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MORLEY FINITE ELEMENT METHOD FOR THE VON KARMAN
OBSTACLE PROBLEM

CARSTEN CARSTENSEN'?, SHARAT GADDAM?, NEELA NATARAJ>*, AMIvA K. PANT®
AND DEVIKA SHYLAJA*

Abstract. This paper focusses on the von Karmdn equations for the moderately large deformation
of a very thin plate with the convex obstacle constraint leading to a coupled system of semilinear
fourth-order obstacle problem and motivates its nonconforming Morley finite element approximation.
The first part establishes the well-posedness of the von Kdarman obstacle problem and also discusses
the uniqueness of the solution under an a priori and an a posteriori smallness condition on the data.
The second part of the article discusses the regularity result of Frehse from 1971 and combines it with
the regularity of the solution on a polygonal domain. The third part of the article shows an a priori
error estimate for optimal convergence rates for the Morley finite element approximation to the von
Kéarman obstacle problem for small data. The article concludes with numerical results that illustrates
the requirement of smallness assumption on the data for optimal convergence rate.
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1. INTRODUCTION

Short history of related work. The von Karman equations [17] model the bending of very thin elastic
plates through a system of fourth-order semi-linear elliptic equations; cf. [2,17,23] and references therein for
the existence of solutions, regularity, and bifurcation phenomena. The papers [5,9,12,13, 25,27, 31, 32] study
the approximation and error bounds for regular solutions to von Karmén equations using conforming, mixed,
hybrid, Morley, C° interior penalty and discontinuous Galerkin finite element methods (FEMs).

The obstacle problem is a prototypical example for a variational inequality and arises in contact mechanics,
option pricing, and fluid flow problems. The location of the free boundary is not known a priori and forms a part
of the solution procedure. For the theoretical and numerical aspects of variational inequalities, see [20,22]. A
unified convergence analysis for the fourth-order linear two-sided obstacle problem of clamped Kirchhoff plates
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in [6-8] studies C* FEMs, C? interior penalty methods, and classical nonconforming FEMs on convex domains
and, analyse the C° interior penalty and the Morley FEM on polygonal domains.

The obstacle problem for von Karman equations with a nonlinearity together with a free boundary
offers additional difficulties. The obstacle problem in [26,28,33] concerns a different plate model with continu-
ation, spectral, and complementarity methods, while the papers [29,30] study conforming penalty FEM.

The present paper is the first on the fourth-order semilinear obstacle problem of a (very thin) von Kdrmén
plate. The article derives existence, uniqueness (under smallness assumption on data) and regularity results of
the von Karmén obstacle problem. Nonconforming FEMs appear to be more attractive than the classical C!
conforming FEMs, so this article suggests the Morley FEM to approximate the von Karman obstacle problem
and derives an optimal order a priori error estimate with the best approximation plus a linear perturbation.

Problem Formulation. Given an obstacle y € H?(f) with max x(9f) := max,eaq x(x) < 0, define the
non-empty, closed, and convex subset

K:={pc H3Q): 9> xae in Q}

of HZ(Q) in a bounded polygonal domain © C R2. The Hessian D? and von Karmén bracket [p1, 2] :=
OlazPayy +P1yy P20z — 2012y P2uy With partial derivatives (o), := 9?(e)/dxdy etc. Define for @1, 2, p3 € HE(Q)
the weak forms

1
a(1,p2) = (D*¢1, D*p3) 12(q) and b(ip1, @2, p3) = —5([@1#2]7@3)1;2(9) (1.1)
with the L2(Q) inner product (e, e) £2()- It is well established [5, Corollary 2.3] and follows from symmetry of
the von Kdrmén bracket [, ] that b : H3(Q)? — R is symmetric with respect to all the three arguments. The
weak formulation of the von Kéarmén obstacle problem seeks (u,v) € K x HZ() such that

a(u,w — 1) + 2b(u,v,u — 1) < (f,u—@1)r2@) for all p1 € K, (1.2a)
a(v, @) — blu,u, p2) =0  for all py € HE(Q). (1.2b)

Results and overview. A smallness assumption on the data is derived in Section 2 to show that (1.2) is
well-posed. The regularity results of Section 3 establish that any solution (u,v) to (1.2) satisfies u,v € HZ(Q) N
H2T2(Q) N C?(Q) for the index 1/2 < o < 1 with @ = min{a’, 1} and the index o/ of elliptic regularity [4] of
the biharmonic operator in a polygonal domain 2. Section 4 introduces the Morley FEM and discusses the well-
posedness of the discrete problem with an a priori and an a posteriori smallness condition on the data for global
uniqueness. Section 5 derives a priori energy norm estimates of optimal order « for the Morley FEM under the
smallness assumption on the data that guarantees global uniqueness of the minimizer on the continuous level.
The article concludes with numerical results that illustrates the requirement of smallness assumption on the
data for optimal convergence rate.

Notation. Standard notation on Lebesgue and Sobolev spaces and their norms apply throughout the paper.
For s >0and 1 <p < oo, let |o|s and || ®]|s (vesp. |®]|sp, and || e||s, ) denote the semi-norm and norm on H*()
(resp. W*P(Q)); || ®]|_s denotes the norm in H~*(Q). The standard L? inner product and norm are denoted by
(o,9)12() and || ® || 12(q). The triple norm || @ || := [|[D? e || 12(q) is the energy norm defined by the Hessian and
Il @ llpw := [ D3y, ® llr2() is its piecewise version with the piecewise Hessian D2, [e, o], denotes the piecewise
version of the von Karmén bracket [e, o] with respect to an underlying (non-displayed) triangulation. H ~2(2)
is the dual space of the Hilbert space (HZ(2), || o ||). The elliptic regularity index 1/2 < o < 1 is determined by
the interior angles of the domain  [4] and is the same throughout this paper. The notation A < B abbreviates
A < CB for some positive generic constant C' which depends on [Jul], [[v||, [u|2+a: [|V]|24a, | fllz20); A = B
abbreviates A < B < A.
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2. WELL-POSEDNESS

This section establishes the well-posedness of the problem (1.2). The existence of a solution to (1.2) follows
with the direct method in the calculus of variations. The subsequent bound applies often in this paper and is
based on Sobolev embedding. Let Cg denote the Sobolev constant in the Sobolev embedding HZ(Q) — C(Q)
and let Cr denote the Friedrichs constant with

[l =0y < Csllvllizy and |[vllrz(e) < Crllvf| for all v e H(R). (2.1)

Lemma 2.1 (bound for b(e,e,e) [9]). The trilinear form b(e,e ,e) from (1.1) satisfies, for all p1,va,p3 €
H§(Q), that b(e1,¢2,¢3) < llerllle2lllleslie (o) < Cslleilllezlllesll-

For all £ € H3(2), Lemma 2.1 implies b(¢, &, 8) € H~2(Q2). Define G : H3(Q) — HZ(Q) by

a(G(),¥) = blp, o, ¢) for all p,9 € HF(S). (2.2)

This means G(§) is the Riesz representation of the linear bounded functional b(§, &, e) in the Hilbert space
(HZ(9Q),a(e,e)). Consider the minimizer u of the functional j(&) for £ € K and

56 = el + SICEOI ~ (F e, (23)

The equivalence of (1.2) with (2.3), for K = HZ(£), is established in [17, Thm. 5.8.3]. Analogous arguments also
establish the equivalence, for any non-empty, closed, and convex subset K of HZ(f2), so the proof is omitted.
This implies that, to prove the existence of a solution to (1.2), it is sufficient to prove the existence of a minimizer
to (2.3).

Theorem 2.2 (existence). Given (f,x) € L?(Q) x H?(Q) with max x(9Q) < 0, there exists a minimizer of j(e)
1.

X
in K; each minimizer u and v := G(u) solve (1.2).
Proof. Given £ € K, the definition of j(e) in (2.3) and the Cauchy-Schwarz inequality lead to

€l + MG ON* = 211 £l -2l < 25(9).

This implies the lower bound

00 <~ |25 = min (¢ = 2¢] | 2) < 2j(¢) forall § € K.

Consequently, there exists a sequence (uy)nen in K such that

J(un) — B = gg{;’(g) eR.

The Cauchy-Schwarz and the Young inequalities lead to
lunll® + 201G () I* = 411122 < 2unll® + 201G (wa)1* — 4l fl-2llunll < 47(un).

