Non-intrusive double-greedy parametric model reduction by interpolation of frequency-domain rational surrogates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1895-1920

We propose a model order reduction approach for non-intrusive surrogate modeling of parametric dynamical systems. The reduced model over the whole parameter space is built by combining surrogates in frequency only, built at few selected values of the parameters. This, in particular, requires matching the respective poles by solving an optimization problem. If the frequency surrogates are constructed by a suitable rational interpolation strategy, frequency and parameters can both be sampled in an adaptive fashion. This, in general, yields frequency surrogates with different numbers of poles, a situation addressed by our proposed algorithm. Moreover, we explain how our method can be applied even in high-dimensional settings, by employing locally-refined sparse grids in parameter space to weaken the curse of dimensionality. Numerical examples are used to showcase the effectiveness of the method, and to highlight some of its limitations in dealing with unbalanced pole matching, as well as with a large number of parameters.

DOI : 10.1051/m2an/2021040
Classification : 35B30, 35P15, 41A20, 41A63, 93C35, 93C80
Keywords: Parametric model order reduction, parametric dynamical systems, non-intrusive method, minimal rational interpolation, greedy algorithm
@article{M2AN_2021__55_5_1895_0,
     author = {Nobile, Fabio and Pradovera, Davide},
     title = {Non-intrusive double-greedy parametric model reduction by interpolation of frequency-domain rational surrogates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1895--1920},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021040},
     mrnumber = {4313378},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021040/}
}
TY  - JOUR
AU  - Nobile, Fabio
AU  - Pradovera, Davide
TI  - Non-intrusive double-greedy parametric model reduction by interpolation of frequency-domain rational surrogates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1895
EP  - 1920
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021040/
DO  - 10.1051/m2an/2021040
LA  - en
ID  - M2AN_2021__55_5_1895_0
ER  - 
%0 Journal Article
%A Nobile, Fabio
%A Pradovera, Davide
%T Non-intrusive double-greedy parametric model reduction by interpolation of frequency-domain rational surrogates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1895-1920
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021040/
%R 10.1051/m2an/2021040
%G en
%F M2AN_2021__55_5_1895_0
Nobile, Fabio; Pradovera, Davide. Non-intrusive double-greedy parametric model reduction by interpolation of frequency-domain rational surrogates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1895-1920. doi: 10.1051/m2an/2021040

[1] F. Alsayyari, Z. Perkó, D. Lathouwers and J. Kloosterman, A nonintrusive reduced order modelling approach using Proper Orthogonal Decomposition and locally adaptive sparse grids. J. Comput. Phys. 399 (2019) 108912. | MR | DOI

[2] D. Amsallem and C. Farhat, Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity. AIAA J. 46 (2008) 1803–1813. | DOI

[3] D. Amsallem and C. Farhat, An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33 (2011) 2169–2198. | MR | Zbl | DOI

[4] A. Antoulas, Approximation of large-scale dynamical systems, Advances in design and control. SIAM (2005). | MR | Zbl

[5] V. Barthelmann, E. Novak and K. Ritter, High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12 (2000) 273–288. | MR | Zbl | DOI

[6] U. Baur, C. Beattie, P. Benner and S. Gugercin, Interpolatory Projection Methods for Parameterized Model Reduction. SIAM J. Sci. Comput. 33 (2011) 2489–2518. | MR | Zbl | DOI

[7] B. Beckermann, G. Labahn and A. Matos, On rational functions without Froissart doublets. Numer. Math. 138 (2018) 615–633. | MR | DOI

[8] P. Benner and L. Feng, A robust algorithm for parametric model order reduction based on implicit moment matching, chap. 6 in Reduced Order Methods for Modeling and Computational Reduction, edited by A. Quarteroni and R. Gianluigi Rozza. Springer International Publishing (2014) 159–185. | MR

[9] P. Benner, S. Gugercin and K. Willcox, A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems. SIAM Rev. 57 (2015) 483–531. | MR | DOI

[10] T. Betcke, N. Higham, V. Mehrmann, C. Schröder and F. Tisseur, NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39 (2013) 1–28. | MR | Zbl | DOI

[11] F. Bonizzoni, F. Nobile, I. Perugia and D. Pradovera, Fast Least-Squares Padé approximation of problems with normal operators and meromorphic structure. Math. Comput. 89 (2020) 1229–1257. | MR | DOI

[12] P. Chen and A. Quarteroni, A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods. J. Comput. Phys. 298 (2015) 176–193. | MR | DOI

[13] A. Chkifa, A. Cohen and C. Schwab, High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs. Found. Comput. Math. 14 (2014) 601–633. | MR | Zbl | DOI

[14] D. Crouse, On implementing 2D rectangular assignment algorithms. IEEE Trans. Aerosp. Electron. Syst. 52 (2016) 1679–1696. | DOI

[15] Z. Drmač, S. Gugercin and C. Beattie, Quadrature-Based Vector Fitting for Discretized 2 Approximation. SIAM J. Sci. Comput. 37 (2015) 625–652. | MR | DOI

[16] Q. Du and M. Gunzburger, Centroidal Voronoi Tessellation Based Proper Orthogonal Decomposition Analysis. Control Estimat. Distrib. Parameter Syst. 143 (2003) 137–150. | Zbl | DOI

