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NON-INTRUSIVE DOUBLE-GREEDY PARAMETRIC MODEL REDUCTION BY
INTERPOLATION OF FREQUENCY-DOMAIN RATIONAL SURROGATES

Fabio Nobile and Davide Pradovera*

Abstract. We propose a model order reduction approach for non-intrusive surrogate modeling of
parametric dynamical systems. The reduced model over the whole parameter space is built by combining
surrogates in frequency only, built at few selected values of the parameters. This, in particular, requires
matching the respective poles by solving an optimization problem. If the frequency surrogates are
constructed by a suitable rational interpolation strategy, frequency and parameters can both be sampled
in an adaptive fashion. This, in general, yields frequency surrogates with different numbers of poles, a
situation addressed by our proposed algorithm. Moreover, we explain how our method can be applied
even in high-dimensional settings, by employing locally-refined sparse grids in parameter space to
weaken the curse of dimensionality. Numerical examples are used to showcase the effectiveness of the
method, and to highlight some of its limitations in dealing with unbalanced pole matching, as well as
with a large number of parameters.
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1. Introduction

The numerical simulation of dynamical systems in frequency domain is of utmost importance in several
engineering fields, among which electronic circuit design, acoustics, resonance modeling and control for large
structures, and many others. The computational burden of such simulations has kept increasing in the last
decades: on one hand, the problem size has been growing because of the need for higher numerical resolution;
on the other hand, the necessity to tune design parameters and model uncertain features has lead researchers
to tackle parametric models, possibly with a large number of parameters.

The purpose of model order reduction (MOR) in general, and of parametric MOR (pMOR) in the specific case
of dynamical system in the presence of parameters, is to alleviate this computational load. The main strategy to
reach this goal relies on building a surrogate model (reduced order model, ROM), which mimics accurately the
original problem, but which can be solved at a much reduced cost. In the last two decades, the field of pMOR
has thrived, leading to the development, analysis, and application of a wide collection of surrogate modeling
strategies. In general, we can assign each of these methods to one of two main categories:
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de Lausanne, Station 8, 1015 Lausanne, Switzerland.
*Corresponding author: davide.pradovera@epfl.ch

c○ The authors. Published by EDP Sciences, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2021040
https://www.esaim-m2an.org
https://orcid.org/0000-0002-8130-0114
https://orcid.org/0000-0003-0398-1580
mailto:davide.pradovera@epfl.ch
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


1896 F. NOBILE AND D. PRADOVERA

– Projection-based pMOR. The surrogate model is built by restricting the original problem onto a suitable
subspace, computed from a set of solutions (most often, snapshots of the system state) of the full problem.
This requires access to the operators of the full model, which are not necessarily available in applications,
for instance in the case of a black-box solver, or if the system operators never get fully assembled in the
solution process. Some subcategories of projective pMOR can be identified depending on whether a global
basis (such as POD/Reduced Basis [6] or multi-parameter multi-moment-matching [8, 41]) or a collection
of local bases (e.g., manifold interpolation of local bases [2] or of reduced system matrices [3, 27, 31]) are
employed.

– Non-intrusive pMOR. The surrogate model is constructed by interpolation or regression of a set of
solutions (usually, output samples) of the full problem. As long as the system state is not necessary for
the application at hand, it is common to work directly with the system output. In this case as well, the
methods can be further split into two subgroups, although the boundary between the two is more vague:
some approaches set up the surrogate by solving a unique global interpolation problem [20,24,26], whereas
others build it by first constructing several (rational) models in frequency only, and then combining them
over parameter space [17,43,44].

Here, we focus on this last class of techniques: non-intrusive approaches which build a surrogate by inter-
polating local frequency models, i.e., models constructed at some values of the parameters. A discussion of
the pros and cons of this local idea, compared to global approaches, can be found in the excellent survey [9]
(whose focus is, however, mostly on projective pMOR), as well as in [44]. The latter article is closer in spirit to
the present discussion and, as such, we will take it as starting point and main reference for our presentation.
Building upon [43, 44], the purpose of this paper is the description of a fully non-intrusive pMOR technique
based on parameter interpolation of frequency surrogates. As will be made more clear in the next sections, the
objects that are interpolated over parameter space are poles and residues of the Heaviside decomposition of the
frequency surrogates. Without going into too much detail here, we summarize briefly the main novelties of our
approach, focusing on how it generalizes [43]:

– Both frequency space and parameter domain are sampled adaptively, allowing for a better exploration of
frequency and parameter domains, as well as for an improved efficiency in the construction of the reduced
model. To this aim, we leverage the minimal rational interpolation technique as described in [35].

– Our proposed approach for pole/residue matching has polynomial worst-case complexity despite the com-
binatorial nature of the task. Notably, our approach can also be applied in the case of unbalanced (i.e.,
with different numbers of poles and residues) frequency surrogates. This is a critical property in view of our
adaptive frequency sampling strategy.

– We propose a framework for adaptive parameter sampling in a general high-dimensional setting by intro-
ducing a hierarchical locally-refined sparse grid structure in parameter space.

Before proceeding, we deem of importance to remark that local approaches based on interpolation of poles and
residues, by their very nature, struggle in dealing with poles and residues that do not depend smoothly on the
parameters. In such cases, surrogates that avoid the Heaviside decomposition, e.g., by interpolating the rational
frequency response directly rather than its poles and residues [17], can have more beneficial properties, since
they do not rely on the smoothness of poles and residues. Still, we choose to pursue an Heaviside-based approach
rather than a rational-based one for two main reasons:

– By interpolation of poles and residues, one can handle with good flexibility the fairly common case of
unbalanced frequency surrogates. More specifically, we will describe how spurious poles may be removed
(and missing poles reconstructed) on the fly by exploiting the structure of the Heaviside expansion.

– Despite its intrinsic difficulties in approximating non-smooth poles, an adaptive selection of the parameter
sample points, as proposed in this work, can recover a good performance, by refining locally at critical
parameter locations (e.g., branch points of the poles).

Outline of the paper. We introduce the parametric framework for our approach in Section 2. The ensuing
Section 3 contains our main contribution, in the form of a description of the proposed pMOR technique, with
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each of the subsections therein examining a different feature of the algorithm. In Section 4, we investigate some
of the limitations of our method in the case of crossing and non-smooth poles. We integrate our discussion with
two numerical examples in Section 5, showcasing the effectiveness of our method. We conclude with a summary
and an outlook for future research in Section 6.

2. Problem framework and notation

The field of pMOR is closely entwined with the study of parametric dynamical systems in the frequency
domain. More precisely, one considers the problem:

given (𝑧,p) ∈ 𝑍 ×𝒫 , find 𝑌 = 𝑌 (𝑧,p) such that

{︃
(𝑧𝐸p −𝐴p)𝑋(𝑧,p) = 𝐵p,

𝑌 (𝑧,p) = 𝐶p𝑋(𝑧,p),
(2.1)

where
𝐴p, 𝐸p ∈ C𝑛𝑆×𝑛𝑆 , 𝑋(𝑧,p), 𝐵p ∈ C𝑛𝑆×𝑛𝐼 , 𝐶p ∈ C𝑛𝑂×𝑛𝑆 , and 𝑌 (𝑧,p) ∈ C𝑛𝑂×𝑛𝐼 .

We call 𝑋 and 𝑌 the state and the output of the system, respectively. The sets 𝑍 ⊂ C and 𝒫 ⊂ C𝑑 (R𝑑 in
most applications) are frequency and parameter domains, respectively. The subscript p of the system matrices
denotes their eventual dependence on the parameters p. We remark that we do not exclude the case of the state
being the output of interest: such case can be obtained quite trivially by setting 𝑛𝑂 = 𝑛𝑆 and 𝐶p equal to the
identity matrix.

The behavior of state 𝑋 and output 𝑌 with respect to 𝑧 only (for fixed p, the non-parametric case) is well
understood, and is backed up by an extensive literature in system theory [4]. Among the many properties of
these systems, one is crucial to our discussion, namely the Heaviside decomposition: under some quite broad
assumptions on the spectral properties of the pencil (𝐴p, 𝐸p), we can write

𝑌 (𝑧,p) =
∑︁

𝑗

(𝑧 − 𝜆(𝑗)
p )−𝑚(𝑗)

p 𝑌 (𝑗)
p for 𝑧 ∈ 𝑍 ∖ {𝜆(𝑗)

p }𝑗 , (2.2)

with 𝜆
(𝑗)
p ∈ C ∪ {∞}, 𝑚(𝑗)

p ∈ N, and 𝑌
(𝑗)
p ⊂ C𝑛𝑂×𝑛𝐼 , for all 𝑗.

We remark that our discussion relies only on the decomposition (2.2) of the output, together with the following
assumptions:

(a) 𝑌 : 𝑍 × 𝒫 → 𝑉 , with 𝑉 a normed vector space (for (2.1), we may set 𝑉 = C𝑛𝑂×𝑛𝐼 endowed with the
Frobenius norm).

(b) In (2.2), 𝜆(𝑗) and 𝑌 (𝑗) depend continuously on p for all 𝑗, cf. Section 4.
(c) In (2.2), 𝑚(𝑗) is independent of p for all 𝑗.

As such, our proposed strategy extends further than linear parametric dynamical systems (2.1). Some examples
of practical interest are parametric scattering problems in frequency domain [22] and parametric nonlinear
eigenproblems [10]. Still, for simplicity of exposition, we will restrict our discussion to the finite-dimensional
linear parametric dynamical system (2.1).

In order to simplify the presentation, from here onward we will replace (2) with the stronger assumption
that 𝑚(𝑗) be equal to 1. This excludes the possibility of degenerate eigenvalues. We remark that, in most
practical applications, each multiplicity 𝑚(𝑗) is indeed identically equal to 1. We postpone a discussion on this
till Sections 4 and 6.

