,
at a given pressure, the water saturation is higher in RT1 than in RT0, as it can be seen on the plots of the
capillary-pressure functions depicted in Figures 3 and 4 for these two petro-physical models. Figures 3 and 4 also
show the relative permeability functions. Note the non-Lipschitz character of the relative permeability in the
van Genuchten–Mualem framework.For the numerical tests, in order to avoid infinite values for the derivative
of 𝑘𝑟p𝑠q when 𝑠 Ñ 1 ´ 𝑠rn, we approximate it for 𝑠 P r𝑠lim, 1 ´ 𝑠rns using a second degree polynomial r𝑘𝑟p𝑠q.
Such a polynomial satisfies the following constraints: 𝑘𝑟p𝑠limq “ r𝑘𝑟p𝑠limq and r𝑘𝑟p1 ´ 𝑠rnq “ 1. The value 𝑠lim
corresponds to 𝑠eff “ 0.998.

6.1. Configurations of the test cases

For both petro-physical models, we consider two configurations further referred as filling and drainage cases,
which are described in the following.
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Figure 6. Evolution of the saturation profile for 𝑡 P t0 s, 20ˆ 103 s, 40ˆ 103 s, 60ˆ 103 s, 86ˆ
103 su for filling case, using the Brooks–Corey model, method B and the 50ˆ 30 cells mesh.

Figure 7. Evolution of the saturation profile for 𝑡 P t0 s, 20ˆ 103 s, 40ˆ 103 s, 60ˆ 103 s, 86ˆ
103 su for filling case using the van Genuchten–Mualem model, method B and the 50ˆ 30 cells
mesh.
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Figure 8. Boundary condition for the drainage test.

Figure 9. Evolution of the saturation profile for 𝑡 P t0 s, 26.2 ˆ 104 s, 52.4 ˆ 104 s, 78.6 ˆ
104 s, 105 ˆ 104 su for drying case, using the Brooks–Corey model, method B and the 50 ˆ 30
cells mesh.

6.1.1. Filling case

The filling test case has already been considered in [17, 34, 38, 42]. Starting from an initially dry domain
Ω, whose layers’ composition is reported in Figure 5, water flows from a part of the top boundary during
the entire simulation time that is equal to one day. A no-flow boundary condition is applied elsewhere. More
precisely, the initial capillary pressure is set to ´47.088ˆ 105 Pa and the water flux rate to 0.5 m/day through
Γ𝑁 “ tp𝑥, 𝑦q |𝑥 P r1 m, 4 ms, 𝑦 “ 0 mu. For this simulation a uniform time-step ∆𝑡 “ 1000 s is prescribed for the
test using the Brooks–Corey model and ∆𝑡 “ 500 s for the one using the van Genuchten–Mualem model.

The test case follows the following dynamics. Water starts invading the void porous space in Ω1. When it
reaches the interface with Ω3, capillarity involves a suction force on water from Ω1 to Ω3. Since clay (RT1) has
low permeability, water encounters difficulties to progress within Ω3. This yields a front moving downward in
Ω1 which is stiffer for the Brooks–Corey model than for the van Genuchten–Mualem one. In both cases, the
simulation is stopped before water reaches the bottom part corresponding to Ω2. In Figure 6 we can observe the
evolution of the saturation profile during the simulation performed on a 50ˆ30 cells mesh with the Brooks–Corey
model, whereas the evolution corresponding to van Genuchten–Mualem nonlinearities is depicted in Figure 7.
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Figure 10. Evolution of the saturation profile for 𝑡 P t0 s, 26.16 ˆ 104 s, 52.4 ˆ 104 s, 78.56 ˆ
104 s, 105ˆ 104 su for drying case using the van Genuchten–Mualem model, method B and the
50ˆ 30 cells mesh.

Figure 11. 𝐿2p𝑄𝑇 q relative error in saturation for the drainage case using the Brooks–Corey
model.

6.1.2. Drainage case

This test case is designed as a two-dimensional extension of a one-dimensional test case proposed by [41] and
addressed in [17,42]. We simulate a vertical drainage starting from initially and boundary saturated conditions
during 105ˆ 104 s. At the initial time, the pressure varies with depth with 𝑝0p𝑧q “ ´𝜌𝑔𝑧. A Dirichlet boundary
condition 𝑝𝐷 “ 0 Pa is imposed on the bottom of the domain, more precisely on Γ𝐷 “ tp𝑥, 𝑦q |𝑥 P r0 m, 5 ms, 𝑦 “
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Table 3. Newton’s iterations for the mesh 200ˆ 120 for the drainage case using the Brooks–
Corey model.