Consequently, [|u,||? + 2[|G(un)||* < 47(un) + 4| f]|?5. Since j(u,) is convergent, the sequences (uy,)nen and
(G(un))nen are bounded in HZ(2). Hence, there exist u,w € HZ()) and a weakly convergent subsequence
(tn, )ren such that

Up, — u and G(up,) — w weakly in H2(Q) as k — oo.

k

The non-empty closed convex set K of H3(f2) is sequentially weakly closed and so u € K. Since u,, converges

weakly to u in HZ(f2), this implies
/ fun, — / fuas k — oo. (2.4)
Q Q
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The compact embedding of H3(Q) in L*(Q) implies u,, — u in L*(Q). Further for a given p € D(Q), the
definition of G(e) in (2.2), the symmetry of b(e, e, ®) with respect to second and third arguments, and the weak
convergence of u,, — u in H2(Q) lead to

a(G(un, ), @) = b(Un,, @, Un, ) — bu, p,u) = a(G(u), ) as k — oo.

Since ¢ is arbitrary in the dense set D(2) of HZ (), this means G(u,, ) — G(u) weakly in H3(Q2) as k — oo.
The sequentially weak lower semi-continuity of the norm || e || shows j(u) < liminfy j(uy,). This and

limg 00 j(tp, ) = B < liminfy, j(un, ) prove that u minimizes j in K. By the definition of G(e) in (2.2), (u, G(u))

solves (1.2). This concludes the proof. O

Theorem 2.3 establishes an a priori bound and the uniqueness of the solution to (1.2). Recall the Sobolev (resp.
Friedrichs) constant Cg (resp. Cr) from (2.1).

Theorem 2.3 (a priori bound and uniqueness). Given (f,x) € L*(2) x H?(Q) with max x(9Q) < 0, there
exists a positive constant C(x) that depends only on x such that any solution (u,v) to (1.2) satisfies (a)-(b).
(@) sllul® + vl* < N2(f,w) = 2j(u) + 2CR||f|* < M?(f,x) := C(x) + 3CE|| {720

(b) If CT‘%‘”UMQ + Cs||lvll < 3, then (u,v) is the only solution to (1.2).

Proof of (a). Since w is the minimizer of (2.3), the Young inequality implies, for any ¢ € K, that

1
lull® + DGOI < 25(0) +2(F, w) 2y < 24(0) + 2CE[If 1720 + 5 llull®

This proves for the minimizer u of j(e) that

%I\IUIII2 NG < 25(u) + 267 flI72(0) = N*(f,u) < N*(f, ). (2.5)

Since max x(9) < 0, {x > 0} := {z € Q : x(x) > 0} is a compact subset of Q2 and there exists an open set
Q4 around {y > 0} such that Q, is a compact subset of Q. Consider the cut-off function ¢ € D(Q) such that
0<¢ <1,¢=1in{x >0}, supp(¢)) C O, and define ¢ := xp € HZ(2). Then, ¢ > x in Q, and so ¢ € K.
The construction of ¢ ensures that

lell = lelaz@,) < CEO)IXI a2, (2.6)
This inequality, the definition of G(e), and Lemma 2.1 lead to

IG@I? = ble, ¢, G(9)) < CsllelPIG (@)l < CsC* WG IxXNFr(q.)-

Consequently, [|G(o)|| < CSC2(¢)||X||§{2(Q+). An application of the bounds for ¢ and G(p) in (2.5) concludes
the proof of final estimate of part (a) with C(x) := 202(1/1)|\X||§{2(Q+) + C3C4 (¢ )||xHH2 (@) and u being the
minimizer of j(e) implies N(f,u) < N(f,vx) < M(f,x). O

Proof of (b). Recall the definition of G(e) from (2.2) and let (u;,G(u1)) and (ug, G(uz)) be two solutions to
(1.2). Set e = ug —uz, 6 = G(u1) — G(uz), and choose u = uy, w1 = us (respectively, u = us, 1 = u1) in (1.2a)
and add the resulting inequalities to deduce that

7||| |||2 (u17G(u1),e) + b(u27G(u2)ae) = 7b(eaeaG(u1)) - b(ea(sa u2)' (27)

Elementary algebra with (1.2b), the definition of G(e) and symmetry of b(e, e, e) with respect to the three
variables show

16117 = b(ur,u1,8) — blug, ug, §) = ble, 5,u1) + b(e, 8, uz). (2.8)
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The combination of (2.7)—(2.8) and Lemma 2.1 lead to

1
Sl + 181> < ble, 8,u) = ble, e, G(w)) < Csllelllofllurll + Csllel* G (u)ll (2.9)

If [|6]] = 0 < [le]|, then (2.9) implies 2 < Cs||G(u1)]|; a contradiction to the smallness assumption %gmul 1> +
Cs||G(ur)ll < 5. If ||6]] > 0, then [le]| := ¢]|6]| for some real ¢ > 0, and (2.9) is equivalent to
02
0 < (t = Gllull)? < FFluall® + CsllGlun)] - 5 < 0.

This contradiction proves |le]| =0 = ||J].
O

Remark 2.4 (a priori and a posteriori criteria for uniqueness). The a priori smallness assumption on the
data CsM(f,x) < 1/2 and the a posteriori criterion CsN(f,p) < 1/2 for some ¢ € K imply CsN(f,u) <

1/2 and so uniqueness of the solution to (1.2). For a proof, abbreviate 2? := 1|ul?, y := [Jv], and N :=
C3 C3 C3
N(f,u) so that Theorem 2.3a reads 2 + y* < N2. Then = ||ul® + Csflv[| < Z2a® + Csy < 523;3;{}\]2(7552 +

Csn) = Og}ﬂxj\f ((JT%(N2 %)+ C’S77> . The real function %g(N2 —n?)+Cgn is monotonically increasing in 7 for

0 <7 < N and hence the aforementioned maximum is equal to CgN < 1/2. This and Theorem 2.3a conclude
the proof.

3. REGULARITY

The regularity result in [18] will be employed for modified obstacles in the biharmonic obstacle problem.
Given any obstacle ¥ € H?(2) N HP () with max y(9Q) < 0, define a corresponding non-empty, closed and

convex subset K(X) := {¢ € H3() : ¢ > X a.e. in Q} of HZ(Q2) and notice K = K(x) for the original obstacle
x from (1.2). Given any such ¥, and f € L?(Q), consider the problem that seeks the solution ¢ € K(X) to

a(¢, ¢ —¥) < (f,d = )12 forall ¥ € K(X). (3.1)

Theorem 3.1 (Frehse 1971). Let Q be an open bounded connected subset of R2. If ¢ € K(X) solves (3.1) for
X € H2(Q) N H (Q) with max x(9Q) < 0, then ¢ € HF(Q) N H ().

loc

Proof. Frehse’s result [18, Thm. 1] shows ¢ € HZ(Q) N H () even under the much more involved assumption
X € H3(Q) and max Y (9€2) < 0. The theorem at hand assures that max Y (9§2) < 0 and the proof will establish
that Frehse’s result can be adapted. The remaining parts of this proof establish that for an appropriate X €
H3(Q) constructed in the sequel, ¢ satisfies (3.1) with an obstacle Y. Since max x(9Q) < 0 and ¢ € HZ(Q),
there exist € > 0 and ¢ < 0 such that ¥ < § < ¢ in N(2¢,090), where N(2¢,09Q) := {x € Q : dist(z,IN) < 2¢}.
Select cut-off functions 0 < 11,1y € C(Q) such that ¢; + 1o =1 in Q and

~J1 in N(¢09), ~JO in N(e¢09),
V1= {0 in O\ N(2e,o0) M4 V2= {1 in Q\ N(2¢00). (32)

Consider Y := d11 + X2 and derive the following three inequalities

X(z) < d=X(z) < ¢(x) for all z € N(e, 00),
X(z) = X(x) < ¢(x) for all z € Q\ N(2¢,00),

X(z) < 01 (x) + X(2)va(z) = X(x) < 6 < ¢(z) for all z € (Q\ N(e,09)) N N(2€,090).
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The above three inequalities imply ¥ < ¥ < ¢ in Q and ¥ € H? (Q \ N(e,aﬂ)). By construction, X is the
combination of a H3(2) and a C°°(f2) function, and hence, ¥ € H3(Q). Given X as an obstacle, the solution
¢ € K(X) to (3.1) also satisfies

a(¢, ¢ =) < (f,0 = V)2 forall ¢ € K(X). (3.3)
Since the obstacle X of the problem (3.3) belongs to HZ(2) N H3(Q), [18, Thm. 1] proves ¢ € H{ (Q). O
The final regularity result of the von Karman obstacle problem relies on the following three lemmas.