3. The double-greedy pMOR strategy

We start this section by detailing our pMOR technique in its formulation without p-adaptivity. The general
structure of the pole-matching-based pMOR algorithm is summarized in Algorithms 3.1 and 3.2, and the different
building blocks are discussed more extensively in the following subsections.
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Algorithm 3.1 Pole-matching pMOR – Offline phase
1: function pROM Train(p1, . . . ,p𝑆)
2: for 𝑘 = 1, . . . , 𝑆 do
3: ROM𝑘 ← BuildFrequencyROM(p𝑘) ◁ Section 3.1
4: end for
5: 𝐽 ←

{︀
1
}︀

◁ Initialize root of search tree
6: for iter = 2, . . . , 𝑆 do ◁ Matching loop
7: (𝑘, ℓ)← arg min𝑘′∈𝐽, ℓ′ /∈𝐽 ‖p𝑘′ − pℓ′‖ ◁ Breadth-first search
8: permutation ← ModalMatching(ROM𝑘, ROMℓ) ◁ Section 3.2
9: ROMℓ ←ApplyPermutation(ROMℓ, permutation)

10: 𝐽 ← 𝐽 ∪ {ℓ} ◁ Add to explored set
11: end for
12: 𝜓 ←BuildLocalWeightFunctions(p1, . . . ,p𝑆) ◁ Section 3.3
13: return {ROM𝑘}𝑆𝑘=1, 𝜓
14: end function

Algorithm 3.2 Pole-matching pMOR – Online phase
1: function pROM(𝑧, p; {ROM𝑘}𝑆𝑘=1, 𝜓)

2: ̃︀𝑌 ← 0, w← 𝜓(p)
3: for 𝑗 = 1, 2, . . . , 𝑛 do ◁ Loop over surrogate poles
4: ̃︀𝜆(𝑗) ← 0, ̃︀𝑌 (𝑗) ← 0
5: for 𝑘 = 1, 2, . . . , 𝑆 do ◁ Loop over frequency models

6: Extract 𝜆
(𝑗)
𝑘 and 𝑌

(𝑗)
𝑘 from ROM𝑘

7: ̃︀𝜆(𝑗) ← ̃︀𝜆(𝑗) + 𝑤𝑘𝜆
(𝑗)
𝑘 , ̃︀𝑌 (𝑗) ← ̃︀𝑌 (𝑗) + 𝑤𝑘𝑌

(𝑗)
𝑘 ◁ Add local contribution

8: end for
9: ̃︀𝑌 ← ̃︀𝑌 + ̃︀𝑌 (𝑗)/

(︀
𝑧 − ̃︀𝜆(𝑗)

)︀
◁ Add Heaviside term

10: end for
11: return ̃︀𝑌
12: end function

An online-offline decomposition of the algorithm is performed, in the usual MOR fashion [36]: first, the
surrogate model is built in an expensive training phase, which requires solving the original problem at several
values of frequency and parameters; the reduced model is then stored and can be evaluated with a (hopefully)
much reduced computational cost at arbitrary frequency and parameter values.

The offline phase is shown in Algorithm 3.1. The input of the procedure is a set of parameter values 𝒫train =
{p1, . . . ,p𝑆} ⊂ 𝒫 , where reduced models in frequency only are built: more precisely, for each 𝑘 = 1, . . . , 𝑆, we
compute the approximation

𝑌 (𝑧,p𝑘) ≈ ROM𝑘(𝑧) =
𝑛𝑘∑︁
𝑗=1

𝑌
(𝑗)

𝑘

𝑧 − 𝜆
(𝑗)

𝑘

· (3.1)

More details on this step are given in Section 3.1. The addends of the sum in (3.1) are then sorted in such a
way that poles 𝜆

(𝑗)

𝑘 and residues 𝑌
(𝑗)

𝑘 with the same 𝑗 but different 𝑘 “correspond to each other”. We explain
what we mean by this, and how we achieve it, in Section 3.2. In the same section, we also discuss how we deal
with the situation where two surrogate models have different amounts of poles, i.e., 𝑛𝑘 ̸= 𝑛ℓ. For the remainder
of the present overview, for simplicity we assume 𝑛1 = . . . = 𝑛𝑆 =: 𝑛.

At this point, it only remains to prescribe a rule to define the reduced model at a new parameter value
p ∈ 𝒫 ∖ 𝒫train. To this aim, we define 𝑆 weight functions 𝜓 = (𝜓1, . . . , 𝜓𝑆) : 𝒫 → C𝑆 , which we employ to
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interpolate poles and residues over p-space:

̃︀𝜆(𝑗)(p) =
𝑆∑︁

𝑘=1

𝜓𝑘(p)𝜆
(𝑗)

𝑘 and ̃︀𝑌 (𝑗)(p) =
𝑆∑︁

𝑘=1

𝜓𝑘(p)𝑌
(𝑗)

𝑘 . (3.2)

The resulting global model can then be evaluated through Algorithm 3.2, as

𝑌 (𝑧,p) ≈ pROM(𝑧,p) =
𝑛∑︁

𝑗=1

̃︀𝑌 (𝑗)(p)

𝑧 − ̃︀𝜆(𝑗)(p)
=

𝑛∑︁
𝑗=1

∑︀𝑆
𝑘=1 𝜓𝑘(p)𝑌

(𝑗)

𝑘

𝑧 −
∑︀𝑆

𝑘=1 𝜓𝑘(p)𝜆
(𝑗)

𝑘

· (3.3)

Note that, in order for the frequency surrogates to be interpolated exactly, the weights should satisfy the
conditions

𝜓ℓ(p𝑘) =

{︃
1 if 𝑘 = ℓ,

0 if 𝑘 ̸= ℓ,
(3.4)

cf. Section 3.3.

Remark 3.1. Depending on the choice of MOR method in frequency, the Heaviside formulation (3.1) might
also include constant, polynomial, or, more generally, smooth terms: for instance,

ROM𝑘(𝑧) =
𝑛𝑘∑︁
𝑗=1

𝑌
(𝑗)

𝑘

𝑧 − 𝜆
(𝑗)

𝑘

+
𝑚∑︁

ℓ=0

𝑊
(ℓ)

𝑘 𝑧ℓ. (3.5)

If this is the case, we do not need to modify our algorithm, because the additional terms do not require to be
matched nor permuted. The resulting global surrogate (after pole matching) is simply

pROM(𝑧,p) =
𝑛∑︁

𝑗=1

∑︀𝑆
𝑘=1 𝜓𝑘(p)𝑌

(𝑗)

𝑘

𝑧 −
∑︀𝑆

𝑘=1 𝜓𝑘(p)𝜆
(𝑗)

𝑘

+
𝑚∑︁

ℓ=0

𝑆∑︁
𝑘=1

𝜓𝑘(p)𝑊
(ℓ)

𝑘 𝑧ℓ.

3.1. Frequency adaptivity via Minimal Rational Interpolation

Here we provide some details on the function BuildFrequencyROM in Algorithm 3.1, which encodes the
construction of a ROM for a non-parametric dynamical system with respect to a single parameter, namely the
frequency 𝑧. A number of surrogate modeling strategies for such problems have been proposed in the MOR liter-
ature: the most famous are, among projection-based methods, the Proper Orthogonal Decomposition/Reduced
Basis [9] and the Krylov/Moment Matching [8] methods, and, among the non-intrusive techniques, the Loewner
Framework [24] and the Vector Fitting algorithm [15, 19]. Any of them could be used to supply the surrogate
modeling that we require. In fact, different frequency surrogates could even be obtained by different MOR
approaches, as long as each reduced model allows for a Heaviside expansion (3.1).

In this work, we consider the Minimal Rational Interpolation (MRI) method proposed in [34], generalizing
[11]. MRI is non-intrusive, i.e., it does not require access to the matrices appearing in the dynamical system
(2.1), allowing for a wider applicability of the method. In particular, MRI can be used to efficiently build
surrogates for vector-valued quantities, e.g., high-(or even ∞-)dimensional states 𝑋 of dynamical systems (2.1).
(In fact, the effectiveness of MRI may even improve if the ambient space, where snapshots of the approximation
target are located, is large.) At the same time, one can apply it in a greedy fashion [35], so that the number and
location of frequency samples are selected adaptively, in such a way that a prescribed accuracy is attained over
the whole frequency domain 𝑍. The specific greedy strategy that we choose has a proper theoretical motivation
only if the parametric problem depends on 𝑧 in a simple way, e.g., linearly, as in (2.1). If this is not the case, or
if the dependence on frequency is not known, one may want to consider possible alternatives [35]. More details
on the method are provided in [34]. Here we only give a short overview, which is summarized in Algorithm 3.3.
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Algorithm 3.3 Greedy Minimal Rational Interpolation
1: function BuildFrequencyROM(p)
2: Initialize 𝑍train ⊂ 𝑍 (very coarse), 𝑍test ⊂ 𝑍 (fine), tol > 0
3: snapshots ← {}
4: for 𝑧 ∈ 𝑍train do ◁ Model initialization
5: Evaluate 𝑌 (𝑧,p) ◁ Full model solve
6: snapshots ← snapshots ∪ {𝑌 (𝑧,p)}
7: end for
8: repeat ◁ Greedy loop
9: ROM← BuildMRI(𝑍train, snapshots) ◁ SVD of a matrix of size #𝑍train[34]

10: 𝑧⋆ ← GetNextSamplePoint(ROM, 𝑍test) ◁ Maximize (3.7) over 𝑍test

11: Evaluate 𝑌 (𝑧⋆,p) ◁ Full model solve
12: snapshots ← snapshots ∪ {𝑌 (𝑧⋆,p)}
13: Move 𝑧⋆ from 𝑍test to 𝑍train

14: until ‖𝑌 (𝑧⋆,p)− ROM(𝑧⋆)‖𝑉 ≤ tol ‖𝑌 (𝑧⋆,p)‖𝑉
15: Optional : ROM← BuildMRI(𝑍train, snapshots) ◁ Remark 3.2
16: Optional : ROM← CleanUp(ROM) ◁ Remark 3.3
17: return ROM
18: end function

Let a parameter p ∈ 𝒫 be fixed. Given 𝑆 distinct frequency sample points 𝑍train ⊂ 𝑍 and corresponding
snapshots {𝑌 (𝑧,p)}𝑧∈𝑍train , the MRI procedure first builds a surrogate denominator 𝑄 of degree ≤ 𝑆 − 1 by
solving a minimization problem involving the snapshots: in practice, this problem can be solved at 𝒪(𝑆3)
computational cost by SVD. Now the surrogate poles {𝜆(𝑗)}𝑛

𝑗=1 (𝑛 ≤ 𝑆−1 is the degree of 𝑄) appearing in (3.5)
can be extracted from 𝑄 through any root-finding algorithm2. Then we set 𝑚 = 𝑆−𝑛− 1, and we compute the
𝑆 terms {𝑌 (𝑗)}𝑛

𝑗=1 ∪ {𝑊
(ℓ)}𝑚

ℓ=0 in the ROM (3.5) by interpolation:

𝑛∑︁
𝑗=1

𝑌
(𝑗)

𝑧 − 𝜆
(𝑗)

+
𝑚∑︁

ℓ=0

𝑊
(ℓ)
𝑧ℓ = 𝑌 (𝑧,p) ∀𝑧 ∈ 𝑍train. (3.6)

The procedure just described is encoded by the function BuildMRI in Algorithm 3.3.
The adaptive selection of frequency sample points is carried out via the typical greedy-MOR loop: at each

iteration a new sample gets added, at a position selected in the test set 𝑍test, based on the current reduced model.
More precisely, the next sample 𝑧⋆ is selected as the maximizer over 𝑍test of some a posteriori indicator, and the
algorithm terminates when such indicator is smaller than a prescribed tolerance. However, in our framework,
standard residual estimators (e.g., the classic Reduced Basis one [36]) cannot be employed in a non-intrusive
manner. Instead, we apply the “look-ahead” idea introduced in [35], to which we refer for more details:

– Exploiting only the current reduced model, we select the next sample point 𝑧⋆, as the maximizer over 𝑍test

of

𝑧 ↦→
∏︁

𝑧′∈𝑍train

|𝑧 − 𝑧′|
⧸︂ 𝑛∏︁

𝑗=1

⃒⃒⃒
𝑧 − 𝜆

(𝑗)
⃒⃒⃒
. (3.7)

– Since an unknown scaling constant is involved, (3.7) does not tell us whether the prescribed tolerance is
satisfied; to obtain this information, we perform an expensive solve of the full model at 𝑧⋆, and evaluate the
approximation error explicitly.

