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ERROR ESTIMATE OF THE NON-INTRUSIVE REDUCED BASIS METHOD
WITH FINITE VOLUME SCHEMES

ELISE GROSJEANY* AND YVON MADAY!?

Abstract. The context of this paper is the simulation of parameter-dependent partial differential
equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values,
Reduced Basis Methods (RBM) are often used to reduce computational costs of a classical high fidelity
code based on Finite Element Method (FEM), Finite Volume (FVM) or Spectral methods. The efficient
implementation of most of these RBM requires to modify this high fidelity code, which cannot be done,
for example in an industrial context if the high fidelity code is only accessible as a “black-box” solver.
The Non-Intrusive Reduced Basis (NIRB) method has been introduced in the context of finite elements
as a good alternative to reduce the implementation costs of these parameter-dependent problems. The
method is efficient in other contexts than the FEM one, like with finite volume schemes, which are more
often used in an industrial environment. In this case, some adaptations need to be done as the degrees
of freedom in FV methods have different meanings. At this time, error estimates have only been studied
with FEM solvers. In this paper, we present a generalisation of the NIRB method to Finite Volume
schemes and we show that estimates established for FEM solvers also hold in the FVM setting. We first
prove our results for the hybrid-Mimetic Finite Difference method (hMFD), which is part the Hybrid
Mixed Mimetic methods (HMM) family. Then, we explain how these results apply more generally to
other FV schemes. Some of them are specified, such as the Two Point Flux Approximation (TPFA).
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1. INTRODUCTION

This paper is concerned with the efficient simulation of parameter-dependent partial differential equations
(PDEs), with a parameter varying in a given set G. For complex physical systems, computational costs can
be huge. It may happen, for instance in the context of parameter optimization or real time simulations in an
industrial context, that the same problem needs to be solved for several parameter values.

In such cases, different model order reductions (MOR) like the reduced basis methods have been proposed
(see e.g. [22,27]) based on Proper Orthogonal Decomposition (POD) or greedy selection of the reduced basis,
the reduced basis elements being computed accurately enough through a high fidelity code. In these approaches,
the efficient implementation of the reduced method, leading to reductions in the computational time, requires to
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be able to deeply enter into the high fidelity code, in order to compute offline, a key ingredient which saves the
implementation costs online. This can be tedious, even impossible when the code has been bought, as it is often
the case in an industrial context. The Non-Intrusive Reduced Basis (NIRB) methods [8,25] has been proposed
in this framework. This method is useful to reduce computational costs of parametric-dependent PDEs in a
non-intrusive way. Unlike other MOR, the NIRB method does not require to modify the solver code and hence
does not depend on the numerical approach underlying the code.

This method, based on two grids, one fine where high fidelity computations are done offline and one coarse
which is used online, has been introduced in [8,25]. It was presented and analysed in the case where the high
fidelity code is based on a finite element solver. In these papers, an optimal error estimate is recovered and
illustrated with numerical simulations. The method can be extended to other classical discretizations but the
key ingredient is a better approximation rate in the L? norm than in the energy norm, thanks to the Aubin—
Nitsche’s trick that is easy for variational approximations. In addition, the degrees of freedom in FVM do not
have the same status as in FEM and the transfer of information from one grid to another must be adapted.
The aim of this paper is to propose the adaptation of the NIRB method to FV and to propose the numerical
analysis able to recover the classical error estimate with Finite Volume (FV) schemes.

The non-intrusive reduced basis method

Let Q be an open bounded domain in R? with d < 3. The NIRB method in the context of a high fidelity
solver of finite element or finite volume types involves two partitioned meshes, one fine mesh M, and one coarse
mesh My, where h and H are the respective sizes of the meshes and h < H. The size h (res. H) is defined as
h = maxgem, hx (resp. H = maxgeam, Hix) where the diameter hx (or Hg) of any element K in a mesh is
equal to sup, ,cx|r —yl.

As it is classical in other reduced basis methods, the NIRB method is based on the assumption (assumed or
actually checked) that the manifold of all solutions § = {u(u), 4 € G} has a small Kolmogorov n-width e(n) [24].
This leads to the fact that very few well chosen solutions are sufficient to approximate well any element in S.
These well chosen elements are called the snapshots. In this frame, the method is based on two steps (see Fig. 1):
one offline step and one online. The “offline” part is costly in time because the snapshots must be generated
with a high fidelity code on the fine mesh Mj. The “online” step is performed on the coarse mesh My, and
thus much less expensive than a high fidelity computation. This algorithm remains effective as the offline part
is performed only once and in advance and also independently from the online stage. The online stage can then
be done as many times as desired.

— In the offline part, several snapshots are computed on the fine mesh for different well chosen parameters in
the parameter set G with the (fine and costly) solver. The best way to determine the required parameters
is through a greedy procedure [1, 6, 30] if available or through an Singular Value Decomposition (SVD)
approach.

— The online part consists in computing a coarse solution with the same solver for some (new) parameter
p € G and then L2-project this (coarse) solution on the (fine) reduced basis. This results in an improved
approximation, in the sense that we may retrieve almost fine error estimates with a much lower computational
cost. This is not as in classical extrapolation schemes since the solution on the fine mesh is not employed to
obtain the approximation.

Mbotivation and earlier works

Several papers have underlined the efficiency of the NIRB method in the finite element context, illustrated
both with numerical results presenting error plots and the online part computational time [8-10,25]. However,
to the best of our knowledge, works with Finite Volume (FV) schemes have not yet been studied with a non-
intrusive approach [7,21,23, 28, 29], and they are often preferred to finite element methods in an industrial
context. Thanks to recent works on super-convergence [16], and with some technical subtleties, we are now able
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FI1GURE 1. Diagram of the NIRB method.

to generalize the two-grids method which is non-intrusive to FV methods and propose the numerical analysis
of this method.

