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ERROR ESTIMATE OF THE NON-INTRUSIVE REDUCED BASIS METHOD
WITH FINITE VOLUME SCHEMES

Elise Grosjean1,* and Yvon Maday1,2

Abstract. The context of this paper is the simulation of parameter-dependent partial differential
equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values,
Reduced Basis Methods (RBM) are often used to reduce computational costs of a classical high fidelity
code based on Finite Element Method (FEM), Finite Volume (FVM) or Spectral methods. The efficient
implementation of most of these RBM requires to modify this high fidelity code, which cannot be done,
for example in an industrial context if the high fidelity code is only accessible as a “black-box” solver.
The Non-Intrusive Reduced Basis (NIRB) method has been introduced in the context of finite elements
as a good alternative to reduce the implementation costs of these parameter-dependent problems. The
method is efficient in other contexts than the FEM one, like with finite volume schemes, which are more
often used in an industrial environment. In this case, some adaptations need to be done as the degrees
of freedom in FV methods have different meanings. At this time, error estimates have only been studied
with FEM solvers. In this paper, we present a generalisation of the NIRB method to Finite Volume
schemes and we show that estimates established for FEM solvers also hold in the FVM setting. We first
prove our results for the hybrid-Mimetic Finite Difference method (hMFD), which is part the Hybrid
Mixed Mimetic methods (HMM) family. Then, we explain how these results apply more generally to
other FV schemes. Some of them are specified, such as the Two Point Flux Approximation (TPFA).
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1. Introduction

This paper is concerned with the efficient simulation of parameter-dependent partial differential equations
(PDEs), with a parameter varying in a given set 𝒢. For complex physical systems, computational costs can
be huge. It may happen, for instance in the context of parameter optimization or real time simulations in an
industrial context, that the same problem needs to be solved for several parameter values.

In such cases, different model order reductions (MOR) like the reduced basis methods have been proposed
(see e.g. [22, 27]) based on Proper Orthogonal Decomposition (POD) or greedy selection of the reduced basis,
the reduced basis elements being computed accurately enough through a high fidelity code. In these approaches,
the efficient implementation of the reduced method, leading to reductions in the computational time, requires to
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be able to deeply enter into the high fidelity code, in order to compute offline, a key ingredient which saves the
implementation costs online. This can be tedious, even impossible when the code has been bought, as it is often
the case in an industrial context. The Non-Intrusive Reduced Basis (NIRB) methods [8, 25] has been proposed
in this framework. This method is useful to reduce computational costs of parametric-dependent PDEs in a
non-intrusive way. Unlike other MOR, the NIRB method does not require to modify the solver code and hence
does not depend on the numerical approach underlying the code.

This method, based on two grids, one fine where high fidelity computations are done offline and one coarse
which is used online, has been introduced in [8, 25]. It was presented and analysed in the case where the high
fidelity code is based on a finite element solver. In these papers, an optimal error estimate is recovered and
illustrated with numerical simulations. The method can be extended to other classical discretizations but the
key ingredient is a better approximation rate in the 𝐿2 norm than in the energy norm, thanks to the Aubin–
Nitsche’s trick that is easy for variational approximations. In addition, the degrees of freedom in FVM do not
have the same status as in FEM and the transfer of information from one grid to another must be adapted.
The aim of this paper is to propose the adaptation of the NIRB method to FV and to propose the numerical
analysis able to recover the classical error estimate with Finite Volume (FV) schemes.

The non-intrusive reduced basis method

Let Ω be an open bounded domain in R𝑑 with 𝑑 ≤ 3. The NIRB method in the context of a high fidelity
solver of finite element or finite volume types involves two partitioned meshes, one fine mesh ℳℎ and one coarse
mesh ℳ𝐻 , where ℎ and 𝐻 are the respective sizes of the meshes and ℎ ≪ 𝐻. The size ℎ (res. 𝐻) is defined as
ℎ = max𝐾∈ℳℎ

ℎ𝐾 (resp. 𝐻 = max𝐾∈ℳ𝐻
𝐻𝐾) where the diameter ℎ𝐾 (or 𝐻𝐾) of any element 𝐾 in a mesh is

equal to sup𝑥,𝑦∈𝐾 |𝑥− 𝑦|.
As it is classical in other reduced basis methods, the NIRB method is based on the assumption (assumed or

actually checked) that the manifold of all solutions 𝒮 = {𝑢(𝜇), 𝜇 ∈ 𝒢} has a small Kolmogorov 𝑛-width 𝜀(𝑛) [24].
This leads to the fact that very few well chosen solutions are sufficient to approximate well any element in 𝒮.
These well chosen elements are called the snapshots. In this frame, the method is based on two steps (see Fig. 1):
one offline step and one online. The “offline” part is costly in time because the snapshots must be generated
with a high fidelity code on the fine mesh ℳℎ. The “online” step is performed on the coarse mesh ℳ𝐻 , and
thus much less expensive than a high fidelity computation. This algorithm remains effective as the offline part
is performed only once and in advance and also independently from the online stage. The online stage can then
be done as many times as desired.

– In the offline part, several snapshots are computed on the fine mesh for different well chosen parameters in
the parameter set 𝒢 with the (fine and costly) solver. The best way to determine the required parameters
is through a greedy procedure [1, 6, 30] if available or through an Singular Value Decomposition (SVD)
approach.

– The online part consists in computing a coarse solution with the same solver for some (new) parameter
𝜇 ∈ 𝒢 and then 𝐿2-project this (coarse) solution on the (fine) reduced basis. This results in an improved
approximation, in the sense that we may retrieve almost fine error estimates with a much lower computational
cost. This is not as in classical extrapolation schemes since the solution on the fine mesh is not employed to
obtain the approximation.

Motivation and earlier works

Several papers have underlined the efficiency of the NIRB method in the finite element context, illustrated
both with numerical results presenting error plots and the online part computational time [8–10,25]. However,
to the best of our knowledge, works with Finite Volume (FV) schemes have not yet been studied with a non-
intrusive approach [7, 21, 23, 28, 29], and they are often preferred to finite element methods in an industrial
context. Thanks to recent works on super-convergence [16], and with some technical subtleties, we are now able
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Figure 1. Diagram of the NIRB method.

to generalize the two-grids method which is non-intrusive to FV methods and propose the numerical analysis
of this method.

Main results

In the context of 𝑃1-FEM solvers, the works [8,25] retrieve an estimate error of the order of 𝒪(ℎ+𝐻2) in the
energy norm using the Aubin–Nitsche’s lemma [3] for the coarse grids solution (for a reduced basis dimension
large enough). With FV schemes, no equivalent of the Aubin–Nitsche’s lemma is available, instead, we consider
the class of Hybrid Mimetic Mixed (HMM) schemes for elliptic equations and use a super-convergence property
proven in [13,14,16]. We will first focus on hMFD scheme, which is part of the family of Hybrid Mimetic Mixed
methods (HMM) [12, 13, 17–19]. It is a finite volume method despite its name. Indeed hMFD scheme relies on
both a flux balance equation and on a local conservativity of numerical fluxes. It uses interface values and fluxes
as unknowns. The particularity of hMFD is that the cell unknowns must be located at the center of mass of
the cells [4, 5]. HMM also includes mixed finite volume schemes (MFV) [15] and hybrid finite volume schemes
(HFV), a hybrid version of the SUSHI scheme [20]. All HMM are built on a general mesh, namely a polytopal
mesh, which is a star-shaped mesh regarding the unknowns of the cells.

Let us consider the following linear second-order parameter dependent problem as our model problem:{︂− div(𝐴(𝜇)∇𝑢) = 𝑓 in Ω, (1.1a)
𝑢 = 0 on 𝜕Ω, (1.1b)

where 𝑓 ∈ 𝐿2(Ω), 𝜇 is a parameter in a set 𝒢, and for any 𝜇 ∈ 𝒢, 𝐴(.; 𝜇) : Ω → R𝑑×𝑑 is measurable, bounded,
uniformly elliptic, and 𝐴(x; 𝜇) is symmetric for a.e. x ∈ Ω.

Under general hypotheses, it is well-known that this problem has a unique solution.
The usual weak formulation for problems (1.1a), (1.1b) reads:
Find 𝑢 ∈ 𝐻1

0 (Ω) such that,
∀𝑣 ∈ 𝐻1

0 (Ω), 𝑎(𝑢, 𝑣; 𝜇) = (𝑓, 𝑣), (1.2)
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where
𝑎(𝑤, 𝑣; 𝜇) =

∫︁
Ω

𝐴(x; 𝜇)∇𝑤(x) · ∇𝑣(x) dx, ∀𝑤, 𝑣 ∈ 𝐻1
0 (Ω).

The main result of this paper is the following estimate:

Theorem 1.1 (NIRB error estimate for hMFD solvers). Let 𝑢𝑁
ℎ𝐻(𝜇) be the reduced solution projected on the

fine mesh and generated with the hMFD solver with the unknowns defined on x𝑘 = x𝐾 (the cell centers of mass),
and 𝑢(𝜇) be the exact solution of (1.2) under an 𝐻2 regularity assumption (2.5) (which will be stated later),
then the following estimate holds⃦⃦

𝑢(𝜇)− 𝑢𝑁
ℎ𝐻(𝜇)

⃦⃦
𝒟 ≤ 𝜀(𝑁) + 𝐶1ℎ + 𝐶2(𝑁)𝐻2, (1.3)

where 𝐶1 and 𝐶2 are constants independent of ℎ and 𝐻,𝐶2 depends on 𝑁 , the number of functions in the basis,
and ‖·‖𝒟 is the discrete norm introduced in Section 2, and 𝜀 depends of the Kolmogorov 𝑛-width. If 𝐻 is such
as 𝐻2 ∼ ℎ, and 𝜀(𝑁) small enough, it results in an error estimate in 𝒪(ℎ).