Remark 3.2. As is evident from Algorithm 3.3, the extra expensive solve of the full system does not go to
waste, as it is exactly the snapshot which is necessary at the next iteration. Only at the last iteration, when

2We are assuming all poles to be simple, cf. Section 4.2.
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the tolerance is finally satisfied, the additional solution is not included in the surrogate. In practice, to avoid
wasting the “free” final snapshot, we can actually add even this last sample to the reduced model by running
BuildMRI an additional time after the greedy loop is completed.

Remark 3.3. As discussed in more detail in Section 3.2, for a reliable matching of poles and residues of different
frequency ROMs, it is crucial to remove any unwanted spurious (sometimes referred to as “parasitic” or “non-
physical”) pole-residue pairs. As such, it is usually worth the effort to add a post-processing “clean-up” step, to
remove unwanted pole-residue pairs. The development of reliable strategies to identify spurious effects remains
an open problem in rational approximation. However, two quite simple and inexpensive criteria that can be
applied are:

– Remove poles which are too far away from 𝑍.
– Remove poles whose residues have small magnitude (possible Froissart doublets [7]).

In addition, it might be possible to remove poles which are provably spurious based on the properties of the
problem, e.g., non-real poles for self-adjoint problems, or unstable poles for stable systems.

Any pole removed in this context should be automatically balanced by increasing the number of smooth terms
in the ROM, namely 𝑚 in Remark 3.1. We refer to [34] for a more detailed discussion on this procedure, which,
employing the notation therein, could be summarized as “choosing 𝑁 < 𝑆 − 1”. Thanks to this strategy, if the
eliminated poles are indeed spurious, their removal does not impact negatively the accuracy of the frequency
surrogate.

At this point, it is important to note that, in general, we cannot guarantee all the frequency ROMs to have
the same number of pole-residue pairs 𝑛, even after a perfect removal of all the spurious effects. The main
reason for this is that the full model (2.1) may have a different number of poles in 𝑍 for different values of p.
A numerical example showcasing poles entering and leaving the frequency domain can be found in Section 5.1.
This can quickly become problematic, since the greedy MRI algorithm is not guaranteed to identify well poles
outside 𝑍 (actually, even to capture them at all). One could try to counteract this issue by building frequency
models on an enlarged domain 𝑍 ′ ⊃ 𝑍, at the cost of a higher offline time. Still, the same issue of migrating
poles might simply arise again at a larger scale.

3.2. Matching frequency models

The offline matching loop in Algorithm 3.1 takes care of permuting the Heaviside addends of the frequency
ROMs, see (3.1). The objective of this step is to identify with good accuracy how the location of each pole-residue
pair evolves as p changes: this means that, for each 𝑗, we wish 𝜆

(𝑗)

1 , 𝜆
(𝑗)

2 , . . . , 𝜆
(𝑗)

𝑆 (resp. 𝑌
(𝑗)

1 , 𝑌
(𝑗)

2 , . . . , 𝑌
(𝑗)

𝑆 ) to
be approximations of the “same” pole (resp. residue) of the parametric problem for p = p1,p2, . . . ,p𝑆 . By
“same” pole (resp. residue) we mean some continuous curve p ↦→ 𝜆

(𝑗′)
p (resp. p ↦→ 𝑌

(𝑗′)
p ) for some fixed 𝑗′, with

𝜆
(𝑗′)
p and 𝑌

(𝑗′)
p defined in Section 2. Note that this notion is not unique whenever poles intersect. This case is

discussed in Section 4.
The frequency surrogate models are explored in a breadth-first fashion, matching one new ROM at a time

to its closest (with respect to p) neighbor. We exclude a global approach, matching all frequency models at the
same time, due to its computational unfeasibility: 𝑆-partite matching is notoriously an NP-hard problem for
𝑆 ≥ 3 [25].

Let us characterize one of this bipartite matching problems, namely the one between ROM𝑘 and ROMℓ. For
the remainder of this section, we assume that the two models have the same number of poles, i.e., 𝑛𝑘 = 𝑛ℓ =: 𝑛.
The more general and, due to our choice of frequency surrogate modeling, (potentially) more common case
𝑛𝑘 ̸= 𝑛ℓ is discussed in Section 3.2.1. We seek 𝜎 = (𝜎1, . . . , 𝜎𝑛) which attains

min
𝜎∈(1,2,...,𝑛)!

⎛⎝ 𝑛∑︁
𝑗=1

⃒⃒⃒
𝜆

(𝑗)

𝑘 − 𝜆
(𝜎𝑗)

ℓ

⃒⃒⃒
+ 𝑤

𝑛∑︁
𝑗=1

⃦⃦⃦
𝑌

(𝑗)

𝑘 − 𝑌
(𝜎𝑗)

ℓ

⃦⃦⃦
𝑉

⎞⎠ , (3.8)
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where (1, 2, . . . , 𝑛)! denotes the set of permutations of the tuple (1, 2, . . . , 𝑛). We will refer to the minimal value
of (3.8) as the Heaviside distance3 between models ROM𝑘 and ROMℓ. In (3.8), 𝑤 ∈ [0,∞] denotes a weight,
representing the relative importance given to poles and residues in the matching. We note that a cost functional
almost identical to (3.8) was first introduced in [43] to tackle the pole-residue matching.

An alternative formulation of the same problem is: given the cost matrix 𝐷 ∈ R𝑛×𝑛, with entries

𝐷𝑗,𝑗′ =
⃒⃒⃒
𝜆

(𝑗)

𝑘 − 𝜆
(𝑗′)

ℓ

⃒⃒⃒
+ 𝑤

⃦⃦⃦
𝑌

(𝑗)

𝑘 − 𝑌
(𝑗′)

ℓ

⃦⃦⃦
𝑉
, (3.9)

we wish to extract exactly one value per row and one value per column, so that the sum of the selected
entries is minimized. Despite the combinatorial nature of this optimization problem, there exist polynomial-
time algorithms to solve it (e.g., using ideas from maximum flow problems [14]). Here, we solve this problem via
the linear sum assignment function in the scipy.optimize module [40], which requires as only input the cost
matrix 𝐷. As shown in [14, Section II.C], this implementation has 𝒪(𝑛3) worst-case complexity, but we note
that only 𝒪(𝑛2) operations are necessary if just 𝒪(1) pole swaps are needed, i.e., if the optimal 𝜎 is “close” to
(1, 2, . . . , 𝑛).

Remark 3.4. When 𝑛𝑘 = 𝑛ℓ, the matching optimization problem is symmetric. By this, we mean that, once
the optimal permutation has been found, we can either apply it to the “new” model ROMℓ, or apply its inverse
to the “old” model ROM𝑘. In practice, in the scope of the breadth-first search in Algorithm 3.1, it is convenient
to always rearrange the poles-residues of the new model ℓ, since applying the permutation to model 𝑘 would
require permuting all the already explored models {ROM𝑘′}𝑘′∈𝐽 .

3.2.1. Unbalanced matching

Suppose 𝑛𝑘 < 𝑛ℓ (the converse case can be treated analogously by considering a “transposed” matching
problem). We can cast the matching optimization problem in rectangular form: find 𝜎 = (𝜎1, . . . , 𝜎𝑛ℓ

) which
attains

min
𝜎∈(1,2,...,𝑛ℓ)!

⎛⎝ 𝑛𝑘∑︁
𝑗=1

⃒⃒⃒
𝜆

(𝑗)

𝑘 − 𝜆
(𝜎𝑗)

ℓ

⃒⃒⃒
+ 𝑤

𝑛𝑘∑︁
𝑗=1

⃦⃦⃦
𝑌

(𝑗)

𝑘 − 𝑌
(𝜎𝑗)

ℓ

⃦⃦⃦
𝑉

⎞⎠ . (3.10)

(The minimization of (3.10) does not require more computational effort than a balanced problem (3.8) of size
𝑛ℓ [14].) Then (𝜎1, . . . , 𝜎𝑛𝑘

) gives the desired permutation, while the indices 𝜎𝑛𝑘+1, . . . , 𝜎𝑛ℓ
remain unassigned.

It remains to choose how to deal with the 𝑛ℓ − 𝑛𝑘 extra pole-residue pairs with indices 𝜎𝑛𝑘+1, . . . , 𝜎𝑛ℓ
: this

choice depends on whether we think that they are (∘) missing from ROM𝑘 or (∙) spurious in ROMℓ.
The solution for case (∙) is quite straightforward: we simply remove the 𝑛ℓ−𝑛𝑘 erroneous poles and residues

from ROMℓ, as well as from all the surrogates matched to it. Note, however, that the 𝑛𝑘 remaining residues of
ROMℓ should be updated after the removal of the spurious poles, in order to guarantee good approximation
properties at pℓ. To this aim, it is quite cheap to recompute the residues of ROMℓ by solving an interpolation
problem, cf. (3.6), exploiting the already available snapshots at pℓ. In particular, the approach described in
Remark 3.3, i.e., the addition of smooth terms to compensate for the removed poles/residues, can be applied
here.