Lemma 3.2 ([3, Equation (2.6)], [4, Thm. 2]). Let Q be a bounded polygonal domain in R2. If w € HZ(Q)
solves the biharmonic problem, a(w,¢) = f(p) for all ¢ € HZ(Q), with data f € H=Y(Q) (resp. L*(Q)), then
€ HE ()N H* Q) (resp. Hi (). If the bounded Lipschitz domain Q has a C**7 boundary for some

loc loc

0 <y <1and f € L*Q) (resp. H-1(Q)), then the solution w belongs to H*(Q) (resp. H3(L2)).

2(Q) is a

Lemma 3.3 ([4, Thm. 7]). Let Q be a bounded polygonal domain in R2. If (w1, ws) € HZ() x H,
= f(¢1) for all

solution to the von Kdrmdn equations, a(wi,p1) + 2b(wy, ws, p1) + a(ws, p2) — b(wy, wi, v2)
(p1,902) € HE(Q) x HE(Q), with data f € H=Y(Q), then (w1, ws) € H>T(Q) x H?>T(Q).

The remaining parts of this section return to (1.2) with f € L?(Q2) and a polygonal domain (2.
Lemma 3.4. If (u,v) € K x HZ(Q) solves (1.2) for x € H?(Q) with max x(9) < 0, then [u,v] € H=1(Q).

Proof. The Sobolev embedding H'*¢(Q) — L>(Q2) and u € HZ(Q) imply [u,u] € H-17¢(Q) for any e > 0.
A shift theorem [1, Thm. 8] in (1.2b) shows v € H?T*~¢(Q) for 1/2 < a < 1. Given «a, choose € such that
a — € > 1/2. Then, [5, Lemma 2.2] implies

([u,v], ©)r2() = —/ Cof(Dzv)Vu -Vepdx < ||cof(D2v)HL4(Q)||Vu||L4(Q)HVg0||L2(Q)
Q

for all p € H}(Q). This and the Sobolev embeddings H?(Q) — W14(Q), H2T*=¢(Q) — W?24(Q) conclude the
proof. O

Theorem 3.5 (regularity for von Karmén obstacle problem). Let 2 be a bounded polygonal domain in R?.
If (u,v) € K x HZ(Q) solves (1.2) for x € H?*(Q) N H () N C*(Q) with max x(0Q) < 0, then u,v €
H2T(Q)n HE (Q) N C?(Q).

loc
Proof. Let (u,v) solve (1.2) and let w € K(x) solve
a(w,w —¢) < (f +[u,v,w— @)z forall p € K(x). (3.4)

Let wy € H3(Q) be the Riesz representation of —[u,v] in the Hilbert space (HZ(Q2),a(e,9)), i.e., wy satisfies
a(wi, 1) = —([u,v], o1) 12 for all @1 € HF(Q). Lemmas 3.4 and 3.2 show that wy € H (Q) N H* ().
Translate the obstacle x of (3.4) to x + w; and set W := w + w; to obtain

a(w,w —@) < (f,w — )2 forall g € K(x +w). (3.5)

Since the obstacle x + w; € HY (), Theorem 3.1 implies w € Hp (Q). Also wy € HE_ () implies
w=w-—w € H_ (). The solution u to (1.2) also solves (3.4). The uniqueness of the solution in (3.1)
implies that u € HY ().

Let the contact region € := {x € Q : u(x) = x(x)}. Define a cut-off function £ € C*°(Q) with £ = 1 in N(e, 99)
for some € > 0 such that N(2¢,0Q)NC = 0, i.e., supp(§) C N(2¢,090) keeps a positive distance to C. The strong
form of (1.2b) and elementary manipulations show

1

A%y =—=

1 1
Sl ) = = {€u, €] — [(1 - O)u, €u] — 5[(1— ), (1 - E)ul.
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Let v; € H3(Q) solve A%vy = fy for fi := —[(1 — )u,&u] — L[(1 — &u, (1 — &)u]. Since u € HZ(Q) N HE (),
fue HZ(Q),(1-&u € H3(Q) and f; € H (). Lemma 3.2leads tov; € H>T*(Q). Also, A?(v—v1) = —$[Eu, £u]
in Q. Since supp(¢) N € = (), (1.2a) implies A%u = f + [u, v] in supp(€). Since (1 — &)u € H3(Q) and v, € H2T*(Q),
it follows from the arguments in Lemma 3.4 that fo := f + [€u,v1] + [(1 — &)u,v] — A%((1 — &)u) € H-1(2). This

and elementary manipulations lead to

A%(€u) = A%u— A*((1 = &u) = f + [€u, v] + [(1 = Eu, 0] — A*((1 = u) (3.6)
= f+[u,v —vi] + [Eu,v1] + [(1 = Eu, v] = A*((1 = &)u) = fo + [Eu, v — v1].

In other words, (£u,v — v1) solves the von Kérman equations for the right-hand side fo € H=1(Q2) and &u €
H?T%(Q). Since &u, (1 — &u € H?>T¥(Q), it follows u = &u + (1 — &)u € H* (). Return to the proof of
Lemma 3.4 with the improved regularity u € H?T%(2) to deduce that [u,u] € H~1(Q). Since v = G(u) solves
(1.2b), this shows v € H2t*(Q) N HE ().

loc

The above arguments imply u,v € H*t*(Q), for a > 1/2, and the Sobolev embedding H***(Q) — W?24(Q)
shows [u,u], [u,v] € L*(Q). By Lemma 3.2, the solution to A%v = —1[u,u] belongs to Hi (€2). Then, the
continuous Sobolev embedding Hil () — C?*(Q) implies v € C?(Q2). Since u € HZ(Q), x € C*(Q), and
max x(09) < 0, the arguments in the proof of Theorem 3.1 lead to ¥ € C%(Q) such that xy < ¥ < u. This shows

that u € K(Y), and hence with f := f + [u,v] € L?(£2), u solves

alu,u— @) < (fu— Oz forall p € K(X). (3.7)

[8, Appendix A] establishes the regularity result for the biharmonic obstacle problem (3.7), which implies that
the solution u belongs to C%(Q). This concludes the proof. g

Remark 3.6 (alternative proof). Lemma 3.4 and Theorem 3.1 prove u € H{ (). Since u = w satisfies
the biharmonic equation near 92 in the sense of (3.6), u € H***(N(e,09Q)). This and v € H () imply
u € H*>T(Q). Since u € L (), [u,u] € L (Q2) and so v € H;: () follows from interior regularity. Altogether,

[+ [u,v] € L% () and transferring (3.4) to a biharmonic obstacle problem with zero forcing, we obtain

u € C?(Q2) from [10, Sect. 6] and x € C?().

Remark 3.7 (C2(Q) regularity). If the bounded Lipschitz domain © has a C?T7 boundary for some 0 < v < 1,
then any solution (u,v) to (1.2) belongs to C?(Q2) x C?(Q). In fact, [u,u] € L*(Q2), Lemma 3.2, and continuous
Sobolev embedding H*(2) — C?%(Q) imply that the solution v to (1.2b) belongs to C?(Q2). An application of
Lemma 3.2 to the arguments of [8, Appendix A] for (3.7) conclude that the solution u to (1.2a) belongs to
C?*(Q).

4. MORLEY FINITE ELEMENT APPROXIMATION

The first subsection discusses some preliminaries on the Morley FEM and interpolation and enrichment
operators. The second subsection derives the existence, uniqueness under a computable smallness assumption
and an a priori bound of the discrete solution.