Note that if 𝐻 is chosen such as 𝐻2 ∼ ℎ and 𝜀(𝑁) small enough, it results in an error estimate in 𝒪(ℎ).

Outline of the paper

The rest of this paper is organized as follows. In Section 2, we describe the mathematical context. In Section 3,
we recall the two-grids method. Section 4 is devoted to the proof of Theorem 1.1 with the hybrid-Mimetic Finite
Difference scheme (hMFD). Section 5 generalizes Theorem 1.1 to other schemes, such as the Two Point Flux
Approximation (TPFA). In the last section, the implementation is discussed and we illustrate the estimate with
several numerical results on the NIRB method.

2. Mathematical background

In this section, we recall the definition of the Hybrid Mixed Mimetic methods (HMM) family, some notations
and some of its properties [12,18,19] that will be necessary for the analysis of NIRB method in this finite volume
context.

2.1. The Hybrid Mixed Mimetic methods (HMM) family

Describing the HMM family requires to introduce the Gradient Discretisation (GD) method [19], which is a
general framework for the definition and the convergence analysis of many numerical methods (finite element,
finite volume, mimetic finite difference methods, etc.).

The GD schemes involve a discete space, a reconstruction operator and a gradient operator, which taken
together are called a Gradient Discretisation. Selecting the gradient discretisation mostly depends on the bound-
ary conditions (BCs). We now introduce the definition of GD for Dirichlet BCs as in [19] and the GD scheme
associated to our model problem.

Definition 2.1 (Gradient discretisation). For homogeneous Dirichlet BCs, a gradient discretisation 𝒟 is a
triplet (𝑋𝒟,0, Π𝒟,∇𝒟), where the space of degrees of freedom 𝑋𝒟,0 is a discrete version of the continuous space
𝐻1

0 (Ω).

– Π𝒟 : 𝑋𝒟,0 → 𝐿2(Ω) is a function reconstruction operator that relates an element of 𝑋𝒟,0 to a function in
𝐿2(Ω).

– ∇𝒟 : 𝑋𝒟,0 → 𝐿2(Ω)𝑑 is a gradient reconstruction in 𝐿2(Ω) from the degrees of freedom. It must be chosen
such that ‖·‖𝒟 = ‖∇‖𝒟·𝐿2(Ω)𝑑 is a norm on 𝑋𝒟,0.

In what follows, we will refer to Π𝐻
𝒟 or Πℎ

𝒟 depending on the mesh considered and for the gradient recon-
struction too (respectively ∇𝐻

𝒟 or ∇ℎ
𝒟).
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Figure 2. A cell 𝐾 of a polytopal 2D mesh.

Definition 2.2 (Gradient discretisation scheme). For the variational form (1.2), the related gradient discreti-
sation scheme with the new operators is defined by:

Find 𝑢𝒟 ∈ 𝑋𝒟,0 such that, ∀𝑣𝒟 ∈ 𝑋𝒟,0,∫︁
Ω

𝐴(𝜇)∇𝒟𝑢𝒟 · ∇𝒟𝑣𝒟 dx =
∫︁

Ω

𝑓 Π𝒟𝑣𝒟 dx. (2.1)

We will use two general polytopal meshes ([19], Def. 7.2) which are admissible meshes for the hMFD scheme.

Definition 2.3 (Polytopal mesh). Let Ω be a bounded polytopal open subset of R𝑑(𝑑 ≥ 1). A polytopal mesh
of Ω is a quadruplet 𝒯 = (ℳ,ℱ ,𝒫,𝒱), where:

(1) ℳ is a finite family of non-empty connected polytopal open disjoint subsets 𝐾 (the cells) such that Ω =
∪𝐾∈ℳ𝐾. For any 𝐾 ∈ℳ, |𝐾| > 0 is the measure of 𝐾 and ℎ𝐾 denotes the diameter of 𝐾.

(2) ℱ = ℱint∪ℱext is a finite family of disjoint subsets of Ω (the edges of the mesh in 2D), such that any 𝜎 ∈ ℱint

is contained in Ω and any 𝜎 ∈ ℱext is contained in 𝜕Ω. Each 𝜎 ∈ ℱ is assumed to be a nonempty open subset
of a hyperplane of R𝑑, with a positive (𝑑− 1)-dimensional measure |𝜎|. Furthermore, for all 𝐾 ∈ℳ, there
exists a subset ℱ𝐾 of ℱ such that 𝜕𝐾 = ∪𝜎∈ℱ𝐾

𝜎. We assume that for all 𝜎 ∈ ℱ ,ℳ𝜎 = {𝐾 ∈ℳ : 𝜎 ∈ ℱ𝐾}
has exactly one element and 𝜎 ⊂ 𝜕Ω or ℳ𝜎 has two elements and 𝜎 ⊂ Ω. The center of mass is x𝜎, and,
for 𝐾 ∈ℳ and 𝜎 ∈ ℱ𝐾 , n𝐾,𝜎 is the (constant) unit vector normal to 𝜎 outward to 𝐾.

(3) 𝒫 is a family of points of Ω indexed by ℳ and ℱ , denoted by 𝒫 = ((x𝐾)𝐾∈ℳ, (x𝜎)𝜎∈ℱ ), such that for
all 𝐾 ∈ ℳ, x𝐾 ∈ 𝐾 and for all 𝜎 ∈ ℱ , x𝜎 ∈ 𝜎. We then denote by 𝑑𝐾,𝜎 the signed orthogonal distance
between x𝐾 and 𝜎 ∈ ℱ𝐾 , that is: 𝑑𝐾,𝜎 = (x − x𝐾) · n𝐾,𝜎, for all x ∈ 𝜎. We then assume that each cell
𝐾 ∈ ℳ is strictly star-shaped with respect to x𝐾 , that is 𝑑𝐾,𝜎 > 0 for all 𝜎 ∈ ℱ𝐾 . This implies that for
all x ∈ 𝐾, the line segment [x𝐾 ,x] is included in 𝐾. We denote x𝐾 the center of mass of 𝐾 and by x𝜎 the
one of 𝜎. For all 𝐾 ∈ ℳ and 𝜎 ∈ ℱ𝐾 , we denote by 𝐷𝐾,𝜎 the cone with vertex x𝐾 and basis 𝜎, that is
𝐷𝐾,𝜎 = {𝑡x𝐾 + (1− 𝑡)y, 𝑡 ∈ (0, 1),y ∈ 𝜎}.

(4) 𝒱 is a set of points (the vertices of the mesh). For 𝐾 ∈ℳ, the set of vertices of 𝐾, i.e. the vertices contained
in 𝐾, is denoted 𝒱𝐾 . Similarly, the set of vertices of 𝜎 ∈ 𝐹 is 𝒱𝜎.

The Figure 2 illustrates a cell of a 2D polytopal mesh.
The regularity factor for the mesh is

𝜃 = max
𝜎∈ℱint,ℳ𝜎={𝐾,𝐾′}

𝑑𝐾,𝜎

𝑑𝐾′,𝜎
+ max

𝐾∈ℳ

(︂
max
𝜎∈ℱ𝐾

ℎ𝐾

𝑑𝐾,𝜎
+ Card(ℱ𝐾)

)︂
. (2.2)
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In what follows, we will consider two polytopal meshes. The fine mesh will be denoted 𝒯 ℎ = (ℳℎ,ℱℎ,𝒫ℎ,𝒱ℎ)
and 𝒯 𝐻 = (ℳ𝐻 ,ℱ𝐻 ,𝒫𝐻 ,𝒱𝐻) will be referred to as the coarse mesh.

All HMM schemes require to choose one point inside each mesh cell x𝐾 , and in the case the center of mass
x𝐾 is chosen, then the scheme corresponds to hMFD and superconvergence is well known [12, 13, 16]. Until
Section 5, we will consider x𝐾 = x𝐾 .