Instead, in case (∘), the problem is much harder: we wish to reconstruct the poles and residues unaccounted
for at p𝑘 from information at pℓ. One naive way to achieve this involves “copying” the missing poles and residues
from ROMℓ to ROM𝑘, i.e., appending the synthetic terms

𝑌
(𝜎𝑛𝑘+1)

ℓ

𝑧 − 𝜆
(𝜎𝑛𝑘+1)

ℓ

+ . . .+
𝑌

(𝜎𝑛ℓ
)

ℓ

𝑧 − 𝜆
(𝜎𝑛ℓ

)

ℓ

(3.11)

3When smooth terms are added, see (3.5), or in the unbalanced case 𝑛𝑘 ̸= 𝑛ℓ, see (3.10), this is not an actual distance because
it is only semi-positive definite.
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Algorithm 3.4 General pole-matching
1: 𝐽 ←

{︀
1
}︀

◁ Initialize root of search tree, Remark 3.6
2: for iter = 2, . . . , 𝑆 do ◁ Matching loop
3: (𝑘, ℓ)← arg min𝑘′∈𝐽, ℓ′ /∈𝐽 ‖p𝑘′ − pℓ′‖ ◁ Breadth-first search
4: 𝜎 ← ModalMatching(ROM𝑘, ROMℓ) ◁ (3.8) or (3.10)
5: ROMℓ ←ApplyPermutation(ROMℓ, 𝜎) ◁ Possibly using only part of 𝜎
6: if 𝑛𝑘 > 𝑛ℓ then

7: ROMℓ ← ROMℓ +
∑︀𝑛𝑘

𝑗=𝑛ℓ+1 𝑌
(𝑗)
𝑘 /
(︀
· −𝜆

(𝑗)
𝑘

)︀
◁ Extrapolate at index ℓ

8: Flag the 𝑛𝑘 − 𝑛ℓ poles added to ROMℓ as “synthetic”
9: 𝑛ℓ ← 𝑛𝑘

10: else if 𝑛𝑘 < 𝑛ℓ then
11: for 𝑖 ∈ 𝐽 do ◁ Extrapolate at indices 𝐽

12: ROM𝑖 ← ROM𝑖 +
∑︀𝑛ℓ

𝑗=𝑛𝑖+1 𝑌
(𝑗)
ℓ /
(︀
· −𝜆

(𝑗)
ℓ

)︀

13: Flag the 𝑛ℓ − 𝑛𝑖 poles added to ROM𝑖 as “synthetic”
14: 𝑛𝑖 ← 𝑛ℓ

15: end for
16: end if
17: 𝐽 ← 𝐽 ∪ {ℓ} ◁ Add to explored set
18: end for
19: for 𝑗 = 1, . . . , max𝑗∈𝐽 𝑛𝑗 do

20: synthetic count ← #{𝑘 = 1, 2, . . . , 𝑆 such that 𝜆
(𝑗)
𝑘 is synthetic}

21: if synthetic count > 𝑆(1− tolsynth) then

22: Remove 𝜆
(𝑗)

from all ROMs ◁ Remove poles which are synthetic too many times
23: end if
24: end for
25: Optional : apply higher-order reconstruction to all remaining synthetic poles ◁ Remark 3.7

to the Heaviside expansion of ROM𝑘. This results in an adjusted surrogate, with a balanced pole matching.
Note that, similarly to pole removal, the 𝑛𝑘 original residues of ROM𝑘 should be updated to account for the
added synthetic terms. We remark that more refined (but also potentially less stable) approaches may be based
on other forms of extrapolation of the additional Heaviside terms, not only from ROMℓ, but also from all the
other frequency surrogates that contain the poles with indices 𝜎𝑛𝑘+1, . . . , 𝜎𝑛ℓ

, cf. Remark 3.7 and Section 3.3.

Remark 3.5. In case (∘), one could impose a balanced matching by retraining the poorer model ROM𝑘, forcing
more iterations of greedy MRI until the surrogate has exactly 𝑛ℓ poles. However, this approach has two clear
issues, which might make it disadvantageous in practice:

– If many surrogates need retraining, one may incur in substantial additional computational cost. This is the
case especially if p-adaptivity is employed, see Section 3.4.

– Instead of identifying correctly the missing poles, MRI could introduce spurious effects, thus interfering with
the matching procedure, rather than helping it. This is likely to happen if the missing poles are located
outside the frequency domain 𝑍.

At this point, we deem important to give a caveat : neither of the two approaches above (pole reconstruction
and removal) is, on its own, able to solve adequately all practical situations, as we showcase in a practical
example in Section 5.1. Instead, a hybrid version, with some poles getting removed and some reconstructed,
has the potential to perform better than either approach. Here, we choose to pursue this third approach, whose
effectiveness obviously hinges on how well we can differentiate between “good” and “bad” poles.

We summarize our proposed strategy in Algorithm 3.4, which replaces the simple matching loop in Algo-
rithm 3.1. The main idea is the following: whenever it becomes necessary to match unbalanced models, the
naive reconstruction (3.11) is used to augment the less rich surrogate(s); however, the added synthetic poles
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Figure 1. Example of history-dependent matching. Poles of the surrogates are denoted by
full dots (a). Results by matching bottom-up (b) and top-down (c). Dashed arrows and empty
circles are used to denote pole reconstruction steps and synthetic poles, respectively.

are flagged as unreliable. At the end of the matching loop, all the models contain the same number of poles
𝑛 = max𝑘=1,...,𝑆 𝑛𝑘. At this point, if a pole with a certain index is too often unreliable, it is removed from the
pROM. Here, “too often” is determined based on a given tolerance tolsynth between 0 and 1: the extreme values
0 and 1 correspond to cases (∘) and (∙), respectively.

The reconstruction of missing poles introduces an asymmetry in the matching procedure, so that the order
in which the models are matched matters: for instance, see the situation depicted in Figure 1. As such, it
seems important to choose well the root in the breadth-first exploration of 𝒫train. However, choosing optimally
this root remains an open problem. From a computational point of view, it makes sense to choose as root the
surrogate with the largest number of poles, so that we never have to retrace our steps to add synthetic poles.

Remark 3.7. The constant pole reconstruction (3.11) is quite blunt, especially when the parameter resolution
is low. If the poles depend smoothly on p, it is preferable to employ a reconstruction with a larger stencil,
for instance global (least squares) polynomial extrapolation, using information from all the surrogates which
contain the missing pole, see Section 3.3. However, this is not always viable during the matching loop, since
we explore 𝒫train breadth-first: for instance, if 𝑛𝑘 < 𝑛ℓ, we are forced to reconstruct poles from the single new
model ROMℓ (a similar problem may arise in the case 𝑛𝑘 > 𝑛ℓ if 𝐽 is too small). Still, as shown in the last
line of Algorithm 3.4, it remains feasible to apply a higher-order pole reconstruction after the matching loop is
complete.

3.3. Global vs. local interpolation

In this section we describe how one can employ the local pole-residue information (3.1) at 𝒫train to obtain an
approximate Heaviside expansion at a new point p ∈ 𝒫 ∖𝒫train. As shown in (3.2), we rely on an interpolation
strategy encoded by the weight functions 𝜓 : 𝒫 → C𝑆 , so that we simply need to prescribe how such weights are
constructed. It is important to note that this task, in its natural formulation, is independent of the frequency
surrogates, and depends only on the location of the sample parameter points 𝒫train, cf. Remark 3.8.

Setting (3.4) as target, we can cast the problem of finding 𝜓 as 𝑆 independent 𝒫 → C interpolation problems
(one for each 𝜓ℓ). To address this problem, an extensive amount of techniques and results are available in the
literature [13,33,42]. Here, we consider 3 options:

– Global. We can seek weights 𝜓 within some function space with global regularity, e.g., polynomials, or radial
basis functions (using a smooth kernel to achieve interpolation). This approach can potentially achieve high
accuracy, but relies on some level of smoothness of poles and residues with respect to p. It is important to
note that, in this framework, the interpolation condition (3.4) could be weakened and enforced only in a
least-squares sense: the resulting surrogate would then require less memory for the storage of approximate
poles and residues, cf. the “regression” step in [43].
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– Local structured. To satisfy (3.4), we can employ locally supported basis functions, e.g., piecewise linear
“hat functions”, or splines. If 𝑑 ≥ 2, this approach requires the sample points to be selected in a structured
way, for instance using sparse grids, see [5] and Section 3.4, or a mesh-based discretization of 𝒫 [17].

– Local unstructured. A very simple, but nonetheless practical, way to enforce (3.4) is to construct the
weights using a Voronoi tessellation [16] of 𝒫 based on the sample points 𝒫train, i.e.,

𝜓ℓ(p) =

{︃
1 if pℓ = arg minp⋆∈𝒫train

‖p− p⋆‖ ,
0 otherwise.

(3.12)

This results in a nearest-neighbor approach, characterized by low accuracy, but also by a great flexibility. In
fact, this strategy does not even require the poles to be matched. The main drawback of this approach is
that it does not “follow” the evolution of the poles in p-space, resulting in limited predictive capabilities.

Remark 3.8. Depending on the application, the interpolation conditions (3.4) may be complemented by addi-
tional constraints to preserve important system properties, like stability, realness, or passivity [17,19].

3.4. Parameter adaptivity

Until now, we have assumed the parameter sample points 𝒫train to have been fixed in advance. However, in
many situations, it proves extremely useful to have some kind of adaptivity included in the sampling of 𝒫 , so
that samples may be added only where the surrogate model is particularly inaccurate, e.g., in our case, near
pole mismatches or where large interpolation errors occur. Still, it is quite difficult to devise adaptive strategies
in non-intrusive MOR, especially if the number of parameters 𝑑 is large, since not much is known about the
parametric dependence of the problem. In the context of sampling from high-dimensional parametric spaces,
sparse grids have been often employed in MOR as a way to alleviate the curse of dimensionality, see, e.g.,
[6, 12, 21]. Here, the focus is on adaptive sampling, and we propose a technique based on locally-refined sparse
grids, closely related to that considered in [1], which, in turn, relies on some ideas from [28, 32]. For simplicity,
we carry out our construction in the case 𝒫 = [−1, 1]𝑑. Generalizations to more complicated parameter domains
may be obtained by isomorphism.

Consider the nested (Γ(𝑛) ⊆ Γ(𝑛+ 1) for all 𝑛) one-dimensional point sets

Γ(𝑛) =

⎧⎪⎨⎪⎩
∅ if 𝑛 < 0,
{0} if 𝑛 = 0,
{21−𝑛𝑗}2𝑛−1

𝑗=−2𝑛−1 if 𝑛 > 0.
(3.13)

We extend this definition to multiple dimensions by tensorization: for any level index n = (𝑛1, . . . , 𝑛𝑑) ∈ Z𝑑, we
define the corresponding tensor grid Γ(n) = Γ(𝑛1)×Γ(𝑛2)× . . .×Γ(𝑛𝑑). It is useful to define the infinite point
set

𝛷 =
⋃︁

n∈Z𝑑

Γ(n) =
∞⋃︁

𝑛=0

Γ(𝑛)𝑑,

which is dense in 𝒫 (it coincides with the dyadic rationals in 𝒫) and also a superset of any tensor grid (by
construction). We will choose the adaptive sampling points within 𝛷.