4.1. Preliminaries

Let 7 be an admissible and regular triangulation of the polygonal bounded Lipschitz domain €2 into triangles in
R2, let hy be the diameter of a triangle T € T and hmax := maxrer hp. For any € > 0, let T(e) denote the set
of all triangulations 7 with hnax < €. For a non-negative integer m, let P,,(7) denote the space of piecewise
polynomials of degree at most m. Let ITy denote the L? projection onto the space Py(7) of piecewise constants
and let £ and V be the set of edges and vertices of 7, respectively. The set of all internal edges (resp. boundary
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edges) of £ is denoted by £(€) (resp. £(912)). Denote the set of internal vertices (resp. vertices on the boundary)
of T by V() (resp. V(99)). The nonconforming Morley finite element space M(7) is defined by

oM is continuous at V() and vanishes at V(09)

dpm Al Jpm .
VEE&‘(Q),/E[an]Eds—O, VEeE(@Q),/E—an ds=0

M(T) = § oM € Pao(T)

where n denotes the unit outward normal to the boundary 99 of Q and [pm] is the jump of ¢um across any
interior edge E. Let the Morley element space M(7) be equipped with the piecewise energy norm || e |lpw
defined by [lomll3w = Yrer | Dpwemlliz(py for any oy € M(T), where for j = 0,1,2; let D}, be defined as

DgwgoM = M, DlljwapM = VpwiMm, and Dgwo is the piecewise Hessian. Given the obstacle y € H?(f) with
max x(9Q) < 0, define the discrete analogue [7]

Ko T) = {iom € M) | x(p) < pup) forall p e V}
to K. The Morley nonconforming FEM for (1.2) seeks (um,vm) € K(x,7) x M(7) such that
Apw (un, unt — ©1) + 2bpw (unt, unt — 01, vm) < (f,un — 01) 2y forall o1 € K(x,7), (4.1a)
Apw (UM, P2) — bpw (U, U, p2) =0 for all ¢y € M(T). (4.1b)

Here and throughout this paper, for all ny, wa, om € M(7), define

apw (1M, M) 1= /Q D3 = D3 om dx,

1

bpw (s W, M) 1= . /Q[UM,wM]pwwM dx. (4.2)

Note that by (e, e, e) is symmetric with respect to the first two arguments.

Lemma 4.1 (Morley interpolation [11,15,19]). The Morley interpolation Iy : H3(Q) — M(T) is defined, for
0 € H3(Q), by (the degrees of freedom for the Morley finite element)

Olviy
8TLE

(Imp)(2) = @(2) for any z € V and / ds = / 674,0 ds for any edge FE € &,
E E ong

and satisfies (a)-(c) for all v € H*(T), T € T, and all p € HZ(Q) N H>T(Q).

(a) (integral mean property of the Hessian) D2 Iy = IIo D3, in H3 (),
(b) (approzimation and stability)

172 (1 = In)¥ || L2y + |h7 Dpw (1 = In) ¥l 2y S D2 (1 = D) || 227,

(©) 105w (X = In)ellz2(0) S Piaxll@ll2+a-

Lemma 4.2 (enrichment/conforming companion [15,19]). There ezists a linear operator Eyp : M(T) — HE(Q)
such that any v € M(T) satisfies (a)-(d) with a universal constant A that depends on the shape-regularity of
T but not on the mesh-size hr.

(a) ImEnnm = ¢, (0) Mo(pm — Bapm) =0, (¢) oDy (oM — Enonm) = 0,
(d) Z?:o 1h972 D (ot — Eniom) 22 () < Aminge gz D2 (om — 9l 22(0)-

Remark 4.3. Lemmas 4.1 and 4.2 lead for all ¢y, war, ¥y € M(7) and ¢ € HZ(Q) to

apw (oM, Evtom — Um) = apw (oM, ExiImy) — ) = bpw (on, wat, Evom — ¥m) = 0.
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Lemma 4.4 (bounds for apy(e,e) [7, Lemmas 4.2 and 4.3]). Any ¢ € H*T(Q), ¢ € HZ(Q) N H>T*(Q),
Un, em € M(T) satisfy (a)-(c).
(@) apw(p, Emtm — ¥n) S haxll@ll2+alltmllpw,

(b) apw(p, I — ) S hieillell2all¥ll2+as
(c) the scalar product ayy (e, e) is elliptic in the sense that apy(om, om) = [lon |2y -

Recall from (2.1), the Sobolev (resp. Friedrichs) constant Cs in the Sobolev embedding HZ(2) — C(Q2) (resp.
Cr in HZ(Q) — L%()). Recall the index o’ of elliptic regularity.

Theorem 4.5 (discrete Sobolev and Friedrichs inequalities). For 0 < o’ <1, set 8 =o' and for 1 < o' and any
0<e<l1,set B=1—c¢. Then there exist positive constants C(3), and C(a') such that Cas := Cs + C(B)h ..
and Cap = Cp + C(o/)h%,, satisfy for any v+ vy € HZ(Q) + M(T)

max
(a)[[v+omllL=@) < Casllv + vmllpw  and  (b) [[v + vmllL2() < Carllv + vml|pw-

Proof. The point of the theorem is to get sharp estimates of Cyqs and Cyp, otherwise this result is a direct
consequence of e.g. [13, Lemma 4.7].

(a) The piecewise uniformly continuous function v + vy has a maximum norm that is the supremum of all
integrals [, (v + vm)p dx for ¢ € L'(Q) with [|¢]|11) = 1. Given ¢ € L'(Q) with ||¢|| 1) = 1, let z € H(Q)
solve

a(z,) = (p, ) 1(q); (4.3)
where the duality (e,e);1(o) extends the L? scalar product. For any 0 < € < 1, the embedding H'*¢(Q) —
L>(Q) is continuous. This implies (¢, ®)r1(0) € H- 119 (Q). For 0 < o < 1, choose 0 < € < 1 such that
0<a <l—¢setf=a. Forl<ca and any 0 < e < 1, set 8 =1 — €. The shift theorem [1, Thm. 8] in
elliptic regularity shows z € H?*#(Q). With bound C(3,) of the embedding H'T¢(Q) — L>(f2) and since
el =1,

(0, ) 2) 1Yl

lzll248 S (@, @) L1l gr-a+0 = sup < C(B,9Q). (4.4)
0AYEH T4 (Q) ||1/)HL°°(Q) \|¢||1+e

Given v € HZ(Q) and vy € M(7), let w € HZ(2) solve apy (w, ) = apw(v+vm, @) € H™2(Q). Set § := w—v—wy
and recall apy (6, 2) = 0. This, ||¢| L1y = 1, and the Sobolev constant Cs lead to
(v+om, @)z = (W, 0)2) — (6,0)12(0) < [l @) — (0, 0) L2 ()
< Csllwll = (6,0) L2() < Csllv + vmllpw — (6, ©) 2(0)-

Since w — v — Eyjon € HE(2), (4.3), the Holder inequality, apw(d, 2) = 0, Lemma 4.2c—d, the inverse estimate,
Lemma 4.1c, and (4.4) read

(6, 9)r2() < alz,w — v — Evom) + (@l L@ [[Evom — vmll Lo (0
< apw(z — Iz, vm — Emom) + Cine||h7" (0m — Evoon) || 22(0)
S Mo+ onllpw (Ml 2ll248 + CinvAbmax) S Biaxllv + vnillpw-

The combination of the last and second-last displayed inequalities conclude the proof of (a) with the constant
CS + C(ﬁ)hgax
(b) Given any ¢ € L*(Q) with |¢|r2() = 1, let 2 € HZ(Q) solve a(z,8) = (p,)12(q) € L*(). Then,
z € H?t*(Q) [4, Thm. 2. Note that

v+ UM||L2(Q) = sup (v + v, @)L?(Q)-

peL?(Q)
HSGHLZ(Q):I
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Analogous arguments of part (a) apply with |[w| 2@ < Crllw| and replace L>=(Q2) and 8 by L?*(Q2) and
min{c/, 4}, respectively. This concludes the proof of (b) with the constant Cg + C (/)R . O

Lemma 4.6 (bounds for b,y (e, e, ) [14, Lemma 2.6]). Any n, p, ¢ € HZ(Q) + M(T) satisfy

bpw(nv @a ¢) S CdS|||77H|pw |||(¢0”|DW |”¢”|PW

4.2. Existence, uniqueness, and a priori bound of the discrete solution

This section establishes the well-posedness of the discrete problem (4.1). The discrete analogue Gy : M(7) —
M(T) of G in (2.2) is characterised by Gm(¢m) € M(7) and

apw (Gr (M), Um) = bpw (oM, on, ¥m)  for all o, ¥ € M(T).

