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MORLEY FINITE ELEMENT METHOD FOR THE VON KÁRMÁN
OBSTACLE PROBLEM

Carsten Carstensen1,2, Sharat Gaddam3, Neela Nataraj3,*, Amiya K. Pani3

and Devika Shylaja4

Abstract. This paper focusses on the von Kármán equations for the moderately large deformation
of a very thin plate with the convex obstacle constraint leading to a coupled system of semilinear
fourth-order obstacle problem and motivates its nonconforming Morley finite element approximation.
The first part establishes the well-posedness of the von Kármán obstacle problem and also discusses
the uniqueness of the solution under an a priori and an a posteriori smallness condition on the data.
The second part of the article discusses the regularity result of Frehse from 1971 and combines it with
the regularity of the solution on a polygonal domain. The third part of the article shows an a priori
error estimate for optimal convergence rates for the Morley finite element approximation to the von
Kármán obstacle problem for small data. The article concludes with numerical results that illustrates
the requirement of smallness assumption on the data for optimal convergence rate.
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1. Introduction

Short history of related work. The von Kármán equations [17] model the bending of very thin elastic
plates through a system of fourth-order semi-linear elliptic equations; cf. [2, 17, 23] and references therein for
the existence of solutions, regularity, and bifurcation phenomena. The papers [5, 9, 12, 13, 25, 27, 31, 32] study
the approximation and error bounds for regular solutions to von Kármán equations using conforming, mixed,
hybrid, Morley, 𝐶0 interior penalty and discontinuous Galerkin finite element methods (FEMs).

The obstacle problem is a prototypical example for a variational inequality and arises in contact mechanics,
option pricing, and fluid flow problems. The location of the free boundary is not known a priori and forms a part
of the solution procedure. For the theoretical and numerical aspects of variational inequalities, see [20, 22]. A
unified convergence analysis for the fourth-order linear two-sided obstacle problem of clamped Kirchhoff plates
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in [6–8] studies 𝐶1 FEMs, 𝐶0 interior penalty methods, and classical nonconforming FEMs on convex domains
and, analyse the 𝐶0 interior penalty and the Morley FEM on polygonal domains.

The obstacle problem for von Kármán equations with a nonlinearity together with a free boundary
offers additional difficulties. The obstacle problem in [26, 28, 33] concerns a different plate model with continu-
ation, spectral, and complementarity methods, while the papers [29,30] study conforming penalty FEM.

The present paper is the first on the fourth-order semilinear obstacle problem of a (very thin) von Kármán
plate. The article derives existence, uniqueness (under smallness assumption on data) and regularity results of
the von Kármán obstacle problem. Nonconforming FEMs appear to be more attractive than the classical 𝐶1

conforming FEMs, so this article suggests the Morley FEM to approximate the von Kármán obstacle problem
and derives an optimal order a priori error estimate with the best approximation plus a linear perturbation.

Problem Formulation. Given an obstacle 𝜒 ∈ 𝐻2(Ω) with max𝜒(𝜕Ω) := max𝑥∈𝜕Ω 𝜒(𝑥) < 0, define the
non-empty, closed, and convex subset

𝐾 := {𝜙 ∈ 𝐻2
0 (Ω) : 𝜙 ≥ 𝜒 a.e. in Ω}

of 𝐻2
0 (Ω) in a bounded polygonal domain Ω ⊂ R2. The Hessian 𝐷2 and von Kármán bracket [𝜙1, 𝜙2] :=

𝜙1𝑥𝑥𝜙2𝑦𝑦+𝜙1𝑦𝑦𝜙2𝑥𝑥−2𝜙1𝑥𝑦𝜙2𝑥𝑦 with partial derivatives (∙)𝑥𝑦 := 𝜕2(∙)/𝜕𝑥𝜕𝑦 etc. Define for 𝜙1, 𝜙2, 𝜙3 ∈ 𝐻2
0 (Ω)

the weak forms

𝑎(𝜙1, 𝜙2) := (𝐷2𝜙1, 𝐷
2𝜙2)𝐿2(Ω) and 𝑏(𝜙1, 𝜙2, 𝜙3) := −1

2
([𝜙1, 𝜙2], 𝜙3)𝐿2(Ω) (1.1)

with the 𝐿2(Ω) inner product (∙, ∙)𝐿2(Ω). It is well established [5, Corollary 2.3] and follows from symmetry of
the von Kármán bracket [∙, ∙] that 𝑏 : 𝐻2

0 (Ω)3 → R is symmetric with respect to all the three arguments. The
weak formulation of the von Kármán obstacle problem seeks (𝑢, 𝑣) ∈ 𝐾 ×𝐻2

0 (Ω) such that

𝑎(𝑢, 𝑢− 𝜙1) + 2𝑏(𝑢, 𝑣, 𝑢− 𝜙1) ≤ (𝑓, 𝑢− 𝜙1)𝐿2(Ω) for all 𝜙1 ∈ 𝐾, (1.2a)

𝑎(𝑣, 𝜙2)− 𝑏(𝑢, 𝑢, 𝜙2) = 0 for all 𝜙2 ∈ 𝐻2
0 (Ω). (1.2b)

Results and overview. A smallness assumption on the data is derived in Section 2 to show that (1.2) is
well-posed. The regularity results of Section 3 establish that any solution (𝑢, 𝑣) to (1.2) satisfies 𝑢, 𝑣 ∈ 𝐻2

0 (Ω)∩
𝐻2+𝛼(Ω) ∩ 𝐶2(Ω) for the index 1/2 < 𝛼 ≤ 1 with 𝛼 = min{𝛼′, 1} and the index 𝛼′ of elliptic regularity [4] of
the biharmonic operator in a polygonal domain Ω. Section 4 introduces the Morley FEM and discusses the well-
posedness of the discrete problem with an a priori and an a posteriori smallness condition on the data for global
uniqueness. Section 5 derives a priori energy norm estimates of optimal order 𝛼 for the Morley FEM under the
smallness assumption on the data that guarantees global uniqueness of the minimizer on the continuous level.
The article concludes with numerical results that illustrates the requirement of smallness assumption on the
data for optimal convergence rate.

Notation. Standard notation on Lebesgue and Sobolev spaces and their norms apply throughout the paper.
For 𝑠 > 0 and 1 ≤ 𝑝 ≤ ∞, let |∙ |𝑠 and ‖∙‖𝑠 (resp. |∙ |𝑠,𝑝 and ‖∙‖𝑠,𝑝 ) denote the semi-norm and norm on 𝐻𝑠(Ω)
(resp. 𝑊 𝑠,𝑝(Ω)); ‖ ∙ ‖−𝑠 denotes the norm in 𝐻−𝑠(Ω). The standard 𝐿2 inner product and norm are denoted by
(∙, ∙)𝐿2(Ω) and ‖ ∙ ‖𝐿2(Ω). The triple norm ||| ∙ ||| := ‖𝐷2 ∙ ‖𝐿2(Ω) is the energy norm defined by the Hessian and
||| ∙ |||pw := ‖𝐷2

pw ∙ ‖𝐿2(Ω) is its piecewise version with the piecewise Hessian 𝐷2
pw, [∙, ∙]pw denotes the piecewise

version of the von Kármán bracket [∙, ∙] with respect to an underlying (non-displayed) triangulation. 𝐻−2(Ω)
is the dual space of the Hilbert space (𝐻2

0 (Ω), ||| ∙ |||). The elliptic regularity index 1/2 < 𝛼 ≤ 1 is determined by
the interior angles of the domain Ω [4] and is the same throughout this paper. The notation 𝐴 . 𝐵 abbreviates
𝐴 ≤ CB for some positive generic constant 𝐶 which depends on |||𝑢|||, |||𝑣|||, ‖𝑢‖2+𝛼, ‖𝑣‖2+𝛼, ‖𝑓‖𝐿2(Ω); 𝐴 ≈ 𝐵
abbreviates 𝐴 . 𝐵 . 𝐴.
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2. Well-posedness

This section establishes the well-posedness of the problem (1.2). The existence of a solution to (1.2) follows
with the direct method in the calculus of variations. The subsequent bound applies often in this paper and is
based on Sobolev embedding. Let 𝐶S denote the Sobolev constant in the Sobolev embedding 𝐻2

0 (Ω) →˓ 𝐶(Ω)
and let 𝐶F denote the Friedrichs constant with

‖𝑣‖𝐿∞(Ω) ≤ 𝐶S‖𝑣‖𝐻2
0 (Ω) and ‖𝑣‖𝐿2(Ω) ≤ 𝐶F|||𝑣||| for all 𝑣 ∈ 𝐻2

0 (Ω). (2.1)

Lemma 2.1 (bound for 𝑏(∙, ∙, ∙) [9]). The trilinear form 𝑏(∙, ∙, ∙) from (1.1) satisfies, for all 𝜙1, 𝜙2, 𝜙3 ∈
𝐻2

0 (Ω), that 𝑏(𝜙1, 𝜙2, 𝜙3) ≤ |||𝜙1||||||𝜙2|||‖𝜙3‖𝐿∞(Ω) ≤ 𝐶S|||𝜙1||||||𝜙2||||||𝜙3|||.

For all 𝜉 ∈ 𝐻2
0 (Ω), Lemma 2.1 implies 𝑏(𝜉, 𝜉, ∙) ∈ 𝐻−2(Ω). Define 𝐺 : 𝐻2

0 (Ω) → 𝐻2
0 (Ω) by

𝑎(𝐺(𝜙), 𝜓) = 𝑏(𝜙,𝜙, 𝜓) for all 𝜙,𝜓 ∈ 𝐻2
0 (Ω). (2.2)

This means 𝐺(𝜉) is the Riesz representation of the linear bounded functional 𝑏(𝜉, 𝜉, ∙) in the Hilbert space
(𝐻2

0 (Ω), 𝑎(∙, ∙)). Consider the minimizer 𝑢 of the functional 𝑗(𝜉) for 𝜉 ∈ 𝐾 and

𝑗(𝜉) :=
1
2
|||𝜉|||2 +

1
2
|||𝐺(𝜉)|||2 − (𝑓, 𝜉)𝐿2(Ω). (2.3)

The equivalence of (1.2) with (2.3), for 𝐾 = 𝐻2
0 (Ω), is established in [17, Thm. 5.8.3]. Analogous arguments also

establish the equivalence, for any non-empty, closed, and convex subset 𝐾 of 𝐻2
0 (Ω), so the proof is omitted.

This implies that, to prove the existence of a solution to (1.2), it is sufficient to prove the existence of a minimizer
to (2.3).

Theorem 2.2 (existence). Given (𝑓, 𝜒) ∈ 𝐿2(Ω)×𝐻2(Ω) with max𝜒(𝜕Ω) < 0, there exists a minimizer of 𝑗(∙)
in 𝐾; each minimizer 𝑢 and 𝑣 := 𝐺(𝑢) solve (1.2).

Proof. Given 𝜉 ∈ 𝐾, the definition of 𝑗(∙) in (2.3) and the Cauchy-Schwarz inequality lead to

|||𝜉|||2 + |||𝐺(𝜉)|||2 − 2‖𝑓‖−2|||𝜉||| ≤ 2𝑗(𝜉).

This implies the lower bound

−∞ < −‖𝑓‖2−2 = min
𝑡≥0

(︀
𝑡2 − 2𝑡‖𝑓‖−2

)︀
≤ 2𝑗(𝜉) for all 𝜉 ∈ 𝐾.

Consequently, there exists a sequence (𝑢𝑛)𝑛∈N in 𝐾 such that

𝑗(𝑢𝑛) → 𝛽 := inf
𝜉∈𝐾

𝑗(𝜉) ∈ R.

The Cauchy-Schwarz and the Young inequalities lead to

|||𝑢𝑛|||2 + 2|||𝐺(𝑢𝑛)|||2 − 4‖𝑓‖2−2 ≤ 2|||𝑢𝑛|||2 + 2|||𝐺(𝑢𝑛)|||2 − 4‖𝑓‖−2|||𝑢𝑛||| ≤ 4𝑗(𝑢𝑛).

Consequently, |||𝑢𝑛|||2 + 2|||𝐺(𝑢𝑛)|||2 ≤ 4𝑗(𝑢𝑛) + 4‖𝑓‖2−2. Since 𝑗(𝑢𝑛) is convergent, the sequences (𝑢𝑛)𝑛∈N and
(𝐺(𝑢𝑛))𝑛∈N are bounded in 𝐻2

0 (Ω). Hence, there exist 𝑢,𝑤 ∈ 𝐻2
0 (Ω) and a weakly convergent subsequence

(𝑢𝑛𝑘
)𝑘∈N such that

𝑢𝑛𝑘
⇀ 𝑢 and 𝐺(𝑢𝑛𝑘

) ⇀ 𝑤 weakly in 𝐻2
0 (Ω) as 𝑘 →∞.

The non-empty closed convex set 𝐾 of 𝐻2
0 (Ω) is sequentially weakly closed and so 𝑢 ∈ 𝐾. Since 𝑢𝑛𝑘

converges
weakly to 𝑢 in 𝐻2

0 (Ω), this implies ∫︁
Ω

𝑓𝑢𝑛𝑘
→

∫︁
Ω

𝑓𝑢 as 𝑘 →∞. (2.4)
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The compact embedding of 𝐻2
0 (Ω) in 𝐿2(Ω) implies 𝑢𝑛𝑘

→ 𝑢 in 𝐿2(Ω). Further for a given 𝜙 ∈ 𝒟(Ω), the
definition of 𝐺(∙) in (2.2), the symmetry of 𝑏(∙, ∙, ∙) with respect to second and third arguments, and the weak
convergence of 𝑢𝑛𝑘

⇀ 𝑢 in 𝐻2
0 (Ω) lead to

𝑎(𝐺(𝑢𝑛𝑘
), 𝜙) = 𝑏(𝑢𝑛𝑘

, 𝜙, 𝑢𝑛𝑘
) → 𝑏(𝑢, 𝜙, 𝑢) = 𝑎(𝐺(𝑢), 𝜙) as 𝑘 →∞.