Now, assume that

p⋆ ∈ Γ(n) ∖

(︃
𝑑⋃︁

𝑘=1

Γ(𝑛1, . . . , 𝑛𝑘−1, 𝑛𝑘 − 1, 𝑛𝑘+1, . . . , 𝑛𝑑)

)︃
, (3.14)
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Figure 2. In the top row, the forward points of (0, 0) ∈ Γ(0, 0) in (a), (−1,−1) ∈ Γ(1, 1) and
(1/2, 0) ∈ Γ(2, 0) in (b), and (−1/2,−1) ∈ Γ(2, 1) and (1/2, 1/2) ∈ Γ(2, 2) in (c). In the bottom
row, the corresponding hierarchical hat functions.

i.e., that the coordinates of p⋆ =
(︀
𝑗1/2𝑛1−1, . . . , 𝑗𝑑/2𝑛𝑑−1

)︀
∈ 𝛷 are fractions in lowest terms (with 𝑛𝑘 = 0 if

𝑗𝑘 = 0). We define the forward points of p⋆ as the (≤ 2𝑑) elements of the discrete neighborhood

𝑈(p⋆) =
𝑑⋃︁

𝑘=1

{︀
p ∈ Γ(𝑛1, . . . , 𝑛𝑘−1, 𝑛𝑘 + 1, 𝑛𝑘+1, . . . , 𝑛𝑑), ‖p− p⋆‖ = 2−𝑛𝑘

}︀
= 𝒫 ∩

𝑑⋃︁
𝑘=1

{︀(︀
𝑝⋆
1, . . . , 𝑝

⋆
𝑘−1, 𝑝

⋆
𝑘 ± 2−𝑛𝑘 , 𝑝⋆

𝑘+1, . . . , 𝑝
⋆
𝑑

)︀}︀
.

Moreover, to each p⋆ satisfying (3.14), we associate a hierarchical hat function 𝜙p⋆ : 𝒫 → [0, 1] according to
the definition

𝜙p⋆(x) =
𝑑∏︁

𝑘=1

̂︀𝜙𝑝⋆
𝑘,𝑛𝑘

(𝑥𝑘), (3.15)

with ̂︀𝜙𝑝,0(𝑥) ≡ 1 and, for 𝑛 = 1, 2, . . .,

̂︀𝜙𝑝,𝑛(𝑥) =

{︃
1− 2𝑛−1 |𝑥− 𝑝| if |𝑥− 𝑝| < 21−𝑛,

0 if |𝑥− 𝑝| ≥ 21−𝑛.

By construction, 𝜙p⋆ is zero at all p′ ∈ 𝛷 of which p⋆ is a forward point (the backward points of p⋆), and also
at all backward points p′′ ∈ 𝛷 of such p′, etc., all the way back to p = 0. We show some two-dimensional
examples of forward points and of hierarchical hat functions in Figure 2.

We rely on hierarchical hat functions to cast piecewise-linear interpolation problems over subsets of sparse
grids. More precisely, given sample points 𝒫⋆ ⊂ 𝛷, and data {𝑓(p⋆)}p⋆∈𝒫⋆ , the piecewise-linear interpolant of
𝑓 based on samples at 𝒫⋆ is the unique element ̂︀𝑓𝒫⋆ of span{𝜙p⋆}p⋆∈𝒫⋆ which interpolates exactly the data:
this means that there exist unique coefficients {𝑐p⋆}p⋆∈𝒫⋆ , depending only on 𝒫⋆ and {𝑓(p⋆)}p⋆∈𝒫⋆ , such that

𝑓(p⋆) = ̂︀𝑓𝒫⋆(p⋆) =
∑︁

p′∈𝒫⋆

𝑐p′𝜙p′(p⋆) ∀p⋆ ∈ 𝒫⋆. (3.16)
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The desired Lagrangian basis (3.4) can then be found by setting the data as {𝑓(p⋆) = 𝛿p⋆p𝑙
}p⋆∈𝒫⋆ , with 𝛿

the Kronecker delta. We note that the expression of each hierarchical basis function (3.15) depends only on its
support point p⋆ ∈ 𝒫⋆, whereas the expression of each Lagrangian basis function (3.4) depends on the whole
support set 𝒫⋆.

Now we are ready to describe our adaptive technique, which is summarized in Algorithm 3.5. As in the
greedy selection of frequency samples (Algorithm 3.3), the adaptivity is achieved through a “look-ahead” idea,
although here the approach is rather heuristic: we use the forward points of the current training set as test set,
i.e., parameter values at which the accuracy of the current pROM is evaluated. If the surrogate model is too
inaccurate at some of the test points, they are added to the training set. This loop is repeated until a specified
tolerance is achieved at all current test points.

This approach, differently from the usual isotropic adaptive sparse grid sampling [5, 29], in general does not
add whole levels Γ(n), but only subsets of them. In fact, the training set is not even guaranteed to be downward-
closed, i.e., a point might be in the training set while some of its backward points are not. The matter of missing
backward points is discussed to some detail in [1, Section 3.2]. In the remainder of our presentation and in our
numerical experiments, we do not require missing backward points to be added to the training set, both for
simplicity of exposition and (mainly) to reduce the cost of the offline phase4. We remark that we are allowed
to work with a non-downward-closed training set because the error estimator driving our p-adaptivity does not
rely on interpreting the expansion coefficients 𝑐p′ in (3.16) as “hierarchical surpluses”, as is commonly done in
adaptive sparse grids [28]. As a side note, we observe that not including the backward points makes it necessary
to recompute the expansion coefficients (3.16) from scratch whenever new training points are added.

Within each iteration, in order to quantify the accuracy of the pROM at a test parameter value p, we use
the following strategy:
(a) We use the current pROM (whose training set does not include p, nor any of the other test points) to predict

the frequency response at p, using (3.3), where the weight functions 𝜓𝑘 are hierarchical hat functions (3.15)
built by piecewise-linear interpolation (3.16), cf. Remark 3.9.

(b) Through Algorithm 3.3, we build a frequency surrogate at p, which we take as “truth frequency response”
at p. This requires solving the full model at p, at as many frequency points as required by the 𝑧-greedy
procedure.

(c) We compare poles and residues of the two models by employing (3.8) as distance; this requires the solution
of a pole-matching problem.

For the sake of efficiency, it is crucial to observe that, over the different p-greedy iterations, function Build-
FrequencyROM may be called multiple times with the same argument (not only when the pROM is built
through pROM Train, see Algorithm 3.1, but also when evaluating the accuracy of the current model on the
test set). As long as memory is not an issue, one should store frequency surrogates built at previous p-greedy
steps, so that no expensive solve of the full model is wasted.

Remark 3.9. In (3.4), we have forced our pROM technique to reconstruct poles and residues only through
piecewise-linear hat functions. However, as discussed towards the end of Section 3.3, in some cases one may
want to employ a matching-free nearest-neighbor reconstruction. This is easily achieved by using the piecewise
constant basis (3.12) instead of hierarchical hat functions. In this case, to better account for the approximation
properties of interpolation basis, it is natural to employ Haar-type sparse grids [13, 28], which can be obtained
as in Section 3.4, replacing (3.13) by

Γ(𝑛) =

{︃
∅ if 𝑛 ≤ 0,
{21−𝑛𝑗}2

𝑛−1−1
𝑗=−2𝑛−1+1 if 𝑛 > 0.

This essentially corresponds to restricting the sparse grid points to the interior of 𝒫 .

4If one can afford a higher offline time, including backward points is advisable. However, we note that the increase in training
cost could be significant, since each sparse grid point in R𝑑 has up to 2𝑑 backward points, and a (costly) frequency model must be
built by MRI at each of them for error estimation.
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Algorithm 3.5 Adaptive parameter sampling
1: function pROM Adapt
2: Initialize 𝒫train ⊂ 𝛷 (with “few” elements), tol > 0
3: repeat ◁ Greedy loop
4: pROM← pROM Train(𝒫train) ◁ Algorithm 3.1
5: 𝒫test ← ForwardPointsOf(𝒫train) ∖𝒫train ◁ Update test set
6: 𝒫new

train ← { }
7: for p ∈ 𝒫test do
8: ROM← pROM(·,p) ◁ Predict surrogate at test point
9: ROM← BuildFrequencyROM(p) ◁ Build new surrogate at test point

10: if HeavisideDistance(ROM, ROM) > tol then ◁ Distance defined in (3.8)
11: 𝒫new

train ← 𝒫new
train ∪ {p}

12: end if
13: end for
14: 𝒫train ← 𝒫train ∪𝒫new

train

15: until 𝒫new
train = ∅

16: Optional : pROM← pROM Train(𝒫train ∪𝒫test) ◁ Remark 3.12
17: return pROM
18: end function

Whatever the reconstruction strategy in step (3.4), any of the methods presented in Section 3.3 can still be
applied as a post-processing step, at the end of the greedy loop. The reason for this additional computation
could be, for instance, a smoother representation of poles and residues, or the removal of eventual noise by
regularization. To this aim, we wish to stress that some care should be used when selecting the pole-residue
reconstruction strategy. Indeed, due to the local nature of the p-refinements, finer and coarser sampling regions
may arise, which, if not taken into account, could lead to a poorly-behaving reconstruction. For instance, global
polynomial interpolation over sampling points which are “too wild” can be an extremely ill-posed problem, due
to a large Lebesgue constant [33], whereas polynomial regression with low enough degree can be expected to
behave more nicely.

Remark 3.10. The strategy that we presented is heuristic. In particular, it does not guarantee that, at the
end of the greedy loop, the tolerance will be attained over the whole parameter domain, since we are using
a relatively small (and sparse) test set to quantify the approximation error. Representing (“sketching”) the
parameter domain by the test set can be justified only by assuming the resolution of the test set to be sufficiently
fine. However, in practice, this is usually computationally unfeasible (especially if the number of parameters is
large, due to the curse of dimensionality).

Remark 3.11. In [43], a somewhat similar 𝑝-adaptive approach was proposed, which, however, can be applied
only to the single-parameter case. While the adaptivity there was essentially “unidirectional”, adding samples
progressively from one end of 𝒫 to the other, here, through sparse grids, our approach acts more “isotropically”.

