Morley finite element method for the von Kármán obstacle problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1873-1894

This paper focusses on the von Kármán equations for the moderately large deformation of a very thin plate with the convex obstacle constraint leading to a coupled system of semilinear fourth-order obstacle problem and motivates its nonconforming Morley finite element approximation. The first part establishes the well-posedness of the von Kármán obstacle problem and also discusses the uniqueness of the solution under an a priori and an a posteriori smallness condition on the data. The second part of the article discusses the regularity result of Frehse from 1971 and combines it with the regularity of the solution on a polygonal domain. The third part of the article shows an a priori error estimate for optimal convergence rates for the Morley finite element approximation to the von Kármán obstacle problem for small data. The article concludes with numerical results that illustrates the requirement of smallness assumption on the data for optimal convergence rate.

DOI : 10.1051/m2an/2021042
Classification : 65K15, 65N12, 65N15, 65N30
Keywords: Obstacle problem, Morley FEM, von Karman equations, a priori estimate, regularity
@article{M2AN_2021__55_5_1873_0,
     author = {Carstensen, Carsten and Gaddam, Sharat and Nataraj, Neela and Pani, Amiya K. and Shylaja, Devika},
     title = {Morley finite element method for the von {K\'arm\'an} obstacle problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1873--1894},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021042},
     mrnumber = {4313374},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021042/}
}
TY  - JOUR
AU  - Carstensen, Carsten
AU  - Gaddam, Sharat
AU  - Nataraj, Neela
AU  - Pani, Amiya K.
AU  - Shylaja, Devika
TI  - Morley finite element method for the von Kármán obstacle problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1873
EP  - 1894
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021042/
DO  - 10.1051/m2an/2021042
LA  - en
ID  - M2AN_2021__55_5_1873_0
ER  - 
%0 Journal Article
%A Carstensen, Carsten
%A Gaddam, Sharat
%A Nataraj, Neela
%A Pani, Amiya K.
%A Shylaja, Devika
%T Morley finite element method for the von Kármán obstacle problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1873-1894
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021042/
%R 10.1051/m2an/2021042
%G en
%F M2AN_2021__55_5_1873_0
Carstensen, Carsten; Gaddam, Sharat; Nataraj, Neela; Pani, Amiya K.; Shylaja, Devika. Morley finite element method for the von Kármán obstacle problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1873-1894. doi: 10.1051/m2an/2021042

[1] C. Bacuta, J. H. Bramble and J. E. Pasciak, Shift Theorems for the Biharmonic Dirichlet Problem. In: T. F. Chan, Y. Huang, T. Tang, J. Xu, L. A. Ying (eds.) Recent Progress in Computational and Applied PDES. Springer, Boston, MA (2002) 1–26. | MR | Zbl

[2] M. S. Berger and P. C. Fife, Von Kármán equations and the buckling of a thin elastic plate, II plate with general edge conditions. Commun. Pure Appl. Math. 21 (1968) 227–241. | MR | Zbl | DOI

[3] H. Blum and R. Rannacher, On mixed finite element methods in plate bending analysis. Comput. Mech. 6 (1990) 221–236. | Zbl | DOI

[4] H. Blum, R. Rannacher and R. Leis, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | MR | Zbl | DOI

[5] S. C. Brenner, M. Neilan, A. Reiser and L.-Y. Sung, A C 0 interior penalty method for a von Kármán plate. Numerische Mathematik 135 (2017) 803–832. | MR | DOI

[6] S. C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A quadratic C 0 interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50 (2012) 3329–3350. | MR | Zbl | DOI

[7] S. C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. | MR | Zbl | DOI

[8] S. C. Brenner, L.-Y. Sung and Y. Zhang, Finite element methods for the displacement obstacle problem of clamped plates. Math. Comput. 81 (2012) 1247–1262. | MR | Zbl | DOI

[9] F. Brezzi, Finite element approximations of the von Kármán equations. ESAIM: M2AN 12 (1978) 303–312. | MR | Zbl | Numdam

[10] L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 6 (1979) 151–184. | MR | Zbl | Numdam

[11] C. Carstensen, D. Gallistl and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68 (2014) 2167–2181. | MR | DOI

[12] C. Carstensen, G. Mallik and N. Nataraj, A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations. IMA J. Numer. Anal. 39 (2019) 167–200. | MR

[13] C. Carstensen, G. Mallik and N. Nataraj, Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. IMA J. Numer. Anal. 41 (2021) 164–205. | MR | DOI

[14] C. Carstensen and N. Nataraj, Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. SIAM J. Numer. Anal.. Preprint: (2020). | arXiv | MR

[15] C. Carstensen and S. Puttkammer, How to prove the discrete reliability for nonconforming finite element methods. J. Comput. Math. 38 (2020) 142–175. | MR | DOI

[16] P. G. Ciarlet (ed.) The finite element method for elliptic problems, Vol. 4. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl

[17] P. G. Ciarlet, Mathematical Elasticity: Volume II: Theory of Plates,Vol. 27. Studies in Mathematics and its Applications. Elsevier (1997). | MR

[18] J. Frehse, Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36 (1971) 140–149. | MR | Zbl | DOI

[19] D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35 (2014) 1779–1811. | MR | DOI

[20] R. Glowinski, Lectures on Numerical Methods for Non-linear Variational Problems. Springer-Verlag, Berlin-Heidelberg (2008).

[21] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. | MR | Zbl | DOI

[22] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Vol. 88. Pure and Applied Mathematics. Academic Press (1980). | MR | Zbl

[23] G. H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. | MR | Zbl | DOI

[24] G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. | MR | DOI

[25] G. Mallik and N. Nataraj, A nonconforming finite element approximation for the von Kármán equations. ESAIM: M2AN 50 (2016) 433–454. | MR | Numdam | DOI

[26] E. Miersemann and H. D. Mittelmann, Stability in obstacle problems for the von Kármán plate. SIAM J. Math. Anal. 23 (1992) 1099–1116. | MR | Zbl | DOI

[27] T. Miyoshi, A mixed finite element method for the solution of the von Kármán equations. Numerische Mathematik 26 (1976) 255–269. | MR | Zbl | DOI

[28] A. D. Muradova and G. E. Stavroulakis, A unilateral contact model with buckling in von Kármán plates. Nonlinear Anal.: Real World Appl. 8 (2007) 1261–1271. | MR | Zbl | DOI

[29] K. Ohtake, J. T. Oden and N. Kikuchi, Analysis of certain unilateral problems in von Kármán plate theory by a penalty method-part 1. a variational principle with penalty. Comput. Methods Appl. Mech. Eng. 24 (1980) 187–213. | MR | Zbl | DOI

[30] K. Ohtake, J. T. Oden and N. Kikuchi, Analysis of certain unilateral problems in von Kármán plate theory by a penalty method-part 2. approximation and numerical analysis. Comput. Methods Appl. Mech. Eng. 24 (1980) 317–337. | MR | Zbl | DOI

[31] A. Quarteroni, Hybrid finite element methods for the von Kármán equations. Calcolo 16 (1979) 271–288. | MR | Zbl | DOI

[32] L. Reinhart, On the numerical analysis of the von Kármán equations: mixed finite element approximation and continuation techniques. Numerische Mathematik 39 (1982) 371–404. | MR | Zbl | DOI

[33] S.-T. Yau and Y. Gao, Obstacle problem for von Kármán equations. Adv. Appl. Math. 13 (1992) 123–141. | MR | Zbl | DOI

Cité par Sources :