This gives rise to the energy functional jpw(e) : K(x,7) — R defined for all &y € K(x,7) by

1 1
Jow (&) 1= S I€mllE + SIGMED IR = (f v 22(@)-

Theorem 4.7 (existence, a priori and uniqueness condition). Given (f,x) € L*(Q) x H?(Q) with
max x(0Q) < 0, there exists a minimizer um € K(x,7) of jpw(®); each minimizer um and va = G (um)
solve (4.1). There is a positive constant Cq(x) that depends only on x such that any solution (uy,vy) to (4.1)
satisfies (a)-(b).
(@) sllunllfy + lomllw < N3(f um) = 2jpw(um) + 2636l £117 20

< Mg(f, X) = Cd(X) + SC§F||fH%2(Q)'

() If CT‘%S\HUM I2 + Casllom|l < 3, then (um,vm) is the only solution to (4.1).

Proof. Step 1 shows that there exists a minimizer of j,w(e) in K(x, 7). The arguments of the first part
of the proof of Theorem 2.2 show that there exists a sequence (um,n)nen in K(x,7) such that jow(umn) —

ﬁ = inngeK(%T) ]pw(EM) S ]R and
lunt e + 20G N (unt,n) 3w < 4dpw(unt,n) + 4CT6 [ fl122(0)-

Since (jpw(un,n))nen is convergent, the sequences (umn)neny and (G(umn))nen are bounded with respect to
Il ® lpw- Hence, there exist un, wnm € M(7) and a convergent subsequence (un,n, )ken such that

lluntny, = unillpw — 0 and [[Gai(unny,) = waillpw — 0 as k — oo.

The non-empty closed convex set K(x,7) of M(7) plus the convergence of subsequence (um,n,)ren imply
um € K(x,T). The definition of Gm(e), umn, — um, and the continuity of Gu(e), imply convergence
of apw(GMm (UM ny)s GM (UM ny)) = bpw (Uh,ny s U ny s G (U ny,, ) @8 kB — oo towards bpw (um, un, Gum(um)) =
apw(tm, un ). This and un n, — um show that wy is a minimizer of jyw(e) in K(x,7). O

Step 2 shows that the minimizer uy; defines a solution (un, Gy (un)) to (4.1). Since uy is @ minimiser
of jpw(®), any ¢m = oM — unm with o € K(x, 7) satisfies

Dij(uM)(¢M) = lim ij(uM +tom) — ij(uM)

> 0. .
t—0 t - 0 (4 5)

The definitions of j,w(e) and Ghi(e), the symmetry of apy (e, ®), and the symmetry of by (e, e, ®) with respect
to first and second variables lead to

jpw(uM + t¢M) - jpw(uM)
t

= apw(um, OM) + bpw (un, Ont, G (um + tdm)) — (f, dm) L2 (@)
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1 bpw (unt, unt, Gui(um + tonm) — G (um))

2 t
5 (ap(9n1, 000) by (B30, St Grt g -+ 111)))- (46)

The definition of Gy (e) and the symmetry of apy(e, ) show that

bpw (unt, unt, Gy (um + ton) =G (um)) = apw(Gu(unt), G (um + tdm)) — bpw (un, unt, Gai(um))
= bpw (unm + tédn, un + tom, Gu(un)) — bpw (unr, unt, Gu (un))
= 2tbpw (unt, dnt, Gu(um)) + 2bpw (dnr, dn, G (unr))

with the symmetry of b,y (e, e, ®) in the first two variables in the last step. A substitution of the above identity
in (4.6) leads to

Jpw(unt + tdnr) — Jpw(un)
t

= apw (unt, on1) + bpw (unt, onr, Gu(um) + Gu(um + tédm)) — (f, dm)

+ ! ((apw (b, OMm) + bpw (dnt, dm, Gu(unt) + G (unt + tédwr))) -

2
This, the continuity of Gam(e) and (4.5) show that the minimizer un of jpw(e) in K(x,7) and vm := Gum(um)
defines a solution (up, vym) to (4.1). O

Step 3 of the proof establishes bounds for the discrete solution (the proof of (a)). Since uy is the
global minimizer of j,w(e), the Young inequality, and a rearrangement of terms imply for any ¢m € K(x,7)
that

) . 1
lendlZ + lontl3 < 2jpw(om) + 20, un) 220y < 2w (om) + 2C3p N FlIZ2(0) + 5 lumll®.

This implies

1 ,
§|\IUM|H;2)W +llonllfe < Zjpw(pm) + 2C3 11 flIZ2 () = NE(f, om)- (4.7)

Given ¢ and ¢ := v from the proof of Theorem 2.3, oy = In(p) € K(x,7). The properties of Morley
interpolation Lemma 4.1a, definition of Gi(e), the bounds of b,y (e, e, ) and Lemma 4.6 lead to

(@) low < el and Gy (Taa(9))llpw < Casllell®.

The combination of above inequalities, the bound of |¢| from (2.6) conclude (a) with Cy(x) :=
202@/’)”)(“%{2(5”) + C§SC4(¢)|‘XH§12(Q+) and M3 (f,x) == Ca(x) + 3C§F||fH%2(Q)' The a priori bound in the
equation (4.7) and uy being the minimizer of j,w(®) imply Ng(f, um) < Na(f, Im(p)) < Ma(f,x). O

Step 4 establishes uniqueness of the discrete solution (the proof of (b)). Let (ufv[,vi/[) € K(x,7) x
M(T) solve (4.1) for j = 1,2 and define e := ul; — uf; and & := vi; — v};. The test functions u3; (resp. ul;) in
(4.1a) and § in (4.1b), and a simplification lead to (2.7) and (2.8) with || e ||, b(e, e, ®), uy, us, vy, ve replaced by
Il ® llpws bpw (@, @, @), utr, ulp, vig, v3;. With this substitution, the algebra in (2.7)-(2.9) holds verbatim with the
further substitution of Cs and M (f, x) by Cas and My (f, x). Further details are omitted to conclude e =0 = §
for uniqueness. O

Remark 4.8 (a priori and a posteriori criteria for discrete uniqueness). The a priori smallness assumption
on the data CqsMy(f, x) < 1/2 implies the a posteriori smallness assumption CqgNq(f, un) < 1/2 and so the
uniqueness of the solution to (4.1). (The proof is a discrete analog to Remark 2.4 and hence omitted.)
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5. A priori ERROR ANALYSIS

This section establishes an a priori error estimates of Morley FEM for the von Karmén obstacle problem
with small data.

5.1. Main result

Recall M(f,x) and My(f,x) from Theorems 2.3 and 4.7, the Sobolev and Friedrichs (resp. its discrete
versions) constants Cs and Cr (resp. Cyqg and Cyp) from (2.1) and Theorem 4.5, and 3, o, C (), and C(«)
from Theorem 4.5. The following theorem establishes for small data an a priori energy norm error estimates
that is quasi-optimal plus linear convergence.

Theorem 5.1 (energy norm estimates). For a given f € L?(Q),x € C?*(Q) with maxx(9Q) < 0 and
CsM(f,x) < 1/2, there exists a unique solution (u,v) € (C?(2) N H*2(Q)) x (C*(Q) N H**(Q)) to (1.2) and
positive €, C' such that for any T € T(e) with maximal mesh size hmax the solution (un,vm) € K(x, T) x M(T)
to (4.1) is unique and satisfies

B = untllpw + o = vatllpw < C(lla — Ingtllp + o = vl + hrns)-

5.2. A priori error analysis of a shifted biharmonic obstacle problem

Let (u,v) be a solution to (1.2) with the regularity u,v € C?(2) N H*+*(Q) N HZ(Q)) from Theorem 3.5.
The Sobolev embedding H*t*(Q) — W24(Q) leads to f := f + [u,v] € L*(Q). The transformed problem seeks
uy, € K such that

a(uL,uL—go) < (JT‘,UL—QO)LQ(Q) for all(pEK. (51)

Equivalently, uy, is a minimizer in K for the energy functional Jr : H3(Q) — R, defined by Jp(£) := %a(f, &) —
(f7€)L2(Q) for all H3(9)7

Jr(ur) = ?él}{l Jr(§). (5.2)

By construction, the solution u to (1.2a) also solves (5.1), then uniqueness implies uy, = u.

Recall the auxiliary problem from [8] which is a continuous problem with discrete obstacle constraints. Let
Ky :={€€ HZQ):YpeV, £(p) > x(p)} for the set V of all vertices in the triangulation 7. The biharmonic
obstacle problem problem with discrete constraints seeks uy € K4 such that

alua,us —p) < (f,uA—gp)Lz(Q) for all ¢ € K4. (5.3)
Equivalently, u4 is a minimizer for energy functional Jr : HZ(2) — R over set K,

Jr(ua) = 521}1{11 Jr(§) forall € € Ku. (5.4)

The solution u;, = w to the biharmonic problem (5.1) and the solution w4 to the corresponding auxiliary
problem (5.3) satisfy the following result.