7 total 7 avg 7 max

Method A 1927 3 29
Method B 2038 3 29

Figure 12. Water saturation profile obtained in the drainage test case with the Brooks–Corey
model using methods A and B along vertical cross-sections at different times. (A) Cross-section
at 𝑥 “ 0.85 m, 𝑡 “ 53.2ˆ104 s. (B) Cross-section at 𝑥 “ 0.85 m, 𝑡 “ 105ˆ104 s. (C) Cross-section
at 𝑥 “ 2.55 m, 𝑡 “ 53.2ˆ 104 s. (D) Cross-section at 𝑥 “ 2.55 m, 𝑡 “ 105ˆ 104 s.

´3 mu. The layers’ composition of Ω is reported in Figure 8. For this simulation a uniform time-step ∆𝑡 “ 2000 s
is used for the test with the Brooks–Corey model and ∆𝑡 “ 800 s for the one with the van Genuchten–Mualem
model.
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Figure 13. 𝐿2p𝑄𝑇 q relative error in saturation for the filling case using the Brooks–Corey model.

Table 4. Newton’s iterations for the mesh 200ˆ120 for the filling case using the Brooks–Corey
model.

7 total 7 avg 7 max

Method A 659 7 31
Method B 788 9 32

At the top interface between Ω1 and Ω3, capillarity acts in opposition to gravity and to the evolution of the
system into a dryer configuration. The interface between Ω2 and Ω3 acts in the reverse way: suction accelerates
the gravity driven drainage of RT0.

In Figure 9 we can observe the evolution of the saturation profile during the simulation performed on a
50 ˆ 30 cells mesh with the Brooks–Corey model, whereas the evolution corresponding to van Genuchten–
Mualem nonlinearities is depicted in Figure 10.

6.2. Comparisons of the numerical treatments of the interfaces

For each petro-physical model and configuration, a numerical convergence analysis is carried out for the
schemes with (method B) or without (method A) thin cells, whose thickness is fixed to 𝛿 “ 10´6 m, at rock
type interfaces. Five structured meshes with the following resolutions are considered for this analysis: 50ˆ 30,
100 ˆ 60, 200 ˆ 120, 400 ˆ 240, 800 ˆ 480. The evolution of the error is measured using the 𝐿2p𝑄𝑇 q-norm of
the relative difference between the saturations obtained on a given mesh and the ones computed with Method
A and a mesh of resolution 800 ˆ 480. The number of Newton iterations obtained with both methods is also
compared.
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Figure 14. Water saturation profile obtained in the filling test case with the Brooks–Corey
model using Method A and B along vertical cross-sections at different times. (A) Cross-section
at 𝑥 “ 0.95 m, 𝑡 “ 30ˆ103 s. (B) Cross-section at 𝑥 “ 0.95 m, 𝑡 “ 86.4ˆ103 s. (C) Cross-section
at 𝑥 “ 2.55 m, 𝑡 “ 30ˆ 103 s. (D) Cross-section at 𝑥 “ 2.55 m, 𝑡 “ 86.4ˆ 103 s.

6.2.1. Brooks–Corey model: drainage case

For the drainage case with the Brooks–Corey model, the convergence error is given in Figure 11. First we
notice that, for all meshes, the error is smaller with method B than with method A and that we have a linear
rate of convergence with the first one whereas this rate is smaller with the latter one. The total, average and
maximal number of Newton iterations are also given in Table 3. Method B appears to be slightly more expensive.

Let us now look into the results obtained with Method A and Method B. In Figure 12 we plot the saturation
profile at 𝑥 P t0.85 m, 2.55 mu (see Fig. 2) for two different times, namely when the cells line in Ω2 below its
interface with Ω3 starts drying and at the final time.

6.2.2. Brooks–Corey model: filling case

For the filling case with the Brooks–Corey model, the convergence error is given in Figure 13. As for the
previous case, Method B enables to recover a linear convergence rate. Except for the first two meshes where
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Figure 15. 𝐿2p𝑄𝑇 q relative error in saturation for the filling case using the van Genuchten–
Mualem model.

Table 5. Newton’s iterations for the mesh 200ˆ120 for the filling case using the van Genuchten–
Mualem model.

