Gradient discretization of two-phase poro-mechanical models with discontinuous pressures at matrix fracture interfaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1741-1777

We consider a two-phase Darcy flow in a fractured and deformable porous medium for which the fractures are described as a network of planar surfaces leading to so-called hybrid-dimensional models. The fractures are assumed open and filled by the fluids and small deformations with a linear elastic constitutive law are considered in the matrix. As opposed to [F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Comput. Math. with Appl. 98 (2021)], the phase pressures are not assumed continuous at matrix fracture interfaces, which raises new challenges in the convergence analysis related to the additional interfacial equations and unknowns for the flow. As shown in [K. Brenner, J. Hennicker, R. Masson and P. Samier, J. Comput. Phys. 357 (2018)], [J. Aghili, K. Brenner, J. Hennicker, R. Masson and L. Trenty, GEM – Int. J. Geomath. 10, (2019)], unlike single-phase flow, discontinuous pressure models for two-phase flows provide a better accuracy than continuous pressure models even for highly permeable fractures. This is due to the fact that fractures fully filled by one phase can act as barriers for the other phase, resulting in a pressure discontinuity at the matrix fracture interface. The model is discretized using the gradient discretization method [J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin, Springer, Mathematics & Applications, 82 (2018)], which covers a large class of conforming and non conforming schemes. This framework allows for a generic convergence analysis of the coupled model using a combination of discrete functional tools. In this work, the gradient discretization of [F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Comput. Math. with Appl. 98 (2021)] is extended to the discontinuous pressure model and the convergence to a weak solution is proved. Numerical solutions provided by the continuous and discontinuous pressure models are compared on gas injection and suction test cases using a Two-Point Flux Approximation (TPFA) finite volume scheme for the flows and ℙ2 finite elements for the mechanics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021036
Classification : 65M12, 76S05, 74B10
Keywords: Poro-mechanics, discrete fracture matrix models, two-phase Darcy flows, discontinuous pressure model, gradient discretization method, convergence analysis
@article{M2AN_2021__55_5_1741_0,
     author = {Bonaldi, Francesco and Brenner, Konstantin and Droniou, J\'er\^ome and Masson, Roland and Pasteau, Antoine and Trenty, Laurent},
     title = {Gradient discretization of two-phase poro-mechanical models with discontinuous pressures at matrix fracture interfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1741--1777},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/m2an/2021036},
     mrnumber = {4313376},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021036/}
}
TY  - JOUR
AU  - Bonaldi, Francesco
AU  - Brenner, Konstantin
AU  - Droniou, Jérôme
AU  - Masson, Roland
AU  - Pasteau, Antoine
AU  - Trenty, Laurent
TI  - Gradient discretization of two-phase poro-mechanical models with discontinuous pressures at matrix fracture interfaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1741
EP  - 1777
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021036/
DO  - 10.1051/m2an/2021036
LA  - en
ID  - M2AN_2021__55_5_1741_0
ER  - 
%0 Journal Article
%A Bonaldi, Francesco
%A Brenner, Konstantin
%A Droniou, Jérôme
%A Masson, Roland
%A Pasteau, Antoine
%A Trenty, Laurent
%T Gradient discretization of two-phase poro-mechanical models with discontinuous pressures at matrix fracture interfaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1741-1777
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021036/
%R 10.1051/m2an/2021036
%G en
%F M2AN_2021__55_5_1741_0
Bonaldi, Francesco; Brenner, Konstantin; Droniou, Jérôme; Masson, Roland; Pasteau, Antoine; Trenty, Laurent. Gradient discretization of two-phase poro-mechanical models with discontinuous pressures at matrix fracture interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 5, pp. 1741-1777. doi: 10.1051/m2an/2021036

[1] R. A. Adams and J. F. Fournier, Sobolev spaces, 2nd edition. Vol. 140 of Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam, (2003). | MR | Zbl

[2] J. Aghili, K. Brenner, J. Hennicker, R. Masson and L. Trenty, Two-phase discrete fracture matrix models with linear and nonlinear transmission conditions. GEM – Int. J. Geomath. 10 (2019) 1. | MR | DOI

[3] R. Ahmed, M. G. Edwards, S. Lamine, B. A. H. Huisman and M. Pal, Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. J. Comput. Phys. 303 (2015) 470–497. | MR | DOI

[4] C. Alboin, J. Jaffre, J. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media. Fluid Flow Trans. Porous Media 295 (2002) 13–24. | MR | Zbl

[5] O. Angelini, K. Brenner and K. Hilhorst, A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation. Numerische Mathematik 123 (2013) 219–257. | MR | Zbl | DOI

[6] P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. | MR | Zbl | Numdam | DOI

[7] P. F. Antonietti, L. Formaggia, A. Scotti, M. Verani and N. Verzott, Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50 (2016) 809–832. | MR | Zbl | Numdam | DOI

[8] L. Beirão Da Veiga, F. Brezzi and L. D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | MR | Zbl | DOI

[9] I. I. Bogdanov, V. V. Mourzenko, J.-F. Thovert and P. M. Adler, Two-phase flow through fractured porous media. Phys. Rev. E 68 (2003) 026703. | MR | DOI

[10] F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Gradient discretization of two-phase flows coupled with mechanical deformation in fractured porous media. Comput. Math. with Appl. 98 (2021) 40–68. | MR | DOI

[11] F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Two-phase darcy flows in fractured and deformable porous media, convergence analysis and iterative coupling. In: Vol. 2020 of Conference Proceedings, ECMOR XVII, Eur. Assoc. Geosci. Eng. (2020). 1–20.