Remark 3.12. As in the frequency-adaptivity, see Remark 3.2, once the greedy iterations are over, we can
take advantage of the extra samples taken at test parameter points, and build a much richer pROM than the
one that satisfied the tolerance constraint. Here, this idea is even more attractive than for MRI, since the test
set can (and usually does) contain quite a large number of parameter values, as opposed to just 1.

4. Remarks on the smoothness of the Heaviside decomposition

Based on how smoothly the system matrices {𝐴,𝐵,𝐶,𝐸} in (2.1) depend on p, it is possible for the spectral
quantities {𝜆(𝑗),𝑚(𝑗), 𝑌 (𝑗)} in (2.2) to depend smoothly on p as well. More precisely, continuous dependence
is often passed on from matrices to Heaviside terms: small perturbations of the system matrices yield small
perturbations of the poles 𝜆(𝑗) and of the residues 𝑌 (𝑗), at least as long as multiplicities 𝑚(𝑗) are independent
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of p and poles do not cross. However, inheritance of analytic dependence cannot in general be guaranteed, since
(polynomial) branches may naturally arise when poles cross. We refer to [37, Chapter 12] for an introductory
discussion on the topic, and we report here two simple representative examples.

4.1. A toy example of mode steering

First, we showcase some of the intrinsic difficulties in dealing with crossing or almost crossing poles, even in
the absence of bifurcations. The example below was obtained by generalizing a numerical test from [3].

For some fixed 𝜀 ∈ R, set 𝑑 = 1 and take

𝐴𝑝 =
[︂
2𝑝 𝜀
𝜀 0

]︂
, 𝐵𝑝 =

[︂
1
0

]︂
, and 𝐶𝑝 = 𝐸𝑝 =

[︂
1 0
0 1

]︂
(4.1)

as the matrices defining a parametric dynamical system of the form (2.1), which depend smoothly on 𝑝 ∈ R
(and 𝜀). The system output can be explicitly computed as

𝑌 (𝑧, 𝑝; 𝜀) =
[︂
𝑧 − 2𝑝 −𝜀
−𝜀 𝑧

]︂−1 [︂
1
0

]︂
=

1
𝑧2 − 2𝑝𝑧 − 𝜀2

[︂
𝑧
𝑝2

]︂
=

𝑌
(1)
𝑝

𝑧 − 𝜆
(1)
𝑝

+
𝑌

(2)
𝑝

𝑧 − 𝜆
(2)
𝑝

,

where the poles and residues are

𝜆(1,2)
𝑝 = 𝑝±

√︀
𝑝2 + 𝜀2 and 𝑌 (1,2)

𝑝 =
1
2

[︃
1± 𝑝√

𝑝2+𝜀2

± 𝜀√
𝑝2+𝜀2

]︃
. (4.2)

From (4.2), it is not difficult to conclude that, if 𝜀 = 0, the two poles coincide for 𝑝 = 0. However, for fixed
𝜀, this degeneracy does not have a negative impact on the smoothness of the Heaviside decomposition5, since
the poles remain simple:

𝑌 (𝑧, 𝑝; 𝜀 = 0) =
1

𝑧 − 2𝑝

[︂
1
0

]︂
+

1
𝑧

[︂
0
0

]︂
. (4.3)

We illustrate how the pole-matching algorithm performs in this simple example, using the exact Heaviside
expansion (4.2) in place of the frequency surrogates one would obtain, e.g., via MRI. First, we fix 𝜀 = 0, and
consider the two parameter values 𝑝1 = −1 and 𝑝2 = 1, where the Heaviside expansions of 𝑌 are

𝑌 (𝑧, 𝑝1; 0) =
1

𝑧 + 2

[︂
1
0

]︂
+

1
𝑧

[︂
0
0

]︂
and 𝑌 (𝑧, 𝑝2; 0) =

1
𝑧 − 2

[︂
1
0

]︂
+

1
𝑧

[︂
0
0

]︂
. (4.4)

We depict poles and residues in Figure 3. If the matching is accurate, pole 0 should be matched with itself, and
−2 with 2.

As described in Section 3.2, the matching criterion can be stated in terms of the cost matrix (3.9), which
here equals

𝐷 =
[︂

4 2 + 𝑤
2 + 𝑤 0

]︂
. (4.5)

This means that matching −2 with 2 and 0 with itself has cost 4, whereas matching −2 with 0 and 0 with 2
has cost 4 + 2𝑤. Hence, as long as 𝑤 > 0, the algorithm performs the correct matching and recovers the exact
response. However, if 𝑤 = 0, the two costs are the same, and any matching is allowed.

5Interestingly, the joint dependence on 𝑝 and 𝜀 is non-smooth. Indeed, by comparing (4.3) and

𝑌 (𝑧, 0; 𝜀) =
1/2

𝑧 − 𝜀

[︂
1
1

]︂
+

1/2

𝑧 + 𝜀

[︂
1
−1

]︂
,

we observe that the residues are discontinuous at (𝑝, 𝜀) = (0, 0). However, it is important to note that, while discontinuous, the
residues stay uniformly bounded, since the matrix 𝐴𝑝 is real symmetric, hence diagonalizable, for all (𝑝, 𝜀) ∈ R2.
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Figure 3. Example of pole-matching for 𝜀 = 0, with correct (a) and incorrect (b) matching;
the residues at a few points, reconstructed by linear interpolation, are represented as small
arrows. Missing arrows denote zero residues. Option (a) reconstructs the correct values exactly.
Option (b) can happen only if 𝑤 = 0.

Figure 4. Example of pole-matching for 𝜀 = 1/2: exact solution (a), and pole-dominated
(b) and residue-dominated (c) matching; the residues at a few points, reconstructed by linear
interpolation for (b) and (c), are represented as small arrows.

The matching becomes less trivial if 𝜀 ̸= 0. For instance, let 𝜀 = 1/2. We represent graphically poles and
residues in Figure 4(a). By building the cost matrix (3.9) in this case (we omit the calculation here), we can
conclude that the optimal matching changes depending on whether 𝑤 >

< 5 − 2
√

5 ≃ 0.53: if poles have more
importance than residues (i.e., 𝑤 is small), the surrogate poles do not cross, see Figure 4(b), whereas they do
if the weight of residues is dominant (i.e., 𝑤 is large), see Figure 4(c).

At least qualitatively, case (b) appears to be a slightly better approximation of the poles and residues of the
system. Still, neither of the surrogates (b) and (c) identifies the pole-residue behavior in a satisfactory way, and
only adding more sample points (starting from 𝑝3 = 0) will allow for a significant improvement in the quality
of the approximation.

4.2. A toy example of bifurcation

In this section we show a deceptively simple example of bifurcation, which, in practical applications, may
arise due to unfavorable spectral properties of the problem (e.g., local non-diagonalizability).

Fix a small 𝜀, and consider the scalar problem with a single parameter

𝑌 (𝑧, 𝑝; 𝜀) =
(︀
𝑧2 − 𝑝+ 𝜀

)︀−1
. (4.6)
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Figure 5. Real (full line) and imaginary (dashed line) parts of the exact roots of 𝑧2 − 𝑝 + 𝜀,
for 𝜀 = 1/5, with respect to 𝑝 ∈ [−1, 1] (a). Surrogate roots from combinations of 2 (b) and 8
(c) 𝑧-surrogates.

For 𝑝 ̸= 𝜀, the corresponding Heaviside expansion is readily found:

𝑌 (𝑧, 𝑝; 𝜀) =
1/(2

√
𝑝− 𝜀)

𝑧 −
√
𝑝− 𝜀

− 1/(2
√
𝑝− 𝜀)

𝑧 +
√
𝑝− 𝜀

, (4.7)

whereas, for 𝑝 = 𝜀, 𝑌 (𝑧, 𝜀; 𝜀) = 𝑧−2, with a double pole at 0. We can see that the poles are non-smooth (as
functions of 𝑝) at 𝑝 = 𝜀, where they exhibit a bifurcation of degree 2, see Figure 5(a). Moreover, the residues are
not only discontinuous at 𝑝 = 𝜀, but also unbounded there. This is due to the poles transitioning from single to
double.

We apply our pMOR approach in this simple example, assuming, for simplicity, that the surrogate poles and
residues coincide with the exact ones. If only the two parameter values 𝑝1 = −1 and 𝑝2 = 1 are considered, the
pROM will inevitably fail to identify (𝑝, 𝑧) = (𝜀, 0) as a branch point. Indeed, our method “follows” separately
the evolution with respect to 𝑝 of each pole. Consequently, the degree of each denominator in the Heaviside
expansion (3.1) is kept equal to 1 even when crossing the singularity. The result, displayed in Figure 5(b), shows
two surrogate pole lines which miss the branch point by “twisting” around it in the complex plane. Of course,
as soon as more parameter points are added, the approximation quality improves significantly: in particular, if
𝑝-adaptivity is applied in this case, a progressively more accurate approximation of the exact poles is built as
the greedy iterations proceed, see Figure 5(c).

It is important to remark that the structure of this kind of bifurcation would be much better identified by
grouping together all of the involved branches, i.e., by merging several terms of the Heaviside decomposition into
a single fraction with denominator degree > 1 (here, 2) and coefficients smoothly dependent on the parameter,
cf. the exact expression (4.6). This approach is implicitly applied by most methods based on global rational
interpolation, e.g., [18, 20, 24], which, in fact, do not rely on the Heaviside decomposition of the output (2.2),
but on its rational form

𝑌 (𝑧,p) = 𝐶p (𝑧𝐸p −𝐴p)−1
𝐵p =

𝑃 (𝑧,p)
𝑄(𝑧,p)

,

where 𝑄 is a polynomial in 𝑧 of degree ≤ 𝑛𝑆 , with p-dependent coefficients. Procedures to integrate global
rational interpolation concepts in our approach are being investigated, with the objective of improving the
effectiveness in the approximation of non-smooth poles and residues. A possible idea revolves around a “batch-
matching” of poles and residues (matching few-to-few instead of 1-to-1), which would allow an exact recovery
of the simple bifurcation in the example above.

Before proceeding, we wish to briefly discuss what happens when a parameter sample point is added exactly
at the branch point, which is the case, e.g., if 𝜀 = 0 and we place a parameter sample at 𝑝 = 0. In such situations,
there are two possibilities:
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– The frequency surrogate (built, e.g., by MRI) identifies the double pole correctly. In this case, a simple
Heaviside decomposition of the form (3.1) does not exist and our algorithm, as we presented it, fails. The
batch-matching approach mentioned above (currently under investigation) would allow dealing in a natural
way with this case.