Definition 2.4 (Hybrid Mimetic Mixed gradient discretisation (HMM-GD)). For hMFD scheme, we use the
following GD ([19], Def. 13.1.1):

(1) Let 𝑋𝒟,0 = {𝑣 = ((𝑣𝐾)𝐾∈ℳ, (𝑣𝜎)𝜎∈ℱ ) : 𝑣𝐾 ∈ R, 𝑣𝜎 ∈ R, 𝑣𝜎 = 0 if 𝜎 ∈ ℱext},
(2) Π𝒟 : 𝑋𝒟,0 → 𝐿2(Ω) is the following piecewise constant reconstruction on the mesh:

∀𝑣 ∈ 𝑋𝒟,0,∀𝐾 ∈ℳ,

Π𝒟𝑣(x) = 𝑣𝐾 on 𝐾. (2.3)

(3) ∇𝒟 : 𝑋𝒟,0 → 𝐿2(Ω)𝑑 reconstructs piecewise constant gradients on the cones (𝐷𝐾,𝜎)𝐾∈ℳ,𝜎∈ℱ𝐾
:

∀𝑣 ∈ 𝑋𝒟,0,∀𝐾 ∈ℳ,∀𝜎 ∈ ℱ ,

∇𝒟𝑣(x) = ∇𝐾𝑣 +

√
𝑑

𝑑𝐾,𝜎
[ℒ𝐾𝑅𝐾(𝑣)]𝜎 n𝐾,𝜎 on 𝐷𝐾,𝜎, (2.4)

where
– ∇𝐾𝑣 = 1

|𝐾|
∑︀

𝜎∈ℱ𝐾
|𝜎|𝑣𝜎n𝐾,𝜎,

– 𝑅𝐾 : 𝑋𝒟,0 → Rℱ𝐾 is given by 𝑅𝐾(𝑣) = (𝑅𝐾,𝜎(𝑣)))𝜎∈ℱ𝐾
with 𝑅𝐾,𝜎(𝑣) = 𝑣𝜎 − 𝑣𝐾 −∇𝐾𝑣 · (x𝜎 − x𝐾),

– ℒ𝐾 is an isomorphism of the space Im(𝑅𝐾).

As explained in the introduction of this chapter, hMFD, HFV and MFV schemes are three different presenta-
tions of the same method. With the notations above, any HMM method for the weak form (1.2) can be written
([17], Eq. (2.25)):

Find 𝑢𝒯 (𝜇) ∈ 𝑋𝒟,0 such that, for all 𝑣𝒯 ∈ 𝑋𝒟,0,∑︁
𝐾∈ℳ

|𝐾|𝐴𝐾(𝜇)∇𝐾𝑢𝒯 · ∇𝐾𝑣𝒯 +
∑︁

𝐾∈ℳ
𝑅𝐾(𝑣𝒯 )𝑇 B𝐾𝑅𝐾(𝑢𝒯 ) =

∑︁
𝐾∈ℳ

𝑣𝐾

∫︁
𝐾

𝑓(x) dx,

where 𝜇 is our variable parameter, 𝐴𝐾(𝜇) is the 𝐿2 projection of 𝐴(𝜇) on 𝐾 and B𝐾 = ((B𝐾)𝜎,𝜎′)𝜎,𝜎′∈ℱ𝐾
is a

symmetric positive definite matrix, resulting from the definition of ∇𝒟.
For a certain choice of isomorphism ℒ𝐾 : ℑ(𝑅𝐾) → ℑ(𝑅𝐾), the HMM scheme (2.1) is identical to GDs (2.1)

(see [19], Thm. 13.7).

2.2. The hybrid Mimetic Finite Difference (hMFD) method

We now introduce the super-convergence property on hMFD which will be used in the proof of Theorem 1.1,
but first we need the following 𝐻2 regularity assumption (which holds if 𝐴 is Lipschitz continuous and Ω is
convex):

Let 𝑓 ∈ 𝐿2(Ω), the solution 𝑢(𝜇) to (1.2) belongs to 𝐻2(Ω), and

‖𝑢(𝜇)‖𝐻2(Ω) + ‖𝐴(𝜇)∇𝑢(𝜇)‖𝐻1(Ω)𝑑 ≤ 𝐶‖𝑓‖𝐿2(Ω), (2.5)

with 𝐶 depending only on Ω and 𝐴.
We define 𝜋ℳℎ : 𝐿2(Ω) → 𝐿2(Ω) as the orthogonal projection on the piecewise constant functions on ℳℎ

that is
∀Ψ ∈ 𝐿2(Ω), ∀𝐾 ∈ℳℎ, 𝜋ℳℎΨ =

1
|𝐾|

∫︁
𝐾

Ψ(x) dx on 𝐾.
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Theorem 2.5 (Super-convergence for hMFD schemes ([16], Thm. 4.7)). Let 𝑑 ≤ 3, 𝑓 ∈ 𝐻1(Ω), and 𝑢(𝜇) be the
solution of (1.2) under assumption (2.5). Let 𝒯ℎ be a polytopal mesh, and 𝒟 be an HMM gradient discretisation
on 𝒯ℎ with the unknowns defined on x𝐾 , and let 𝑢ℎ(𝜇) be the solution of the corresponding GD. Recall that x𝐾

is the center of mass of 𝐾 and we are in the case where x𝐾 = x𝐾 . Then, considering 𝑢𝒫(𝜇) as the piecewise
constant function on ℳℎ equal to 𝑢(x𝐾 ; 𝜇) on 𝐾 ∈ℳ, there exists 𝐶 > 0 not depending on ℎ such that⃦⃦

Πℎ
𝒟𝑢ℎ(𝜇)− 𝑢𝒫(𝜇)

⃦⃦
𝐿2(Ω)

≤ 𝐶
(︁
‖𝑓‖𝐻1(Ω) + ‖𝑢‖𝐻2(Ω)

)︁
ℎ2. (2.6)

To recover (2.6) in the case x𝐾 = x𝐾 , we used the Lemma 7.5 of [16] on the approximation of 𝐻2 functions
by affine functions to obtain

‖𝜋ℳℎ𝑢(𝜇)− 𝑢𝒫(𝜇)‖𝐿2(𝜔) ≤ 𝐶ℎ2‖𝑢‖𝐻2(Ω)·

Remark 2.6. We consider here ‖·‖𝒟 as the discrete semi norm of 𝐻1 so as not to make notations too cumber-
some. The usual discrete semi-norm for 𝐻1 is defined by

∀𝑣 ∈ 𝒯 , |𝑣|2𝒯 ,2 =
∑︁

𝐾∈ℳ

∑︁
𝜎∈ℱ𝐾

|𝜎|𝑑𝐾,𝜎

⃒⃒⃒⃒
𝑣𝜎 − 𝑣𝐾

𝑑𝐾,𝜎

⃒⃒⃒⃒2
. (2.7)

Under some conditions on the regularity of the mesh, this norm and ‖∇𝒟·‖𝐿2(Ω)𝑑 are equivalent ([19],
Lem. 13.11).

In the next section, we recall the offline and the online parts of the two-grids algorithm.

3. The Non-Intrusive Reduced Basis (NIRB) method

3.1. Main steps

This section recalls the main steps of the two-grids method algorithm [8,25].
Let 𝑢ℎ(𝜇) refer to the hMFD solution on a fine polytopal mesh 𝒯ℎ, with cells ℳℎ and respectively 𝑢𝐻(𝜇)

the one on a coarse mesh 𝒯𝐻 , with the cells ℳ𝐻 .
We briefly recall the NIRB method. Points 1 and 2 are performed in the offline part, and the others are done

online.

(1) Several snapshots {𝑢ℎ(𝜇𝑖)}𝑖∈{1,...𝑁} are computed with the hMFD scheme (2.1), where 𝜇𝑖 ∈ 𝒢 ∀𝑖 =
1, . . . , 𝑁 . The space generated by the snapshots is named 𝑋𝑁

ℎ = Span{𝑢ℎ(𝜇1), . . . , 𝑢ℎ(𝜇𝑁 )}.
(2) We generate the basis functions (Φℎ

𝑖 )𝑖=1,...,𝑁 with the following steps:
– A Gram–Schmidt procedure is used, which involves 𝐿2 orthonormalization of the reconstruction functions.
– This procedure is also completed by the following eigenvalue problem:⎧⎨⎩

Find Φℎ ∈ 𝑋𝑁
ℎ , and 𝜆 ∈ R such that:

∀𝑣 ∈ 𝑋𝑁
ℎ ,

∫︁
Ω

∇ℎ
𝒟Φℎ · ∇ℎ

𝒟𝑣 dx = 𝜆

∫︁
Ω

Πℎ
𝒟Φℎ ·Πℎ

𝒟𝑣 dx, (3.1)

where ∇ℎ
𝒟 and Πℎ

𝒟 are respectively the discrete gradient and the discrete reconstruction operators as
in the definition of the HMM GD ((2.3), (2.4)). We get an increasing sequence of eigenvalues 𝜆𝑖, and
orthogonal eigenfunctions (Πℎ

𝒟Φℎ
𝑖 )𝑖=1,...,𝑁 , orthonormalized in 𝐿2(Ω) and orthogonalized in 𝐻1(Ω), such

that (Φℎ
𝑖 )𝑖=1,...,𝑁 defines a new basis of the space 𝑋𝑁

ℎ .
(3) We solve the hMFD problem (2.1) on the coarse mesh 𝒯𝐻 for a new parameter 𝜇 ∈ 𝒢. Let us denote by

𝑢𝐻(𝜇) the solution.
(4) We then introduce 𝛼𝐻

𝑖 (𝜇) =
∫︀
Ω

Π𝐻
𝒟𝑢𝐻(𝜇) · Πℎ

𝒟Φℎ
𝑖 dx. The approximation used in the two-grids method is

𝑢𝑁
𝐻ℎ(𝜇) =

∑︀𝑁
𝑖=1𝛼

𝐻
𝑖 (𝜇) Πℎ

𝒟Φℎ
𝑖 .
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3.2. Rectification post-process

We introduce 𝛼ℎ
𝑖 (𝜇) =

∫︀
Ω

Πℎ
𝒟𝑢ℎ(𝜇) · Πℎ

𝒟Φℎ
𝑖 dx. The rectification process, explained in [8, 10, 25], can be

employed in addition of the NIRB classical algorithm. This implies that if the true solution is in the reduced
space, then the NIRB method will give this true solution. Let 𝑁𝑡𝑟𝑎𝑖𝑛 be the number of parameters in 𝒢.