Since 𝜙 is arbitrary in the dense set 𝒟(Ω) of 𝐻2
0 (Ω), this means 𝐺(𝑢𝑛𝑘

) ⇀ 𝐺(𝑢) weakly in 𝐻2
0 (Ω) as 𝑘 →∞.

The sequentially weak lower semi-continuity of the norm ||| ∙ ||| shows 𝑗(𝑢) ≤ lim inf𝑘 𝑗(𝑢𝑛𝑘
). This and

lim𝑘→∞ 𝑗(𝑢𝑛𝑘
) = 𝛽 ≤ lim inf𝑘 𝑗(𝑢𝑛𝑘

) prove that 𝑢 minimizes 𝑗 in 𝐾. By the definition of 𝐺(∙) in (2.2), (𝑢,𝐺(𝑢))
solves (1.2). This concludes the proof. �

Theorem 2.3 establishes an a priori bound and the uniqueness of the solution to (1.2). Recall the Sobolev (resp.
Friedrichs) constant 𝐶S (resp. 𝐶F) from (2.1).

Theorem 2.3 (a priori bound and uniqueness). Given (𝑓, 𝜒) ∈ 𝐿2(Ω) × 𝐻2(Ω) with max𝜒(𝜕Ω) < 0, there
exists a positive constant 𝐶(𝜒) that depends only on 𝜒 such that any solution (𝑢, 𝑣) to (1.2) satisfies (𝑎)-(𝑏).
(a) 1

2 |||𝑢|||
2 + |||𝑣|||2 ≤ 𝑁2(𝑓, 𝑢) := 2𝑗(𝑢) + 2𝐶2

F‖𝑓‖2 ≤𝑀2(𝑓, 𝜒) := 𝐶(𝜒) + 3𝐶2
F‖𝑓‖2𝐿2(Ω).

(b) If 𝐶2
𝑆

4 |||𝑢|||
2 + 𝐶𝑆 |||𝑣||| < 1

2 , then (𝑢, 𝑣) is the only solution to (1.2).

Proof of (𝑎). Since 𝑢 is the minimizer of (2.3), the Young inequality implies, for any 𝜙 ∈ 𝐾, that

|||𝑢|||2 + |||𝐺(𝑢)|||2 ≤ 2𝑗(𝜙) + 2(𝑓, 𝑢)𝐿2(Ω) ≤ 2𝑗(𝜙) + 2𝐶2
F‖𝑓‖2𝐿2(Ω) +

1
2
|||𝑢|||2.

This proves for the minimizer 𝑢 of 𝑗(∙) that

1
2
|||𝑢|||2 + |||𝐺(𝑢)|||2 ≤ 2𝑗(𝑢) + 2𝐶2

F‖𝑓‖2𝐿2(Ω) := 𝑁2(𝑓, 𝑢) ≤ 𝑁2(𝑓, 𝜙). (2.5)

Since max𝜒(𝜕Ω) < 0, {𝜒 ≥ 0} := {𝑥 ∈ Ω : 𝜒(𝑥) ≥ 0} is a compact subset of Ω and there exists an open set
Ω+ around {𝜒 ≥ 0} such that Ω+ is a compact subset of Ω. Consider the cut-off function 𝜓 ∈ 𝒟(Ω) such that
0 ≤ 𝜓 ≤ 1, 𝜓 = 1 in {𝜒 ≥ 0}, supp(𝜓) ⊂ Ω+, and define 𝜙 := 𝜒𝜓 ∈ 𝐻2

0 (Ω). Then, 𝜙 ≥ 𝜒 in Ω, and so 𝜙 ∈ 𝐾.
The construction of 𝜙 ensures that

|||𝜙||| = |𝜙|𝐻2(Ω+) ≤ 𝐶(𝜓)‖𝜒‖𝐻2(Ω+). (2.6)

This inequality, the definition of 𝐺(∙), and Lemma 2.1 lead to

|||𝐺(𝜙)|||2 = 𝑏(𝜙,𝜙,𝐺(𝜙)) ≤ 𝐶S|||𝜙|||2|||𝐺(𝜙)||| ≤ 𝐶S𝐶
2(𝜓)|||𝐺(𝜙)|||‖𝜒‖2𝐻2(Ω+).

Consequently, |||𝐺(𝜙)||| ≤ 𝐶S𝐶
2(𝜓)‖𝜒‖2𝐻2(Ω+). An application of the bounds for 𝜙 and 𝐺(𝜙) in (2.5) concludes

the proof of final estimate of part (𝑎) with 𝐶(𝜒) := 2𝐶2(𝜓)‖𝜒‖2𝐻2(Ω+) + 𝐶2
S𝐶

4(𝜓)‖𝜒‖4𝐻2(Ω+) and 𝑢 being the
minimizer of 𝑗(∙) implies 𝑁(𝑓, 𝑢) ≤ 𝑁(𝑓, 𝜓𝜒) ≤𝑀(𝑓, 𝜒). ⊓⊔
Proof of (𝑏). Recall the definition of 𝐺(∙) from (2.2) and let (𝑢1, 𝐺(𝑢1)) and (𝑢2, 𝐺(𝑢2)) be two solutions to
(1.2). Set 𝑒 = 𝑢1− 𝑢2, 𝛿 = 𝐺(𝑢1)−𝐺(𝑢2), and choose 𝑢 = 𝑢1, 𝜙1 = 𝑢2 (respectively, 𝑢 = 𝑢2, 𝜙1 = 𝑢1) in (1.2a)
and add the resulting inequalities to deduce that

1
2
|||𝑒|||2 ≤ −𝑏(𝑢1, 𝐺(𝑢1), 𝑒) + 𝑏(𝑢2, 𝐺(𝑢2), 𝑒) = −𝑏(𝑒, 𝑒,𝐺(𝑢1))− 𝑏(𝑒, 𝛿, 𝑢2). (2.7)

Elementary algebra with (1.2b), the definition of 𝐺(∙) and symmetry of 𝑏(∙, ∙, ∙) with respect to the three
variables show

|||𝛿|||2 = 𝑏(𝑢1, 𝑢1, 𝛿)− 𝑏(𝑢2, 𝑢2, 𝛿) = 𝑏(𝑒, 𝛿, 𝑢1) + 𝑏(𝑒, 𝛿, 𝑢2). (2.8)
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The combination of (2.7)–(2.8) and Lemma 2.1 lead to

1
2
|||𝑒|||2 + |||𝛿|||2 ≤ 𝑏(𝑒, 𝛿, 𝑢1)− 𝑏(𝑒, 𝑒,𝐺(𝑢1)) ≤ 𝐶S|||𝑒||||||𝛿||||||𝑢1||| + 𝐶S|||𝑒|||2|||𝐺(𝑢1)|||. (2.9)

If |||𝛿||| = 0 < |||𝑒|||, then (2.9) implies 1
2 ≤ 𝐶𝑆 |||𝐺(𝑢1)|||; a contradiction to the smallness assumption 𝐶2

𝑆

4 |||𝑢1|||2 +
𝐶𝑆 |||𝐺(𝑢1)||| < 1

2 . If |||𝛿||| > 0, then |||𝑒||| := 𝑡|||𝛿||| for some real 𝑡 ≥ 0, and (2.9) is equivalent to

0 ≤ (𝑡− 𝐶𝑆

2 |||𝑢1|||)2 ≤ 𝐶2
𝑆

4 |||𝑢1|||2 + 𝐶𝑆 |||𝐺(𝑢1)||| − 1
2 < 0.

This contradiction proves |||𝑒||| = 0 = |||𝛿|||.
�

Remark 2.4 (a priori and a posteriori criteria for uniqueness). The a priori smallness assumption on the
data 𝐶S𝑀(𝑓, 𝜒) < 1/2 and the a posteriori criterion 𝐶S𝑁(𝑓, 𝜙) < 1/2 for some 𝜙 ∈ 𝐾 imply 𝐶S𝑁(𝑓, 𝑢) <
1/2 and so uniqueness of the solution to (1.2). For a proof, abbreviate 𝑥2 := 1

2 |||𝑢|||
2, 𝑦 := |||𝑣|||, and 𝑁 :=

𝑁(𝑓, 𝑢) so that Theorem 2.3a reads 𝑥2 + 𝑦2 ≤ 𝑁2. Then 𝐶2
𝑆

4 |||𝑢|||
2 + 𝐶𝑆 |||𝑣||| ≤ 𝐶2

𝑆

2 𝑥
2 + 𝐶𝑆𝑦 ≤ max

𝜉2+𝜂2≤𝑁2

(︀𝐶2
𝑆

2 𝜉
2 +

𝐶𝑆𝜂
)︀

= max
0≤𝜂≤𝑁

(︁
𝐶2

𝑆

2 (𝑁2 − 𝜂2) + 𝐶𝑆𝜂
)︁
. The real function 𝐶2

𝑆

2 (𝑁2−𝜂2)+𝐶𝑆𝜂 is monotonically increasing in 𝜂 for

0 ≤ 𝜂 ≤ 𝑁 and hence the aforementioned maximum is equal to 𝐶𝑆𝑁 < 1/2. This and Theorem 2.3a conclude
the proof.

3. Regularity

The regularity result in [18] will be employed for modified obstacles in the biharmonic obstacle problem.
Given any obstacle ̃︀𝜒 ∈ 𝐻2(Ω) ∩ 𝐻3

loc(Ω) with max ̃︀𝜒(𝜕Ω) < 0, define a corresponding non-empty, closed and
convex subset 𝐾(̃︀𝜒) :=

{︀
𝜙 ∈ 𝐻2

0 (Ω) : 𝜙 ≥ ̃︀𝜒 a.e. in Ω
}︀

of 𝐻2
0 (Ω) and notice 𝐾 = 𝐾(𝜒) for the original obstacle

𝜒 from (1.2). Given any such ̃︀𝜒, and 𝑓 ∈ 𝐿2(Ω), consider the problem that seeks the solution 𝜑 ∈ 𝐾(̃︀𝜒) to

𝑎(𝜑, 𝜑− 𝜓) ≤ (𝑓, 𝜑− 𝜓)𝐿2(Ω) for all 𝜓 ∈ 𝐾(̃︀𝜒). (3.1)

Theorem 3.1 (Frehse 1971). Let Ω be an open bounded connected subset of R2. If 𝜑 ∈ 𝐾(̃︀𝜒) solves (3.1) for̃︀𝜒 ∈ 𝐻2(Ω) ∩𝐻3
loc(Ω) with max ̃︀𝜒(𝜕Ω) < 0, then 𝜑 ∈ 𝐻2

0 (Ω) ∩𝐻3
loc(Ω).

Proof. Frehse’s result [18, Thm. 1] shows 𝜑 ∈ 𝐻2
0 (Ω)∩𝐻3

loc(Ω) even under the much more involved assumptioñ︀𝜒 ∈ 𝐻3(Ω) and max ̃︀𝜒(𝜕Ω) ≤ 0. The theorem at hand assures that max ̃︀𝜒(𝜕Ω) < 0 and the proof will establish
that Frehse’s result can be adapted. The remaining parts of this proof establish that for an appropriate ̂︀𝜒 ∈
𝐻3(Ω) constructed in the sequel, 𝜑 satisfies (3.1) with an obstacle ̂︀𝜒. Since max ̃︀𝜒(𝜕Ω) < 0 and 𝜑 ∈ 𝐻2

0 (Ω),
there exist 𝜖 > 0 and 𝛿 < 0 such that ̃︀𝜒 < 𝛿 < 𝜑 in 𝑁(2𝜖, 𝜕Ω), where 𝑁(2𝜖, 𝜕Ω) := {𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) < 2𝜖}.
Select cut-off functions 0 ≤ 𝜓1, 𝜓2 ∈ 𝐶∞(Ω) such that 𝜓1 + 𝜓2 ≡ 1 in Ω and

𝜓1 =

{︃
1 in 𝑁(𝜖, 𝜕Ω),
0 in Ω ∖𝑁(2𝜖, 𝜕Ω)

and 𝜓2 =

{︃
0 in 𝑁(𝜖, 𝜕Ω),
1 in Ω ∖𝑁(2𝜖, 𝜕Ω).

(3.2)

Consider ̂︀𝜒 := 𝛿𝜓1 + ̃︀𝜒𝜓2 and derive the following three inequalities

̃︀𝜒(𝑥) < 𝛿 = ̂︀𝜒(𝑥) < 𝜑(𝑥) for all 𝑥 ∈ 𝑁(𝜖, 𝜕Ω),

̃︀𝜒(𝑥) = ̂︀𝜒(𝑥) ≤ 𝜑(𝑥) for all 𝑥 ∈ Ω ∖𝑁(2𝜖, 𝜕Ω),

̃︀𝜒(𝑥) < 𝛿𝜓1(𝑥) + ̃︀𝜒(𝑥)𝜓2(𝑥) = ̂︀𝜒(𝑥) < 𝛿 < 𝜑(𝑥) for all 𝑥 ∈
(︀
Ω ∖𝑁(𝜖, 𝜕Ω)

)︀
∩𝑁(2𝜖, 𝜕Ω).
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The above three inequalities imply ̃︀𝜒 ≤ ̂︀𝜒 ≤ 𝜑 in Ω and ̃︀𝜒 ∈ 𝐻3
(︀
Ω ∖ 𝑁(𝜖, 𝜕Ω)

)︀
. By construction, ̂︀𝜒 is the

combination of a 𝐻3(Ω) and a 𝐶∞(Ω) function, and hence, ̂︀𝜒 ∈ 𝐻3(Ω). Given ̂︀𝜒 as an obstacle, the solution
𝜑 ∈ 𝐾(̂︀𝜒) to (3.1) also satisfies

𝑎(𝜑, 𝜑− 𝜓) ≤ (𝑓, 𝜑− 𝜓)𝐿2(Ω) for all 𝜓 ∈ 𝐾(̂︀𝜒). (3.3)

Since the obstacle ̂︀𝜒 of the problem (3.3) belongs to 𝐻2
0 (Ω) ∩𝐻3(Ω), [18, Thm. 1] proves 𝜑 ∈ 𝐻3

loc(Ω). �

The final regularity result of the von Kármán obstacle problem relies on the following three lemmas.