Main results

In the context of P-FEM solvers, the works [8,25] retrieve an estimate error of the order of O(h+ H?) in the
energy norm using the Aubin-Nitsche’s lemma [3] for the coarse grids solution (for a reduced basis dimension
large enough). With FV schemes, no equivalent of the Aubin—Nitsche’s lemma is available, instead, we consider
the class of Hybrid Mimetic Mixed (HMM) schemes for elliptic equations and use a super-convergence property
proven in [13,14,16]. We will first focus on hMFD scheme, which is part of the family of Hybrid Mimetic Mixed
methods (HMM) [12,13,17-19]. Tt is a finite volume method despite its name. Indeed hMFD scheme relies on
both a flux balance equation and on a local conservativity of numerical fluxes. It uses interface values and fluxes
as unknowns. The particularity of hMFD is that the cell unknowns must be located at the center of mass of
the cells [4,5]. HMM also includes mixed finite volume schemes (MFV) [15] and hybrid finite volume schemes
(HFV), a hybrid version of the SUSHI scheme [20]. All HMM are built on a general mesh, namely a polytopal
mesh, which is a star-shaped mesh regarding the unknowns of the cells.

Let us consider the following linear second-order parameter dependent problem as our model problem:

{— div(A(p)Vu) = f in Q, (1.1a)
u=0 on 01, (1.1b)

where f € L?(), u is a parameter in a set G, and for any p € G, A(.; 1) : Q — R4*? is measurable, bounded,
uniformly elliptic, and A(x; p) is symmetric for a.e. x € Q.
Under general hypotheses, it is well-known that this problem has a unique solution.
The usual weak formulation for problems (1.1a), (1.1b) reads:
Find u € H}(Q) such that,
Vo € Hé(Q)’ a(u,v; p) = (f,v), (1.2)
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where
a(w,v;p) = / A(x; ) Vw(x) - Vo(x) dx,  Yw,v € HEH ().
Q

The main result of this paper is the following estimate:

Theorem 1.1 (NIRB error estimate for hMFD solvers). Let uly (1) be the reduced solution projected on the
fine mesh and generated with the hMFD solver with the unknowns defined on x, = Tk (the cell centers of mass),
and u(p) be the exact solution of (1.2) under an H? regularity assumption (2.5) (which will be stated later),
then the following estimate holds

[u(n) =y ()|, < e(N) + Crh + Co(N)H?, (1.3)

where C1 and Co are constants independent of h and H,Cy depends on N, the number of functions in the basis,
and ||-||p is the discrete norm introduced in Section 2, and € depends of the Kolmogorov n-width. If H is such
as H? ~ h, and e(N) small enough, it results in an error estimate in O(h).

Note that if H is chosen such as H? ~ h and £(N) small enough, it results in an error estimate in O(h).

Outline of the paper

The rest of this paper is organized as follows. In Section 2, we describe the mathematical context. In Section 3,
we recall the two-grids method. Section 4 is devoted to the proof of Theorem 1.1 with the hybrid-Mimetic Finite
Difference scheme (hMFD). Section 5 generalizes Theorem 1.1 to other schemes, such as the Two Point Flux
Approximation (TPFA). In the last section, the implementation is discussed and we illustrate the estimate with
several numerical results on the NIRB method.

2. MATHEMATICAL BACKGROUND

In this section, we recall the definition of the Hybrid Mixed Mimetic methods (HMM) family, some notations
and some of its properties [12,18,19] that will be necessary for the analysis of NIRB method in this finite volume
context.

2.1. The Hybrid Mixed Mimetic methods (HMM) family

Describing the HMM family requires to introduce the Gradient Discretisation (GD) method [19], which is a
general framework for the definition and the convergence analysis of many numerical methods (finite element,
finite volume, mimetic finite difference methods, etc.).

The GD schemes involve a discete space, a reconstruction operator and a gradient operator, which taken
together are called a Gradient Discretisation. Selecting the gradient discretisation mostly depends on the bound-
ary conditions (BCs). We now introduce the definition of GD for Dirichlet BCs as in [19] and the GD scheme
associated to our model problem.

Definition 2.1 (Gradient discretisation). For homogeneous Dirichlet BCs, a gradient discretisation D is a
triplet (Xp o,IIp, Vp), where the space of degrees of freedom Xp g is a discrete version of the continuous space

- lp: Xpo — L?() is a function reconstruction operator that relates an element of Xp, to a function in

L2(Q).
~ Vp: Xpo — L?(Q)? is a gradient reconstruction in L?(€2) from the degrees of freedom. It must be chosen
such that |-[|p = [[V|p-f2(qye is a norm on Xp .

In what follows, we will refer to I or II%, depending on the mesh considered and for the gradient recon-
struction too (respectively VH or V4).
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FIGURE 2. A cell K of a polytopal 2D mesh.

Definition 2.2 (Gradient discretisation scheme). For the variational form (1.2), the related gradient discreti-
sation scheme with the new operators is defined by:
Find up € Xp g such that, Yvp € Xp,

/ A([L)V'DUD . V']_)UD dx = / f HD’UD dx. (21)
Q Q

We will use two general polytopal meshes ([19], Def. 7.2) which are admissible meshes for the hMFD scheme.