Let A be the matrix such that 𝐴𝑖,𝑘 = 𝛼𝐻
𝑖 (𝜇𝑘), ∀𝜇𝑘 ∈ 𝒢, ∀𝑖 = 1, . . . , 𝑁, and B be the matrix such that

𝐵𝑖,𝑘 = 𝛼ℎ
𝑖 (𝜇𝑘), ∀𝜇𝑘 ∈ 𝒢, ∀𝑖 = 1, . . . , 𝑁 . The aim is to minimize, on R𝑖, ‖AR𝑖 −B𝑖‖2. The solution of this

problem with a regularization parameter is the rectification matrix:

R𝑖 = (A𝑇 A + 𝜆I𝑁 )−1A𝑇 B𝑖, ∀𝑖 = 1, . . . , 𝑁, (3.2)

where 𝜆 is the regularization parameter.
The approximation used with this post-process is

𝑢𝑁
𝐻ℎ(𝜇) =

𝑁∑︁
𝑖,𝑗=1

𝑅𝑖𝑗 𝛼ℎ
𝑗 (𝜇) Πℎ

𝒟Φℎ
𝑖 . (3.3)

In the next section, we detail how to obtain the classical finite elements estimate in 𝒪(ℎ) on the NIRB
algorithm, when the snapshots are computed with the hMFD GD using a polytopal mesh.

4. NIRB error estimate

In this section, we consider x𝐾 = x𝐾 which is the case with the hMFD scheme. Some other cases will be
detailed in Section 5.

We now continue with the proof of Theorem 1.1.

Proof. In this proof, we will denote 𝐴 . 𝐵 for 𝐴 ≤ 𝐶𝐵 with 𝐶 not depending on ℎ or 𝐻.
We use the triangle inequality on ‖𝑢(𝜇)− 𝑢𝑁

𝐻ℎ(𝜇)‖𝒟 to get⃦⃦
𝑢(𝜇)− 𝑢𝑁

𝐻ℎ(𝜇)
⃦⃦
𝒟 ≤

⃦⃦
𝑢(𝜇)−Πℎ

𝒟𝑢ℎ(𝜇)
⃦⃦
𝒟 +

⃦⃦
Πℎ
𝒟𝑢ℎ(𝜇)− 𝑢𝑁

ℎℎ(𝜇)
⃦⃦
𝒟 +

⃦⃦
𝑢𝑁

ℎℎ(𝜇)− 𝑢𝑁
𝐻ℎ(𝜇)

⃦⃦
𝒟

=: 𝑇1 + 𝑇2 + 𝑇3, (4.1)

where 𝑢𝑁
ℎℎ(𝜇) =

∑︀𝑁
𝑖=1𝛼

ℎ
𝑖 (𝜇)Πℎ

𝒟Φℎ
𝑖 ,.

– The first term 𝑇1 can be estimated using a classical result for finite volume schemes (consequence of [19],
Prop. 13.16) such that: ⃦⃦

𝑢(𝜇)−Πℎ
𝒟𝑢ℎ(𝜇)

⃦⃦
𝒟 . ℎ‖𝑢‖𝐻2(Ω). (4.2)

– The best achievable error in the uniform sense of a fine solution projected into 𝑋𝑁
ℎ relies on the notion of

Kolmogorov 𝑛-width ([26], Thm. 20.1). If 𝒦 is a compact set in a Banach space 𝑉 , the Kolmogorov 𝑛-width
of 𝒦 is

𝑑𝑛(𝒦) = inf
dim(𝑉𝑛)≤𝑛

sup
𝑣∈𝒦

min
𝑤∈𝑉𝑛

‖𝑣 − 𝑤‖𝑉 . (4.3)

Here we suppose the set of all the reconstructions of the solutions 𝒮 = {Πℎ
𝒟𝑢ℎ(𝜇), 𝜇 ∈ 𝒢} has a low complexity

which means for an accuracy 𝜀 = 𝜀(𝑁) related to the Kolmogorov 𝑛-width of the manifold 𝒮, there exists a
set of parameters {𝜇1, . . . , 𝜇𝑁} ∈ 𝒢, such that [6, 8, 11,25]

𝑇2 =

⃦⃦⃦⃦
⃦Πℎ

𝒟𝑢ℎ(𝜇)−
𝑁∑︁

𝑖=1

𝛼ℎ
𝑖 (𝜇)Πℎ

𝒟Φℎ
𝑖

⃦⃦⃦⃦
⃦
𝒟

≤ 𝜀(𝑁). (4.4)

– Consider the term 𝑇3 now. We will need the following proposition where the property of super-convergence
for the hMFD scheme (2.6) is used.
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Proposition 4.1. Let 𝑢𝐻(𝜇) be the solution of the hMFD on a polytopal mesh 𝒯𝐻 with the unknowns on
x𝐾 = x𝐾 . Denote by 𝑢(𝜇) the exact solution of equation (1.2), and let (Φℎ

𝑖 )𝑖=1,...,𝑁 be the basis functions of the
NIRB algorithm, then there exists a constant 𝐶 = 𝐶(𝑁) > 0 not depending on 𝐻 or ℎ,and depending on 𝑁
such that ⃒⃒⃒⃒∫︁

Ω

(𝑢(𝜇)−Π𝐻
𝒟𝑢𝐻(𝜇)) ·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
.
(︁(︁
‖Φ𝑖‖𝐿∞(Ω) + 𝐶(𝑁)

)︁
‖𝑢‖𝐻2(Ω) + ‖𝑓‖𝐻1(Ω)

)︁
𝐻2. (4.5)

Proof. Since ℳ𝐻 is a partition of Ω,∫︁
Ω

Π𝐻
𝒟𝑢𝐻(𝜇) ·Πℎ

𝒟Φℎ
𝑖 dx =

∑︁
𝐾∈ℳ𝐻

∫︁
𝐾

Π𝐻
𝒟𝑢𝐻(𝜇) ·Πℎ

𝒟Φℎ
𝑖 dx. (4.6)

To begin with, let Π𝐻
0 : 𝒞(Ω) → 𝐿∞(Ω) be the piecewise constant projection operator on ℳ𝐻 such that:

Π𝐻
0 Φ(x) = Ψ(x𝐾), on 𝐾, ∀𝐾 ∈ℳ𝐻 , ∀Ψ ∈ 𝒞(Ω). (4.7)

We use the triangle inequality on the left part of the inequality (4.5) and therefore,⃒⃒⃒⃒∫︁
Ω

(︀
𝑢(𝜇)−Π𝐻

𝒟𝑢𝐻(𝜇)
)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
≤
⃒⃒⃒⃒∫︁

Ω

(︀
𝑢(𝜇)−Π𝐻

0 𝑢(𝜇)
)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
+
⃒⃒⃒⃒∫︁

Ω

(︀
Π𝐻

0 𝑢(𝜇)−Π𝐻
𝒟𝑢𝐻(𝜇)

)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
,

=: 𝑇3,1 + 𝑇3,2. (4.8)

– We first consider the term 𝑇3,1. But first, this requires the use of a further operator which we now introduce.
Each cell 𝐾 ∈ ℳ𝐻 is star-shaped with respect to a ball 𝐵𝐾 centered in x𝐾 of radius 𝜌 = min𝜎∈ℱ𝐾

𝑑𝐾,𝜎

([19], Lem. B.1). We then use an averaged Taylor polynomial as in [3] but simplified. Let us consider the
following polynomial of 𝑢(𝜇) averaged over 𝐵𝐾 :

𝑄𝐾𝑢(x; 𝜇) =
1

|𝐵𝐾 |

∫︁
𝐵𝐾

[︀
𝑢(y; 𝜇) + 𝐷1𝑢(y; 𝜇)(x− y)

]︀
dy. (4.9)

This polynomial is of degree less or equal to 1 in x.
Let us introduce Π𝐻

1 : 𝐻1(Ω) ∩ 𝒞(Ω) → R, the piecewise affine projection operator on ℳ𝐻 such that:

Π𝐻
1 Ψ = 𝑄𝐾Ψ(x), on 𝐾, ∀𝐾 ∈ℳ𝐻 , ∀Ψ ∈ 𝐻1(Ω) ∩ 𝒞. (4.10)

With the triangle inequality, we obtain

𝑇3,1 ≤
⃒⃒⃒⃒∫︁

Ω

(︀
𝑢(𝜇)−Π𝐻

1 𝑢(𝜇)
)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
+
⃒⃒⃒⃒∫︁

Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
,

=: 𝑇3,1,1 + 𝑇3,1,2. (4.11)

∙ Using the Cauchy–Schwarz inequality,

𝑇3,1,1 ≤
∫︁

Ω

⃒⃒(︀
𝑢(𝜇)−Π𝐻

1 𝑢(𝜇)
)︀
·Πℎ

𝒟Φℎ
𝑖

⃒⃒
dx,

≤
⃦⃦
𝑢(𝜇)−Π𝐻

1 𝑢(𝜇)
⃦⃦

𝐿2(Ω)