Lemma 5.2 (convergence rates [8]). Let x € C?(Q2)NC°(Q) with max x(0Q) < 0, and let u € C*(Q)NH?*T(Q)
solve (5.1). Then there exist € > 0 and Ua € K such that |[u—ual < hmax|[tll2ca and [|[Ta —ual < b2 lull2ta
for any triangulation T € T(e) with mazimal mesh size hmax and the solution us € K4 to (5.3).
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5.3. Proof of the main result

Proof. Step 1 of the proof involves a choice of a bound for the discretization parameter for which the smallness
assumption of Remark 2.4 and the uniqueness of solutions to (1.2), (4.1) hold. Define p := CsM(f,x) < 1/2
and its discrete analogs juq := (Cs + C(B)h2 .. )Ma(f, x) and p. := (Cs + C(B)h2 .. )M(f,x) in the notation of

max

Theorem 4.5. Since e — = C(B)h2 . M(f,x) — 0 as hymax — 0, p < 1/2 leads to a positive constant e; with
te := CasM(f,x) < 1/2 for all hyax < €1. Theorems 2.3, 4.7, and 4.5 imply

Mg(fa X) - Mz(fv X) = C(ﬂ)hﬁlax(QCS + C(ﬁ)hlglax)cél(w)||X||31LIZ(Q+) + SC(a)h%ax||f”L2(Q)
and Mg(f, X) — M2(f,x) — 0 as huyax — 0. Therefore, as hpax — 0,
pg — 1 = (g — p2) + (42 — p*) = (Cs + C(BYhGa ) (M (f, x) — M?(f,X)) + (u2 — p?) = 0

and there exists a positive s such that pgq = (Cs + C(B)h2, )Ma(f,x) < 1/2 for all hpax < €. Then
€ :=min{ey, €2} leads to p, pug, e < 1/2 for any 7 € T(e).

The later steps of the proof focus on the error estimates for triangulations 7 € T(e) with a unique discrete
solution (up,vnm) to (4.1) by Theorem 4.7. Set e := u — uy, 6 := v — vy, and the best approximation error
RHS := [Ju = Iullpw + [lv — Iavllpw + Fomax O

Step 2 of the proof utilizes elementary algebra to identify two critical terms
Ty = a(u, EmIme) + 2a(v, EmIn0) and To := —(apw (unm, Ine€) 4 2apw (vMm, IM9)).
The definition of apy(e,e) with elementary algebra shows
lellfw = apw(e, u — Ivu) + apw (u, (1 — Ex)Iie) + a(u, Extlvie) — apy (unt, Inge)-
Lemma 4.1a implies apw (e, u — Iyju) = [Ju — Inul|2,,. The boundedness of apy(-,-), and Lemma 4.2¢-d lead to
apw(t, (1 = Enm)Ime) = apw(u — Ivu, (1 — Env)Ive) < Aflu — Dyullpwlleflpw
with ||(1 — Esm)lvellpw S [Imellpw < |leflpw. A combination of the previous estimates leads to
lellfw < llu — Inullpy + Allu — Iqullpwlellpw + au, Exilne) — apw(unt, Lue).
The analogous result with (u, un, €) replaced by (v, vy, 0) reads
I805w < llo = Invllgy + Allv = Invllpw 1w + a(v, BxInd) — apw(va, nd).-
A weighted sum of those two estimates plus the Cauchy-Schwarz inequality shows
lelpw + 20815, < 2 RHS? + A(llu — Inullpwlelpw + 2l0 = Invllpwlldllpw) + T+ To. (5.5)

Step 3 of the proof employs three variational inequalities: The test function 24 € K from Lemma 5.2 leads
in (1.2a) to
a(u,u —ua) + 2b(u,v,u —ua) < (f,u —Ua)r2 )

The test function ¢ = Epuy € K4 and the definition of b(e, e, @) lead in (5.3) to
a(ua,ua — Evunt) < (f,ua — Extun)z2(o) — 20(u, v, uq — Eyunm).
The test functions ¢ = Iyu € K(x,7) and pg = Ijé € Vi lead in (4.1) to

apw (ung, unt — Inw) + 205w (unt, unt — Iau, om) < (f, unm — Inw) L2 (),
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apw(vMJM&) - bpw(uM,uM, IM5) =0.

The sum of preceeding four displayed estimates lead to one inequality with many terms. An elementary, but
lengthy algebra leads to an estimate for (77 + T5)/2 and the crucial terms bpy (e, €,v) — bpw (e, u,d). The fol-
lowing list of identities are employed in the calculation: apw (Imu, EniIvu — 1) = bpw (un, unt, vm — Evom) =0
from Remark 4.3; bpw (um, Imu — u, IIpv) = 0 from Lemma 4.1a where, IIgv € Py(7) is the piecewise con-
stant L? projection of v; b(um,um, Emvom — vm) = bpw(Imu, Ivu, vy — Eyom) = 0 from Lemma 4.2b;
bpw (Imu, un — Envpun, IIpv) = 0 from Lemma 4.2c; and the symmetry b(u,w,v) = b(u,v,u). The resulting
inequality is equivalent to

T+ T
2

+ bpw(e, e,v) — bpw(e, u,0)
1
< gapw(u — Ivu, Exi v — ) + apw (v — Inu, EypIvv — 0)

1 N —~
+ §a(u,u,4 —uag)+alu—ua,us — Enun) — b(u, v,us — Ua)

+ bpw (v — Inu, (1 — En)um, v) + bpw (Imu, (1 — En)un, v — Ipv)
+ bpw (v — Inu, w, (1 — Ev)om) + bpw (I, u — Ivu, (1 — En)om)

(
+ bpw (unt, Inu — w, vm — ) + bpw (unt, Inu — u, v — Iov)
1 ~
+ bpw (unt, un, v — Ivv) + §(f’u — g +ua — Eyjum — hve)rz (o)
=T34 ---+1Tis5. (5.6)
Step 4 of the proof estimates the terms T3, ..., 715 on the right-hand side of (5.6) and establishes the bound

C RHS (hmax + [lellpw + l9]lpw) with a constant C' ~ 1 that depends on [[ull, [[oll, [|ul2tas [0ll2tas [ fllz2(0), A
and is independent of hy,.y. Elementary algebra lead to first equality in
T3 = apw(u — Ivu, (Bx — 1) Ivw) = lu — hvullgy, < (A = 1)flu = Iully

pw?

with the Cauchy-Schwarz inequality and Lemma 4.2d in the final step. The analysis of v replaced by w as in
the estimate of T3 reads

Ty = apw(v — Imv, EmIvv —v) < (1 4+ A)fJo — [Mv|\|f)w.

Lemma 5.2 and the Cauchy-Schwarz inequality show

1 N ~
Ts + Tr = ga(u,a — wa) = bu, v,ua = Ba) S hipaxlullzsa(ull + [1[w, 0] 22(2)-
The Cauchy-Schwarz inequality, a triangle inequality, Lemma 5.2, and Lemma 4.2d lead to

Ts = au — ua,ua — Eyum) < flu— wallllua — Exunll S hmax 240 (Panaxlull24a + (1 + A)llellpw)-

The boundedness of byw(-,-,-), Lemma 4.2d, a triangle inequality, and |[v — ITov|[z(0) S Amaxl|V[l1,00 S
Bmax||V]|2+« lead to

Ts + Ty = bpw(u — Ivu, (1 — EM)’LLM, ’U) + pr(IM’LL, (1 — EM)UM, v — H()’U)

S lellow (e = Daullpw ol + el 0]l 240) -
Lemma 4.2d and Lemma 4.6 imply

T+ T = bpw(u — Iyu, u, (1 — EM)’UM) + pr(IMu, u — Iyviu, (1 — EM)’UM)
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S lelllle = Inullpw 10l pw-
Lemma 4.6 and a piecewise Poincaré inequality show

T19 4 Tig = bpw(un, Imu — u, vm — v) + bpw (um, Imu — u, v — IIv)

S luntllpwellv = Ingullow (1llow + Prmascl[vll21a) -

Remark 4.3, Lemma 4.2a, a generalised Holder inequality, interpolation estimate [16, (6.1.5)], and Lemma 4.2d
lead to