Definition 2.3 (Polytopal mesh). Let Q be a bounded polytopal open subset of R%(d > 1). A polytopal mesh
of Q is a quadruplet 7 = (M, F,P,V), where:

(1)
(2)

(4)

M is a finite family of non-empty connected polytopal open disjoint subsets K (the cells) such that Q =
UgemK. For any K € M, |K| > 0 is the measure of K and hx denotes the diameter of K.

F = Fint UFext is a finite family of disjoint subsets of Q (the edges of the mesh in 2D), such that any o € Fiy
is contained in Q and any o € Feyy is contained in 9. Each o € F is assumed to be a nonempty open subset
of a hyperplane of R?, with a positive (d — 1)-dimensional measure |o|. Furthermore, for all K € M, there
exists a subset Fx of F such that 0K = Uy, 7. We assume that foralloc € F, M, ={K e M : 0 € Fx}
has exactly one element and o C 92 or M, has two elements and o C Q. The center of mass is X,, and,
for K € M and 0 € Fg, ng,, is the (constant) unit vector normal to o outward to K.

P is a family of points of € indexed by M and F, denoted by P = ((xk)xem, (Xs)ocF), such that for
all K € M, xig € K and for all 0 € F, x, € 0. We then denote by dx , the signed orthogonal distance
between xi and o € Fk, that is: dg,, = (X — Xk) - g, for all x € 0. We then assume that each cell
K € M is strictly star-shaped with respect to xg, that is dx , > 0 for all 0 € Fg. This implies that for
all x € K, the line segment [xx,x] is included in K. We denote Xx the center of mass of K and by X, the
one of ¢. For all K € M and o € Fk, we denote by Dk , the cone with vertex xx and basis o, that is
Dk o ={txx+ (1 —-1t)y,t€(0,1),y €0}.

V is a set of points (the vertices of the mesh). For K € M, the set of vertices of K, i.e. the vertices contained
in K, is denoted V. Similarly, the set of vertices of o € F is V,.

The Figure 2 illustrates a cell of a 2D polytopal mesh.
The regularity factor for the mesh is

di,o h
0= max K7 1 max | max —— + Card(Fx) |. (2.2)
aGF;,,t,Mg:{K,K/} dK/J KeM\oeFk dKJ
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In what follows, we will consider two polytopal meshes. The fine mesh will be denoted 7" = (M", Fh Ph V)
and TH = (MH, .7-'H PH V) will be referred to as the coarse mesh.

All HMM schemes require to choose one point inside each mesh cell xx, and in the case the center of mass
Xr is chosen, then the scheme corresponds to hMFD and superconvergence is well known [12,13,16]. Until
Section 5, we will consider xx = Xk .

Definition 2.4 (Hybrid Mimetic Mixed gradient discretisation (HMM-GD)). For hMFD scheme, we use the
following GD ([19], Def. 13.1.1):

(1) Let Xpo ={v = ((vK)kem, (Vo)oecr) : vk E R,v, € R,v, =0if 0 € Fexs},
(2) Ip : Xp,o — L?(Q) is the following piecewise constant reconstruction on the mesh:
Vv € Xp o, VK € M,
IIpv(x) = vk on K. (2.3)

(3) Vp : Xpo — L*(Q)? reconstructs piecewise constant gradients on the cones (Dx o) ke .ocFy:
Yv € Xpo,VK € M,Vo € F,

f
VDU( ) Vgv+ —— dK [ACKRK( )]0— ng ., on Dg s, (2.4)

where

- VK’U = |%| ZO’E}_K |U|U0'nK,0'a

- Rk : Xpo — R7¥ is given by Rk (v) = (Rk o(v)))oerx With Ri o(v) = vy —vx — Vgv - (X0 — Xk),
— Lk is an isomorphism of the space Im(Rg ).

As explained in the introduction of this chapter, h(MFD, HFV and MFV schemes are three different presenta-
tions of the same method. With the notations above, any HMM method for the weak form (1.2) can be written
([17], Eq. (2.25)):

Find uz(u) € Xp,o such that, for all vy € Xp o,

Z |K|AK( )VKUT Vivr + Z Ry ’UT) BKRK ’U,T Z ’UK/ f

KeM KeM KeM

where (1 is our variable parameter, A (p) is the Lo projection of A(u) on K and Bx = ((Bk)o,07)o,07cFx 1S @
symmetric positive definite matrix, resulting from the definition of Vp.

For a certain choice of isomorphism Lk : S(Rg) — S(Rk ), the HMM scheme (2.1) is identical to GDs (2.1)
(see [19], Thm. 13.7).

2.2. The hybrid Mimetic Finite Difference (hMFD) method

We now introduce the super-convergence property on hMFD which will be used in the proof of Theorem 1.1,
but first we need the following H? regularity assumption (which holds if A is Lipschitz continuous and € is
convex):

Let f € L?(2), the solution u(u) to (1.2) belongs to H?(£2), and

()l 2 ) + 1AWV u(@ll graye < CllflL2 @) (2.5)

with C' depending only on 2 and A.
We define 7y @ L2(Q) — L%() as the orthogonal projection on the piecewise constant functions on M"
that is

VU € L2(Q), VK e M", WM“I}_\KI/ ) dx on K.
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Theorem 2.5 (Super-convergence for h(MFD schemes ([16], Thm. 4.7)). Letd < 3, f € H'(2), and u(u) be the
solution of (1.2) under assumption (2.5). Let Ty, be a polytopal mesh, and D be an HMM gradient discretisation
on Tp, with the unknowns defined on xk, and let up(p) be the solution of the corresponding GD. Recall that Ty
is the center of mass of K and we are in the case where xx = Tx. Then, considering up () as the piecewise
constant function on My, equal to u(Tx;u) on K € M, there exists C > 0 not depending on h such that