⃦⃦
Πℎ
𝒟Φℎ

𝑖

⃦⃦
𝐿2(Ω)

,

≤
⃦⃦
𝑢(𝜇)−Π𝐻

1 𝑢(𝜇)
⃦⃦

𝐿2(Ω)
, since Πℎ

𝒟Φℎ
𝑖 ∀𝑖 = 1, . . . , 𝑁 are normalized in 𝐿2. (4.12)
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Let 𝐾 ∈ℳ𝐻 . As in Proposition 4.3.2 of [3],

sup
x∈𝐾

|𝑢(x; 𝜇)−𝑄𝐾𝑢(x; 𝜇)| . 𝐻
2− 𝑑

2
𝐾 |𝑢(𝜇)|𝐻2(𝐾). (4.13)

Since 𝐾 ⊂ 𝐵(x, 𝐻) for all x ∈ 𝐾,

|𝐾| ≤ |𝐵(x𝐾 , 𝐻)| = |𝐵(0, 1)|𝐻𝑑
𝐾 . (4.14)

Thus, with the inequalities (4.14) and (4.13), we get

sup
x∈𝐾

|𝑢(x; 𝜇)−𝑄𝐾𝑢(x; 𝜇)| . 𝐻2
𝐾 |𝐾|−

1
2 |𝑢(𝜇)|𝐻2(𝐾), (4.15)

taking the square and integrating over 𝐾, we obtain∫︁
𝐾

|𝑢(𝜇)−Π𝐻
1 𝑢(𝜇)|2 dx . 𝐻4

𝐾 |𝑢(𝜇)|2𝐻2(𝐾), (4.16)

and summing over 𝐾 yields ⃦⃦
𝑢(𝜇)−Π𝐻

1 𝑢(𝜇)
⃦⃦

𝐿2(Ω)
. 𝐻2|𝑢(𝜇)|𝐻2(Ω). (4.17)

The inequality (4.17), combined with (4.12), entails that

𝑇3,1,1 . 𝐻2|𝑢(𝜇)|𝐻2(Ω). (4.18)

∙ The term 𝑇3,1,2 can be estimated using a continuous reconstruction of Φℎ
𝑖 , denoted by Φ𝑖.

With the triangle inequality,⃒⃒⃒⃒∫︁
Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
≤
⃒⃒⃒⃒∫︁

Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀(︀
Πℎ
𝒟Φℎ

𝑖 −Π𝐻
0 Φ𝑖

)︀
dx
⃒⃒⃒⃒

+
⃒⃒⃒⃒∫︁

Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Π𝐻

0 Φ𝑖 dx
⃒⃒⃒⃒
. (4.19)

Since x𝐾 is the center of mass,
∫︀

𝐾
x dx = |𝐾|x𝐾 . Therefore,∫︁
𝐾

𝑄𝐾𝑢(x; 𝜇) dx = |𝐾|𝑄𝐾𝑢(x𝐾 ; 𝜇). (4.20)

From the inequality (4.13),

|𝑄𝐾𝑢(x𝐾 ; 𝜇)− 𝑢(x𝐾 ; 𝜇)| . 𝐻
2− 𝑑

2
𝐾 |𝑢(𝜇)|𝐻2(𝐾). (4.21)

Thus, since Π𝐻
0 Φ𝑖 is constant on each cell 𝐾 ∈ℳ𝐻 , and |𝐾| . 𝐻𝑑

𝐾 (4.14),⃒⃒⃒⃒∫︁
Ω

(Π𝐻
1 𝑢(𝜇)−Π𝐻

0 𝑢(𝜇)) ·Π𝐻
0 Φ𝑖 dx

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

∫︁
𝐾

(𝑄𝐾𝑢(x; 𝜇)− 𝑢(x𝐾 ; 𝜇)) ·Π𝐻
0 Φ𝑖 dx

⃒⃒⃒⃒
⃒,

≤
∑︁

𝐾∈ℳ𝐻

⃒⃒⃒⃒
Φ𝑖(𝑥𝐾)

∫︁
𝐾

𝑄𝐾𝑢(x; 𝜇)− 𝑢(x𝐾 ; 𝜇) dx
⃒⃒⃒⃒
,

≤
∑︁

𝐾∈ℳ𝐻

|𝐾||Φ𝑖(𝑥𝐾)(𝑄𝐾𝑢(x𝐾 ; 𝜇)− 𝑢(x𝐾 ; 𝜇))|, from (4.20),
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≤ ‖Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

|𝐾||𝑄𝐾𝑢(x𝐾 ; 𝜇)− 𝑢(x𝐾 ; 𝜇)|,

. ‖Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

|𝐾|𝐻2− 𝑑
2

𝐾 |𝑢(𝜇)|𝐻2(𝐾) from (4.21),

. ‖Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

𝐻
2+ 𝑑

2
𝐾 |𝑢(𝜇)|𝐻2(𝐾). (4.22)

Since Card(ℳ𝐻) ≃ 𝐻−𝑑, using the Cauchy–Schwarz inequality, the inequality (4.22) becomes

⃒⃒⃒⃒∫︁
Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Π𝐻

0 Φ𝑖 dx
⃒⃒⃒⃒
. ‖Φ𝑖‖𝐿∞𝐻2

(︃ ∑︁
𝐾∈ℳ𝐻

|𝑢(𝜇)|2𝐻2(𝐾)

)︃ 1
2

,

= ‖Φ𝑖‖𝐿∞ |𝑢(𝜇)|𝐻2(Ω)𝐻
2, (4.23)

which implies that there exists a constant ̃︁𝐶1 > 0 not depending on ℎ or 𝐻 such that (4.19) becomes

𝑇3,1,2 ≤
∫︁

Ω

⃒⃒(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀(︀
Πℎ
𝒟Φℎ

𝑖 −Π𝐻
0 Φ𝑖

)︀⃒⃒
dx + ̃︁𝐶1‖Φ𝑖‖𝐿∞ |𝑢(𝜇)|𝐻2(Ω)𝐻

2. (4.24)

From the Cauchy–Schwarz inequality and the inequality (4.24),

𝑇3,1,2 ≤
⃒⃒
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

⃦⃦
𝐿2(Ω)

⃦⃦
Πℎ
𝒟Φℎ

𝑖 −Π𝐻
0 Φ𝑖

⃦⃦
𝐿2(Ω)

+ ̃︁𝐶1‖Φ𝑖‖𝐿∞ |𝑢(𝜇)|𝐻2(Ω)𝐻
2. (4.25)

From Bramble-Hilbert’s Lemma (see [3]), we deduce that⃦⃦
𝑢(𝜇)−Π𝐻

0 𝑢(𝜇)
⃦⃦

𝐿2(Ω)
. 𝐻‖𝑢(𝜇)‖𝐻2(Ω). (4.26)

For the first term in the right-hand side of (4.25), from (4.17) to (4.26) and the triangle inequality,⃦⃦
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

⃦⃦
𝐿2(Ω)

≤
⃦⃦

Π𝐻
1 𝑢(𝜇)− 𝑢(𝜇)

⃦⃦
𝐿2(Ω)

+
⃦⃦
𝑢(𝜇)−Π𝐻

0 𝑢(𝜇)
⃦⃦

𝐿2(Ω)
,

. 𝐻‖𝑢‖𝐻2(Ω), neglecting the estimate in 𝐻2, (4.27)

and the inequality (4.26) and the classical finite volume estimate as for (4.2) (Πℎ
𝒟𝜑ℎ

𝑖 being a linear
combination of the family (Πℎ

𝒟𝑢ℎ
𝑗 )𝑁

𝑗=1, ∀𝑖 = 1, . . . , 𝑁) implies that there exists ̃︁𝐶2 = ̃︁𝐶2(𝑁) > 0 not
depending of 𝐻 or ℎ but depending on 𝑁 such that⃦⃦

Πℎ
𝒟Φℎ

𝑖 −Π𝐻
0 Φ𝑖

⃦⃦
𝐿2(Ω)

≤
⃦⃦
Πℎ
𝒟Φℎ

𝑖 − Φ𝑖

⃦⃦
𝐿2(Ω)

+
⃦⃦

Φ𝑖 −Π𝐻
0 Φ𝑖

⃦⃦
𝐿2(Ω)

,

≤ ̃︁𝐶2(𝑁)𝐻, neglecting the estimate in ℎ. (4.28)

From (4.27), (4.28), we deduce that each 𝐿2 term is in 𝒪(𝐻) in the product of the right-hand side of
(4.25). Hence the equation (4.19) yields to

𝑇3,1,2 =
⃒⃒⃒⃒∫︁

Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
.
(︁̃︁𝐶1‖Φ𝑖‖𝐿∞(Ω) + ̃︁𝐶2(𝑁)

)︁
‖𝑢‖𝐻2(Ω)𝐻

2. (4.29)

– We now proceed with the estimate on 𝑇3,2:
With the super-convergence property on the hMFD scheme (2.6), and with the normalization of Πℎ

𝒟Φℎ
𝑖 in

𝐿2(Ω) ⃒⃒⃒⃒∫︁
Ω

(︀
Π𝐻
𝒟𝑢𝐻(𝜇)−Π𝐻

0 𝑢(𝜇)
)︀
·Πℎ

𝒟Φℎ
𝑖 dx

⃒⃒⃒⃒
≤
∫︁

Ω

⃒⃒(︀
Π𝐻
𝒟𝑢𝐻(𝜇)−Π𝐻

0 𝑢(𝜇)
)︀
·Πℎ

𝒟Φℎ
𝑖

⃒⃒
dx,
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≤
⃦⃦

Π𝐻
𝒟𝑢𝐻(𝜇)−Π𝐻

0 𝑢(𝜇)
⃦⃦

𝐿2(Ω)

⃦⃦
Πℎ
𝒟Φℎ

𝑖

⃦⃦
𝐿2(Ω)

,

.
(︁
‖𝑓‖𝐻1(Ω) + ‖𝑢‖𝐻2(Ω)

)︁
𝐻2. (4.30)

Combining the estimates (4.18), (4.29) and (4.30) with the inequalities (4.8)–(4.11), this results in the inequal-
ity (4.5). �

We now consider the third term 𝑇3 = ‖𝑢𝑁
ℎℎ(𝜇)− 𝑢𝑁

𝐻ℎ(𝜇)‖𝒟.