[17] F. Ferranti, L. Knockaert and T. Dhaene, Passivity-preserving parametric macromodeling by means of scaled and shifted state-space systems. IEEE Trans. Microw. Theory Tech. 59 (2011) 2394–2403. | DOI

[18] S. Grivet-Talocia and E. Fevola, Compact Parameterized Black-Box Modeling via Fourier-Rational Approximations. IEEE Trans. Electromagn. Compat. 59 (2017) 1133–1142. | DOI

[19] S. Grivet-Talocia and B. Gustavsen, Passive Macromodeling: Theory and Applications, Wiley series in microwave and optical engineering. John Wiley & Sons Inc., Hoboken, New Jersey (2015). | DOI

[20] S. Grivet-Talocia and R. Trinchero, Behavioral, Parameterized, and Broadband Modeling of Wired Interconnects with Internal Discontinuities. IEEE Trans. Electromagn. Compat. 60 (2018) 77–85. | DOI

[21] B. Haasdonk, M. Dihlmann and M. Ohlberger, A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17 (2011) 423–442. | MR | Zbl | DOI

[22] R. Hiptmair, L. Scarabosio, C. Schillings and C. C. Schwab, Large deformation shape uncertainty quantification in acoustic scattering. Adv. Comput. Math. 44 (2018) 1475–1518. | MR | DOI

[23] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave number Part I: The h -version of the FEM. Comput. Math. Appl. 30 (1995) 9–37. | MR | Zbl | DOI

[24] A. Ionita and A. Antoulas, Data-Driven Parametrized Model Reduction in the Loewner Framework. SIAM J. Sci. Comput. 36 (2014) A984–A1007. | MR | Zbl | DOI

[25] R. Karp, Reducibility Among Combinatorial Problems, iconf-procn Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, edited by R. Miller and J. Thatcher. The IBM Research Symposia Series, Plenum Press, New York (1972) 85–103. | MR | Zbl

[26] S. Lefteriu, A. Antoulas and A. Ionita, Parametric model reduction in the Loewner framework, in Vol. 44 of IFAC Proceedings Volumes (2011) 12751–12756. | DOI

[27] B. Lohmann and R. Eid, Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models, Methoden und Anwendungen der Regelungstechnik. Erlangen-Münchener Workshops 2007 und 2008 (2008) 1–9.

[28] X. Ma and N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228 (2009) 3084–3113. | MR | Zbl | DOI

[29] F. Nobile, R. Tempone and C. Webster, A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data. SIAM J. Numer. Anal. 46 (2008) 2309–2345. | MR | Zbl | DOI

[30] F. Nobile and D. Pradovera, Non-intrusive double-greedy parametric model reduction by interpolation of frequency-domain rational surrogates-numerical tests (2020) Preprint . | arXiv | MR

[31] H. Panzer, J. Mohring, R. Eid and B. Lohmann, Parametric model order reduction by matrix interpolation. At-Automatisierungstechnik 58 (2010) 475–484. | DOI

[32] D. Pflüger, B. Peherstorfer and H. Bungartz, Spatially adaptive sparse grids for high-dimensional data-driven problems, in Vol. 26 Journal of Complexity, Academic Press Inc., (2010) 508–522. | MR | Zbl | DOI

[33] G. Phillips, Interpolation and approximation by polynomials, Vol. 14 of CMS books in mathematics, Springer, New York (2003). | MR | Zbl | DOI

[34] D. Pradovera, Interpolatory rational model order reduction of parametric problems lacking uniform inf-sup stability. SIAM J. Numer. Anal. 58 (2020) 2265–2293. | MR | DOI

[35] D. Pradovera and F. Nobile, Frequency-domain non-intrusive greedy model order reduction based on minimal rational approximation (2020) SCEE 2020 Proceedings DOI: . (to appear). | DOI | MR

[36] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, UNITEXT. Springer International Publishing (2015). | MR | Zbl

[37] M. Reed and B. Simon, Analysis of operators, Vol. 4 of Methods of modern mathematical physics. Academic Press, New York, 4th print ed. (1981). | Zbl

[38] SCITAS, EPFL Helvetios cluster webpage, accessed August 24 (2020).

[39] K. Smetana, O. Zahm and A. Patera, Randomized residual-based error estimators for parametrized equations. SIAM J. Sci. Comput. 41 (2019) 900–926. | MR | DOI

[40] P. Virtanen, et al., SciPy 1.0: Fundamental algorithms for scientific computing in sython. Nat. Methods 17 (2020) 261–272. | DOI

[41] D. Weile, E. Michielssen, E. Grimme and K. Gallivan, A method for generating rational interpolant reduced order models of two-parameter linear systems. Appl. Math. Lett. 12 (1999) 93–102. | MR | Zbl | DOI

[42] H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press (2004). | MR | Zbl | DOI

[43] Y. Yue, L. Feng and P. Benner, An Adaptive Pole-Matching Method for Interpolating Reduced-Order Models (2019) Preprint . | arXiv

[44] Y. Yue, L. Feng and P. Benner, Reduced-order modelling of parametric systems via interpolation of heterogeneous surrogates. Adv. Model. Simul. Eng. Sci. 6 (2019).

Cité par Sources :