T un (1) = wp ()| o gy < C (1 sy + el ) (2.6)

To recover (2.6) in the case Xxg = X, we used the Lemma 7.5 of [16] on the approximation of Hy functions
by affine functions to obtain

17 aenu() = up ()l 2wy < CR? [l g2 gy

Remark 2.6. We consider here ||-|p as the discrete semi norm of H' so as not to make notations too cumber-
some. The usual discrete semi-norm for H' is defined by

YweT, [vfF,= Z Z lo|dk o

KeMoeFk

2
Vo — VK
RUBERELS 2.7
s ‘ (2.7)

Under some conditions on the regularity of the mesh, this norm and [|[Vp-|[;2(q)a are equivalent ([19],
Lem. 13.11).

In the next section, we recall the offline and the online parts of the two-grids algorithm.

3. THE NON-INTRUSIVE REDUCED BaAsis (NIRB) METHOD

3.1. Main steps

This section recalls the main steps of the two-grids method algorithm [8,25].

Let wuyp,(p) refer to the hMFD solution on a fine polytopal mesh 7;,, with cells M, and respectively wg (u)
the one on a coarse mesh 7g, with the cells Mg.

We briefly recall the NIRB method. Points 1 and 2 are performed in the offline part, and the others are done
online.

(1) Several snapshots {un(ui)}ieq1,...ny are computed with the hMFD scheme (2.1), where y; € G Vi =
1,...,N. The space generated by the snapshots is named X} = Span{uy (p1), ..., un(pn)}-

(2) We generate the basis functions (®7);—1, y with the following steps:
— A Gram-Schmidt procedure is used, which involves L? orthonormalization of the reconstruction functions.
— This procedure is also completed by the following eigenvalue problem:

Find ®" € X}V, and X € R such that:
Yo € X,QV,/ Vheh . iy dx = A/ po" - 1y dx, (3.1)
Q Q

where V% and H% are respectively the discrete gradient and the discrete reconstruction operators as
in the definition of the HMM GD ((2.3), (2.4)). We get an increasing sequence of eigenvalues \;, and
orthogonal eigenfunctions (II%®"),—1 ., orthonormalized in L?(£2) and orthogonalized in H'(2), such
that ((bzh)izl,...,N defines a new basis of the space X}]LV.
(3) We solve the hMFD problem (2.1) on the coarse mesh 7y for a new parameter u € G. Let us denote by
up (@) the solution.
(4) We then introduce off (1) = [, g (1) - 1% @7 dx. The approximation used in the two-grids method is

N
ugh(#) = Zi:1az‘H(#) H%ﬂ’?



1948 E. GROSJEAN AND Y. MADAY

3.2. Rectification post-process

We introduce af'(n) = [, huy(p) - I®" dx. The rectification process, explained in [8,10, 25], can be
employed in addition of the NIRB classical algorithm. This implies that if the true solution is in the reduced
space, then the NIRB method will give this true solution. Let Ntrain be the number of parameters in G.

Let A be the matrix such that A;; = «; H(u), VYur € G, Vi=1,...,N, and B be the matrix such that
B = ol (uy), Yur€G, Vi=1,...,N. The aim is to minimize, on R;, ||AR; — B;||?. The solution of this
problem Wlth a regularization parameter is the rectification matrix:

R; = (ATA + \Iy)'A"B,, Vi=1,...,N, (3.2)

where X is the regularization parameter.
The approximation used with this post-process is

ulN (1 Z Rij ol (p) T @ (3.3)

3,7=1

In the next section, we detail how to obtain the classical finite elements estimate in O(h) on the NIRB
algorithm, when the snapshots are computed with the hMFD GD using a polytopal mesh.

4. NIRB ERROR ESTIMATE

In this section, we consider xx = X which is the case with the hMFD scheme. Some other cases will be
detailed in Section 5.
We now continue with the proof of Theorem 1.1.

Proof. In this proof, we will denote A < B for A < C'B with C not depending on h or H.
We use the triangle inequality on [Ju(u) — uf, (1)|/p to get

() = Whun () || + || TWhun (i) — unh (1) 5 + [Junh () = wign ()] 5

= T1 +TQ+T3, (41)

IA

() = wgn ()|

where uly, (1) = va Lol (I eh .

— The first term T} can be estimated using a classical result for finite volume schemes (consequence of [19],
Prop. 13.16) such that:

[[u(e) — Tpun (1) hlfull g2 o (4.2)

o =

— The best achievable error in the uniform sense of a fine solution projected into X fbv relies on the notion of
Kolmogorov n-width ([26], Thm. 20.1). If K is a compact set in a Banach space V, the Kolmogorov n-width
of IC is

d,(K) = inf su mln v —w 4.3
n(K) dim(V,,)<n UE;FC) wev, ” - (4.3)
Here we suppose the set of all the reconstructions of the solutions S = {HDuh (1), 1 € G} has alow complexity
which means for an accuracy € = ¢(N) related to the Kolmogorov n-width of the manifold S, there exists a
set of parameters {p1,...,un} € G, such that [6,8,11,25]

Ty = ([T un (1) Za Ik < e(N). (4.4)

D

— Consider the term T3 now. We will need the following proposition where the property of super-convergence
for the hMFD scheme (2.6) is used.
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Proposition 4.1. Let ug(u) be the solution of the hMFD on a polytopal mesh Ty with the unknowns on
xx = Trc. Denote by u(p) the exact solution of equation (1.2), and let (®7);—1,. N be the basis functions of the
NIRB algorithm, then there exists a constant C = C(N) > 0 not depending on H or h,and depending on N
such that