– The frequency surrogate mistakenly identifies the double pole as a couple of very close simple poles, whose
residues have a large magnitude as a result, cf. (4.7). In this case, we may compute a Heaviside decomposition
of the form (3.1), and proceed as usual with the pMRI algorithm. However, due to the unboundedness of
the residues, the approximation quality may be locally sub-optimal near the branch point.

We remark that, due to round-off noise (in the computation of the snapshots, in the MRI procedure, and in the
Heaviside decomposition), the latter case is much more likely to present itself in practice.

5. Numerical examples

We report in this section two numerical tests as evidence of the effectiveness of our technique. Our simulations
were performed on the Helvetios cluster at EPFL [38]. For the sake of reproducibility, the corresponding code
has been made available in [30].

5.1. Laplacian eigenvalues on a parametric rectangle

In this section we study a somewhat academic application in the field of PDEs for 𝑑 = 1, which was originally
considered in [39]. Given (𝑘,𝐻) ∈ C × R+, we take the following Helmholtz equation on the rectangle Ω𝐻 =
]0, 1[× ]0, 𝐻[ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
(︀
∆ + 𝑘2

)︀
𝑣𝑘,𝐻(𝑥1, 𝑥2) = 𝑓(𝑥1, 𝑥2/𝐻) for (𝑥1, 𝑥2) ∈ Ω𝐻 ,

𝑣𝑘,𝐻(𝑥1, 0) = 0 for 𝑥1 ∈ ]0, 1[
𝜕𝑥2𝑣𝑘,𝐻(𝑥1, 𝐻) = cos(𝜋𝑥1)/𝐻 for 𝑥1 ∈ ]0, 1[
𝜕𝑥1𝑣𝑘,𝐻(0, 𝑥2) = 𝜕𝑥1𝑣𝑘,𝐻(1, 𝑥2) = 0 for 𝑥2 ∈ ]0, 𝐻[,

(5.1)

with 𝑓 : ]0, 1[2→ R a piecewise constant forcing term (see [39, Section 4.1] for the exact expression). Given how
simply the geometry and the data of the problem depend on the parameter, we can recast (5.1) on the reference
domain Ω1 = ]0, 1[2 to make the parametric dependence emerge more clearly:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
(︀
𝜕2

𝑥1𝑥1
+𝐻−2𝜕2

𝑥2𝑥2
+ 𝑘2

)︀
𝑢𝑘,𝐻(𝑥1, 𝑥2) = 𝑓(𝑥1, 𝑥2) for (𝑥1, 𝑥2) ∈ Ω1

𝑢𝑘,𝐻(𝑥1, 0) = 0 for 𝑥1 ∈ ]0, 1[
𝜕𝑥2𝑢𝑘,𝐻(𝑥1, 1) = cos(𝜋𝑥1) for 𝑥1 ∈ ]0, 1[
𝜕𝑥1𝑢𝑘,𝐻(0, 𝑥2) = 𝜕𝑥1𝑢𝑘,𝐻(1, 𝑥2) = 0 for 𝑥2 ∈ ]0, 1[.

(5.2)

By inspection of the PDE above, we infer that (𝑧, 𝑝) := (𝑘2, 𝐻−2) is a good choice of parameters to study (5.2).
We set as frequency and parameter ranges 𝑍 = [10, 50] and 𝒫 = [0.2, 1.2], respectively.

After spatial discretization by FEM on a regular mesh with 𝑛𝑆 degrees of freedom, we obtain an algebraic
problem of the form

(𝐾1 + 𝑝𝐾2 − 𝑧𝑀)𝑈(𝑧, 𝑝) = 𝑏, (5.3)

where 𝐾1, 𝐾2, and 𝑀 are 𝑛𝑆×𝑛𝑆 matrices, and 𝑈(𝑧, 𝑝) and 𝑏 are vectors of size 𝑛𝑆 (here, we choose 𝑛𝑆 = 10201).
We remark that (5.3) is in the form of a dynamical system (2.1) with 𝐵𝑝 = 𝑏. In order to conform to the functional
setting of the PDE, we choose as norm over 𝑉 the functional L2 norm, which, in the discrete setting, corresponds
to the energy norm induced by 𝑀 : ‖ · ‖𝑉 =

⃦⃦
𝑀1/2 ·

⃦⃦
2
. The functional H1

0 or (𝑘-weighted) H1 norms are also
viable options; in our experience, the results of the simulation are barely affected by the choice of the norm.

We set as our target the FEM solution 𝑈(𝑧, 𝑝), i.e., we fix 𝐶𝑝 = 𝐼, the identity matrix, in (2.1). The poles of
the Heaviside decomposition of 𝑈 gain additional importance as FEM approximations of the eigenvalues of the
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Figure 6. Analytic poles (5.4) of problem (5.1) (⋆). Surrogate poles obtained via double-greedy
pMOR, with tol(𝑖)synth, tol(𝑖𝑖)synth, and tol(𝑖𝑖𝑖)synth.

Figure 7. In the top row, new parameter samples added via greedy loop with tol(𝑖)synth, tol(𝑖𝑖)synth,

and tol(𝑖𝑖𝑖)synth. Thicker lines are used to denote the test set. The maximum error at each greedy
iteration (measured by HeavisideDistance in Algorithm 3.5) is shown in the bottom row.

Laplace operator on the parametric domain Ω𝐻 . Due to our choice of domain, such eigenvalues6 are actually
available in closed form: {︃

𝜋2𝑘2 +
𝜋2

𝐻2

(︂
ℓ+

1
2

)︂2

, 𝑘, ℓ = 0, 1, . . .

}︃
, (5.4)

see Figure 6 (⋆). We use the exact expression of the poles (5.4) to validate the results obtained by our double-
greedy pMOR technique.

We employ the following computational setup:

– The frequency and parameter training sets are initialized as 3 equispaced points in 𝑍 and 𝒫, respectively,
whereas the frequency test set contains 100 equispaced points in 𝑍.

6The set (5.4) denotes the exact spectrum of the Laplace operator, without considering the FEM discretization. However, since
the mesh is fine enough (the wavenumber 𝑘 is low and the mesh size is smaller than 𝑘−2 [23]), we expect the FEM eigenvalues and
eigenvectors to be close to the analytic ones.
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Figure 8. On the left, the dashed line represents the surrogate solution norm ‖𝑈‖ obtained
by double-greedy pMOR at 𝑝⋆. On the right, the dashed line represents the solution norm of
the closest 𝑧-surrogate (at 𝑝⋆

close). In both cases, the solid line is the exact norm, whereas the
dotted line is the absolute error ‖𝑈 − pROM‖.

– For MRI, Legendre polynomials are employed, whereas global monomials of degree 2 are used to interpolate
(in a least squares sense) poles and residues after the greedy loop, in a post-processing “compression” step.

– After both frequency and parameter greedy loops, the information at the test points is not wasted, but
included in the final surrogates, see Remarks 3.2 and 3.12. After the frequency greedy loops, we remove from
the frequency surrogates any pole whose distance from 𝑍 is larger than 20, see Remark 3.3.

– The matching weight 𝑤 is set to 1. The frequency and parameter greedy tolerances are set to 10−4 and 10−2,
respectively.

On top of this, we consider three different choices for the tolerance tolsynth, which is employed to deal with
unbalanced matching, see Algorithm 3.4:

(𝑖) tol(𝑖)synth = 0: all synthetic poles are kept.

(𝑖𝑖) tol(𝑖𝑖)synth = 1: all synthetic poles are removed.

(𝑖𝑖𝑖) tol(𝑖𝑖𝑖)synth = 1/2: synthetic poles are removed only if they account for the majority of the information about
a pole.

Also, after the pole-matching has been completed, we improve the synthetic poles by extrapolating via global
degree 2 monomials the non-synthetic poles, see Remark 3.7. This affects only tol(𝑖,𝑖𝑖𝑖)synth .

We show the surrogate poles in Figure 6. In all cases, we can observe that the pole-crossings are handled well
by the matching algorithm. This is likely due to the fact that residue information is taken into account (𝑤 > 0),
cf. Section 4.1.

In case (𝑖), one erroneous pole crosses the frequency range 𝑍 for small 𝑝. This is not caused by spurious poles
being present in the frequency surrogates, but by an inaccurate matching of correct poles lying on different sides
of 𝑍. Due to the strict tolerance in case (𝑖𝑖), the pROM is blind to most of the poles which are not uniformly
inside 𝑍. Instead, the hybrid approach (𝑖𝑖𝑖) achieves a good compromise, missing only one pole that leaves 𝑍
“too quickly” on the bottom right.

The “hystory” of Algorithm 3.5, namely the location of the new samples and the magnitude of the greedy
error indicator, is portrayed in Figure 7. In the less strict cases (𝑖) and (𝑖𝑖𝑖), the algorithm correctly identifies the
“busiest” region of 𝒫, i.e., small values of 𝑝, as critical for a good approximation. This results in local refinements
near 𝑝 = 0.2. Instead, case (𝑖𝑖) only performs global refinements before terminating. This is actually a symptom
of a general (undesirable) property of Algorithm 3.5: if tolsynth is too large, pole-residue pairs might be removed
too “aggressively” from the surrogate, so that the p-greedy termination criterion based on the Heaviside distance
(3.8) contains only a few terms. This, in turn, yields a smaller Heaviside distance, which is more likely to satisfy
the prescribed p-greedy tolerance, potentially leading to an early termination. The simplest solution is to reduce
tolsynth. Alternatively, one could partition the parametric domain 𝒫 =

⋃︀
𝑖 𝒫𝑖, and then build a different pMOR
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Table 1. Simulation details about the example in Section 5.1.

(𝑖) (𝑖𝑖) (𝑖𝑖𝑖)

tolsynth 0 1 1/2
𝑝-greedy iterations 5 2 4

𝑝 samples 19 9 17
Full model solves 258 109 224

Number of poles (at each 𝑝) 14 4 10
Synthetic poles (over all 𝑧-surrogates) 81 (out of 266) 0 (out of 36) 22 (out of 170)

surrogate on each parameter sub-domain 𝒫𝑖, see, e.g., [21]. On each sub-domain, it is less likely that a relevant
pole will be discarded due to it being “too often” synthetic, cf. Section 3.2.1. This second approach is more
costly (especially if 𝒫 is large and/or high-dimensional), but is particularly advantageous when the poles move
very quickly through the parametric domain (i.e., if the gradient ∇p𝜆 is large).