Lemma 3.2 ([3, Equation (2.6)], [4, Thm. 2]). Let Ω be a bounded polygonal domain in R2. If 𝑤 ∈ 𝐻2
0 (Ω)

solves the biharmonic problem, 𝑎(𝑤,𝜙) = 𝑓(𝜙) for all 𝜙 ∈ 𝐻2
0 (Ω), with data 𝑓 ∈ 𝐻−1(Ω) (resp. 𝐿2(Ω)), then

𝑤 ∈ 𝐻3
loc(Ω) ∩ 𝐻2+𝛼(Ω) (resp. 𝐻4

loc(Ω)). If the bounded Lipschitz domain Ω has a 𝐶2+𝛾 boundary for some
0 < 𝛾 < 1 and 𝑓 ∈ 𝐿2(Ω) (resp. 𝐻−1(Ω)), then the solution 𝑤 belongs to 𝐻4(Ω) (resp. 𝐻3(Ω)).

Lemma 3.3 ([4, Thm. 7]). Let Ω be a bounded polygonal domain in R2. If (𝑤1, 𝑤2) ∈ 𝐻2
0 (Ω) × 𝐻2

0 (Ω) is a
solution to the von Kármán equations, 𝑎(𝑤1, 𝜙1) + 2𝑏(𝑤1, 𝑤2, 𝜙1) + 𝑎(𝑤2, 𝜙2) − 𝑏(𝑤1, 𝑤1, 𝜙2) = 𝑓(𝜙1) for all
(𝜙1, 𝜙2) ∈ 𝐻2

0 (Ω)×𝐻2
0 (Ω), with data 𝑓 ∈ 𝐻−1(Ω), then (𝑤1, 𝑤2) ∈ 𝐻2+𝛼(Ω)×𝐻2+𝛼(Ω).

The remaining parts of this section return to (1.2) with 𝑓 ∈ 𝐿2(Ω) and a polygonal domain Ω.

Lemma 3.4. If (𝑢, 𝑣) ∈ 𝐾 ×𝐻2
0 (Ω) solves (1.2) for 𝜒 ∈ 𝐻2(Ω) with max𝜒(𝜕Ω) < 0, then [𝑢, 𝑣] ∈ 𝐻−1(Ω).

Proof. The Sobolev embedding 𝐻1+𝜖(Ω) →˓ 𝐿∞(Ω) and 𝑢 ∈ 𝐻2
0 (Ω) imply [𝑢, 𝑢] ∈ 𝐻−1−𝜖(Ω) for any 𝜖 > 0.

A shift theorem [1, Thm. 8] in (1.2b) shows 𝑣 ∈ 𝐻2+𝛼−𝜖(Ω) for 1/2 < 𝛼 ≤ 1. Given 𝛼, choose 𝜖 such that
𝛼− 𝜖 > 1/2. Then, [5, Lemma 2.2] implies

([𝑢, 𝑣], 𝜙)𝐿2(Ω) = −
∫︁

Ω

cof(𝐷2𝑣)∇𝑢 · ∇𝜙dx ≤ ‖cof(𝐷2𝑣)‖𝐿4(Ω)‖∇𝑢‖𝐿4(Ω)‖∇𝜙‖𝐿2(Ω)

for all 𝜙 ∈ 𝐻1
0 (Ω). This and the Sobolev embeddings 𝐻2(Ω) →˓𝑊 1,4(Ω), 𝐻2+𝛼−𝜖(Ω) →˓𝑊 2,4(Ω) conclude the

proof. �

Theorem 3.5 (regularity for von Kármán obstacle problem). Let Ω be a bounded polygonal domain in R2.
If (𝑢, 𝑣) ∈ 𝐾 × 𝐻2

0 (Ω) solves (1.2) for 𝜒 ∈ 𝐻2(Ω) ∩ 𝐻3
loc(Ω) ∩ 𝐶2(Ω) with max𝜒(𝜕Ω) < 0, then 𝑢, 𝑣 ∈

𝐻2+𝛼(Ω) ∩𝐻3
loc(Ω) ∩ 𝐶2(Ω).

Proof. Let (𝑢, 𝑣) solve (1.2) and let 𝑤 ∈ 𝐾(𝜒) solve

𝑎(𝑤,𝑤 − 𝜙) ≤ (𝑓 + [𝑢, 𝑣], 𝑤 − 𝜙)𝐿2(Ω) for all 𝜙 ∈ 𝐾(𝜒). (3.4)

Let 𝑤1 ∈ 𝐻2
0 (Ω) be the Riesz representation of −[𝑢, 𝑣] in the Hilbert space

(︀
𝐻2

0 (Ω), 𝑎(∙, ∙)
)︀
, i.e., 𝑤1 satisfies

𝑎(𝑤1, 𝜙1) = −([𝑢, 𝑣], 𝜙1)𝐿2(Ω) for all 𝜙1 ∈ 𝐻2
0 (Ω). Lemmas 3.4 and 3.2 show that 𝑤1 ∈ 𝐻3

loc(Ω) ∩ 𝐻2+𝛼(Ω).
Translate the obstacle 𝜒 of (3.4) to 𝜒+ 𝑤1 and set ̃︀𝑤 := 𝑤 + 𝑤1 to obtain

𝑎( ̃︀𝑤, ̃︀𝑤 − ̃︀𝜙) ≤ (𝑓, ̃︀𝑤 − ̃︀𝜙)𝐿2(Ω) for all ̃︀𝜙 ∈ 𝐾(𝜒+ 𝑤1). (3.5)

Since the obstacle 𝜒 + 𝑤1 ∈ 𝐻3
loc(Ω), Theorem 3.1 implies ̃︀𝑤 ∈ 𝐻3

loc(Ω). Also 𝑤1 ∈ 𝐻3
loc(Ω) implies

𝑤 = ̃︀𝑤 − 𝑤1 ∈ 𝐻3
loc(Ω). The solution 𝑢 to (1.2) also solves (3.4). The uniqueness of the solution in (3.1)

implies that 𝑢 ∈ 𝐻3
loc(Ω).

Let the contact region C := {𝑥 ∈ Ω : 𝑢(𝑥) = 𝜒(𝑥)}. Define a cut-off function 𝜉 ∈ 𝐶∞(Ω) with 𝜉 ≡ 1 in 𝑁(𝜖, 𝜕Ω)
for some 𝜖 > 0 such that 𝑁(2𝜖, 𝜕Ω)∩C = ∅, i.e., supp(𝜉) ⊂ 𝑁(2𝜖, 𝜕Ω) keeps a positive distance to C. The strong
form of (1.2b) and elementary manipulations show

∆2𝑣 = −1
2

[𝑢, 𝑢] = −1
2

[𝜉𝑢, 𝜉𝑢]− [(1− 𝜉)𝑢, 𝜉𝑢]− 1
2

[(1− 𝜉)𝑢, (1− 𝜉)𝑢].
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Let 𝑣1 ∈ 𝐻2
0 (Ω) solve ∆2𝑣1 = 𝑓1 for 𝑓1 := −[(1 − 𝜉)𝑢, 𝜉𝑢] − 1

2 [(1 − 𝜉)𝑢, (1 − 𝜉)𝑢]. Since 𝑢 ∈ 𝐻2
0 (Ω) ∩ 𝐻3

loc(Ω),
𝜉𝑢 ∈ 𝐻2

0 (Ω), (1−𝜉)𝑢 ∈ 𝐻3(Ω) and 𝑓1 ∈ 𝐻−1(Ω). Lemma 3.2 leads to 𝑣1 ∈ 𝐻2+𝛼(Ω). Also, ∆2(𝑣−𝑣1) = − 1
2 [𝜉𝑢, 𝜉𝑢]

in Ω. Since supp(𝜉)∩C = ∅, (1.2a) implies ∆2𝑢 = 𝑓 + [𝑢, 𝑣] in supp(𝜉). Since (1− 𝜉)𝑢 ∈ 𝐻3(Ω) and 𝑣1 ∈ 𝐻2+𝛼(Ω),
it follows from the arguments in Lemma 3.4 that 𝑓2 := 𝑓 + [𝜉𝑢, 𝑣1] + [(1− 𝜉)𝑢, 𝑣]−∆2((1− 𝜉)𝑢) ∈ 𝐻−1(Ω). This
and elementary manipulations lead to

∆2(𝜉𝑢) = ∆2𝑢−∆2((1− 𝜉)𝑢) = 𝑓 + [𝜉𝑢, 𝑣] + [(1− 𝜉)𝑢, 𝑣]−∆2((1− 𝜉)𝑢) (3.6)
= 𝑓 + [𝜉𝑢, 𝑣 − 𝑣1] + [𝜉𝑢, 𝑣1] + [(1− 𝜉)𝑢, 𝑣]−∆2((1− 𝜉)𝑢) = 𝑓2 + [𝜉𝑢, 𝑣 − 𝑣1].

In other words, (𝜉𝑢, 𝑣 − 𝑣1) solves the von Kármán equations for the right-hand side 𝑓2 ∈ 𝐻−1(Ω) and 𝜉𝑢 ∈
𝐻2+𝛼(Ω). Since 𝜉𝑢, (1 − 𝜉)𝑢 ∈ 𝐻2+𝛼(Ω), it follows 𝑢 = 𝜉𝑢 + (1 − 𝜉)𝑢 ∈ 𝐻2+𝛼(Ω). Return to the proof of
Lemma 3.4 with the improved regularity 𝑢 ∈ 𝐻2+𝛼(Ω) to deduce that [𝑢, 𝑢] ∈ 𝐻−1(Ω). Since 𝑣 = 𝐺(𝑢) solves
(1.2b), this shows 𝑣 ∈ 𝐻2+𝛼(Ω) ∩𝐻3

loc(Ω).

The above arguments imply 𝑢, 𝑣 ∈ 𝐻2+𝛼(Ω), for 𝛼 > 1/2, and the Sobolev embedding 𝐻2+𝛼(Ω) →˓ 𝑊 2,4(Ω)
shows [𝑢, 𝑢], [𝑢, 𝑣] ∈ 𝐿2(Ω). By Lemma 3.2, the solution to ∆2𝑣 = − 1

2 [𝑢, 𝑢] belongs to 𝐻4
loc(Ω). Then, the

continuous Sobolev embedding 𝐻4
loc(Ω) →˓ 𝐶2(Ω) implies 𝑣 ∈ 𝐶2(Ω). Since 𝑢 ∈ 𝐻2

0 (Ω), 𝜒 ∈ 𝐶2(Ω), and
max𝜒(𝜕Ω) < 0, the arguments in the proof of Theorem 3.1 lead to ̃︀𝜒 ∈ 𝐶2(Ω) such that 𝜒 ≤ ̃︀𝜒 ≤ 𝑢. This shows
that 𝑢 ∈ 𝐾(̃︀𝜒), and hence with ̃︀𝑓 := 𝑓 + [𝑢, 𝑣] ∈ 𝐿2(Ω), 𝑢 solves

𝑎(𝑢, 𝑢− 𝜙) ≤ ( ̃︀𝑓, 𝑢− 𝜙)𝐿2(Ω) for all 𝜙 ∈ 𝐾(̃︀𝜒). (3.7)

[8, Appendix A] establishes the regularity result for the biharmonic obstacle problem (3.7), which implies that
the solution 𝑢 belongs to 𝐶2(Ω). This concludes the proof. �

Remark 3.6 (alternative proof). Lemma 3.4 and Theorem 3.1 prove 𝑢 ∈ 𝐻3
loc(Ω). Since 𝑢 = 𝑤 satisfies

the biharmonic equation near 𝜕Ω in the sense of (3.6), 𝑢 ∈ 𝐻2+𝛼(𝑁(𝜖, 𝜕Ω)). This and 𝑢 ∈ 𝐻3
loc(Ω) imply

𝑢 ∈ 𝐻2+𝛼(Ω). Since 𝑢 ∈ 𝐿4
loc(Ω), [𝑢, 𝑢] ∈ 𝐿2

loc(Ω) and so 𝑣 ∈ 𝐻4
loc(Ω) follows from interior regularity. Altogether,

𝑓 + [𝑢, 𝑣] ∈ 𝐿2
loc(Ω) and transferring (3.4) to a biharmonic obstacle problem with zero forcing, we obtain

𝑢 ∈ 𝐶2(Ω) from [10, Sect. 6] and 𝜒 ∈ 𝐶2(Ω).

Remark 3.7 (𝐶2(Ω) regularity). If the bounded Lipschitz domain Ω has a 𝐶2+𝛾 boundary for some 0 < 𝛾 < 1,
then any solution (𝑢, 𝑣) to (1.2) belongs to 𝐶2(Ω)×𝐶2(Ω). In fact, [𝑢, 𝑢] ∈ 𝐿2(Ω), Lemma 3.2, and continuous
Sobolev embedding 𝐻4(Ω) →˓ 𝐶2(Ω) imply that the solution 𝑣 to (1.2b) belongs to 𝐶2(Ω). An application of
Lemma 3.2 to the arguments of [8, Appendix A] for (3.7) conclude that the solution 𝑢 to (1.2a) belongs to
𝐶2(Ω).

4. Morley finite element approximation

The first subsection discusses some preliminaries on the Morley FEM and interpolation and enrichment
operators. The second subsection derives the existence, uniqueness under a computable smallness assumption
and an a priori bound of the discrete solution.