(u(p) = T () - T @Y | S (194l e g + CON) )tz ) + 1 1)) 2 (4.5)
Q
Proof. Since My is a partition of €2,
[ o ot ax = S [ itfun(n) - pel dx (4.6)
Q KeMpy K

To begin with, let I : C(2) — L°°(£2) be the piecewise constant projection operator on My such that:
MY ®(x) =V(xg), onkK, VKeMy, YVeCQ). (4.7)

We use the triangle inequality on the left part of the inequality (4.5) and therefore,

[ () = W) 10l x| < | [ (ul) - T u) - Tp! i
Q Q
| [ (nfute) = W () - ! x|,
= T371 + T372. (48)

— We first consider the term 75 ;. But first, this requires the use of a further operator which we now introduce.
Each cell K € My is star-shaped with respect to a ball By centered in xx of radius p = min,er, di »
([19], Lem. B.1). We then use an averaged Taylor polynomial as in [3] but simplified. Let us consider the
following polynomial of u(u) averaged over By:

Qru(x;p) = !

= — | [ulyip) + D'u(y;p)(x —y)] dy. (4.9)
|Bx| /B

This polynomial is of degree less or equal to 1 in x.
Let us introduce I : H1(Q2) N C(Q) — R, the piecewise affine projection operator on My such that:

MW = Qx¥(x), onK, VKecMy, Y¥ecH (Q)NC. (4.10)

With the triangle inequality, we obtain

T3, <

+

[ ()~ 1) 11l dx| + | [ (18 u) - 08 () - 1Ep! e,
Q Q

= T311+ T332 (4.11)

e Using the Cauchy—Schwarz inequality,

Tyrs < / |(u(p) - THu(p)) - 0P| dx,
Q

< ) = T u() | o o) ITHRE | 12
< Hu(,u) - H{{u(u)HLZ(Q), since I®" Vi =1,..., N are normalized in L. (4.12)
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Let K € Mpy. As in Proposition 4.3.2 of [3],

2_d
sup |u(x; p) — Qru(x;p)| S Hye ® [u(p)| 2 (x)-
xeK

Since K C B(x, H) for all x € K,
K| < |B(xk, H)| = |B(0,1)|Hi.
Thus, with the inequalities (4.14) and (4.13), we get

sup [u(x; p) — Qreu(x; )| S Hy K|~ = |u(u) g2,
xeK

taking the square and integrating over K, we obtain

1t =T xS )
and summing over K yields
|u(p) — HfIU(M)HLz(Q) < H?|u(p) g2 ()
The inequality (4.17), combined with (4.12), entails that

Ts11 S HP Ju(p)|ge(o)-

The term T3 1 2 can be estimated using a continuous reconstruction of ®”, denoted by ®;.

With the triangle inequality,

[ @fute) ~ fful) - et ax

+

/Q(H{%(u) — T u(p)) - TE @, dx

Since X is the center of mass, [, x dx = |K|xg. Therefore,
| Queutox ) dx = [K|Queutrcin).
K
From the inequality (4.13),

2_4d
|Qru(xK;p) —ulxr; p)| S Hye 2 [u(p)| 2

Thus, since IIE ®; is constant on each cell K € My, and |K| < HE (4.14),

[ttt — 1) -1 e ax

> /K(qu(X;u)—U(XK;u))-Hgléi dx

KeMpg

D

KeMpyg

IN

)

B, (k) /K Qreu(x; 1) — u(xre; 1) dx

< | [ (ftugo - g ) (et - nffe,) o
Q

)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

< Z | K| @i (25 ) (Qru(xK; 1) — u(xse; p))|, from (4.20),

KeMpyg
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NPl ey D IEQuulxs; 1) — u(xcs ),
KeMpy

< 2-5
il ey S 1K ul) o) from (4.21),
KeMpyg

2+4¢
SNl ey >, Hy 2 [ulw) () (4.22)
KeMpy

Since Card(My) ~ H~¢, using the Cauchy-Schwarz inequality, the inequality (4.22) becomes

1
2
SII@iLocH2< > Iu(u)l?qz(K)> ;

KeMpyg
= [|®ill poo ) | 122 H, (4.23)

/Q(H{{U(H) — T u(p)) - T @; dx

which implies that there exists a constant /C\'; > 0 not depending on h or H such that (4.19) becomes
T312 < /Q| (H{{u(u) - HSIU(N)) (H%(b? - H(I)LI(I’i) |dx + éle(I)i”Loo ‘u(ﬂ)|H2(Q)H2~ (4.24)
From the Cauchy—Schwarz inequality and the inequality (4.24),
Ty < [ () — T ()| o g [T Y — T 4] + Gl i) oo B (4:25)
From Bramble-Hilbert’s Lemma (see [3]), we deduce that
i) = L) 2y S H )20y (4.26)
For the first term in the right-hand side of (4.25), from (4.17) to (4.26) and the triangle inequality,

||H{{u(u) - Héiu(p’)Hsz(Q) < ||H{IU(M) - U(H)HLQ(Q) + ||u(:u) - HOHU(H)HLZ(Q)?
S H||ull g2y, neglecting the estimate in H?, (4.27)

and the inequality (4.26) and the classical finite volume estimate as for (4.2) (II,¢" being a linear

combination of the family (H%u?)évzl, Vi = 1,...,N) implies that there exists Co = C5(N) > 0 not

depending of H or h but depending on N such that

HH%(I)? - Héf@i”m(ﬂ) =< HH%(I)? - (I)iHLQ(Q) + H(I)l - H(I){(I)iHL?