In Figure 8 (left), we compare exact and surrogate models at the point 𝑝⋆ = 0.425. For simplicity, we only
consider the best surrogate, obtained with tol(𝑖𝑖𝑖)synth. The approximation seems of good quality, with pole locations
and residue magnitudes being identified extremely well, and the approximation error is small. In particular, the
results seem better than those obtained by using the closest frequency surrogate (i.e., the MRI built at the
element of 𝒫train closest to 𝑝⋆, namely, 𝑝⋆

close = 0.41875), see Figure 8 (right).
We also report a summary of the execution of the method and of the resulting pROM in Table 1. Our

results agree with the main motivation behind the introduction of tolsynth, namely that it should control how
to deal with uncertain or missing information, resulting in richer (but also more noise-prone) or poorer (here,
insufficient) surrogates.

5.2. Transmission line with high-dimensional parameter space

Our last numerical example concerns the analysis of the admittance parameters of the 3-port transmission
tree depicted in Figure 9. A motivation and similar tests can be found, e.g., in [19]. Each branch is composed
of a series of unit RLC cells: the “main” branch contains 400 cells, whereas the “up” and “down” branches
contain 200 cells each. Resistance, inductance, and capacitance vary between cells: more precisely, if we restrict
our focus to the main branch, the values of 𝑅, 𝐿, and 𝐶 of the 𝑗-th cell are, for all 𝑗 = 1, . . . , 400,

𝑅main,𝑗 = (1 + 𝜉main,𝑗
𝑅 + 𝑝main

𝑅 ) · 5 mΩ,

𝐿main,𝑗 = (1 + 𝜉main,𝑗
𝐿 + 𝑝main

𝐿 ) · 0.25 nH,

𝐶main,𝑗 = (1 + 𝜉main,𝑗
𝐶 + 𝑝main

𝐶 ) · 0.25 pF.

We employ 𝜉 to model random fluctuations of the nominal values in each cell, drawn from a uniform distribution
with values between −0.2 and 0.2. Such random values are fixed once and for all during the initialization of the
model: we do not consider them as parameters in our analysis. Instead, the parameters 𝑝 denote branch-wide
(independent of 𝑗) variations of the nominal values, and are envisioned to vary between −0.1 and 0.1. For
𝑗 = 1, . . . , 200, the values of resistance, inductance, and capacitance in the secondary branches have the same
expressions, with the subscript “main” being replaced by “up” and “down” for the top and bottom branches,
respectively.

We consider the frequency range 𝑍 = [0, 8] GHz, and, as parameters in our pMOR approach, we take the
9-dimensional vector

p = (𝑝main
𝑅 , 𝑝main

𝐿 , 𝑝main
𝐶 , 𝑝up

𝑅 , 𝑝up
𝐿 , 𝑝up

𝐶 , 𝑝down
𝑅 , 𝑝down

𝐿 , 𝑝down
𝐶 ) ∈ [−0.1, 0.1]9 = 𝒫 .
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Figure 9. Transmission line network diagram (left) and circuit representation of a unit cell (right).

Table 2. Simulation details about the example in Section 5.2.

p-greedy iterations 6
p samples 457

Full model solves 9008
Number of poles (at each p) 14

Synthetic poles (over all 𝑧-surrogates) 183 (out of 6398)

The admittance parameters can be found by solving a system of the form (2.1), obtained by Modified Nodal
Analysis: in particular,

𝐴p = 𝐴0 + 𝑝main
𝑅 𝐴main + 𝑝up

𝑅 𝐴up + 𝑝down
𝑅 𝐴down,

𝐸p = 𝐸0 + 𝑝main
𝐿 𝐸main

𝐿 + 𝑝up
𝐿 𝐸up

𝐿 + 𝑝down
𝐿 𝐸down

𝐿 + 𝑝main
𝐶 𝐸main

𝐶 + 𝑝up
𝐶 𝐸up

𝐶 + 𝑝down
𝐶 𝐸down

𝐶 ,

while 𝐵p = 𝐵 and 𝐶p = 𝐶 are independent of p. In our case, the state 𝑋, which contains currents and voltages
within the circuit, is a matrix of size 1603× 3, whereas the output 𝑌 (the admittance matrix) has size 3× 3.

Our MOR setup for Algorithm 3.5 is as follows:

– The frequency training set is initialized to the order 10 Chebyshev points of 𝑍, whereas the frequency test
set contains 100 equispaced points in 𝑍; the parameter training set is initialized to 19 points in 𝒫 : the origin
p = 0 and its 18 forward points.

– For MRI, Legendre polynomials are employed, whereas piecewise linear hat functions are used to interpolate
poles and residues.

– After both frequency and parameter greedy loops, the information at the test points is not wasted, but
included in the final surrogates, see Remarks 3.2 and 3.12. After the frequency greedy loops, we remove from
the frequency surrogates any pole whose distance from 𝑍 is larger than 2 GHz, see Remark 3.3.

– The matching weight 𝑤 is set to 1; the frequency and parameter greedy tolerances are set to 10−3 and 10−2,
respectively; the tolerance for unbalanced matching tolsynth is set to 3/4.

We show a summary of the results of the offline training in Table 2.
In Figure 10 we compare exact and surrogate models at the randomly chosen point

p⋆ = (−0.04,−0.08,−0.03,−0.01, 0.07,−0.09,−0.05, 0.03, 0.02). (5.5)

For simplicity, we only show the magnitude of the admittance between ports I and U. The quality of the
approximation appears good, with pole locations and residue magnitudes being identified well. In particular,
the results seem better than those obtained by using the closest frequency surrogate (i.e., the MRI built at the
element of 𝒫train closest to p⋆, namely, p⋆

close = [0,−0.1, 0, 0, 0,−0.1, 0, 0, 0]).
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Figure 10. On the left, the dashed line represents the surrogate magnitude of the admittance
𝑌IU obtained by double-greedy pMOR at p⋆. On the right, the dashed line represents the
admittance magnitude of the closest 𝑧-surrogate (at p⋆

close). In both cases, the exact magnitude
is denoted by a solid line, and the absolute error by a dotted line.

Figure 11. Plot of |𝑌UD| (in dB) for p as in (5.6): exact (left) and surrogate via pMOR (right).
The color scale is the same for both plots.

We look at a more global picture in Figure 11. We let p vary along a diagonal line between the two vertices
(0.1, 0.1, 0.1,−0.1,−0.1, . . . ,−0.1) and (−0.1,−0.1,−0.1, 0.1, 0.1, . . . , 0.1):

𝑝main
𝑅,𝐿,𝐶 = −0.1𝜃 and 𝑝up

𝑅,𝐿,𝐶 = 𝑝down
𝑅,𝐿,𝐶 = 0.1𝜃, (5.6)

with 𝜃 an auxiliary parameter. We plot the magnitude of the admittance between the two output ports for
𝑧 ∈ 𝑍 and 𝜃 ∈ [−1, 1]. Two different models are considered:

– The exact full order model (2.1).
– The surrogate obtained via double-greedy pMOR.

In Figure 11, we can observe that the exact admittance has 10 poles (darker lines) in the frequency range, some
of which cross, and which, overall, create quite an intricate pattern. Still, the double-greedy pMOR surrogate
seems to identify well the behavior of the quantity of interest, at least qualitatively. As could be expected, the
quality of the approximation degrades slightly around pole intersections. A similar decrease in the accuracy of
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Figure 12. Histogram of the p-greedy error indicator (measured by HeavisideDistance
in Algorithm 3.5) between pMOR surrogate and local (high fidelity) MRI surrogate at 100
verification parameters, not belonging to the training or test sets of the pMOR surrogate.

the surrogate can be observed also near the boundary of the parameter domain, since the two vertices of 𝒫
obtained for 𝜃 = −1 and 𝜃 = 1 are not elements of 𝒫train.

To conclude the experiment, we also perform the following verification of the p-greedy tolerance employed to
build the surrogate: we select 100 quasi-random (Halton) parameter points in 𝒫 , outside the training and test
sets of the pMOR surrogate. At each such point p, we build a reference frequency surrogate by 𝑧-adaptive MRI
with the same parameters as above (10 Chebyshev points as starting training set, 𝑧-greedy tolerance of 10−3).
Note that we only use new snapshots at p to build this reference model. Then we compare this model with the
prediction given by our pMOR surrogate, obtained by simply plugging the value of p in (3.3). We make this
comparison quantitative through the Heaviside distance (3.8), which is also the metric driving the p-adaptivity,
cf. Algorithm 3.5. We plot the results in the form of a histogram in Figure 12. We can observe that 80% of the
verification points lie below the prescribed tolerance and that 99% of them lie below 1.5 times the tolerance.
Considering the discrete (sparse grid) nature of the test set, it is reasonable to expect that the tolerance will
not be attained everywhere. In this context, we find our results satisfactory since they show that, even in the
few cases where the tolerance is not satisfied, the error indicator is still within a small margin of the tolerance.

6. Conclusions and outlook

We have described the double-greedy pMOR approach for non-intrusive surrogate modeling of parametric
problems, which samples adaptively in both frequency space and (potentially high-dimensional) parameter
domain. In particular, the selection of parameter samples advances by trying to make the surrogate error small
over a growing test set. We have illustrated with numerical examples the effectiveness of the method. Notably,
we have shown that an accurate identification of number and behavior of poles and residues depends critically on
some hyper-parameters (𝑤 and tolsynth) and, more generally, on the choice of a good strategy for interpolation
over parameter space.

Among the several issues which remain unanswered we can find the following:

– Thanks to the degree of freedom provided by tolsynth, the proposed heuristic strategy for unbalanced match-
ing is reasonably flexible. Still, it is unclear whether an “optimal” choice of this tolerance exists and, if it
does, how to find it for a given application, since it depends on quantities unavailable a priori.

– In Section 4, we have showcased some of the difficulties related to intersecting poles, in particular the
potentially discontinuous behavior of residues. Applying the double-greedy approach in this case may yield
inadequate surrogates, with the risk of a large number of iterations of the greedy loop. However, we have
observed no such issues in our latter two numerical examples, despite multiple pole intersections. This is
likely due to the beneficial spectral properties of the full order problems that we considered.

– Issues similar to those discussed in the previous point are also possible (to a larger degree) in the case of
multiple poles, even though, as discussed in Section 4, this case is quite unlikely to present itself thanks
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to numerical noise. On one hand, this problem should be partially addressed by MRI: for instance, when
building the frequency surrogate, it should be possible to determine whether two poles are a noisy double
pole or a couple of single poles. On the other hand, our pMOR algorithm should be extended to allow dealing
with multiple poles, without compromising the overall complexity of the algorithm. Both of these directions
are object of ongoing research.

Acknowledgements. The authors acknowledge support from the Swiss National Science Foundation through project
182236.
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