4.1. Preliminaries

Let 𝒯 be an admissible and regular triangulation of the polygonal bounded Lipschitz domain Ω into triangles in
R2, let ℎ𝑇 be the diameter of a triangle 𝑇 ∈ 𝒯 and ℎmax := max𝑇∈𝒯 ℎ𝑇 . For any 𝜖 > 0, let T(𝜖) denote the set
of all triangulations 𝒯 with ℎmax < 𝜖. For a non-negative integer 𝑚, let 𝒫𝑚(𝒯 ) denote the space of piecewise
polynomials of degree at most 𝑚. Let 𝛱0 denote the 𝐿2 projection onto the space 𝒫0(𝒯 ) of piecewise constants
and let ℰ and 𝒱 be the set of edges and vertices of 𝒯 , respectively. The set of all internal edges (resp. boundary
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edges) of ℰ is denoted by ℰ(Ω) (resp. ℰ(𝜕Ω)). Denote the set of internal vertices (resp. vertices on the boundary)
of 𝒯 by 𝒱(Ω) (resp. 𝒱(𝜕Ω)). The nonconforming Morley finite element space M(𝒯 ) is defined by

M(𝒯 ) =

⎧⎨⎩𝜙M ∈ 𝒫2(𝒯 )

⃒⃒⃒⃒
⃒
𝜙M is continuous at 𝒱(Ω) and vanishes at 𝒱(𝜕Ω)

∀𝐸 ∈ ℰ(Ω),
∫︁
𝐸

[︂
𝜕𝜙M

𝜕𝑛

]︂
𝐸

ds = 0; ∀𝐸 ∈ ℰ(𝜕Ω),
∫︁
𝐸

𝜕𝜙M

𝜕𝑛
ds = 0

⎫⎬⎭
where 𝑛 denotes the unit outward normal to the boundary 𝜕Ω of Ω and [𝜙M]𝐸 is the jump of 𝜙M across any
interior edge 𝐸. Let the Morley element space M(𝒯 ) be equipped with the piecewise energy norm ||| ∙ |||pw

defined by |||𝜙M|||2pw :=
∑︀
𝑇∈𝒯 ‖𝐷2

pw𝜙M‖2𝐿2(𝑇 ) for any 𝜙M ∈ M(𝒯 ), where for 𝑗 = 0, 1, 2; let 𝐷𝑗
pw be defined as

𝐷0
pw𝜙M = 𝜙M, 𝐷1

pw𝜙M = ∇pw𝜙M, and 𝐷2
pw∙ is the piecewise Hessian. Given the obstacle 𝜒 ∈ 𝐻2(Ω) with

max𝜒(𝜕Ω) < 0, define the discrete analogue [7]

𝐾(𝜒, 𝒯 ) :=
{︁
𝜙M ∈ M(𝒯 )

⃒⃒
𝜒(𝑝) ≤ 𝜙M(𝑝) for all 𝑝 ∈ 𝒱

}︁
to 𝐾. The Morley nonconforming FEM for (1.2) seeks (𝑢M, 𝑣M) ∈ 𝐾(𝜒, 𝒯 )×M(𝒯 ) such that

𝑎pw(𝑢M, 𝑢M − 𝜙1) + 2𝑏pw(𝑢M, 𝑢M − 𝜙1, 𝑣M) ≤ (𝑓, 𝑢M − 𝜙1)𝐿2(Ω) for all 𝜙1 ∈ 𝐾(𝜒, 𝒯 ), (4.1a)
𝑎pw(𝑣M, 𝜙2)− 𝑏pw(𝑢M, 𝑢M, 𝜙2) = 0 for all 𝜙2 ∈ M(𝒯 ). (4.1b)

Here and throughout this paper, for all 𝜂M, 𝑤M, 𝜙M ∈ M(𝒯 ), define

𝑎pw(𝜂M, 𝜙M) :=
∫︁

Ω

𝐷2
pw𝜂M : 𝐷2

pw𝜙M dx,

𝑏pw(𝜂M, 𝑤M, 𝜙M) := −1
2

∫︁
Ω

[𝜂M, 𝑤M]pw𝜙M dx. (4.2)

Note that 𝑏pw(∙, ∙, ∙) is symmetric with respect to the first two arguments.

Lemma 4.1 (Morley interpolation [11, 15, 19]). The Morley interpolation 𝐼M : 𝐻2
0 (Ω) → M(𝒯 ) is defined, for

𝜙 ∈ 𝐻2
0 (Ω), by (the degrees of freedom for the Morley finite element)

(𝐼M𝜙)(𝑧) = 𝜙(𝑧) for any 𝑧 ∈ 𝒱 and
∫︁
𝐸

𝜕𝐼M𝜙

𝜕𝑛𝐸
ds =

∫︁
𝐸

𝜕𝜙

𝜕𝑛𝐸
ds for any edge 𝐸 ∈ ℰ ,

and satisfies (𝑎)-(𝑐) for all 𝜓 ∈ 𝐻2(𝑇 ), 𝑇 ∈ 𝒯 , and all 𝜙 ∈ 𝐻2
0 (Ω) ∩𝐻2+𝛼(Ω).

(a) (integral mean property of the Hessian) 𝐷2
pw𝐼M = 𝛱0𝐷

2
pw in 𝐻2

0 (Ω),
(b) (approximation and stability)

‖ℎ−2
𝑇 (1− 𝐼M)𝜓‖𝐿2(𝑇 ) + ‖ℎ−1

𝑇 𝐷pw(1− 𝐼M)𝜓‖𝐿2(𝑇 ) . ‖𝐷2
pw(1− 𝐼M)𝜓‖𝐿2(𝑇 ),

(c) ‖𝐷2
pw(1− 𝐼M)𝜙‖𝐿2(Ω) . ℎ𝛼max‖𝜙‖2+𝛼.

Lemma 4.2 (enrichment/conforming companion [15,19]). There exists a linear operator 𝐸M : M(𝒯 ) → 𝐻2
0 (Ω)

such that any 𝜙M ∈ M(𝒯 ) satisfies (𝑎)-(𝑑) with a universal constant Λ that depends on the shape-regularity of
𝒯 but not on the mesh-size ℎ𝒯 .
(𝑎) 𝐼M𝐸M𝜙M = 𝜙M, (𝑏) 𝛱0(𝜙M − 𝐸M𝜙M) = 0, (𝑐) 𝛱0𝐷

2
pw(𝜙M − 𝐸M𝜙M) = 0,

(𝑑)
∑︀2
𝑗=0 ‖ℎ

𝑗−2
𝒯 𝐷𝑗

pw(𝜙M − 𝐸M𝜙M)‖𝐿2(Ω) ≤ Λ min𝜙∈𝐻2
0 (Ω) ‖𝐷2

pw(𝜙M − 𝜙)‖𝐿2(Ω).

Remark 4.3. Lemmas 4.1 and 4.2 lead for all 𝜙M, 𝑤M, 𝜓M ∈ M(𝒯 ) and 𝜓 ∈ 𝐻2
0 (Ω) to

𝑎pw(𝜙M, 𝐸M𝜓M − 𝜓M) = 𝑎pw(𝜙M, 𝐸M𝐼M𝜓 − 𝜓) = 𝑏pw(𝜙M, 𝑤M, 𝐸M𝜓M − 𝜓M) = 0.
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Lemma 4.4 (bounds for 𝑎pw(∙, ∙) [7, Lemmas 4.2 and 4.3]). Any 𝜙 ∈ 𝐻2+𝛼(Ω), 𝜓 ∈ 𝐻2
0 (Ω) ∩ 𝐻2+𝛼(Ω),

𝜓M, 𝜙M ∈ M(𝒯 ) satisfy (𝑎)-(𝑐).

(a) 𝑎pw(𝜙,𝐸M𝜓M − 𝜓M) . ℎ𝛼max‖𝜙‖2+𝛼‖𝜓M‖pw,
(b) 𝑎pw(𝜙, 𝐼M𝜓 − 𝜓) . ℎ2𝛼

max‖𝜙‖2+𝛼‖𝜓‖2+𝛼,
(c) the scalar product 𝑎pw(∙, ∙) is elliptic in the sense that 𝑎pw(𝜙M, 𝜙M) = |||𝜙M|||2pw.

Recall from (2.1), the Sobolev (resp. Friedrichs) constant 𝐶S in the Sobolev embedding 𝐻2
0 (Ω) →˓ 𝐶(Ω) (resp.

𝐶F in 𝐻2
0 (Ω) →˓ 𝐿2(Ω)). Recall the index 𝛼′ of elliptic regularity.

Theorem 4.5 (discrete Sobolev and Friedrichs inequalities). For 0 < 𝛼′ < 1, set 𝛽 = 𝛼′ and for 1 ≤ 𝛼′ and any
0 < 𝜖 < 1, set 𝛽 = 1− 𝜖. Then there exist positive constants 𝐶(𝛽), and 𝐶(𝛼′) such that 𝐶dS := 𝐶S + 𝐶(𝛽)ℎ𝛽max

and 𝐶dF := 𝐶F + 𝐶(𝛼′)ℎ𝛼
′

max satisfy for any 𝑣 + 𝑣M ∈ 𝐻2
0 (Ω) + M(𝒯 )

(𝑎) ‖𝑣 + 𝑣M‖𝐿∞(Ω) ≤ 𝐶dS|||𝑣 + 𝑣M|||pw and (𝑏) ‖𝑣 + 𝑣M‖𝐿2(Ω) ≤ 𝐶dF|||𝑣 + 𝑣M|||pw.

Proof. The point of the theorem is to get sharp estimates of 𝐶dS and 𝐶dF, otherwise this result is a direct
consequence of e.g. [13, Lemma 4.7].

(𝑎) The piecewise uniformly continuous function 𝑣 + 𝑣M has a maximum norm that is the supremum of all
integrals

∫︀
Ω

(𝑣 + 𝑣M)𝜙dx for 𝜙 ∈ 𝐿1(Ω) with ‖𝜙‖𝐿1(Ω) = 1. Given 𝜙 ∈ 𝐿1(Ω) with ‖𝜙‖𝐿1(Ω) = 1, let 𝑧 ∈ 𝐻2
0 (Ω)

solve
𝑎(𝑧, ∙) = ⟨𝜙, ∙⟩𝐿1(Ω), (4.3)

where the duality ⟨∙, ∙⟩𝐿1(Ω) extends the 𝐿2 scalar product. For any 0 < 𝜖 < 1, the embedding 𝐻1+𝜖(Ω) →˓
𝐿∞(Ω) is continuous. This implies ⟨𝜙, ∙⟩𝐿1(Ω) ∈ 𝐻−(1+𝜖)(Ω). For 0 < 𝛼′ < 1, choose 0 < 𝜖 < 1 such that
0 < 𝛼′ < 1 − 𝜖, set 𝛽 = 𝛼′. For 1 ≤ 𝛼′ and any 0 < 𝜖 < 1, set 𝛽 = 1 − 𝜖. The shift theorem [1, Thm. 8] in
elliptic regularity shows 𝑧 ∈ 𝐻2+𝛽(Ω). With bound 𝐶(𝛽,Ω) of the embedding 𝐻1+𝜖(Ω) →˓ 𝐿∞(Ω) and since
‖𝜙‖𝐿1(Ω) = 1,

‖𝑧‖2+𝛽 . ‖⟨𝜙, ∙⟩𝐿1(Ω)‖𝐻−(1+𝜖) = sup
0̸=𝜓∈𝐻1+𝜖

0 (Ω)

(𝜙,𝜓)𝐿2(Ω)

‖𝜓‖𝐿∞(Ω)

‖𝜓‖𝐿∞(Ω)

‖𝜓‖1+𝜖
≤ 𝐶(𝛽,Ω). (4.4)

Given 𝑣 ∈ 𝐻2
0 (Ω) and 𝑣M ∈ M(𝒯 ), let 𝑤 ∈ 𝐻2

0 (Ω) solve 𝑎pw(𝑤, ∙) = 𝑎pw(𝑣+𝑣M, ∙) ∈ 𝐻−2(Ω). Set 𝛿 := 𝑤−𝑣−𝑣M
and recall 𝑎pw(𝛿, 𝑧) = 0. This, ‖𝜙‖𝐿1(Ω) = 1, and the Sobolev constant 𝐶S lead to

(𝑣 + 𝑣M, 𝜙)𝐿2(Ω) = (𝑤,𝜙)𝐿2(Ω) − (𝛿, 𝜙)𝐿2(Ω) ≤ ‖𝑤‖𝐿∞(Ω) − (𝛿, 𝜙)𝐿2(Ω)

≤ 𝐶S|||𝑤||| − (𝛿, 𝜙)𝐿2(Ω) ≤ 𝐶S|||𝑣 + 𝑣M|||pw − (𝛿, 𝜙)𝐿2(Ω).

Since 𝑤 − 𝑣 − 𝐸M𝑣M ∈ 𝐻2
0 (Ω), (4.3), the Hölder inequality, 𝑎pw(𝛿, 𝑧) = 0, Lemma 4.2c–d, the inverse estimate,

Lemma 4.1c, and (4.4) read

(𝛿, 𝜙)𝐿2(Ω) ≤ 𝑎(𝑧, 𝑤 − 𝑣 − 𝐸M𝑣M) + ‖𝜙‖𝐿1(Ω)‖𝐸M𝑣M − 𝑣M‖𝐿∞(Ω)

≤ 𝑎pw(𝑧 − 𝐼M𝑧, 𝑣M − 𝐸M𝑣M) + 𝐶inv‖ℎ−1
𝒯 (𝑣M − 𝐸M𝑣M)‖𝐿2(Ω)

. |||𝑣 + 𝑣M|||pw(ℎ𝛽max‖𝑧‖2+𝛽 + 𝐶invΛℎmax) . ℎ𝛽max|||𝑣 + 𝑣M|||pw.