< @(N)H, neglecting the estimate in h. (4.28)

(DX

From (4.27), (4.28), we deduce that each L? term is in O(H) in the product of the right-hand side of
(4.25). Hence the equation (4.19) yields to

Tyiz = S (Cull@il oy + Co()) Il o H (4:29)

[ (@) ~ 1) gl ax

— We now proceed with the estimate on 75 »:
With the super-convergence property on the hMFD scheme (2.6), and with the normalization of I ®” in
L*(Q)

[ ()~ 15t - et ax

< / (s () — Tl u() - TE5®Y | dx,
Q
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< HHgUH(/i) - Hglu(M)HL2(Q)||H%(I)?HL2(Q)7

S (101 + Nl gy ) . (4.30)

Combining the estimates (4.18), (4.29) and (4.30) with the inequalities (4.8)—(4.11), this results in the inequal-
ity (4.5). O

We now consider the third term T3 = |[ud), (1) — uly, (1) ||p-

)

)l — Za ()T Dl

D
< ZW(M) — o ()] |[ITp2L| ,,
:Zy (Whun (i) — DR ug (), M) |, ||| T2 . (4.31)
From (3.1), we get that
||HD<I>hHD — / |Vp®h 2 dx = AZ—||HD<I>§L||2L2(Q) < r{laxN()\i) =y (4.32)
Q i=1,...,
Therefore we obtain from (4.31) and (4.32),
T3 < /A Z} M () — TR up (1), THOY) |- (4.33)
Using the triangle inequality in the right-hand side of (4.33),
N
Ts < VAn Y| (Whun () — u(p), THEL) | + | (w(n) — TR ug (1), THE]) |- (4.34)
i=1

From Proposition 4.1, with the estimate (4.5) applied to Mj, and Mg, neglecting the estimate in O(h?)

Ty S VAN ((I124l] o + CON )l 2y + 1 L3y (4.35)

The conclusion follows combining the estimates on 77, T» and T3 (estimates (4.2), (4.4) and (4.35)).

Za )11 @
D

e(N )+Clh+02( VH? ~ O(h) if h ~ H. (4.36)

[u(p) = uign (W), =

5. RESULTS ON OTHER FV SCHEMES

In this section, we consider the case where xy is not the center of mass, as it is the case for some FV
schemes. Therefore the left hand side of the inequality (4.22) cannot be estimated using equation (4.20). The
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unknowns Xy are not necessarily the centers of mass of the cells neither with HMM methods nor with the
TPFA scheme [2,14]. Under the following superadmissibility condition

Xo — XK

VK e My, o€ Fg: ng, = , (5.1)

dK,a
the TPFA scheme is a member of the the HMM family schemes ([19], Sect. 13.3, [17], Sect. 5.3) with the choice
L = Id. This leads to take xi as the circumcenters of the cells with 2D triangular meshes. Theorem 1.1 holds
in 2D on uniform rectangles with TPFA since the superadmissibility condition is satisfied in this case where
Xk is the centre of mass of the cells. The TPFA scheme is rather simple to implement, and therefore we will
present in the last section numerical results with a TPFA solver. We will use the definition of a local grouping
of the cells as in [16] (Def. 5.1). We will extend the Theorem 1.1 in the case where such groupings of cells exist.

Definition 5.1. (Local grouping of the cells). Let 75 be a polytopal mesh of . A local grouping of the cells of
Ty is a partition & of My, such that for each G € &, letting Ug := Ui K, there exists a ball Bg C Ug such
that Ug is star-shaped with respect to Bg. This implies that for all x € Ug and all y € B, the line segment
[x,y] is included in Ug. We then define the regularity factor of &

Hg
= Card(G —_— 5.2
pe = gy OO T W R TamBe) 52
and, with ex =X — Xg, and
1
eq = —— Kleg, VGEe®, 5.3
I 5.9
€ = Iax leg|- (5.4)
Note that we are interested in situations where |eg| = ‘IUilc;l Yokec Kl eK‘ is much smaller than ex| VK €

G. The aim of this section is to estimate the left hand side of the inequality (4.22) in O(H?) using a local grouping
of the cells. The rest of the proof remains unchanged.

We will need the following theorem of super-convergence for HMM schemes with local grouping ([16],
Thm. 5.4).

Theorem 5.2 (Super-convergence for HMM schemes with local grouping ([16], Thm. 5.4)). Let f € H(f),
and u(p) be the solution of (1.2) under assumption (2.5). Let Ty, be a polytopal mesh, and D be an HMM gradient
discretisation on Tp, and eg be a local grouping, and let up(u) be the solution of the corresponding GD. Then,
considering up(1) as the piecewise constant function on Mj, equal to u(xy; ) on K € M, there exists C not
depending on H or h such that

T (1) — wp ()] 2y < Ol Ly (0 + ). (5.5)

Theorem 5.3 (NIRB error estimate with local grouping). Let uj (1) be the reduced solution projected on the
fine mesh and generated with the hMFD solver with the unknowns defined on xy, such that eg is in O(H?) on
the coarse mesh, and u(u) be the exact solution of (1.2) under assumption (2.5), then the following estimate
holds

[u(p) = upe ()], < e(N) + Cih+ Co(N)H?, (5.6)

where C1 and Co are constants independent of h and H,Cy depends on N, the number of functions in the basis,
and ||-||p is the discrete norm introduced in Section 2, and € depends of the Kolmogorov n-width. If H is such
as H? ~ h, and €(N) small enough, it results in an error estimate in O(h).
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Proof. In this proof, we will still denote A < B for A < C'B with C not depending on h or H. The reconstruction
®; of ®" must belong to W1>°. As in the previous section, with the equation (4.20),