𝑇3 =

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

𝛼ℎ
𝑖 (𝜇)Πℎ

𝒟Φℎ
𝑖 −

𝑁∑︁
𝑖=1

𝛼𝐻
𝑖 (𝜇)Πℎ

𝒟Φℎ
𝑖

⃦⃦⃦⃦
⃦
𝒟

,

≤
𝑁∑︁

𝑖=1

⃒⃒
𝛼ℎ

𝑖 (𝜇)− 𝛼𝐻
𝑖 (𝜇)

⃒⃒⃦⃦
Πℎ
𝒟Φℎ

𝑖

⃦⃦
𝒟,

=
𝑁∑︁

𝑖=1

⃒⃒(︀
Πℎ
𝒟𝑢ℎ(𝜇)−Π𝐻

𝒟𝑢𝐻(𝜇), Πℎ
𝒟Φℎ

𝑖

)︀
𝐿2

⃒⃒⃦⃦
Πℎ
𝒟Φℎ

𝑖

⃦⃦
𝒟. (4.31)

From (3.1), we get that

⃦⃦
Πℎ
𝒟Φℎ

𝑖

⃦⃦2

𝒟 =
∫︁

Ω

|∇𝒟Φℎ
𝑖 |2 dx = 𝜆𝑖

⃦⃦
Π𝒟Φℎ

𝑖

⃦⃦2

𝐿2(Ω)
≤ max

𝑖=1,...,𝑁
(𝜆𝑖) = 𝜆𝑁 . (4.32)

Therefore we obtain from (4.31) and (4.32),

𝑇3 ≤
√︀

𝜆𝑁

𝑁∑︁
𝑖=1

⃒⃒(︀
Πℎ
𝒟𝑢ℎ(𝜇)−Π𝐻

𝒟𝑢𝐻(𝜇), Πℎ
𝒟Φℎ

𝑖

)︀
𝐿2

⃒⃒
. (4.33)

Using the triangle inequality in the right-hand side of (4.33),

𝑇3 ≤
√︀

𝜆𝑁

𝑁∑︁
𝑖=1

⃒⃒(︀
Πℎ
𝒟𝑢ℎ(𝜇)− 𝑢(𝜇), Πℎ

𝒟Φℎ
𝑖

)︀⃒⃒
+
⃒⃒(︀

𝑢(𝜇)−Π𝐻
𝒟𝑢𝐻(𝜇), Πℎ

𝒟Φℎ
𝑖

)︀⃒⃒
. (4.34)

From Proposition 4.1, with the estimate (4.5) applied to ℳℎ and ℳ𝐻 , neglecting the estimate in 𝒪(ℎ2)

𝑇3 .
√︀

𝜆𝑁𝑁
(︁(︁
‖Φ𝑖‖𝐿∞(Ω) + 𝐶(𝑁)

)︁
‖𝑢‖𝐻2(Ω) + ‖𝑓‖𝐻1(Ω)

)︁
𝐻2. (4.35)

The conclusion follows combining the estimates on 𝑇1, 𝑇2 and 𝑇3 (estimates (4.2), (4.4) and (4.35)).

⃦⃦
𝑢(𝜇)− 𝑢𝑁

𝐻ℎ(𝜇)
⃦⃦
𝒟 =

⃦⃦⃦⃦
⃦𝑢(𝜇)−

𝑁∑︁
𝑖=1

𝛼𝐻
𝑖 (𝜇)Πℎ

𝒟Φℎ
𝑖

⃦⃦⃦⃦
⃦
𝒟

,

≤ 𝜀(𝑁) + 𝐶1ℎ + 𝐶2(𝑁)𝐻2 ∼ 𝒪(ℎ) if ℎ ∼ 𝐻2. (4.36)

�

5. Results on other FV schemes

In this section, we consider the case where x𝐾 is not the center of mass, as it is the case for some FV
schemes. Therefore the left hand side of the inequality (4.22) cannot be estimated using equation (4.20). The
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unknowns x𝐾 are not necessarily the centers of mass of the cells neither with HMM methods nor with the
TPFA scheme [2,14]. Under the following superadmissibility condition

∀𝐾 ∈ℳ𝐻 , 𝜎 ∈ ℱ𝐾 : n𝐾,𝜎 =
x𝜎 − x𝐾

𝑑𝐾,𝜎
, (5.1)

the TPFA scheme is a member of the the HMM family schemes ([19], Sect. 13.3, [17], Sect. 5.3) with the choice
ℒ𝐾 = 𝐼𝑑. This leads to take x𝐾 as the circumcenters of the cells with 2D triangular meshes. Theorem 1.1 holds
in 2D on uniform rectangles with TPFA since the superadmissibility condition is satisfied in this case where
x𝐾 is the centre of mass of the cells. The TPFA scheme is rather simple to implement, and therefore we will
present in the last section numerical results with a TPFA solver. We will use the definition of a local grouping
of the cells as in [16] (Def. 5.1). We will extend the Theorem 1.1 in the case where such groupings of cells exist.

Definition 5.1. (Local grouping of the cells). Let 𝒯𝐻 be a polytopal mesh of Ω. A local grouping of the cells of
𝒯𝐻 is a partition G of ℳ𝐻 , such that for each 𝐺 ∈ G, letting 𝑈𝐺 := ∪𝐾∈𝐺𝐾, there exists a ball 𝐵𝐺 ⊂ 𝑈𝐺 such
that 𝑈𝐺 is star-shaped with respect to 𝐵𝐺. This implies that for all x ∈ 𝑈𝐺 and all y ∈ 𝐵𝐺, the line segment
[x,y] is included in 𝑈𝐺. We then define the regularity factor of G

𝜇𝐺 := max
𝐺∈G

Card(𝐺) + max
𝐺∈G

max
𝐾∈𝐺

𝐻𝐾

diam(𝐵𝐺)
, (5.2)

and, with 𝑒𝐾 = x𝐾 − x𝐾 , and

𝑒𝐺 :=
1
|𝑈𝐺|

∑︁
𝐾∈𝐺

|𝐾| e𝐾 , ∀𝐺 ∈ G, (5.3)

𝑒G := max
𝐺∈G

|e𝐺|. (5.4)

Note that we are interested in situations where |e𝐺| =
⃒⃒⃒

1
|𝑈𝐺|

∑︀
𝐾∈𝐺 |𝐾| e𝐾

⃒⃒⃒
is much smaller than |e𝐾 | ∀𝐾 ∈

𝐺. The aim of this section is to estimate the left hand side of the inequality (4.22) in𝒪(𝐻2) using a local grouping
of the cells. The rest of the proof remains unchanged.

We will need the following theorem of super-convergence for HMM schemes with local grouping ([16],
Thm. 5.4).

Theorem 5.2 (Super-convergence for HMM schemes with local grouping ([16], Thm. 5.4)). Let 𝑓 ∈ 𝐻1(Ω),
and 𝑢(𝜇) be the solution of (1.2) under assumption (2.5). Let 𝒯ℎ be a polytopal mesh, and 𝒟 be an HMM gradient
discretisation on 𝒯ℎ and 𝑒G be a local grouping, and let 𝑢ℎ(𝜇) be the solution of the corresponding GD. Then,
considering 𝑢𝒫(𝜇) as the piecewise constant function on ℳℎ equal to 𝑢(x𝐾 ; 𝜇) on 𝐾 ∈ ℳ, there exists 𝐶 not
depending on 𝐻 or ℎ such that⃦⃦

Πℎ
𝒟𝑢ℎ(𝜇)− 𝑢𝒫(𝜇)

⃦⃦
𝐿2(Ω)

≤ 𝐶‖𝑓‖𝐻1(Ω)(ℎ
2 + 𝑒G). (5.5)

Theorem 5.3 (NIRB error estimate with local grouping). Let 𝑢𝑁
ℎ𝐻(𝜇) be the reduced solution projected on the

fine mesh and generated with the hMFD solver with the unknowns defined on x𝑘 such that 𝑒G is in 𝒪(𝐻2) on
the coarse mesh, and 𝑢(𝜇) be the exact solution of (1.2) under assumption (2.5), then the following estimate
holds ⃦⃦

𝑢(𝜇)− 𝑢𝑁
ℎ𝐻(𝜇)