7 total 7 avg 7 max

Method A 782 4 15
Method B 959 5 15

the error obtained with Method B is slightly larger, for all other meshes, this error is smaller than the one
obtained with method A. The total, average and maximal number of Newton iterations are given in Table 4.
The algorithm behaves here in the same way as before.

Let us now look into the results obtained with Method A and Method B. In Figure 14 we plot the saturation
profile at 𝑥 P t0.95 m, 2.55 mu (see Fig. 2) for two different times: when cells around the interface between Ω1

and Ω3 are almost saturated and at the final time.

6.2.3. Van Genuchten–Mualem model: filling case

For the filling case with the van Genuchten–Mualem model, the convergence error is given in Figure 15. Both
methods exhibit a linear rate of convergence. On the other hand, the error is slightly larger with method B than
with method A. The total, average and maximal number of Newton iterations are given in Table 5.

Figure 16 shows the localization of the differences between the numerical solutions provided by methods A
and B. In the picture we report the vertical section of the saturation solution at 𝑥 P t0.65 m, 0.85 m, 2.55 mu (see
Fig. 2) for two different times: when the line of cells below and above the interface between Ω1 and Ω3 are almost
saturated and at the final time. Unsurprisingly, the difference is located in the neighborhood of the interfaces.
Moreover, as suggested by Figures 13 and 15, the influence of the introduction of additional interface unknowns
(method B) has a lower impact for van Genuchten–Mualem nonlinearities than for Brook–Corey nonlinearities.
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Figure 16. Water saturation profile obtained in the filling test case with the van Genuchten
Mualem model using Method A and B along vertical cross-sections at different times. (A)
Cross-section at 𝑥 “ 0.65 m, 𝑡 “ 45 ˆ 103 s. (B) Cross-section at 𝑥 “ 0.65 m, 𝑡 “ 86.4 ˆ 103 s.
(C) Cross-section at 𝑥 “ 0.85 m, 𝑡 “ 45ˆ103 s. (D) Cross-section at 𝑥 “ 0.85 m, 𝑡 “ 86.4ˆ103 s.
(E) Cross-section at 𝑥 “ 2.55 m, 𝑡 “ 45ˆ103 s. (F) Cross-section at 𝑥 “ 2.55 m, 𝑡 “ 86.4ˆ103 s.
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Figure 17. 𝐿2p𝑄𝑇 q relative error in saturation for the drainage case using the van Genuchten–
Mualem model.

Table 6. Newton’s iterations for the mesh 200ˆ120 for the filling case using the van Genuchten–
Mualem model.

7 total 7 avg 7 max

Method A 2845 2 29
Method B 3523 2 20

6.2.4. Van Genuchten–Mualem model: drainage case

For the drainage case with the van Genuchten–Mualem model, the convergence error is given in Figure 17.
Both methods exhibit a linear rate of convergence. Moreover, the error is slightly larger with method A than
with method B. The total, average and maximal number of Newton iterations are given in Table 6.

Let us now look into the results obtained with method A and method B. In Figure 18 we plot the saturation
profile at 𝑥 P t0.95 m, 2.55 mu (see Fig. 2) for two different times: when the cell line in Ω2 below its interface
with Ω3 significantly starts drying and at the final time.

6.2.5. Influence of the parameter 𝛿

Let us now analyze how the thickness of the thin cells employed in method B affects the accuracy of the
solution obtained with this method. We consider the filling and drainage cases along with the Brooks–Corey
model and evaluate the relative 𝐿2p𝑄𝑇 q error between the solution obtained on the 200ˆ 120 cells mesh using
𝛿 P t10´2 m, 10´4 m, 10´6 mu with respect to the reference solution obtained on the 800ˆ 480 cells mesh using
𝛿ref “ 10´6 m. As shown in Figure 19, the value of 𝛿 does not have a significant influence on the overall error
as soon as 𝛿 is small enough. We also observe a moderate influence on the robustness of the non-linear solver
for the values considered here.
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Figure 18. Water saturation profile obtained in the drainage test case with the van Genuchten
Mualem model using method A and B along vertical cross-sections at different times. (A) Cross-
section at 𝑥 “ 0.95 m, 𝑡 “ 52 ˆ 104 s. (B) Cross-section at 𝑥 “ 0.95 m, 𝑡 “ 105 ˆ 104 s. (C)
Cross-section at 𝑥 “ 2.55 m, 𝑡 “ 52ˆ 104 s. (D) Cross-section at 𝑥 “ 2.55 m, 𝑡 “ 105ˆ 104 s.

