Error estimate of the non-intrusive reduced basis method with finite volume schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1941-1961

The context of this paper is the simulation of parameter-dependent partial differential equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values, Reduced Basis Methods (RBM) are often used to reduce computational costs of a classical high fidelity code based on Finite Element Method (FEM), Finite Volume (FVM) or Spectral methods. The efficient implementation of most of these RBM requires to modify this high fidelity code, which cannot be done, for example in an industrial context if the high fidelity code is only accessible as a "black-box" solver. The Non-Intrusive Reduced Basis (NIRB) method has been introduced in the context of finite elements as a good alternative to reduce the implementation costs of these parameter-dependent problems. The method is efficient in other contexts than the FEM one, like with finite volume schemes, which are more often used in an industrial environment. In this case, some adaptations need to be done as the degrees of freedom in FV methods have different meanings. At this time, error estimates have only been studied with FEM solvers. In this paper, we present a generalisation of the NIRB method to Finite Volume schemes and we show that estimates established for FEM solvers also hold in the FVM setting. We first prove our results for the hybrid-Mimetic Finite Difference method (hMFD), which is part the Hybrid Mixed Mimetic methods (HMM) family. Then, we explain how these results apply more generally to other FV schemes. Some of them are specified, such as the Two Point Flux Approximation (TPFA).

DOI : 10.1051/m2an/2021044
Classification : 65N08, 65N15
Keywords: Reduced basis method, finite volume method
@article{M2AN_2021__55_5_1941_0,
     author = {Grosjean, Elise and Maday, Yvon},
     title = {Error estimate of the non-intrusive reduced basis method with finite volume schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1941--1961},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021044},
     mrnumber = {4315954},
     zbl = {1477.65175},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021044/}
}
TY  - JOUR
AU  - Grosjean, Elise
AU  - Maday, Yvon
TI  - Error estimate of the non-intrusive reduced basis method with finite volume schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1941
EP  - 1961
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021044/
DO  - 10.1051/m2an/2021044
LA  - en
ID  - M2AN_2021__55_5_1941_0
ER  - 
%0 Journal Article
%A Grosjean, Elise
%A Maday, Yvon
%T Error estimate of the non-intrusive reduced basis method with finite volume schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1941-1961
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021044/
%R 10.1051/m2an/2021044
%G en
%F M2AN_2021__55_5_1941_0
Grosjean, Elise; Maday, Yvon. Error estimate of the non-intrusive reduced basis method with finite volume schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1941-1961. doi: 10.1051/m2an/2021044

[1] M. Barrault, C. Nguyen, A. Patera and Y. Maday, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Sér. I Math. 339 (2004) 667–672. | MR | Zbl

[2] F. Boyer, An introduction to finite volume methods for diffusion problems. In: French-Mexican Meeting on Industrial and Applied Mathematics Villahermosa, Mexico, November 25–29 (2013).

[3] S. Brenner and R. Scott, The mathematical theory of finite element methods. Springer Science & Business Media 15 (2007). | MR | Zbl

[4] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | MR | Zbl | DOI

[5] F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 04. | MR | Zbl | DOI

[6] A. Buffa, Y. Maday, A. T. Patera, C. Prud’Homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: M2AN 46 (2012) 595–603. | MR | Zbl | Numdam | DOI

[7] F. Casenave, A. Ern and T. Lelièvre, A nonintrusive reduced basis method applied to aeroacoustic simulations. Adv. Comput. Math. 41 (2014) 961–986. | MR | Zbl | DOI

[8] R. Chakir, Contribution à l’analyse numérique de quelques problèmes en chimie quantique et mècanique. Ph.D. thesis (2009).

[9] R. Chakir, P. Joly, Y. Maday and P. Parnaudeau, A non intrusive reduced basis method: application to computational fluid dynamics. (2013). | HAL

[10] R. Chakir, Y. Maday and P. Parnaudeau, A non-intrusive reduced basis approach for parametrized heat transfer problems. J. Comput. Phys. 376 (2019) 617–633. | MR | Zbl | DOI

[11] A. Cohen and R. Devore, Approximation of high-dimensional parametric PDEs. Preprint (2015). | arXiv | MR | Zbl | DOI

[12] L.B. Da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. Springer 11 (2014). | MR | Zbl

[13] D. A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | MR | Zbl | DOI

[14] J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. | MR | Zbl | DOI

[15] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. | MR | Zbl | DOI

[16] J. Droniou and N. Nataraj, Improved L 2 estimate for gradient schemes and super-convergence of the tpfa finite volume scheme. IMA J. Numer Anal. 3 (2017) 1254–1293. | MR | Zbl

[17] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. | MR | Zbl | DOI

[18] J. Droniou, R. Eymard, T. Gallouet and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. | MR | Zbl | DOI

[19] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. Springer 82 (2018). | MR | DOI

[20] R. Eymard, T. Gallouët and R. Herbin, Discretization schemes for linear diffusion operators on general non-conforming meshes, edited by R. Eymard and J.-M. Herard. In: Finite Volumes for Complex Applications V. Wiley (2008). | MR | Zbl

[21] B. Haasdonk and M. Ohlberger, Reduced basis method for explicit finite volume approximations of nonlinear conservation laws. In: Proc. 12th International Conference on Hyperbolic Problems: Theory, Numerics, Application (2008). | MR | Zbl

[22] J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016). | MR | DOI

[23] O. Iliev, Y. Maday and T. Nagapetyan, A Two-grid Infinite-volume/Reduced Basis Scheme for the Approximation of the Solution of Parameter Dependent PDE with Applications the AFFFF Devices. Fraunhofer Institute for Industrial Mathematics, ITWM (2013).

[24] A. Kolmogoroff, Über die beste annaherung von funktionen einer gegebenen funktionenklasse. Ann. Math. 37 (1936) 107–110. | MR | Zbl | JFM | DOI

[25] Y. Maday and R. Chakir, A two-grid finite-element/reduced basis scheme for the approximation of the solution of parametric dependent PDE (2009) . | HAL | MR | Zbl

[26] A. Quarteroni and S. Quarteroni, Numerical Models for Differential Problems. Springer 2 (2009). | MR | Zbl | DOI

[27] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer 92 (2015). | MR | Zbl

[28] R. Sanchez, Application des techniques de bases réduites à la simulation des écoulements en milieuxporeux. Université Paris-Saclay – CentraleSupélec (2017).

[29] G. Stabile, S. Hijazi, A. Mola, S. Lorenzi and G. Rozza, Pod-galerkin reduced order methods for CFD using finite volume discretisation: vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 8 (2017) 210–236. | MR | Zbl

[30] K. Veroy, C. Prud’Homme and A. T. Patera, Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Sér. I Math. 337 (2003) 619–624. | MR | Zbl

Cité par Sources :