This paper focusses on the von Kármán equations for the moderately large deformation of a very thin plate with the convex obstacle constraint leading to a coupled system of semilinear fourth-order obstacle problem and motivates its nonconforming Morley finite element approximation. The first part establishes the well-posedness of the von Kármán obstacle problem and also discusses the uniqueness of the solution under an a priori and an a posteriori smallness condition on the data. The second part of the article discusses the regularity result of Frehse from 1971 and combines it with the regularity of the solution on a polygonal domain. The third part of the article shows an a priori error estimate for optimal convergence rates for the Morley finite element approximation to the von Kármán obstacle problem for small data. The article concludes with numerical results that illustrates the requirement of smallness assumption on the data for optimal convergence rate.
Keywords: Obstacle problem, Morley FEM, von Karman equations, a priori estimate, regularity
@article{M2AN_2021__55_5_1873_0,
author = {Carstensen, Carsten and Gaddam, Sharat and Nataraj, Neela and Pani, Amiya K. and Shylaja, Devika},
title = {Morley finite element method for the von {K\'arm\'an} obstacle problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1873--1894},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {5},
doi = {10.1051/m2an/2021042},
mrnumber = {4313374},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021042/}
}
TY - JOUR AU - Carstensen, Carsten AU - Gaddam, Sharat AU - Nataraj, Neela AU - Pani, Amiya K. AU - Shylaja, Devika TI - Morley finite element method for the von Kármán obstacle problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 1873 EP - 1894 VL - 55 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021042/ DO - 10.1051/m2an/2021042 LA - en ID - M2AN_2021__55_5_1873_0 ER -
%0 Journal Article %A Carstensen, Carsten %A Gaddam, Sharat %A Nataraj, Neela %A Pani, Amiya K. %A Shylaja, Devika %T Morley finite element method for the von Kármán obstacle problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 1873-1894 %V 55 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021042/ %R 10.1051/m2an/2021042 %G en %F M2AN_2021__55_5_1873_0
Carstensen, Carsten; Gaddam, Sharat; Nataraj, Neela; Pani, Amiya K.; Shylaja, Devika. Morley finite element method for the von Kármán obstacle problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1873-1894. doi: 10.1051/m2an/2021042
[1] , and , Shift Theorems for the Biharmonic Dirichlet Problem. In: , , , , (eds.) Recent Progress in Computational and Applied PDES. Springer, Boston, MA (2002) 1–26. | MR | Zbl
[2] and , Von Kármán equations and the buckling of a thin elastic plate, II plate with general edge conditions. Commun. Pure Appl. Math. 21 (1968) 227–241. | MR | Zbl | DOI
[3] and , On mixed finite element methods in plate bending analysis. Comput. Mech. 6 (1990) 221–236. | Zbl | DOI
[4] , and , On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | MR | Zbl | DOI
[5] , , and , A interior penalty method for a von Kármán plate. Numerische Mathematik 135 (2017) 803–832. | MR | DOI
[6] , , and , A quadratic interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50 (2012) 3329–3350. | MR | Zbl | DOI
[7] , , and , A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. | MR | Zbl | DOI
[8] , and , Finite element methods for the displacement obstacle problem of clamped plates. Math. Comput. 81 (2012) 1247–1262. | MR | Zbl | DOI
[9] , Finite element approximations of the von Kármán equations. ESAIM: M2AN 12 (1978) 303–312. | MR | Zbl | Numdam
[10] and , The obstacle problem for the biharmonic operator. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 6 (1979) 151–184. | MR | Zbl | Numdam
[11] , and , A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68 (2014) 2167–2181. | MR | DOI
[12] , and , A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations. IMA J. Numer. Anal. 39 (2019) 167–200. | MR
[13] , and , Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. IMA J. Numer. Anal. 41 (2021) 164–205. | MR | DOI
[14] and , Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. SIAM J. Numer. Anal.. Preprint: (2020). | arXiv | MR
[15] and , How to prove the discrete reliability for nonconforming finite element methods. J. Comput. Math. 38 (2020) 142–175. | MR | DOI
[16] (ed.) The finite element method for elliptic problems, Vol. 4. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl
[17] , Mathematical Elasticity: Volume II: Theory of Plates,Vol. 27. Studies in Mathematics and its Applications. Elsevier (1997). | MR
[18] , Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36 (1971) 140–149. | MR | Zbl | DOI
[19] , Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35 (2014) 1779–1811. | MR | DOI
[20] , Lectures on Numerical Methods for Non-linear Variational Problems. Springer-Verlag, Berlin-Heidelberg (2008).
[21] , and , The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. | MR | Zbl | DOI
[22] and , An introduction to variational inequalities and their applications, Vol. 88. Pure and Applied Mathematics. Academic Press (1980). | MR | Zbl
[23] , An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. | MR | Zbl | DOI
[24] and , Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. | MR | DOI
[25] and , A nonconforming finite element approximation for the von Kármán equations. ESAIM: M2AN 50 (2016) 433–454. | MR | Numdam | DOI
[26] and , Stability in obstacle problems for the von Kármán plate. SIAM J. Math. Anal. 23 (1992) 1099–1116. | MR | Zbl | DOI
[27] , A mixed finite element method for the solution of the von Kármán equations. Numerische Mathematik 26 (1976) 255–269. | MR | Zbl | DOI
[28] and , A unilateral contact model with buckling in von Kármán plates. Nonlinear Anal.: Real World Appl. 8 (2007) 1261–1271. | MR | Zbl | DOI
[29] , and , Analysis of certain unilateral problems in von Kármán plate theory by a penalty method-part 1. a variational principle with penalty. Comput. Methods Appl. Mech. Eng. 24 (1980) 187–213. | MR | Zbl | DOI
[30] , and , Analysis of certain unilateral problems in von Kármán plate theory by a penalty method-part 2. approximation and numerical analysis. Comput. Methods Appl. Mech. Eng. 24 (1980) 317–337. | MR | Zbl | DOI
[31] , Hybrid finite element methods for the von Kármán equations. Calcolo 16 (1979) 271–288. | MR | Zbl | DOI
[32] , On the numerical analysis of the von Kármán equations: mixed finite element approximation and continuation techniques. Numerische Mathematik 39 (1982) 371–404. | MR | Zbl | DOI
[33] and , Obstacle problem for von Kármán equations. Adv. Appl. Math. 13 (1992) 123–141. | MR | Zbl | DOI
Cité par Sources :