7. Conclusions and perspectives

This article aimed at proving that standard upstream mobility finite volume schemes for variable saturated
porous media flows still converge in highly heterogeneous contexts without any specific treatment of the rock
type discontinuities. The scheme is indeed shown to satisfy some energy stability which provides enough a priori
estimates to carry out its numerical analysis. First, the existence of a unique solution to the nonlinear system
stemming from the scheme is established thanks to a topological degree argument and from the monotonicity of
the scheme. Besides, a rigorous mathematical convergence proof is conducted, based on compactness arguments.
No error estimate can then be deduced from our analysis.

Because of the choice of a backward Euler in time discretization and from the upwind choice of the mobilities,
a first order in time and space accuracy is expected in the case of homogeneous computational domains. We show
in numerical experiments that without any particular treatment of the interfaces at rock discontinuities, this first
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Figure 19. 𝐿2p𝑄𝑇 q relative error in saturation as a function of the thickness 𝛿 of the thin cells
with Method B using the 200ˆ 120 cells mesh.

order accuracy can be lost, especially in the case of Brooks–Corey nonlinearities. This motivates the introduction
of a specific treatment of the interfaces. The approach we propose here is based on the introduction of additional
unknowns located in fictitious small additional cells on both sides of each interface. Even though the rigorous
convergence proof of this approach is not provided here in the multidimensional setting – such a proof can for
instance be done by writing the scheme with the specific treatment of the interface (method B) as a perturbation
of the scheme without any particular treatment of the interface (method A) –, the numerical experiments show
that it allows to recover the first order accuracy without having major impacts on the implementation and on
the behavior of the numerical solver.

For future researches, we suggest to test the so-called method B on a two-phase flow test and to compare it to
the approaches presented in [10]. Moreover, in [6], we propose two other methods to really impose the pressure
continuity condition at interfaces. A comparison between all methods will be shown.
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[6] S. Bassetto, C. Cancès, G. Enchéry and Q.H. Tran, On several numerical strategies to solve Richards’ equation in heterogeneous
media with Finite Volumes. Working paper or preprint (2021) https://hal.archives-ouvertes.fr/hal-03259026.

[7] K. Brenner and C. Cancès, Improving Newton’s method performance by parametrization: the case of the Richards equation.
SIAM J. Numer. Anal. 55 (2017) 1760–1785.

[8] K. Brenner, C. Cancès and D. Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with
discontinuous capillary pressure. Comput. Geosci. 17 (2013) 573–597.

[9] K. Brenner, M. Groza, L. Jeannin, R. Masson and J. Pellerin, Immiscible two-phase Darcy flow model accounting for vanishing
and discontinuous capillary pressures: application to the flow in fractured porous media. Comput. Geosci. 21 (2017) 1075–1094.

[10] K. Brenner, R. Masson, E. H. Quenjel and J. Droniou, Total velocity-based finite volume discretization of two-phase Darcy
flow in highly heterogeneous media with discontinuous capillary pressure. IMA Journal of Numerical Analysis (2021) https:
//doi.org/10.1093/imanum/drab018.

https://hal.archives-ouvertes.fr/hal-03259026
https://doi.org/10.1093/imanum/drab018
https://doi.org/10.1093/imanum/drab018


2138 S. BASSETTO ET AL.

[11] K. Brenner, R. Masson and E.H. Quenjel, Vertex approximate gradient discretization preserving positivity for two-phase Darcy
flows in heterogeneous porous media. J. Comput. Phys. 409 (2020) 109357.

[12] R.H. Brooks and A.T. Corey, Hydraulic properties of porous media. Hydrol. Paper 7 (1964) 26–28.

[13] C. Cancès, Nonlinear parabolic equations with spatial discontinuities. Nonlinear Diff. Equ. Appl. 15 (2008) 427–456.

[14] C. Cancès, Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities.
ESAIM: M2AN 43 (2009) 973–1001.

[15] C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving
anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580.
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[27] R. Eymard and T. Gallouët, 𝐻-convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41 (2003)
539–562.

[28] R. Eymard, M. Gutnic and D. Hilhorst, The finite volume method for Richards equation. Comput. Geosci. 3 (1999) 259–294.
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