The combination of the last and second-last displayed inequalities conclude the proof of (𝑎) with the constant
𝐶S + 𝐶(𝛽)ℎ𝛽max.
(𝑏) Given any 𝜙 ∈ 𝐿2(Ω) with ‖𝜙‖𝐿2(Ω) = 1, let 𝑧 ∈ 𝐻2

0 (Ω) solve 𝑎(𝑧, ∙) = (𝜙, ∙)𝐿2(Ω) ∈ 𝐿2(Ω). Then,
𝑧 ∈ 𝐻2+𝛼′(Ω) [4, Thm. 2]. Note that

‖𝑣 + 𝑣M‖𝐿2(Ω) = sup
𝜙∈𝐿2(Ω)
‖𝜙‖𝐿2(Ω)=1

(𝑣 + 𝑣M, 𝜙)𝐿2(Ω).
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Analogous arguments of part (𝑎) apply with ‖𝑤‖𝐿2(Ω) ≤ 𝐶F|||𝑤||| and replace 𝐿∞(Ω) and 𝛽 by 𝐿2(Ω) and
min{𝛼′, 4}, respectively. This concludes the proof of (𝑏) with the constant 𝐶F + 𝐶(𝛼′)ℎ𝛼

′

max. �

Lemma 4.6 (bounds for 𝑏pw(∙, ∙, ∙) [14, Lemma 2.6]). Any 𝜂, 𝜙, 𝜑 ∈ 𝐻2
0 (Ω) + M(𝒯 ) satisfy

𝑏pw(𝜂, 𝜙, 𝜑) ≤ 𝐶dS|||𝜂|||pw|||𝜙|||pw|||𝜑|||pw.

4.2. Existence, uniqueness, and a priori bound of the discrete solution

This section establishes the well-posedness of the discrete problem (4.1). The discrete analogue 𝐺M : M(𝒯 ) →
M(𝒯 ) of 𝐺 in (2.2) is characterised by 𝐺M(𝜑M) ∈ M(𝒯 ) and

𝑎pw(𝐺M(𝜙M), 𝜓M) = 𝑏pw(𝜙M, 𝜙M, 𝜓M) for all 𝜙M, 𝜓M ∈ M(𝒯 ).

This gives rise to the energy functional 𝑗pw(∙) : 𝐾(𝜒, 𝒯 ) → R defined for all 𝜉M ∈ 𝐾(𝜒, 𝒯 ) by

𝑗pw(𝜉M) :=
1
2
|||𝜉M|||2pw +

1
2
|||𝐺M(𝜉M)|||2pw − (𝑓, 𝜉M)𝐿2(Ω).

Theorem 4.7 (existence, a priori and uniqueness condition). Given (𝑓, 𝜒) ∈ 𝐿2(Ω) × 𝐻2(Ω) with
max𝜒(𝜕Ω) < 0, there exists a minimizer 𝑢M ∈ 𝐾(𝜒, 𝒯 ) of 𝑗pw(∙); each minimizer 𝑢M and 𝑣M := 𝐺M(𝑢M)
solve (4.1). There is a positive constant 𝐶d(𝜒) that depends only on 𝜒 such that any solution (𝑢M, 𝑣M) to (4.1)
satisfies (𝑎)-(𝑏).
(𝑎) 1

2 |||𝑢M|||2pw + |||𝑣M|||2pw ≤ 𝑁2
d(𝑓, 𝑢M) := 2𝑗pw(𝑢M) + 2𝐶2

dF‖𝑓‖2𝐿2(Ω)

≤𝑀2
d(𝑓, 𝜒) := 𝐶d(𝜒) + 3𝐶2

dF‖𝑓‖2𝐿2(Ω).

(𝑏) If 𝐶2
dS
4 |||𝑢M|||2 + 𝐶dS|||𝑣M||| < 1

2 , then (𝑢M, 𝑣M) is the only solution to (4.1).

Proof. Step 1 shows that there exists a minimizer of 𝑗pw(∙) in 𝐾(𝜒, 𝒯 ). The arguments of the first part
of the proof of Theorem 2.2 show that there exists a sequence (𝑢M,𝑛)𝑛∈N in 𝐾(𝜒, 𝒯 ) such that 𝑗pw(𝑢M,𝑛) →
𝛽 := inf𝜉M∈𝐾(𝜒,𝒯 ) 𝑗pw(𝜉M) ∈ R and

|||𝑢M,𝑛|||2pw + 2|||𝐺M(𝑢M,𝑛)|||2pw ≤ 4𝑗pw(𝑢M,𝑛) + 4𝐶2
dF‖𝑓‖2𝐿2(Ω).

Since (𝑗pw(𝑢M,𝑛))𝑛∈N is convergent, the sequences (𝑢M,𝑛)𝑛∈N and (𝐺(𝑢M,𝑛))𝑛∈N are bounded with respect to
||| ∙ |||pw. Hence, there exist 𝑢M, 𝑤M ∈ M(𝒯 ) and a convergent subsequence (𝑢M,𝑛𝑘

)𝑘∈N such that

|||𝑢M,𝑛𝑘
− 𝑢M|||pw → 0 and |||𝐺M(𝑢M,𝑛𝑘

)− 𝑤M|||pw → 0 as 𝑘 →∞.

The non-empty closed convex set 𝐾(𝜒, 𝒯 ) of M(𝒯 ) plus the convergence of subsequence (𝑢M,𝑛𝑘
)𝑘∈N imply

𝑢M ∈ 𝐾(𝜒, 𝒯 ). The definition of 𝐺M(∙), 𝑢M,𝑛𝑘
→ 𝑢M, and the continuity of 𝐺M(∙), imply convergence

of 𝑎pw(𝐺M(𝑢M,𝑛𝑘
), 𝐺M(𝑢M,𝑛𝑘

)) = 𝑏pw(𝑢M,𝑛𝑘
, 𝑢M,𝑛𝑘

, 𝐺M(𝑢M,𝑛𝑘
)) as 𝑘 → ∞ towards 𝑏pw(𝑢M, 𝑢M, 𝐺M(𝑢M)) =

𝑎pw(𝑢M, 𝑢M). This and 𝑢M,𝑛𝑘
→ 𝑢M show that 𝑢M is a minimizer of 𝑗pw(∙) in 𝐾(𝜒, 𝒯 ). ⊓⊔

Step 2 shows that the minimizer 𝑢M defines a solution (𝑢M, 𝐺M(𝑢M)) to (4.1). Since 𝑢M is a minimiser
of 𝑗pw(∙), any 𝜑M = 𝜙M − 𝑢M with 𝜙M ∈ 𝐾(𝜒, 𝒯 ) satisfies

𝐷𝑗pw(𝑢M)(𝜑M) = lim
𝑡→0

𝑗pw(𝑢M + 𝑡𝜑M)− 𝑗pw(𝑢M)
𝑡

≥ 0. (4.5)

The definitions of 𝑗pw(∙) and 𝐺M(∙), the symmetry of 𝑎pw(∙, ∙), and the symmetry of 𝑏pw(∙, ∙, ∙) with respect
to first and second variables lead to

𝑗pw(𝑢M + 𝑡𝜑M)− 𝑗pw(𝑢M)
𝑡

= 𝑎pw(𝑢M, 𝜑M) + 𝑏pw(𝑢M, 𝜑M, 𝐺M(𝑢M + 𝑡𝜑M))− (𝑓, 𝜑M)𝐿2(Ω)
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+
1
2
𝑏pw(𝑢M, 𝑢M, 𝐺M(𝑢M + 𝑡𝜑M)−𝐺M(𝑢M))

𝑡

+
𝑡

2
(𝑎pw(𝜑M, 𝜑M) + 𝑏pw(𝜑M, 𝜑M, 𝐺M(𝑢M + 𝑡𝜑M))). (4.6)

The definition of 𝐺M(∙) and the symmetry of 𝑎pw(∙, ∙) show that

𝑏pw(𝑢M, 𝑢M, 𝐺M(𝑢M + 𝑡𝜑M)−𝐺M(𝑢M)) = 𝑎pw(𝐺M(𝑢M), 𝐺M(𝑢M + 𝑡𝜑M))− 𝑏pw(𝑢M, 𝑢M, 𝐺M(𝑢M))
= 𝑏pw(𝑢M + 𝑡𝜑M, 𝑢M + 𝑡𝜑M, 𝐺M(𝑢M))− 𝑏pw(𝑢M, 𝑢M, 𝐺M(𝑢M))
= 2𝑡𝑏pw(𝑢M, 𝜑M, 𝐺M(𝑢M)) + 𝑡2𝑏pw(𝜑M, 𝜑M, 𝐺M(𝑢M))

with the symmetry of 𝑏pw(∙, ∙, ∙) in the first two variables in the last step. A substitution of the above identity
in (4.6) leads to

𝑗pw(𝑢M + 𝑡𝜑M)− 𝑗pw(𝑢M)
𝑡

= 𝑎pw(𝑢M, 𝜑M) + 𝑏pw(𝑢M, 𝜑M, 𝐺M(𝑢M) +𝐺M(𝑢M + 𝑡𝜑M))− (𝑓, 𝜑M)

+
𝑡

2
( 𝑎pw(𝜑M, 𝜑M) + 𝑏pw(𝜑M, 𝜑M, 𝐺M(𝑢M) +𝐺M(𝑢M + 𝑡𝜑M))) .

This, the continuity of 𝐺M(∙) and (4.5) show that the minimizer 𝑢M of 𝑗pw(∙) in 𝐾(𝜒, 𝒯 ) and 𝑣M := 𝐺M(𝑢M)
defines a solution (𝑢M, 𝑣M) to (4.1). ⊓⊔

Step 3 of the proof establishes bounds for the discrete solution (the proof of (𝑎)). Since 𝑢M is the
global minimizer of 𝑗pw(∙), the Young inequality, and a rearrangement of terms imply for any 𝜙M ∈ 𝐾(𝜒, 𝒯 )
that

|||𝑢M|||2pw + |||𝑣M|||2pw ≤ 2𝑗pw(𝜙M) + 2(𝑓, 𝑢M)𝐿2(Ω) ≤ 2𝑗pw(𝜙M) + 2𝐶2
dF‖𝑓‖2𝐿2(Ω) +

1
2
|||𝑢M|||2.

This implies

1
2
|||𝑢M|||2pw + |||𝑣M|||2pw ≤ 2𝑗pw(𝜙M) + 2𝐶2

dF‖𝑓‖2𝐿2(Ω) =: 𝑁2
d(𝑓, 𝜙M). (4.7)

Given 𝜓 and 𝜙 := 𝜒𝜓 from the proof of Theorem 2.3, 𝜙M := 𝐼M(𝜙) ∈ 𝐾(𝜒, 𝒯 ). The properties of Morley
interpolation Lemma 4.1a, definition of 𝐺M(∙), the bounds of 𝑏pw(∙, ∙, ∙) and Lemma 4.6 lead to

|||𝐼M(𝜙)|||pw ≤ |||𝜙||| and |||𝐺M(𝐼M(𝜙))|||pw ≤ 𝐶dS|||𝜙|||2.

The combination of above inequalities, the bound of |||𝜙||| from (2.6) conclude (𝑎) with 𝐶d(𝜒) :=
2𝐶2(𝜓)‖𝜒‖2𝐻2(Ω+) + 𝐶2

dS𝐶
4(𝜓)‖𝜒‖4𝐻2(Ω+) and 𝑀2

d(𝑓, 𝜒) := 𝐶d(𝜒) + 3𝐶2
dF‖𝑓‖2𝐿2(Ω). The a priori bound in the

equation (4.7) and 𝑢M being the minimizer of 𝑗pw(∙) imply 𝑁d(𝑓, 𝑢M) ≤ 𝑁d(𝑓, 𝐼M(𝜙)) ≤𝑀d(𝑓, 𝜒). ⊓⊔
Step 4 establishes uniqueness of the discrete solution (the proof of (b)). Let (𝑢𝑗M, 𝑣

𝑗
M) ∈ 𝐾(𝜒, 𝒯 ) ×

M(𝒯 ) solve (4.1) for 𝑗 = 1, 2 and define 𝑒 := 𝑢1
M − 𝑢2

M and 𝛿 := 𝑣1
M − 𝑣2

M. The test functions 𝑢2
M (resp. 𝑢1

M) in
(4.1a) and 𝛿 in (4.1b), and a simplification lead to (2.7) and (2.8) with ||| ∙ |||, 𝑏(∙, ∙, ∙), 𝑢1, 𝑢2, 𝑣1, 𝑣2 replaced by
||| ∙ |||pw, 𝑏pw(∙, ∙, ∙), 𝑢1

M, 𝑢
2
M, 𝑣

1
M, 𝑣

2
M. With this substitution, the algebra in (2.7)-(2.9) holds verbatim with the

further substitution of 𝐶S and 𝑀(𝑓, 𝜒) by 𝐶dS and 𝑀d(𝑓, 𝜒). Further details are omitted to conclude 𝑒 = 0 = 𝛿
for uniqueness. �

Remark 4.8 (a priori and a posteriori criteria for discrete uniqueness). The a priori smallness assumption
on the data 𝐶dS𝑀d(𝑓, 𝜒) < 1/2 implies the a posteriori smallness assumption 𝐶dS𝑁d(𝑓, 𝑢M) < 1/2 and so the
uniqueness of the solution to (4.1). (The proof is a discrete analog to Remark 2.4 and hence omitted.)
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5. A priori error analysis

This section establishes an a priori error estimates of Morley FEM for the von Kármán obstacle problem
with small data.

5.1. Main result

Recall 𝑀(𝑓, 𝜒) and 𝑀d(𝑓, 𝜒) from Theorems 2.3 and 4.7, the Sobolev and Friedrichs (resp. its discrete
versions) constants 𝐶S and 𝐶F (resp. 𝐶dS and 𝐶dF) from (2.1) and Theorem 4.5, and 𝛽, 𝛼, 𝐶(𝛽), and 𝐶(𝛼)
from Theorem 4.5. The following theorem establishes for small data an a priori energy norm error estimates
that is quasi-optimal plus linear convergence.