T14 = bpw(uM,uM,v — EMIMU) = bpw(uM, UM 5 (1) — EMIMU) — IM(U — EMIMU))
< flum 3 [l (v = ExiInv) — I (v — ExiIuo) || L (o)

< hnaxllum 3o llo = Extlnavllpw S hmaxllun gl = vl pwe-

The Cauchy-Schwarz inequality, Lemma 5.2, Lemma 4.1b—c, a triangle inequality, and Lemma 4.2d imply
Tis =(f,u—Ua+ua — Evun — Ive)r2) = (f,ua —Ua)r2(o)

+ (f, (1 = In) (v — Extunn)) 22@) S hiax 1 L2 0) (1ull24a + lellpw)-

The summary of all the aforementioned estimates and the estimates ||u — Iyuflpw < [leflpw and v — Inv|pw <
I6llpw show that T3 +--- +Ti5 S RHS (hmax + llellpw + [16]lpw). O

Step 5 finishes the proof. Recall 0 < p,u. < 1/2 for 7 € T(e) from Step 1 and abbreviate for 0 < v < 1,
g(v) == 04—‘115|||u\||2 + Cs|lv]|. Remark 2.4 and Theorem 4.5 imply g(1) < 2. Since g(7) is continuous, there exists
some yp with 0 < 9 < 1 such that g(yo) < % Lemma 4.6 and a weighted Young inequality in the end imply

bpw(e, 4, 8) = bpw (e, €,v) < Casllulllelpwlldllpw + Csllellswllvll < g(vo)lelf + Yol
The combination of this with the upper bound of T5,--- ,T15 in (5.6) from Step 4 reads

T+ T
2

— (900 lelf +70l615) < C RHS (hanas + llellpw + 18lpw) (5.7)

with the universal constant C' ~ 1 that depends on |Jul|, [|v]], [|ull24a; [|v]l2+a, | fllz2(), A and is independent of
hmax. The point is that g(yo) < % and vy < 1. Multiply (5.7) by 2 and combine it with (5.5) to derive some
s~ min{l — 2¢(7),2(1 — 7o)} > 0 that satisfies

1 n
=(llell?, + 16112,) < RHS? + RHS, /[lell2,, + 5112, < (1 + 2}{) RHS? + E(Hlellliw + llollz)

with a weighted Young inequality in the last step. The last estimate concludes the proof of [e[2, + [|0]|Z,, <
»2(2 4 1) RHS?. O

6. IMPLEMENTATION PROCEDURE AND NUMERICAL RESULTS

The first subsection is devoted to the implementation procedure to solve the discrete problem (4.1). Sub-
sections 6.2 and 6.3 deal with the results of the numerical experiments and is followed by a subsection on
conclusions.
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6.1. Implementation procedure

The solution (up, vy) to (4.1) is computed using a combination of Newtons’ method [24] in an inner loop
and primal dual active set strategy [21] in an outer loop. The initial value u{}** for uy in the iterative scheme

is the discrete solution to the biharmonic obstacle problem: seek ui#* € K(x,7) such that
apw(uf\ﬂit,uﬁ” —om) < (f, ulp — oMo forall v € K(x,7T) (6.1)

with K(x,7) from Subsection 4.1. Since (6.1) is (4.1a) without the trilinear term, u{} is computed with the
same algorithm below without the inner loop for the nonlinearity. This is shown in Figure 1 and the general
case is described in the sequel.

Recall M(7T), V and £ from Subsection 4.1. Let p € V(2) and (g1, ..., ¢n) be the node- and edge-oriented basis
functions in M(7), N := [V(Q)]| + |E(R)]; see [11] for details and basic algorithms for the Morley FEM. Let
uy = Zj\;l a;p; and vy = Zf;l Bip; with a = (v, ..., an) and B8 = (B1,...,Bn).
Primal dual active set strategy.
— Choose initial values (ud;, vY) = (ui,0).
— In the mth step of the primal dual active set algorithm, find the active Ac™ and inactive In™ sets defined
by

Ac™ = {p e V(Q) : A" H(p) + x(p) — uy; ' (p) < 0}, (6.2a)
In™ ={peV(Q): A" (p) + x(p) - ult~t(p) > 0}. (6.2b)

Since the degrees of freedom also involve the midpoints of the interior edges, let I™ := In™ U &E(Q)) be the
union of In™ and the midpoints of interior edges.

(a) Non-linear system.

* The matrix formulation corresponding to (4.1) can be expressed as block matrices in term of active and
inactive sets and load vector F on the right-hand side.

* Impose ujf(Ac™) = x(Ac™) = a™(Ac™) and A™(I™) = 0. From here on, superscript m is omitted and
(a(I™), A(Ac™), B(Ac™), B(I™)) is replaced by (a2, A1, 34, 85) for notational convenience.

* After substitution of the known values a(Ac) and A(I) = 0, the discrete problem reduces to a smaller
non-linear system of equations G(aa, A1, 31, 85) = 0.

(b) Newtons iteration with initial guess S° = (a3,2Y,0,0).

x For 8™ := (af, A}, 87, 85), do S"*1 = S™ — AS” for the solution AS™ of the linear system of equations
Ja(S")AS"™ = G(S") with Jg is the Jacobian matrix of G until [[AS"[[;2g2n) is less than a given
tolerance.

e Update m = m + 1. This primal-dual active strategy iteration procedure terminates when Ac™ = Ac™~!
and I™ = ™1

The flowchart (see, Figure 1) demonstrates the combined primal-dual active set and Newton algorithms for
70,71, ..

We observe in the examples of this paper (for small f and x) that at each iteration of primal dual active set
algorithm, the Newtons’ method converges in four iterations. In this case, we notice that the error between final
level and the previous level of the nodal and edge-oriented values in Euclidean norm of R?¥ is less than 1077,
Also, the primal dual active set algorithm terminates within three steps.

The uniform mesh refinement has been done by red-refinement criteria, where each triangle is subdivided into
four sub-triangles by connecting the midpoints of the edges. Let u, (resp.vy) be the discrete solution at the ¢th
level for £ =1,2,3,.., L and define

eo(u) = lur, — uellpw and € (u) := max jur, (p) — ue(p)].
£
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Initialize m, err, p := 1 and
a0 % = 0

Assemble the matrices in Jg and F;
Compute Ac! and I' from (6.2)

)

no

yes a(Ac™) = x(Ac™), A"M(1™) = 0;
err>10777? >———> Solve (6.1) for @ (1), A™ (Ac™);
Update err:=|[@™ — @ ||, m := m+ 1

no
yes
a® = am 1 2% = Al err = 1 W
Compute Ac! and I' from (6.2) J
no yes
err>10772 >——{ @ (Ac™) = x(Ac™), A" (1™ =0
R no Update @ (1") = S (1 : length(1™)),
79
p > 1077 erri=[|@” — @™ V|, m == m+1
yes
Update "1 = 8" — AS",
p = IAS"ll2gan ), n = n+1
( Compute uyg, vy using the ba-
L sis functions, @™, and g~

FiGURE 1. Flowchart for the primal-dual active set strategy with the Newtons method.

(resp. ee(v) = oz — velwe and 2(v) := max|or (p) — ve(p)]).

The order in H? norm (resp. L norm) at fth level for w is approximated by EOC(¢) :=
log(e¢(u)/er—1(u))/log(2E717F) (resp. log(€x(u)/€r—1(u))/log(2-174)) for £ =1,..., L — 2. The discrete coin-
cidence set is Cy := {p € Vy;us(p) — x(p) < €(u)} for the level L.

Remark 6.1 (motivation for the algorithm). The standard primal dual active set strategy of [21] is employed
to approximate solutions of obstacle problem governed by the linear PDE. It can be interpreted as a semismooth
Newton method (for linear problems) and it converges superlinearly if the initial guess is chosen sufficiently close
to the solution. For the von Karman equations, the discrete solution is computed using the Newtons’ method
and it converges quadratically provided the initial guess is chosen sufficiently close to the solution [13,24].
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FIGURE 2. Cs and C7, Example 6.2.