3

> /K(QKU(KN)*U(XK;H))'HSI(P,; dx

KeMpg

/Q(H{{U(u) — T u(p)) - T ®; dx

Z O (xx )| K|[Qru(Xks ) — u(xges )],

KeMpyg
<Y ®ixi)|K|[Qru(Rr: ) — Qru(xi; )]
KeMpyg
+ H‘I)iHLoo(Q) Z |Qru(xk;u) — u(xg; )| from the triangle inequality.
KeMpu
(5.7)
As in the previous section (4.23),
1Rill oy D K NQuu(xre; 1) — wlxics )] S N1Pall oo ey 114l 2 0y H (5.8)
KeMpy
Thus, the inequality (5.7) yields
/ (M u(p) — T w(p)) - T ®; dx| S| D0 @(xk) | K [Qru(Xic; 1) — Qreu(xxc; )]
Q KeMpg
+ ||(I’iHLoc(Q)||UHH2(Q)H2~ (5.9)
With the triangle inequality, the first term in (5.9) becomes
D Bilxk) | K[Qr (R ) — Qretn(X s )]
KeMpy
S| [®ilxa) + (Bi(xx) — @i(xa))] | K|[Quu(Xic 1) — Queulxs )|,
KeMpyg
S (I)i(XG)|K|{QKU(iK§M) _QKU(XKQU)}|
KeMpyg
IV iy S HilKIQucu(Rrc: 1) — Quculxrc: )] since diam(Uc) < g Hic, (5.10)
KeMyg

Using the decomposition of the mesh in patches Ug and with the definition of Q, the first term of (5.10)
gives

<

Z Qi (x0)| K|[Qru(Xk; ) — Qru(Xk; )]

KeMpyg

9

K| 1
) Z(bi(XG)@ /BKD u(y) - ex dy

GeBKeqG
1
< Y10 | X (g [ Doty av 1] ex
KeG K
(5.11)

Ged



ERROR ESTIMATE OF THE NIRB METHOD WITH FINITE VOLUME SCHEMES 1955
Using the definition of Qx (4.9), the second term in (5.10) yields

Vil ey >, Hr|Kl|Qru(Rx; 1) — Qrulxx; )|

KeMpg
P, H K] . d

=V HLoo(Q Z Kinp y) ek dy|,

KeMpy
SIVeillpwi@ D HillVull g gy, since |Bx| > 05" 1K] (2.2),

KeMpg
< H2 Vi oo ) | Vtull 1.y - (5.12)

Thus (5.10) becomes
> uxp)IK|Qru(Re; 1) — Qruxri )| S D 1Pl oo ) <|B |/ D'u( d.V)|K| ex
KeMy Gew Keg NTE
V|Vl (5.13)

Now, the Lemma 7.6. in [16] is going to be used three times on the first term the right hand side of (5.13).
This lemma reads:

Let U, V and O be open sets of R? such that, for all (x,y) € UxV, [x,y] C O. There exists C only depending
on d such that, for all ® € W11(0),

We will use it successively with [U, V, O] = [BK7K, Ugl, [U,V,0] = [K, Bg,Ug), and [U,V, O] = [Bg, Ug, Ug].
We use the triangle inequality on (5.11),

D %l ey| D <|B |/ D'u( d.Y)IK ex
Ges K
(’ D'u(y) dy — L/ D'u(y; ) dy‘
|BK| Bg |K| K

< il ey | D
+ L/ Dlulyip) dy — —— [ Dlu(y;p) dy’
|K‘ K ’ IBG‘ Ba ’

KeG

Ged KeG

1
- D1 . d _ Dl . d
+‘|BG| Be u(y; p) dy Ual u(y; 1) y’
1
"0l Ju Dlu(y;“)dy) |KeK" (5.15)
and we get
il o D'u(y) dy )| K
S 10| 3 (17, 2o o I ex
(]
. diam(Ug) diam(Ug) diam(Ug)
S 1Dl 1 oo <|u|| , dlam(Ug)d|: + +
Gze@ g (G)Igc e BxllKl " Bl T UalBel

1
+— Dlu(y;u) dy) |K| ex]|.

T (5.16)
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With the regularity factor 6y (see the previous definition of a polytopal mesh (2.2)), |K| < |B(0,1)|H% <
| Bk 0% . Since Card(G) is bounded by g, diam(Ug) < pgHc. Thus, diam(Ug)? < pd HE, and diam(Ue) < ¢,

[Bx|
|Bg| > pgtdiam(Ug)?, |Be| 2 ngHE 2 ug?| K|, and |Ug| > diam(Ug)?.
Therefore (5.16) becomes

1
D il | D (|BK| . D'u(y) dY>|K|eK

Ged KeG

S il ooy

Ge®
L1
Uc

diam(Ug)
Z H’U,“Wz,l(UG)T

KeG

Dlu(y; n) dy) || eK‘- (5.17)
G

Since dlam(U(;) < ,UGHK and \eK| < HK,

S| X (g [, D) dy 1K x| 5
Kea MR

N Z | ||L°°(G) [Z HK||U||W2 *(Uq)

Ged Ged KeG
1
+ | Dlu(y;p) dy|Klex||.  (5.18)
IUG|I§:G Uo
Then,
Zn@nm@ (|B / D'uf dy)|K|eK S D N®illey Y Hicllwllwzawo)
Ged Ged KeG
S 0| g oK e | [ DMty ay).
Ged KeG

(5.19)

which implies, since Card(G) < ug,

TIPS (BK [ Dtuts) ay) e <

Z ||@iHLw(G)HznuHW‘M(UG)

Ges Ge®
+ 19l | g 20 1T |l (520
Ged KeG
and finally,
S 19| X 5 / D'uly) dy|K] erc| < [1®;l| o oyl oy H
Ged KeG

+ ||<I’iH;:oo(Q)%lfei’g5 lullw(q)

|U |Z|K| €K |.