Theorem 5.1 (energy norm estimates). For a given 𝑓 ∈ 𝐿2(Ω), 𝜒 ∈ 𝐶2(Ω) with max𝜒(𝜕Ω) < 0 and
𝐶S𝑀(𝑓, 𝜒) < 1/2, there exists a unique solution (𝑢, 𝑣) ∈ (𝐶2(Ω)∩𝐻2+𝛼(Ω))× (𝐶2(Ω)∩𝐻2+𝛼(Ω)) to (1.2) and
positive 𝜖, 𝐶 such that for any 𝒯 ∈ T(𝜖) with maximal mesh size ℎmax the solution (𝑢M, 𝑣M) ∈ 𝐾(𝜒, 𝒯 )×M(𝒯 )
to (4.1) is unique and satisfies

|||𝑢− 𝑢M|||pw + |||𝑣 − 𝑣M|||pw ≤ 𝐶
(︀
|||𝑢− 𝐼M𝑢|||pw + |||𝑣 − 𝐼M𝑣|||pw + ℎmax

)︀
.

5.2. A priori error analysis of a shifted biharmonic obstacle problem

Let (𝑢, 𝑣) be a solution to (1.2) with the regularity 𝑢, 𝑣 ∈ 𝐶2(Ω) ∩ 𝐻2+𝛼(Ω) ∩ 𝐻2
0 (Ω) from Theorem 3.5.

The Sobolev embedding 𝐻2+𝛼(Ω) →˓𝑊 2,4(Ω) leads to ̃︀𝑓 := 𝑓 + [𝑢, 𝑣] ∈ 𝐿2(Ω). The transformed problem seeks
𝑢𝐿 ∈ 𝐾 such that

𝑎(𝑢𝐿, 𝑢𝐿 − 𝜙) ≤ ( ̃︀𝑓, 𝑢𝐿 − 𝜙)𝐿2(Ω) for all 𝜙 ∈ 𝐾. (5.1)

Equivalently, 𝑢𝐿 is a minimizer in 𝐾 for the energy functional 𝐽𝑇 : 𝐻2
0 (Ω) → R, defined by 𝐽𝑇 (𝜉) := 1

2𝑎(𝜉, 𝜉)−
( ̃︀𝑓, 𝜉)𝐿2(Ω) for all 𝐻2

0 (Ω),

𝐽𝑇 (𝑢𝐿) = min
𝜉∈𝐾

𝐽𝑇 (𝜉). (5.2)

By construction, the solution 𝑢 to (1.2a) also solves (5.1), then uniqueness implies 𝑢𝐿 = 𝑢.

Recall the auxiliary problem from [8] which is a continuous problem with discrete obstacle constraints. Let
𝐾𝐴 := {𝜉 ∈ 𝐻2

0 (Ω) : ∀𝑝 ∈ 𝒱, 𝜉(𝑝) ≥ 𝜒(𝑝)} for the set 𝒱 of all vertices in the triangulation 𝒯 . The biharmonic
obstacle problem problem with discrete constraints seeks 𝑢𝐴 ∈ 𝐾𝐴 such that

𝑎(𝑢𝐴, 𝑢𝐴 − 𝜙) ≤ ( ̃︀𝑓, 𝑢𝐴 − 𝜙)𝐿2(Ω) for all 𝜙 ∈ 𝐾𝐴. (5.3)

Equivalently, 𝑢𝐴 is a minimizer for energy functional 𝐽𝑇 : 𝐻2
0 (Ω) → R over set 𝐾𝐴,

𝐽𝑇 (𝑢𝐴) = min
𝜉∈𝐾𝐴

𝐽𝑇 (𝜉) for all 𝜉 ∈ 𝐾𝐴. (5.4)

The solution 𝑢𝐿 = 𝑢 to the biharmonic problem (5.1) and the solution 𝑢𝐴 to the corresponding auxiliary
problem (5.3) satisfy the following result.

Lemma 5.2 (convergence rates [8]). Let 𝜒 ∈ 𝐶2(Ω)∩𝐶0(Ω) with max𝜒(𝜕Ω) < 0, and let 𝑢 ∈ 𝐶2(Ω)∩𝐻2+𝛼(Ω)
solve (5.1). Then there exist 𝜖 > 0 and ̂︀𝑢𝐴 ∈ 𝐾 such that |||𝑢−𝑢𝐴||| . ℎmax‖𝑢‖2+𝛼 and |||̂︀𝑢𝐴−𝑢𝐴||| . ℎ2

max‖𝑢‖2+𝛼
for any triangulation 𝒯 ∈ T(𝜖) with maximal mesh size ℎmax and the solution 𝑢𝐴 ∈ 𝐾𝐴 to (5.3).
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5.3. Proof of the main result

Proof. Step 1 of the proof involves a choice of a bound for the discretization parameter for which the smallness
assumption of Remark 2.4 and the uniqueness of solutions to (1.2), (4.1) hold. Define 𝜇 := 𝐶S𝑀(𝑓, 𝜒) < 1/2
and its discrete analogs 𝜇𝑑 := (𝐶S +𝐶(𝛽)ℎ𝛽max)𝑀d(𝑓, 𝜒) and 𝜇𝑒 := (𝐶S +𝐶(𝛽)ℎ𝛽max)𝑀(𝑓, 𝜒) in the notation of
Theorem 4.5. Since 𝜇𝑒 − 𝜇 = 𝐶(𝛽)ℎ𝛽max𝑀(𝑓, 𝜒) → 0 as ℎmax → 0, 𝜇 < 1/2 leads to a positive constant 𝜖1 with
𝜇𝑒 := 𝐶dS𝑀(𝑓, 𝜒) < 1/2 for all ℎmax < 𝜖1. Theorems 2.3, 4.7, and 4.5 imply

𝑀2
d(𝑓, 𝜒)−𝑀2(𝑓, 𝜒) = 𝐶(𝛽)ℎ𝛽max(2𝐶S + 𝐶(𝛽)ℎ𝛽max)𝐶4(𝜓)‖𝜒‖4𝐻2(Ω+) + 3𝐶(𝛼)ℎ𝛼max‖𝑓‖𝐿2(Ω)

and 𝑀2
d(𝑓, 𝜒)−𝑀2(𝑓, 𝜒) → 0 as ℎmax → 0. Therefore, as ℎmax → 0,

𝜇2
𝑑 − 𝜇2 = (𝜇2

𝑑 − 𝜇2
𝑒) + (𝜇2

𝑒 − 𝜇2) = (𝐶S + 𝐶(𝛽)ℎ𝛽max)2(𝑀2
d(𝑓, 𝜒)−𝑀2(𝑓, 𝜒)) + (𝜇2

𝑒 − 𝜇2) → 0

and there exists a positive 𝜖2 such that 𝜇𝑑 := (𝐶S + 𝐶(𝛽)ℎ𝛽max)𝑀d(𝑓, 𝜒) < 1/2 for all ℎmax < 𝜖2. Then
𝜖 := min{𝜖1, 𝜖2} leads to 𝜇, 𝜇𝑑, 𝜇𝑒 < 1/2 for any 𝒯 ∈ T(𝜖).

The later steps of the proof focus on the error estimates for triangulations 𝒯 ∈ T(𝜖) with a unique discrete
solution (𝑢M, 𝑣M) to (4.1) by Theorem 4.7. Set 𝑒 := 𝑢 − 𝑢M, 𝛿 := 𝑣 − 𝑣M, and the best approximation error
RHS := |||𝑢− 𝐼M𝑢|||pw + |||𝑣 − 𝐼M𝑣|||pw + ℎmax. ⊓⊔

Step 2 of the proof utilizes elementary algebra to identify two critical terms

𝑇1 := 𝑎(𝑢,𝐸M𝐼M𝑒) + 2𝑎(𝑣,𝐸M𝐼M𝛿) and 𝑇2 := −(𝑎pw(𝑢M, 𝐼M𝑒) + 2𝑎pw(𝑣M, 𝐼M𝛿)).

The definition of 𝑎pw(∙, ∙) with elementary algebra shows

|||𝑒|||2pw = 𝑎pw(𝑒, 𝑢− 𝐼M𝑢) + 𝑎pw(𝑢, (1− 𝐸M)𝐼M𝑒) + 𝑎(𝑢,𝐸M𝐼M𝑒)− 𝑎pw(𝑢M, 𝐼M𝑒).

Lemma 4.1a implies 𝑎pw(𝑒, 𝑢− 𝐼M𝑢) = |||𝑢− 𝐼M𝑢|||2pw. The boundedness of 𝑎pw(·, ·), and Lemma 4.2c–d lead to

𝑎pw(𝑢, (1− 𝐸M)𝐼M𝑒) = 𝑎pw(𝑢− 𝐼M𝑢, (1− 𝐸M)𝐼M𝑒) ≤ Λ|||𝑢− 𝐼M𝑢|||pw|||𝑒|||pw

with |||(1− 𝐸M)𝐼M𝑒|||pw . |||𝐼M𝑒|||pw ≤ |||𝑒|||pw. A combination of the previous estimates leads to

|||𝑒|||2pw ≤ |||𝑢− 𝐼M𝑢|||2pw + Λ|||𝑢− 𝐼M𝑢|||pw|||𝑒|||pw + 𝑎(𝑢,𝐸M𝐼M𝑒)− 𝑎pw(𝑢M, 𝐼M𝑒).

The analogous result with (𝑢, 𝑢M, 𝑒) replaced by (𝑣, 𝑣M, 𝛿) reads

|||𝛿|||2pw ≤ |||𝑣 − 𝐼M𝑣|||2pw + Λ|||𝑣 − 𝐼M𝑣|||pw|||𝛿|||pw + 𝑎(𝑣,𝐸M𝐼M𝛿)− 𝑎pw(𝑣M, 𝐼M𝛿).

A weighted sum of those two estimates plus the Cauchy-Schwarz inequality shows

|||𝑒|||2pw + 2|||𝛿|||2pw ≤ 2 RHS2 + Λ(|||𝑢− 𝐼M𝑢|||pw|||𝑒|||pw + 2|||𝑣 − 𝐼M𝑣|||pw|||𝛿|||pw) + 𝑇1 + 𝑇2. (5.5)

Step 3 of the proof employs three variational inequalities: The test function ̂︀𝑢𝐴 ∈ 𝐾 from Lemma 5.2 leads
in (1.2a) to

𝑎(𝑢, 𝑢− ̂︀𝑢𝐴) + 2𝑏(𝑢, 𝑣, 𝑢− ̂︀𝑢𝐴) ≤ (𝑓, 𝑢− ̂︀𝑢𝐴)𝐿2(Ω).

The test function 𝜙 = 𝐸M𝑢M ∈ 𝐾𝐴 and the definition of 𝑏(∙, ∙, ∙) lead in (5.3) to

𝑎(𝑢𝐴, 𝑢𝐴 − 𝐸M𝑢M) ≤ (𝑓, 𝑢𝐴 − 𝐸M𝑢M)𝐿2(Ω) − 2𝑏(𝑢, 𝑣, 𝑢𝐴 − 𝐸M𝑢M).

The test functions 𝜙1 = 𝐼M𝑢 ∈ 𝐾(𝜒, 𝒯 ) and 𝜙2 = 𝐼M𝛿 ∈ 𝑉M lead in (4.1) to

𝑎pw(𝑢M, 𝑢M − 𝐼M𝑢) + 2𝑏pw(𝑢M, 𝑢M − 𝐼M𝑢, 𝑣M) ≤ (𝑓, 𝑢M − 𝐼M𝑢)𝐿2(Ω),
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𝑎pw(𝑣M, 𝐼M𝛿)− 𝑏pw(𝑢M, 𝑢M, 𝐼M𝛿) = 0.

The sum of preceeding four displayed estimates lead to one inequality with many terms. An elementary, but
lengthy algebra leads to an estimate for (𝑇1 + 𝑇2)/2 and the crucial terms 𝑏pw(𝑒, 𝑒, 𝑣) − 𝑏pw(𝑒, 𝑢, 𝛿). The fol-
lowing list of identities are employed in the calculation: 𝑎pw(𝐼M𝑢,𝐸M𝐼M𝑢− 𝑢) = 𝑏pw(𝑢M, 𝑢M, 𝑣M −𝐸M𝑣M) = 0
from Remark 4.3; 𝑏pw(𝑢M, 𝐼M𝑢 − 𝑢,𝛱0𝑣) = 0 from Lemma 4.1a where, 𝛱0𝑣 ∈ 𝒫0(𝒯 ) is the piecewise con-
stant 𝐿2 projection of 𝑣; 𝑏(𝑢M, 𝑢M, 𝐸M𝑣M − 𝑣M) = 𝑏pw(𝐼M𝑢, 𝐼M𝑢, 𝑣M − 𝐸M𝑣M) = 0 from Lemma 4.2b;
𝑏pw(𝐼M𝑢, 𝑢M − 𝐸M𝑢M, 𝛱0𝑣) = 0 from Lemma 4.2c; and the symmetry 𝑏(𝑢, 𝑢, 𝑣) = 𝑏(𝑢, 𝑣, 𝑢). The resulting
inequality is equivalent to

𝑇1 + 𝑇2

2
+ 𝑏pw(𝑒, 𝑒, 𝑣)− 𝑏pw(𝑒, 𝑢, 𝛿)

≤ 1
2
𝑎pw(𝑢− 𝐼M𝑢,𝐸M𝐼M𝑢− 𝑢) + 𝑎pw(𝑣 − 𝐼M𝑣,𝐸M𝐼M𝑣 − 𝑣)

+
1
2
𝑎(𝑢, ̂︀𝑢𝐴 − 𝑢𝐴) + 𝑎(𝑢− 𝑢𝐴, 𝑢𝐴 − 𝐸M𝑢M)− 𝑏(𝑢, 𝑣, 𝑢𝐴 − ̂︀𝑢𝐴)

+ 𝑏pw(𝑢− 𝐼M𝑢, (1− 𝐸M)𝑢M, 𝑣) + 𝑏pw(𝐼M𝑢, (1− 𝐸M)𝑢M, 𝑣 −𝛱0𝑣)
+ 𝑏pw(𝑢− 𝐼M𝑢, 𝑢, (1− 𝐸M)𝑣M) + 𝑏pw(𝐼M𝑢, 𝑢− 𝐼M𝑢, (1− 𝐸M)𝑣M)
+ 𝑏pw(𝑢M, 𝐼M𝑢− 𝑢, 𝑣M − 𝑣) + 𝑏pw(𝑢M, 𝐼M𝑢− 𝑢, 𝑣 −𝛱0𝑣)

+ 𝑏pw(𝑢M, 𝑢M, 𝑣 − 𝐼M𝑣) +
1
2

(𝑓, 𝑢− ̂︀𝑢𝐴 + 𝑢𝐴 − 𝐸M𝑢M − 𝐼M𝑒)𝐿2(Ω)

=: 𝑇3 + · · ·+ 𝑇15. (5.6)

Step 4 of the proof estimates the terms 𝑇3, . . . , 𝑇15 on the right-hand side of (5.6) and establishes the bound
𝐶 RHS (ℎmax + |||𝑒|||pw + |||𝛿|||pw) with a constant 𝐶 ≈ 1 that depends on |||𝑢|||, |||𝑣|||, ‖𝑢‖2+𝛼, ‖𝑣‖2+𝛼, ‖𝑓‖𝐿2(Ω),Λ
and is independent of ℎmax. Elementary algebra lead to first equality in

𝑇3 = 𝑎pw(𝑢− 𝐼M𝑢, (𝐸M − 1)𝐼M𝑢)− |||𝑢− 𝐼M𝑢|||2pw ≤ (Λ− 1)|||𝑢− 𝐼M𝑢|||2pw,

with the Cauchy-Schwarz inequality and Lemma 4.2d in the final step. The analysis of 𝑣 replaced by 𝑢 as in
the estimate of 𝑇3 reads

𝑇4 = 𝑎pw(𝑣 − 𝐼M𝑣,𝐸M𝐼M𝑣 − 𝑣) ≤ (1 + Λ)|||𝑣 − 𝐼M𝑣|||2pw.