TABLE 1. Convergence results for Example 6.2 on the square domain.

h er(u) EOC €o(v) EOC eo(u) EOC ee(v) EOC

0.5000 0.013222 1.2098 0.125162 1.9151 16.496069 0.7666 1.409870 0.9561
0.2500 0.013222 1.5123 0.045884 2.0319 12963642 0.8714 1.025239 1.0802
0.1250 0.011327 1.9419 0.012143 2.0699 8.621491  0.9657 0.493374 1.0885
0.0625 0.003404 2.0456 0.003205 2.1440 4.927900 1.0450 0.235687 1.0999
0.0313  0.000909 2.1862 0.000808 2.3000  2.541191  1.1345 0.114679 1.1605
0.0156  0.000200 - 0.000164 - 1.157459 - 0.051304 -

U W~

The initial guess for this problem is chosen as the solution of the biharmonic part of f(apprvon Kédrmén equations,
as, e.g., in [12, Section 7].

This motivates the algorithm of Figure 1 that combines Newtons’ method and primal-dual active set strategy
to compute the discrete solution (upg, vam) to the von Kérmén obstacle problem. The initial guess in this case
for the loop in the Newton’s method is computed by solving the biharmonic obstacle problem (as in [21]).

The algorithm proposed in Figure 1 runs successfully for all the examples in this paper. To the best of our
knowledge, the proof of convergence of the algorithm of obstacle problems governed by nonlinear systems is an
open question.

6.2. The von Karman obstacle on the square domain

Let the computational domain be € = 0.5(—1,1)2. The criss-cross mesh with h = 1 is taken as the initial
triangulation 7y of Q. Consider the von Kérmdn obstacle problem (1.2) for the three examples in this section.
Examples 6.2 and 6.3 take f = 0 with different obstacles; Example 6.4 concerns a significantly huge function f.

Example 6.2. [Coincidence set with non-zero measure]. Let the obstacle be given by x(x) = 1-5|z|?+|z|*, z €
Q = 0.5(—1,1)%. This example is taken from [7]. The discrete coincidence Cs and C; are displayed in Figure 2.
Since A%y = 64 > 0 in this example, it is known from [10, Section 8] that the non-coincidence set Q \ C is
connected. This behaviour of the non-coincidence set can be seen in Figure 2 for levels 6 and 7.

Table 1 shows errors and orders of convergence for the displacement u and the Airy-stress function v. Observe
that linear order of convergences are obtained for u and v in the energy norm, and quadratic order of convergence
in L* norm. These numerical order of convergence in energy norm clearly matches the expected order of
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FIGURE 3. Cs and C7, Example 6.3.

TABLE 2. Convergence results for Example 6.3 on the square domain.

h e(u) EOC ee(v) EOC ee(u) EOC ee(v) EOC

0.5000 0.028792 1.4917 0.136864 1.8793 15.510398 0.7999 1.493256 0.9636
0.2500 0.028792 1.8646 0.050539 1.9898 11.837363 0.9024 1.070278 1.0843
0.1250 0.009347 1.9451 0.014530 2.0535 7.563740  0.9878 0.510661 1.0899
0.0625 0.003116 2.1252 0.003980 2.1462  4.210097  1.0591 0.244868 1.1047
0.0312 0.000843 2.3636 0.001030 2.3427  2.138703  1.1411 0.118649 1.1642
0.0156  0.000164 - 0.000203 - 0.969687 - 0.052944 -

DO WD~

convergence given in Theorem 5.1. Though the theoretical rate of convergence in L* norm is not analysed, the
numerical rates are obtained similar to that in [7] for the biharmonic obstacle problem.

Example 6.3. [Coincidence set with zero measure] In this example taken from [7], x(z) = 1 —5|z|* — |z|*,z €
Q = 0.5(-1,1)% with A%y = —64 < 0 in €, and hence, the interior of the coincidence set must be empty,
since A%u (in the sense of distributions) is a nonnegative measure ([10, Section 8]). This can be observed in the
pictures of the discrete coincidence sets displayed in Figure 3.

The errors and orders of convergence for the displacement and the Airy-stress function are presented in Table 2.
The orders of convergence results are similar to those obtained in Example 6.2. Note that Examples 1 and 2
are similar except in the sign of the term |z|* that appears in the obstacle function.

Example 6.4. [Violation of smallness assumption] It is interesting to observe that for x and €2 from Example 6.2
with the source term f = (x+3)%(z —3)?(y+3)?(y — 3)?, the primal dual active set algorithm is not convergent
in 100 iterations of the algorithm. Consider w(z,y) = (z + 0.5)%(y + 0.5)%(0.5 — 2)%(0.5 — y)? € HZ(Q). Then

lllzace) 0.0278 and 1“le=@ _ 0683, Since Cr (resp. Cg) is the supremum of 1=l 2 ) (resp. 7HZHL°°(Q>)

(el [l M=l =1l
for all z € HZ(Q), this implies Cp > 0.0278 (resp. Cs > 0.0683). Use the definition of M(f,x) to obtain
CsM(f,x) > 20.7972. Therefore the sufficient condition in Theorem 5.1 is violated.

For Example 6.2 with obstacle x replaced by Ax, where A € R, we noticed that the algorithm fails to converge
for A > 4 on 74 and 75. This illustrates the requirement of smallness assumption on the obstacle for optimal
convergence rate.
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TABLE 3. Convergence results for the L-shaped domain.

h e(u) EOC e¢(v) EOC ee(u) EOC ee(v) EOC

0.3536  0.046700 0.8276 0.141271 1.8003 23.203954 0.7177 2.260261 0.9584
0.1768 0.021021 0.7196 0.056794 1.9621 18.313668 0.8431 1.530842 1.0905
0.0884 0.025796 1.2271 0.017919 2.1111 11.746209 0.9442 0.761967 1.1324
0.0442 0.014152 1.5879 0.004655 2.2774  6.556709  1.0473 0.352575 1.1531
0.0221  0.004708 - 0.000960 - 3.172522 - 0.158538 -

T W N =S

6.3. The von Karman obstacle problem on the L-shaped domain
Consider L-shaped domain = (—0.5,0.5)% \ [0,0.5]%, f =0 and

(4025 4
0.22 0.352

as in [7]. Choosing the initial mesh size as h = 0.7071, the successive red-refinement algorithm computes
T,..., 5.

Since 2 is non-convex (reduced elliptic regularity o = 0.5445, [7, Example 4]), we expect only sub-optimal
order of convergences in energy norm and L° norm, that is, O(h®) convergence rate in the energy norm (see,
Theorem 5.1). However, linear order of convergence is preserved in the energy norm which indicates that the
numerical performance is carried out in the non-asymptotic region. The discrete coincidence sets for last two
levels are depicted in Figure 4. The non-coincidence set is connected, which agrees with the result in [10] since
A%y =0 in Q in this example.

x(x)=1-

The convergence rates in Table 3 are not in direct contradiction to Theorem 5.1 but the reduced elliptic
regularity suggests a lower rate o = 0.5445 for L-shaped domain. A similar observation is in [7, Table 5.5] with
orders of convergence ~ 0.8 (resp. 1) for energy (resp. L>°) norm. In [7], the numbers are computed with the
alternative definitions for error ep(u) := [|ug—1 — weflpw (resp. €r(w) := maxpey, , |ue—1(p) — we(p)|) and order
of convergence EOC(¢) := log(es—1(u)/ee(u))/log(2) (resp. log(ez—1(u)/€r(w))/log(2)). With these definitions,
undisplayed numerical experiments confirm the numbers displayed in [7, Table 5.5] precise up to the last digit.
This numerical experiment suggests that our implementation is at least consistent with the one in [7]. One
possible explanation is that the corner singularity affects the asymptotic convergence rate for very small mesh-
sizes only. This is known, for instance, for the L-shaped domain and the Poisson model problem with constant
right hand side in the Courant (P; conforming) finite element method. The expected rate 2/3 is visible only
beyond 2 x 106 triangles with far better empirical convergence rates before that.
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6.4. Conclusions

The numerical results for the Morley FEM in the von Karman obstacle problem are presented for square
domain and L-shaped domain in Sections 6.2 and 6.3. The outputs obtained for the square domain confirm
the theoretical rates of convergence given in Theorem 5.1 for a = 1. Example 6.4 in Section 6.3 illustrates the
requirement of smallness assumption on the obstacle for optimal convergence rate. For the L-shaped domain,
we expect reduced convergence rates in energy and L norms from the elliptic regularity. However, linear order
of convergence is preserved in the energy norm which indicates that the numerical performance is carried out
in the non-asymptotic region.
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