⃦⃦
𝒟 ≤ 𝜀(𝑁) + 𝐶1ℎ + 𝐶2(𝑁)𝐻2, (5.6)

where 𝐶1 and 𝐶2 are constants independent of ℎ and 𝐻,𝐶2 depends on 𝑁 , the number of functions in the basis,
and ‖·‖𝒟 is the discrete norm introduced in Section 2, and 𝜀 depends of the Kolmogorov 𝑛-width. If 𝐻 is such
as 𝐻2 ∼ ℎ, and 𝜀(𝑁) small enough, it results in an error estimate in 𝒪(ℎ).
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Proof. In this proof, we will still denote 𝐴 . 𝐵 for 𝐴 ≤ 𝐶𝐵 with 𝐶 not depending on ℎ or 𝐻. The reconstruction
Φ𝑖 of Φℎ

𝑖 must belong to 𝑊 1,∞. As in the previous section, with the equation (4.20),⃒⃒⃒⃒∫︁
Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Π𝐻

0 Φ𝑖 dx
⃒⃒⃒⃒

=

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

∫︁
𝐾

(𝑄𝐾𝑢(x; 𝜇)− 𝑢(x𝐾 ; 𝜇)) ·Π𝐻
0 Φ𝑖 dx

⃒⃒⃒⃒
⃒,

=

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

Φ𝑖(x𝐾)|𝐾|[𝑄𝐾𝑢(x𝐾 ; 𝜇)− 𝑢(x𝐾 ; 𝜇)]

⃒⃒⃒⃒
⃒,

≤

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

Φ𝑖(x𝐾)|𝐾|[𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)]

⃒⃒⃒⃒
⃒

+ ‖Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

|𝑄𝐾𝑢(x𝐾 ; 𝜇)− 𝑢(x𝐾 ; 𝜇)| from the triangle inequality.

(5.7)

As in the previous section (4.23),

‖Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

|𝐾||𝑄𝐾𝑢(x𝐾 ; 𝜇)− 𝑢(x𝐾 ; 𝜇)| . ‖Φ𝑖‖𝐿∞(Ω)‖𝑢‖𝐻2(Ω)𝐻
2. (5.8)

Thus, the inequality (5.7) yields⃒⃒⃒⃒∫︁
Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Π𝐻

0 Φ𝑖 dx
⃒⃒⃒⃒
.

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

Φ𝑖(x𝐾)|𝐾|[𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)]

⃒⃒⃒⃒
⃒

+ ‖Φ𝑖‖𝐿∞(Ω)‖𝑢‖𝐻2(Ω)𝐻
2. (5.9)

With the triangle inequality, the first term in (5.9) becomes⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

Φ𝑖(x𝐾)|𝐾|[𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)]

⃒⃒⃒⃒
⃒

.

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

[Φ𝑖(x𝐺) + (Φ𝑖(x𝐾)− Φ𝑖(x𝐺))]|𝐾|[𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)]

⃒⃒⃒⃒
⃒,

.

⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

Φ𝑖(x𝐺)|𝐾|
[︁
𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)

]︁⃒⃒⃒⃒⃒
+ ‖∇Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

𝐻𝐾 |𝐾||𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)| since diam(𝑈𝐺) ≤ 𝜇𝐺𝐻𝐾 . (5.10)

Using the decomposition of the mesh in patches 𝑈𝐺 and with the definition of 𝑄𝐾 , the first term of (5.10)
gives⃒⃒⃒⃒

⃒ ∑︁
𝐾∈ℳ𝐻

Φ𝑖(x𝐺)|𝐾|[𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)]

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒∑︁
𝐺∈G

∑︁
𝐾∈𝐺

Φ𝑖(x𝐺)
|𝐾|
|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) · e𝐾 dy

⃒⃒⃒⃒
⃒,

≤
∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
⃒.
(5.11)
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Using the definition of 𝑄𝐾 (4.9), the second term in (5.10) yields

‖∇Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

𝐻𝐾 |𝐾||𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)|

= ‖∇Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

𝐻𝐾
|𝐾|
|𝐵𝐾 |

⃒⃒⃒⃒∫︁
𝐵𝐾

𝐷1𝑢(y) · e𝐾 dy
⃒⃒⃒⃒
,

. ‖∇Φ𝑖‖𝐿∞(Ω)

∑︁
𝐾∈ℳ𝐻

𝐻2
𝐾‖∇𝑢‖𝐿1(𝐵𝐾), since |𝐵𝐾 | ≥ 𝜃−1

𝐻 |𝐾| (2.2),

≤ 𝐻2‖∇Φ𝑖‖𝐿∞(Ω)‖∇𝑢‖𝐿1(Ω). (5.12)

Thus (5.10) becomes⃒⃒⃒⃒
⃒ ∑︁
𝐾∈ℳ𝐻

Φ𝑖(x𝐾)|𝐾|[𝑄𝐾𝑢(x𝐾 ; 𝜇)−𝑄𝐾𝑢(x𝐾 ; 𝜇)]

⃒⃒⃒⃒
⃒ . ∑︁

𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
⃒

+ 𝐻2‖∇Φ𝑖‖𝐿∞(Ω)‖∇𝑢‖𝐿1(Ω). (5.13)

Now, the Lemma 7.6. in [16] is going to be used three times on the first term the right hand side of (5.13).
This lemma reads:

Let 𝑈, 𝑉 and 𝑂 be open sets of R𝑑 such that, for all (x,y) ∈ 𝑈×𝑉, [x,y] ⊂ 𝑂. There exists 𝐶 only depending
on 𝑑 such that, for all Φ ∈ 𝑊 1,1(𝑂),⃒⃒⃒⃒

1
|𝑈 |

∫︁
𝑈

Φ(x) dx− 1
|𝑉 |

∫︁
𝑉

Φ(x) dx
⃒⃒⃒⃒
≤ 𝐶

diam(𝑂)𝑑+1

|𝑈 ||𝑉 |

∫︁
𝑂

|∇Φ(x)| dx. (5.14)

We will use it successively with [𝑈, 𝑉, 𝑂] = [𝐵𝐾 , 𝐾, 𝑈𝐺], [𝑈, 𝑉, 𝑂] = [𝐾, 𝐵𝐺, 𝑈𝐺], and [𝑈, 𝑉, 𝑂] = [𝐵𝐺, 𝑈𝐺, 𝑈𝐺].
We use the triangle inequality on (5.11),

∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
⃒

≤
∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂⃒⃒⃒⃒
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy − 1
|𝐾|

∫︁
𝐾

𝐷1𝑢(y; 𝜇) dy
⃒⃒⃒⃒

+
⃒⃒⃒⃒

1
|𝐾|

∫︁
𝐾

𝐷1𝑢(y; 𝜇) dy − 1
|𝐵𝐺|

∫︁
𝐵𝐺

𝐷1𝑢(y; 𝜇) dy
⃒⃒⃒⃒

+
⃒⃒⃒⃒

1
|𝐵𝐺|

∫︁
𝐵𝐺

𝐷1𝑢(y; 𝜇) dy − 1
|𝑈𝐺|

∫︁
𝑈𝐺

𝐷1𝑢(y; 𝜇) dy
⃒⃒⃒⃒

+
1
|𝑈𝐺|

∫︁
𝑈𝐺

𝐷1𝑢(y; 𝜇) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
. (5.15)

and we get

∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
⃒

.
∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
‖𝑢‖𝑊 2,1(𝑈𝐺)diam(𝑈𝐺)𝑑

[︂
diam(𝑈𝐺)
|𝐵𝐾 ||𝐾|

+
diam(𝑈𝐺)
|𝐵𝐺||𝐾|

+
diam(𝑈𝐺)
|𝑈𝐺||𝐵𝐺|

]︂
+

1
|𝑈𝐺|

∫︁
𝑈𝐺

𝐷1𝑢(y; 𝜇) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
. (5.16)
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With the regularity factor 𝜃𝐻 (see the previous definition of a polytopal mesh (2.2)), |𝐾| ≤ |𝐵(0, 1)|𝐻𝑑
𝐾 .

|𝐵𝐾 |𝜃𝑑
𝐻 . Since Card(𝐺) is bounded by 𝜇𝐺, diam(𝑈𝐺) ≤ 𝜇𝐺𝐻𝐾 . Thus, diam(𝑈𝐺)𝑑 ≤ 𝜇𝑑

𝐺𝐻𝑑
𝐾 , and diam(𝑈𝐺)

|𝐵𝐾 | ≤ 𝐶,

|𝐵𝐺| ≥ 𝜇−𝑑
𝐺 diam(𝑈𝐺)𝑑, |𝐵𝐺| & 𝜇−𝑑

𝐺 𝐻𝑑
𝐾 & 𝜇−𝑑

𝐺 |𝐾|, and |𝑈𝐺| ≥ diam(𝑈𝐺)𝑑.
Therefore (5.16) becomes

∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾|e𝐾

⃒⃒⃒⃒
⃒ . ∑︁

𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
‖𝑢‖𝑊 2,1(𝑈𝐺)

diam(𝑈𝐺)
|𝐾|

+
1
|𝑈𝐺|

∫︁
𝑈𝐺

𝐷1𝑢(y; 𝜇) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
. (5.17)