Lemma 5.2 and the Cauchy-Schwarz inequality show

𝑇5 + 𝑇7 =
1
2
𝑎(𝑢, ̂︀𝑢𝐴 − 𝑢𝐴)− 𝑏(𝑢, 𝑣, 𝑢𝐴 − ̂︀𝑢𝐴) . ℎ2

max‖𝑢‖2+𝛼(|||𝑢|||+ ‖[𝑢, 𝑣]‖𝐿2(Ω)).

The Cauchy-Schwarz inequality, a triangle inequality, Lemma 5.2, and Lemma 4.2d lead to

𝑇6 = 𝑎(𝑢− 𝑢𝐴, 𝑢𝐴 − 𝐸M𝑢M) ≤ |||𝑢− 𝑢𝐴||||||𝑢𝐴 − 𝐸M𝑢M||| . ℎmax‖𝑢‖2+𝛼
(︀
ℎmax‖𝑢‖2+𝛼 + (1 + Λ)|||𝑒|||pw

)︀
.

The boundedness of 𝑏pw(·, ·, ·), Lemma 4.2d, a triangle inequality, and ‖𝑣 − 𝛱0𝑣‖𝐿∞(Ω) . ℎmax‖𝑣‖1,∞ .
ℎmax‖𝑣‖2+𝛼 lead to

𝑇8 + 𝑇9 = 𝑏pw(𝑢− 𝐼M𝑢, (1− 𝐸M)𝑢M, 𝑣) + 𝑏pw(𝐼M𝑢, (1− 𝐸M)𝑢M, 𝑣 −𝛱0𝑣)
. |||𝑒|||pw

(︀
|||𝑢− 𝐼M𝑢|||pw|||𝑣|||+ ℎmax|||𝑢|||‖𝑣‖2+𝛼

)︀
.

Lemma 4.2d and Lemma 4.6 imply

𝑇10 + 𝑇11 = 𝑏pw(𝑢− 𝐼M𝑢, 𝑢, (1− 𝐸M)𝑣M) + 𝑏pw(𝐼M𝑢, 𝑢− 𝐼M𝑢, (1− 𝐸M)𝑣M)
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. |||𝑢||||||𝑢− 𝐼M𝑢|||pw|||𝛿|||pw.

Lemma 4.6 and a piecewise Poincaré inequality show

𝑇12 + 𝑇13 = 𝑏pw(𝑢M, 𝐼M𝑢− 𝑢, 𝑣M − 𝑣) + 𝑏pw(𝑢M, 𝐼M𝑢− 𝑢, 𝑣 −𝛱0𝑣)
. |||𝑢M|||pw|||𝑢− 𝐼M𝑢|||pw

(︀
|||𝛿|||pw + ℎmax‖𝑣‖2+𝛼

)︀
.

Remark 4.3, Lemma 4.2a, a generalised Hölder inequality, interpolation estimate [16, (6.1.5)], and Lemma 4.2d
lead to

𝑇14 = 𝑏pw(𝑢M, 𝑢M, 𝑣 − 𝐸M𝐼M𝑣) = 𝑏pw(𝑢M, 𝑢M, (𝑣 − 𝐸M𝐼M𝑣)− 𝐼M(𝑣 − 𝐸M𝐼M𝑣))
≤ |||𝑢M|||2pw‖(𝑣 − 𝐸M𝐼M𝑣)− 𝐼M(𝑣 − 𝐸M𝐼M𝑣)‖𝐿∞(Ω)

. ℎmax|||𝑢M|||2pw|||𝑣 − 𝐸M𝐼M𝑣|||pw . ℎmax|||𝑢M|||2pw|||𝑣 − 𝐼M𝑣|||pw.

The Cauchy-Schwarz inequality, Lemma 5.2, Lemma 4.1b–c, a triangle inequality, and Lemma 4.2d imply

𝑇15 =(𝑓, 𝑢− ̂︀𝑢𝐴 + 𝑢𝐴 − 𝐸M𝑢M − 𝐼M𝑒)𝐿2(Ω) = (𝑓, 𝑢𝐴 − ̂︀𝑢𝐴)𝐿2(Ω)

+ (𝑓, (1− 𝐼M)(𝑢− 𝐸M𝑢M))𝐿2(Ω) . ℎ
2
max‖𝑓‖𝐿2(Ω)

(︀
‖𝑢‖2+𝛼 + |||𝑒|||pw

)︀
.

The summary of all the aforementioned estimates and the estimates |||𝑢− 𝐼M𝑢|||pw ≤ |||𝑒|||pw and |||𝑣 − 𝐼M𝑣|||pw ≤
|||𝛿|||pw show that 𝑇3 + · · ·+ 𝑇15 . RHS (ℎmax + |||𝑒|||pw + |||𝛿|||pw). ⊓⊔

Step 5 finishes the proof. Recall 0 < 𝜇, 𝜇𝑒 < 1/2 for 𝒯 ∈ T(𝜖) from Step 1 and abbreviate for 0 < 𝛾 ≤ 1,
𝑔(𝛾) := 𝐶2

dS
4𝛾 |||𝑢|||

2 + 𝐶S|||𝑣|||. Remark 2.4 and Theorem 4.5 imply 𝑔(1) < 1
2 . Since 𝑔(𝛾) is continuous, there exists

some 𝛾0 with 0 < 𝛾0 < 1 such that 𝑔(𝛾0) < 1
2 . Lemma 4.6 and a weighted Young inequality in the end imply

𝑏pw(𝑒, 𝑢, 𝛿)− 𝑏pw(𝑒, 𝑒, 𝑣) ≤ 𝐶dS|||𝑢||||||𝑒|||pw|||𝛿|||pw + 𝐶S|||𝑒|||2pw|||𝑣||| ≤ 𝑔(𝛾0)|||𝑒|||2pw + 𝛾0|||𝛿|||2pw.

The combination of this with the upper bound of 𝑇3, · · · , 𝑇15 in (5.6) from Step 4 reads

𝑇1 + 𝑇2

2
− (𝑔(𝛾0)|||𝑒|||2pw + 𝛾0|||𝛿|||2pw) ≤ 𝐶 RHS (ℎmax + |||𝑒|||pw + |||𝛿|||pw) (5.7)

with the universal constant 𝐶 ≈ 1 that depends on |||𝑢|||, |||𝑣|||, ‖𝑢‖2+𝛼, ‖𝑣‖2+𝛼, ‖𝑓‖𝐿2(Ω),Λ and is independent of
ℎmax. The point is that 𝑔(𝛾0) < 1

2 and 𝛾0 < 1. Multiply (5.7) by 2 and combine it with (5.5) to derive some
κ ≈ min{1− 2𝑔(𝛾0), 2(1− 𝛾0)} > 0 that satisfies

κ(|||𝑒|||2pw + |||𝛿|||2pw) ≤ RHS2 + RHS
√︁
|||𝑒|||2pw + |||𝛿|||2pw ≤

(︂
1 +

1
2κ

)︂
RHS2 +

κ
2

(|||𝑒|||2pw + |||𝛿|||2pw)

with a weighted Young inequality in the last step. The last estimate concludes the proof of |||𝑒|||2pw + |||𝛿|||2pw ≤
κ−2(2κ + 1) RHS2. �

6. Implementation Procedure and Numerical Results

The first subsection is devoted to the implementation procedure to solve the discrete problem (4.1). Sub-
sections 6.2 and 6.3 deal with the results of the numerical experiments and is followed by a subsection on
conclusions.
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6.1. Implementation procedure

The solution (𝑢M, 𝑣M) to (4.1) is computed using a combination of Newtons’ method [24] in an inner loop
and primal dual active set strategy [21] in an outer loop. The initial value 𝑢𝑖𝑛𝑖𝑡M for 𝑢M in the iterative scheme
is the discrete solution to the biharmonic obstacle problem: seek 𝑢𝑖𝑛𝑖𝑡M ∈ 𝐾(𝜒, 𝒯 ) such that

𝑎pw(𝑢𝑖𝑛𝑖𝑡M , 𝑢𝑖𝑛𝑖𝑡M − 𝜙M) ≤ (𝑓, 𝑢𝑖𝑛𝑖𝑡M − 𝜙M)𝐿2(Ω) for all 𝜙M ∈ 𝐾(𝜒, 𝒯 ) (6.1)

with 𝐾(𝜒, 𝒯 ) from Subsection 4.1. Since (6.1) is (4.1a) without the trilinear term, 𝑢𝑖𝑛𝑖𝑡M is computed with the
same algorithm below without the inner loop for the nonlinearity. This is shown in Figure 1 and the general
case is described in the sequel.

Recall M(𝒯 ), 𝒱 and ℰ from Subsection 4.1. Let 𝑝 ∈ 𝒱(Ω) and (𝜙1, . . . , 𝜙𝑁 ) be the node- and edge-oriented basis
functions in M(𝒯 ), 𝑁 := |𝒱(Ω)| + |ℰ(Ω)|; see [11] for details and basic algorithms for the Morley FEM. Let
𝑢M =

∑︀𝑁
𝑗=1 𝛼𝑗𝜙𝑗 and 𝑣M =

∑︀𝑁
𝑗=1 𝛽𝑗𝜙𝑗 with 𝛼 = (𝛼1, . . . , 𝛼𝑁 ) and 𝛽 = (𝛽1, . . . , 𝛽𝑁 ).

Primal dual active set strategy.

– Choose initial values (𝑢0
M, 𝑣

0
M) = (𝑢𝑖𝑛𝑖𝑡M , 0).

– In the 𝑚th step of the primal dual active set algorithm, find the active 𝐴𝑐𝑚 and inactive 𝐼𝑛𝑚 sets defined
by

𝐴𝑐𝑚 = {𝑝 ∈ 𝒱(Ω) : 𝜆𝑚−1(𝑝) + 𝜒(𝑝)− 𝑢𝑚−1
M (𝑝) ≤ 0}, (6.2a)

𝐼𝑛𝑚 = {𝑝 ∈ 𝒱(Ω) : 𝜆𝑚−1(𝑝) + 𝜒(𝑝)− 𝑢𝑚−1
M (𝑝) > 0}. (6.2b)

Since the degrees of freedom also involve the midpoints of the interior edges, let 𝐼𝑚 := 𝐼𝑛𝑚 ∪ ℰ(Ω) be the
union of 𝐼𝑛𝑚 and the midpoints of interior edges.
(𝑎) Non-linear system.
⋆ The matrix formulation corresponding to (4.1) can be expressed as block matrices in term of active and

inactive sets and load vector F on the right-hand side.
⋆ Impose 𝑢𝑚M(𝐴𝑐𝑚) = 𝜒(𝐴𝑐𝑚) = 𝛼𝑚(𝐴𝑐𝑚) and 𝜆𝑚(𝐼𝑚) = 0. From here on, superscript 𝑚 is omitted and

(𝛼(𝐼𝑚),𝜆(𝐴𝑐𝑚),𝛽(𝐴𝑐𝑚),𝛽(𝐼𝑚)) is replaced by (𝛼2,𝜆1,𝛽1,𝛽2) for notational convenience.
⋆ After substitution of the known values 𝛼(𝐴𝑐) and 𝜆(𝐼) = 0, the discrete problem reduces to a smaller

non-linear system of equations G(𝛼2,𝜆1,𝛽1,𝛽2) = 0.
(𝑏) Newtons iteration with initial guess S0 = (𝛼0

2,𝜆
0
1,0,0).

⋆ For S𝑛 := (𝛼𝑛
2 ,𝜆

𝑛
1 ,𝛽

𝑛
1 ,𝛽

𝑛
2 ), do S𝑛+1 = S𝑛 −∆S𝑛 for the solution ∆S𝑛 of the linear system of equations

JG(S𝑛)∆S𝑛 = G(S𝑛) with JG is the Jacobian matrix of G until ‖∆S𝑛‖𝑙2(R2𝑁 ) is less than a given
tolerance.