KeG

(5.21)

This results using (5.7), (5.8), (5.10), (5.12), and (5.21) in
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F1GURE 3. Coarse and fine solution with the uniform grid.

/Q(H{{U(M) — T u(p) - IE @, dx

< (14llws oy Il gy + el 2y 12ill o ) H

(194l e o 0l ) 0 (5.22)

If eg = max

1
|y & 1 exc)

O(H?). This concludes the proof since the rest is similar to the one of Theorem 1.1. Note that for the estimate
of T5 9 (4.30), the equation (5.5) from the Theorem of super-convergence with local grouping is used instead of
(2.6). |

is in O(H?) then the estimate of UQ(H{IU(M) — T u(p)) - U@, dx‘ is in

6. SOME DETAILS ON THE IMPLEMENTATION AND NUMERICAL RESULTS

We consider two simple cases in 2D for the numerical results with the TPFA scheme. Both results are
computed on the unit square. We use an harmonic averaging of the diffusion coefficient ([17], Sect. 5.3). Our
variable parameter is u € R* = (1, 12, 13, f14). For both cases, the size of the meshes is defined as the maximum
length of the edges. The diffusion coefficient we consider here is A(p) = (211 + posin(x + y) cos(zy)) and
f = (u3(l —y) + pax(l — x)). We choose random coefficients in [0, 1] for the snapshots with N = 5 and our
solution is defined with p; = 0.99, pus = 0.8, uz = 0.2, g = 0.78. For the exact solution, we consider the TPFA
solution on a finer mesh (Figs. 3 and 4). For the computation of the norm, we use the discrete semi-norm as
in the remark of the Section 2 (2.7). NIRB results (with and without the rectification 3.2) are compared to the
classical FV errors (Figs. 5 and 6). We measure the following relative error

) = wiin )l 7.

[tz o

In practice, one approach, based on the computation times, consists in choosing a precise time ¢; and in finding
the associated coarse solution computed within this time. Then, the fine grid is chosen such that H? = h. In
our tests, we choose several fine mesh sizes to analyze the rate of the error, and the coarse mesh size H is equal
to 0.25. An other approach can be to select a fine mesh size such that the method works for several coarse mesh
sizes.

6.1. Uniform grid

The first case presents results on a rectangular uniform grid where xx is the center of mass of the cell.
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F1GURE 4. Coarse and fine solution with the triangular mesh.

Hj relative error in log scale

NIRB H} relative error with uy

H} relative error with up,

NIRB + rectification —— —e— u-uh error
—— NIRB error —— Uu-uH
—e— u-uH -- y=X
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fine mesh size h

FI1GURE 5. Numerical result on the uniform grid.

6.2. Triangular mesh

The second case is defined on a triangular mesh where xj are the circumcenter of the cells, such that eg is
in O(H?).
6.3. Discussion on the implementation

We implemented the TPFA scheme on Scilab and retrieved several solutions for the NIRB algorithm on
Python to highlight the black box side of the solver. The scilab files consist in three text files with solution
values, the cell center coordinates, and one file with information on the edges (distance dkr,, the area between
the cell center and the edge, and the labels).

— Implementation of the TPFA method.
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Hj relative error in log scale

NIRB H} relative error with uy H} relative error with up,
0.90 — NIRB + rectification —— 090 —e— u-uh error
—— NIRB error —— u-uH
—— u-uH - y=X
-——- y=X
0.30 0.30 5
s s
@ 0.20 — @ 0.20
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FIGURE 6. Numerical result on the triangular mesh.

We want to solve the linear system Aux = b. The TPFA on 7} reads:
Find up = (uk)kem such that

VK € Mp, Z To(ux —ur) + Z ToUK :/ f(x)dx, (6.2)
TEFKNFint TEFKNFext K

ARSI on Fig and 7 =[] A5 on F.

To assemble the matrices A of the TPFA scheme, we iterate on each edge, and we add the harmonic average

T, on each cell, and for b we add the term |Dg | X f(zk).

A(xx ;1)
dK,o

where the harmonic average 7, = |0 A
;

Time execution (min, s).
NIRB Offline NIRB Online FV solver

Uniform grid 07:49 00:06 01:48
Triangular mesh 06:15 00:05 01:15

Remark 6.1. In dimension 2, we expect a speedup of 1/h. Indeed, the degrees of freedom N, (for the fine
mesh) are of order (1/h)? (resp. Ny = (1/H)? for the coarse mesh), and the costs of an optimal solver are
in O(N3) (or O(Ng) for the coarse mesh). Thus the speedup with h = H? is equal to 1/h and differs from
other classical reduced-basis methods. In our case, this is difficult to observe since our model problem is
very simple with few degrees of freedom, and the computational costs take into account other subroutines
such as mesh readers which are not proportional.
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Remark 6.2. Note that for the discontinuous diffusion coefficient A, with the TPFA scheme, we recovered
numerically the same estimate as in the Lipschitz continuous case, when we use the harmonic mean even if the
proof no longer works.
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