Since diam(𝑈𝐺) ≤ 𝜇𝐺𝐻𝐾 and |e𝐾 | ≤ 𝐻𝐾 ,

∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾| e𝐾

⃒⃒⃒⃒
⃒ . ∑︁

𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

[︃∑︁
𝐾∈𝐺

𝐻2
𝐾‖𝑢‖𝑊 2,1(𝑈𝐺)

+

⃒⃒⃒⃒
⃒ 1
|𝑈𝐺|

∑︁
𝐾∈𝐺

∫︁
𝑈𝐺

𝐷1𝑢(y; 𝜇) dy|𝐾|e𝐾

⃒⃒⃒⃒
⃒
]︃
. (5.18)

Then,

∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾|e𝐾

⃒⃒⃒⃒
⃒ . ∑︁

𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

∑︁
𝐾∈𝐺

𝐻2
𝐾‖𝑢‖𝑊 2,1(𝑈𝐺)

+
∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒ 1
|𝑈𝐺|

∑︁
𝐾∈𝐺

|𝐾| e𝐾

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒∫︁

𝑈𝐺

𝐷1𝑢(y; 𝜇) dy
⃒⃒⃒⃒
,

(5.19)

which implies, since Card(𝐺) ≤ 𝜇𝐺,

∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

(︂
1

|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy
)︂
|𝐾|e𝐾

⃒⃒⃒⃒
⃒ . ∑︁

𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)𝐻
2‖𝑢‖𝑊 2,1(𝑈𝐺)

+
∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒ 1
|𝑈𝐺|

∑︁
𝐾∈𝐺

|𝐾| e𝐾

⃒⃒⃒⃒
⃒‖𝑢‖𝑊 1,1(𝑈𝐺). (5.20)

and finally,

∑︁
𝐺∈G

‖Φ𝑖‖𝐿∞(𝐺)

⃒⃒⃒⃒
⃒∑︁
𝐾∈𝐺

1
|𝐵𝐾 |

∫︁
𝐵𝐾

𝐷1𝑢(y) dy|𝐾| e𝐾

⃒⃒⃒⃒
⃒ ≤ ‖Φ𝑖‖𝐿∞(Ω)‖𝑢‖𝑊 2,1(Ω)𝐻

2

+ ‖Φ𝑖‖𝐿∞(Ω)max
𝐺∈G

‖𝑢‖𝑊 1,1(Ω)

⃒⃒⃒⃒
⃒ 1
|𝑈𝐺|

∑︁
𝐾∈𝐺

|𝐾| e𝐾

⃒⃒⃒⃒
⃒. (5.21)

This results using (5.7), (5.8), (5.10), (5.12), and (5.21) in
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Figure 3. Coarse and fine solution with the uniform grid.

⃒⃒⃒⃒∫︁
Ω

(︀
Π𝐻

1 𝑢(𝜇)−Π𝐻
0 𝑢(𝜇)

)︀
·Π𝐻

0 Φ𝑖 dx
⃒⃒⃒⃒
.
(︁
‖Φ𝑖‖𝑊 1,∞(Ω)‖𝑢‖𝑊 2,1(Ω) + ‖𝑢‖𝐻2(Ω)‖Φ𝑖‖𝐿∞(Ω)

)︁
𝐻2

+
(︁
‖Φ𝑖‖𝐿∞(Ω)‖𝑢‖𝑊 1,1(Ω)

)︁
𝑒G. (5.22)

If 𝑒G = max
𝐺∈G

⃒⃒⃒⃒(︂
1

|𝑈𝐺|
∑︀

𝐾∈𝐺

|𝐾| e𝐾

)︂⃒⃒⃒⃒
is in 𝒪(𝐻2) then the estimate of

⃒⃒∫︀
Ω

(Π𝐻
1 𝑢(𝜇)−Π𝐻

0 𝑢(𝜇)) ·Π𝐻
0 Φ𝑖 dx

⃒⃒
is in

𝒪(𝐻2). This concludes the proof since the rest is similar to the one of Theorem 1.1. Note that for the estimate
of 𝑇3,2 (4.30), the equation (5.5) from the Theorem of super-convergence with local grouping is used instead of
(2.6). �

6. Some details on the implementation and numerical results

We consider two simple cases in 2D for the numerical results with the TPFA scheme. Both results are
computed on the unit square. We use an harmonic averaging of the diffusion coefficient ([17], Sect. 5.3). Our
variable parameter is 𝜇 ∈ R4 = (𝜇1, 𝜇2, 𝜇3, 𝜇4). For both cases, the size of the meshes is defined as the maximum
length of the edges. The diffusion coefficient we consider here is 𝐴(𝜇) = (2𝜇1 + 𝜇2 sin(𝑥 + 𝑦) cos(𝑥𝑦)) and
𝑓 = (𝜇3(1 − 𝑦) + 𝜇4𝑥(1 − 𝑥)). We choose random coefficients in [0, 1] for the snapshots with 𝑁 = 5 and our
solution is defined with 𝜇1 = 0.99, 𝜇2 = 0.8, 𝜇3 = 0.2, 𝜇4 = 0.78. For the exact solution, we consider the TPFA
solution on a finer mesh (Figs. 3 and 4). For the computation of the norm, we use the discrete semi-norm as
in the remark of the Section 2 (2.7). NIRB results (with and without the rectification 3.2) are compared to the
classical FV errors (Figs. 5 and 6). We measure the following relative error⃦⃦

𝑢(𝜇)− 𝑢𝑁
𝐻ℎ(𝜇)

⃦⃦
𝒯 ,2⃦⃦⃦

𝑢(𝜇)𝒯 ,2

⃦⃦⃦ · (6.1)

In practice, one approach, based on the computation times, consists in choosing a precise time 𝑡1 and in finding
the associated coarse solution computed within this time. Then, the fine grid is chosen such that 𝐻2 = ℎ. In
our tests, we choose several fine mesh sizes to analyze the rate of the error, and the coarse mesh size 𝐻 is equal
to 0.25. An other approach can be to select a fine mesh size such that the method works for several coarse mesh
sizes.

6.1. Uniform grid

The first case presents results on a rectangular uniform grid where x𝐾 is the center of mass of the cell.
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Figure 4. Coarse and fine solution with the triangular mesh.

Figure 5. Numerical result on the uniform grid.

6.2. Triangular mesh

The second case is defined on a triangular mesh where x𝐾 are the circumcenter of the cells, such that 𝑒G is
in 𝒪(𝐻2).

6.3. Discussion on the implementation

We implemented the TPFA scheme on Scilab and retrieved several solutions for the NIRB algorithm on
Python to highlight the black box side of the solver. The scilab files consist in three text files with solution
values, the cell center coordinates, and one file with information on the edges (distance 𝑑𝐾𝐿, the area between
the cell center and the edge, and the labels).

– Implementation of the TPFA method.



ERROR ESTIMATE OF THE NIRB METHOD WITH FINITE VOLUME SCHEMES 1959

Figure 6. Numerical result on the triangular mesh.

We want to solve the linear system 𝐴𝑢𝐾 = 𝑏. The TPFA on 𝒯ℎ reads:
Find 𝑢ℎ = (𝑢𝐾)𝐾∈ℳ such that

∀𝐾 ∈ℳℎ,
∑︁

𝜎∈ℱ𝐾∩ℱint

𝜏𝜎(𝑢𝐾 − 𝑢𝐿) +
∑︁

𝜎∈ℱ𝐾∩ℱext

𝜏𝜎𝑢𝐾 =
∫︁

𝐾

𝑓(x)dx, (6.2)

where the harmonic average 𝜏𝜎 = |𝜎| 𝐴(x𝐿;𝜇)𝐴(x𝐾 ;𝜇)
𝐴(x𝐿;𝜇)×𝑑𝐿,𝜎+𝐴(x𝐾 ;𝜇)×𝑑𝐾,𝜎

on ℱint, and 𝜏𝜎 = |𝜎|𝐴(x𝐾 ;𝜇)
𝑑𝐾,𝜎

on ℱext.
To assemble the matrices 𝐴 of the TPFA scheme, we iterate on each edge, and we add the harmonic average
𝜏𝜎 on each cell, and for 𝑏 we add the term |𝐷𝐾,𝜎| × 𝑓(𝑥𝐾).

– Time execution (min, s).

NIRB Offline NIRB Online FV solver

Uniform grid 07:49 00:06 01:48
Triangular mesh 06:15 00:05 01:15

Remark 6.1. In dimension 2, we expect a speedup of 1/ℎ. Indeed, the degrees of freedom 𝒩ℎ (for the fine
mesh) are of order (1/ℎ)2 (resp. 𝒩𝐻 = (1/𝐻)2 for the coarse mesh), and the costs of an optimal solver are
in 𝒪(𝒩ℎ) (or 𝒪(𝒩𝐻) for the coarse mesh). Thus the speedup with ℎ = 𝐻2 is equal to 1/ℎ and differs from
other classical reduced-basis methods. In our case, this is difficult to observe since our model problem is
very simple with few degrees of freedom, and the computational costs take into account other subroutines
such as mesh readers which are not proportional.
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Remark 6.2. Note that for the discontinuous diffusion coefficient 𝐴, with the TPFA scheme, we recovered
numerically the same estimate as in the Lipschitz continuous case, when we use the harmonic mean even if the
proof no longer works.
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