∙ Update 𝑚 = 𝑚 + 1. This primal-dual active strategy iteration procedure terminates when 𝐴𝑐𝑚 = 𝐴𝑐𝑚−1

and 𝐼𝑚 = 𝐼𝑚−1.

The flowchart (see, Figure 1) demonstrates the combined primal-dual active set and Newton algorithms for
𝒯0, 𝒯1, . . . .
We observe in the examples of this paper (for small 𝑓 and 𝜒) that at each iteration of primal dual active set
algorithm, the Newtons’ method converges in four iterations. In this case, we notice that the error between final
level and the previous level of the nodal and edge-oriented values in Euclidean norm of R2𝑁 is less than 10−9.
Also, the primal dual active set algorithm terminates within three steps.

The uniform mesh refinement has been done by red-refinement criteria, where each triangle is subdivided into
four sub-triangles by connecting the midpoints of the edges. Let 𝑢ℓ (resp.𝑣ℓ) be the discrete solution at the ℓth
level for ℓ = 1, 2, 3, .., 𝐿 and define

𝑒ℓ(𝑢) := |||𝑢𝐿 − 𝑢ℓ|||pw and ̃︀𝑒ℓ(𝑢) := max
𝑝∈𝒱ℓ

|𝑢𝐿(𝑝)− 𝑢ℓ(𝑝)|.
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Figure 1. Flowchart for the primal-dual active set strategy with the Newtons method.

(︁
resp. 𝑒ℓ(𝑣) := |||𝑣𝐿 − 𝑣ℓ|||pw and ̃︀𝑒ℓ(𝑣) := max

𝑝∈𝒱ℓ

|𝑣𝐿(𝑝)− 𝑣ℓ(𝑝)|
)︁
.

The order in 𝐻2 norm (resp. 𝐿∞ norm) at ℓth level for 𝑢 is approximated by EOC(ℓ) :=
log

(︀
𝑒ℓ(𝑢)/𝑒𝐿−1(𝑢)

)︀
/log(2𝐿−1−ℓ) (resp. log

(︀̃︀𝑒ℓ(𝑢)/̃︀𝑒𝐿−1(𝑢)
)︀
/log(2𝐿−1−ℓ)) for ℓ = 1, . . . , 𝐿− 2. The discrete coin-

cidence set is 𝒞ℓ :=
{︀
𝑝 ∈ 𝒱ℓ;𝑢ℓ(𝑝)− 𝜒(𝑝) ≤ ̃︀𝑒ℓ(𝑢)

}︀
for the level ℓ.

Remark 6.1 (motivation for the algorithm). The standard primal dual active set strategy of [21] is employed
to approximate solutions of obstacle problem governed by the linear PDE. It can be interpreted as a semismooth
Newton method (for linear problems) and it converges superlinearly if the initial guess is chosen sufficiently close
to the solution. For the von Kármán equations, the discrete solution is computed using the Newtons’ method
and it converges quadratically provided the initial guess is chosen sufficiently close to the solution [13, 24].
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Figure 2. 𝒞6 and 𝒞7, Example 6.2.

Table 1. Convergence results for Example 6.2 on the square domain.

ℓ ℎ ̃︀𝑒ℓ(𝑢) EOC ̃︀𝑒ℓ(𝑣) EOC 𝑒ℓ(𝑢) EOC 𝑒ℓ(𝑣) EOC

1 0.5000 0.013222 1.2098 0.125162 1.9151 16.496069 0.7666 1.409870 0.9561
2 0.2500 0.013222 1.5123 0.045884 2.0319 12.963642 0.8714 1.025239 1.0802
3 0.1250 0.011327 1.9419 0.012143 2.0699 8.621491 0.9657 0.493374 1.0885
4 0.0625 0.003404 2.0456 0.003205 2.1440 4.927900 1.0450 0.235687 1.0999
5 0.0313 0.000909 2.1862 0.000808 2.3000 2.541191 1.1345 0.114679 1.1605
6 0.0156 0.000200 - 0.000164 - 1.157459 - 0.051304 -

The initial guess for this problem is chosen as the solution of the biharmonic part of f(apprvon Kármán equations,
as, e.g., in [12, Section 7].

This motivates the algorithm of Figure 1 that combines Newtons’ method and primal-dual active set strategy
to compute the discrete solution (𝑢M, 𝑣M) to the von Kármán obstacle problem. The initial guess in this case
for the loop in the Newton’s method is computed by solving the biharmonic obstacle problem (as in [21]).

The algorithm proposed in Figure 1 runs successfully for all the examples in this paper. To the best of our
knowledge, the proof of convergence of the algorithm of obstacle problems governed by nonlinear systems is an
open question.

6.2. The von Kármán obstacle on the square domain

Let the computational domain be Ω = 0.5(−1, 1)2. The criss-cross mesh with ℎ = 1 is taken as the initial
triangulation 𝒯0 of Ω. Consider the von Kármán obstacle problem (1.2) for the three examples in this section.
Examples 6.2 and 6.3 take 𝑓 = 0 with different obstacles; Example 6.4 concerns a significantly huge function 𝑓 .

Example 6.2. [Coincidence set with non-zero measure]. Let the obstacle be given by 𝜒(𝑥) = 1−5|𝑥|2+|𝑥|4,𝑥 ∈
Ω = 0.5(−1, 1)2. This example is taken from [7]. The discrete coincidence 𝒞6 and 𝒞7 are displayed in Figure 2.
Since ∆2𝜒 = 64 > 0 in this example, it is known from [10, Section 8] that the non-coincidence set Ω ∖ 𝒞 is
connected. This behaviour of the non-coincidence set can be seen in Figure 2 for levels 6 and 7.

Table 1 shows errors and orders of convergence for the displacement 𝑢 and the Airy-stress function 𝑣. Observe
that linear order of convergences are obtained for 𝑢 and 𝑣 in the energy norm, and quadratic order of convergence
in 𝐿∞ norm. These numerical order of convergence in energy norm clearly matches the expected order of
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Figure 3. 𝒞6 and 𝒞7, Example 6.3.

Table 2. Convergence results for Example 6.3 on the square domain.

ℓ ℎ ̃︀𝑒ℓ(𝑢) EOC ̃︀𝑒ℓ(𝑣) EOC 𝑒ℓ(𝑢) EOC 𝑒ℓ(𝑣) EOC

1 0.5000 0.028792 1.4917 0.136864 1.8793 15.510398 0.7999 1.493256 0.9636
2 0.2500 0.028792 1.8646 0.050539 1.9898 11.837363 0.9024 1.070278 1.0843
3 0.1250 0.009347 1.9451 0.014530 2.0535 7.563740 0.9878 0.510661 1.0899
4 0.0625 0.003116 2.1252 0.003980 2.1462 4.210097 1.0591 0.244868 1.1047
5 0.0312 0.000843 2.3636 0.001030 2.3427 2.138703 1.1411 0.118649 1.1642
6 0.0156 0.000164 - 0.000203 - 0.969687 - 0.052944 -

convergence given in Theorem 5.1. Though the theoretical rate of convergence in 𝐿∞ norm is not analysed, the
numerical rates are obtained similar to that in [7] for the biharmonic obstacle problem.

Example 6.3. [Coincidence set with zero measure] In this example taken from [7], 𝜒(𝑥) = 1−5|𝑥|2−|𝑥|4,𝑥 ∈
Ω = 0.5(−1, 1)2 with ∆2𝜒 = −64 < 0 in Ω, and hence, the interior of the coincidence set must be empty,
since ∆2𝑢 (in the sense of distributions) is a nonnegative measure ([10, Section 8]). This can be observed in the
pictures of the discrete coincidence sets displayed in Figure 3.

The errors and orders of convergence for the displacement and the Airy-stress function are presented in Table 2.
The orders of convergence results are similar to those obtained in Example 6.2. Note that Examples 1 and 2
are similar except in the sign of the term |𝑥|4 that appears in the obstacle function.

Example 6.4. [Violation of smallness assumption] It is interesting to observe that for 𝜒 and Ω from Example 6.2
with the source term 𝑓 = (𝑥+ 3)2(𝑥−3)2(𝑦+ 3)2(𝑦−3)2, the primal dual active set algorithm is not convergent
in 100 iterations of the algorithm. Consider 𝑤(𝑥, 𝑦) = (𝑥 + 0.5)2(𝑦 + 0.5)2(0.5 − 𝑥)2(0.5 − 𝑦)2 ∈ 𝐻2

0 (Ω). Then
‖𝑤‖𝐿2(Ω)

|||𝑤||| = 0.0278 and ‖𝑤‖𝐿∞(Ω)

|||𝑤||| = 0.0683. Since 𝐶F (resp. 𝐶S) is the supremum of
‖𝑧‖𝐿2(Ω)

|||𝑧||| (resp. ‖𝑧‖𝐿∞(Ω)

|||𝑧||| )
for all 𝑧 ∈ 𝐻2

0 (Ω), this implies 𝐶F ≥ 0.0278 (resp. 𝐶S ≥ 0.0683). Use the definition of 𝑀(𝑓, 𝜒) to obtain
𝐶𝑆𝑀(𝑓, 𝜒) ≥ 20.7972. Therefore the sufficient condition in Theorem 5.1 is violated.

For Example 6.2 with obstacle 𝜒 replaced by 𝜆𝜒, where 𝜆 ∈ R, we noticed that the algorithm fails to converge
for 𝜆 ≥ 4 on 𝒯4 and 𝒯5. This illustrates the requirement of smallness assumption on the obstacle for optimal
convergence rate.
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Figure 4. 𝒞5 and 𝒞6.

Table 3. Convergence results for the L-shaped domain.

ℓ ℎ ̃︀𝑒ℓ(𝑢) EOC ̃︀𝑒ℓ(𝑣) EOC 𝑒ℓ(𝑢) EOC 𝑒ℓ(𝑣) EOC

1 0.3536 0.046700 0.8276 0.141271 1.8003 23.203954 0.7177 2.260261 0.9584
2 0.1768 0.021021 0.7196 0.056794 1.9621 18.313668 0.8431 1.530842 1.0905
3 0.0884 0.025796 1.2271 0.017919 2.1111 11.746209 0.9442 0.761967 1.1324
4 0.0442 0.014152 1.5879 0.004655 2.2774 6.556709 1.0473 0.352575 1.1531
5 0.0221 0.004708 - 0.000960 - 3.172522 - 0.158538 -

6.3. The von Kármán obstacle problem on the L-shaped domain

Consider L-shaped domain Ω = (−0.5, 0.5)2 ∖ [0, 0.5]2, 𝑓 = 0 and

𝜒(𝑥) = 1− (𝑥+ 0.25)2

0.22
− 𝑦2

0.352

as in [7]. Choosing the initial mesh size as ℎ = 0.7071, the successive red-refinement algorithm computes
𝒯1, . . . , 𝒯5.
Since Ω is non-convex (reduced elliptic regularity 𝛼 = 0.5445, [7, Example 4]), we expect only sub-optimal
order of convergences in energy norm and 𝐿∞ norm, that is, 𝒪(ℎ𝛼) convergence rate in the energy norm (see,
Theorem 5.1). However, linear order of convergence is preserved in the energy norm which indicates that the
numerical performance is carried out in the non-asymptotic region. The discrete coincidence sets for last two
levels are depicted in Figure 4. The non-coincidence set is connected, which agrees with the result in [10] since
∆2𝜒 = 0 in Ω in this example.
The convergence rates in Table 3 are not in direct contradiction to Theorem 5.1 but the reduced elliptic
regularity suggests a lower rate 𝛼 = 0.5445 for L-shaped domain. A similar observation is in [7, Table 5.5] with
orders of convergence ≈ 0.8 (resp. 1) for energy (resp. 𝐿∞) norm. In [7], the numbers are computed with the
alternative definitions for error 𝑒ℓ(𝑢) := |||𝑢ℓ−1 − 𝑢ℓ|||pw (resp. ̃︀𝑒ℓ(𝑢) := max𝑝∈𝒱ℓ−1 |𝑢ℓ−1(𝑝) − 𝑢ℓ(𝑝)|) and order
of convergence EOC(ℓ) := log

(︀
𝑒ℓ−1(𝑢)/𝑒ℓ(𝑢)

)︀
/log(2) (resp. log

(︀̃︀𝑒ℓ−1(𝑢)/̃︀𝑒ℓ(𝑢)
)︀
/log(2)). With these definitions,

undisplayed numerical experiments confirm the numbers displayed in [7, Table 5.5] precise up to the last digit.
This numerical experiment suggests that our implementation is at least consistent with the one in [7]. One
possible explanation is that the corner singularity affects the asymptotic convergence rate for very small mesh-
sizes only. This is known, for instance, for the L-shaped domain and the Poisson model problem with constant
right hand side in the Courant (𝒫1 conforming) finite element method. The expected rate 2/3 is visible only
beyond 2× 106 triangles with far better empirical convergence rates before that.
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6.4. Conclusions

The numerical results for the Morley FEM in the von Kármán obstacle problem are presented for square
domain and L-shaped domain in Sections 6.2 and 6.3. The outputs obtained for the square domain confirm
the theoretical rates of convergence given in Theorem 5.1 for 𝛼 = 1. Example 6.4 in Section 6.3 illustrates the
requirement of smallness assumption on the obstacle for optimal convergence rate. For the L-shaped domain,
we expect reduced convergence rates in energy and 𝐿∞ norms from the elliptic regularity. However, linear order
of convergence is preserved in the energy norm which indicates that the numerical performance is carried out
in the non-asymptotic region.
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(2016) 433–454.

[26] E. Miersemann and H.D. Mittelmann. Stability in obstacle problems for the von Kármán plate. SIAM J. Math. Anal. 23
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method-part 2. approximation and numerical analysis. Comput. Methods Appl. Mech. Eng. 24 (1980) 317–337.

[31] A. Quarteroni, Hybrid finite element methods for the von Kármán equations. Calcolo 16 (1979) 271–288.
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