[12] K. Brenner, M. Groza, C. Guichard and R. Masson, Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media. ESAIM: M2AN 49 (2015) 303–330. | MR | Numdam | Zbl | DOI

[13] K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media. Numerische Mathematik 134 (2016) 569–609. | MR | DOI

[14] K. Brenner, J. Hennicker, R. Masson and P. Samier, Gradient Discretization of Hybrid Dimensional Darcy Flows in Fractured Porous Media with discontinuous pressure at matrix fracture interfaces. IMA J. Numer. Anal. 37 (2017) 1551–1585. | MR

[15] K. Brenner, J. Hennicker, R. Masson and P. Samier, Hybrid dimensional modelling of two-phase flow through fractured with enhanced matrix fracture transmission conditions. J. Comput. Phys. 357 (2018) 100–124. | MR | DOI

[16] K. Brenner, J. Droniou, R. Masson and E. H. Quenjel, Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure. IMA J. Numer. Anal. (2020)33p (to appear). | MR

[17] O. Coussy Poromechanics. John Wiley & Sons (2004).

[18] F. Dam, R. Eymard, D. Hilhorst, M. Mainguy and R. Masson, A preconditioned conjugate gradient based algorithm for coupling geomechanical-reservoir simulations. Oil & Gas Sci. Technol. – Rev. IFP 57 (2002) 515–523. | DOI

[19] D. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | MR | DOI

[20] D. Di Pietro and S. Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84 (2015) 1–31. | MR | Zbl | DOI

[21] J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numerische Mathematik 132 (2016) 721–766. | MR | DOI

[22] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. In: Vol. 82 of Mathematics & Applications, Springer (2018). | MR

[23] J. Droniou, J. Hennicker and R. Masson, Numerical analysis of a two-phase flow discrete fracture model. Numerische Mathematik 141 (2019) 21–62. | MR | DOI

[24] I. S. Duff and J. K. Reid, The design of MA48: a code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22 (1996) 187–226. | Zbl | DOI

[25] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In: Vol. VII of P. G. Ciarlet and J.-L. Lions, editors, Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, North-Holland [Amsterdam] (2000) 713–1020. | MR | Zbl

[26] R. Eymard, C. Guichard, R. Herbin and R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. ZAMM Z. Angew. Math. Mech. 94 (2014) 560–585. | MR | Zbl | DOI

[27] E. Flauraud, F. Nataf, I. Faille and R. Masson, Domain decomposition for an asymptotic geological fault modeling. Comptes Rendus à l’académie des Sciences, Mécanique 331 (2003) 849–855. | Zbl | DOI

[28] M. Gander, J. Hennicker, R. Masson, Modeling and Analysis of the Coupling in Discrete Fracture Matrix models. SIAM J. Numer. Anal. 59 (2021) 195–218. | MR | DOI

[29] T. T. Garipov, M. Karimi-Fard and H. A. Tchelepi, Discrete fracture model for coupled flow and geomechanics. Comput. Geosci. 20 (2016) 149–160. | MR | DOI

[30] B. Giovanardi, L. Formaggia, A. Scotti and P. Zunino, Unfitted fem for modelling the interaction of multiple fractures in a poroelastic medium. In: E. Burman, M. G. Larson and M. A. Olshanskii, editors, Geometrically Unfitted Finite Element Methods and Applications. Springer International Publishing, Cham (2017) 331–352. | MR | DOI

[31] V. Girault, K. Kumar and M. F. Wheeler, Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20 (2016) 997–1011. | MR | DOI

[32] V. Girault, M. F. Wheeler, B. Ganis and M. E. Mear, A lubrication fracture model in a poro-elastic medium. Math. Models and Methods Appl. Sci. 25 (2015) 587–645. | MR | DOI

[33] V. Girault, M. F. Wheeler, Kundan Kumar and Gurpreet Singh, Mixed Formulation of a Linearized Lubrication Fracture Model in a Poro-elastic Medium, Springer International Publishing, Cham (2019) 171–219. | MR

[34] K. K. Hanowski and O. Sander, The hydromechanical equilibrium state of poroelastic media with a static fracture: A dimension-reduced model with existence results in weighted Sobolev spaces and simulations with an XFEM discretization. Math. Models Methods Appl. Sci. 28 (2018) 2511–2556. | MR | DOI

[35] P. Hansbo and M. G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity. ESAIM: M2AN 37 (2003) 63–72. | MR | Zbl | Numdam | DOI

[36] J. Jaffré, M. Mnejja and J. E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4 (2011) 967–973. | DOI

[37] L. Jeannin, M. Mainguy, R. Masson and S. Vidal-Gilbert, Accelerating the convergence of coupled geomechanical-reservoir simulations. Int. J. Numer. Anal. Methods Geomech. 31 (2007) 1163–1181. | Zbl | DOI

[38] B. Jha and R. Juanes, Coupled Modeling of Multiphase Flow and Fault Poromechanics during geologic CO2 storage. Energy Procedia 63 (2014) 3313–3329. | DOI

[39] L. Jin and M. D. Zoback, Fully coupled nonlinear fluid flow and poroelasticity in arbitrarily fractured porous media: A hybrid- dimensional computational model. J. Geophys. Res. Solid Earth 22 (2017) 7626–7658. | DOI

[40] M. Karimi-Fard, L. J. Durlofsky and K. Aziz, An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9 (2004) 227–236. | DOI

[41] A. R. Khoei, N. Hosseini and T. Mohammadnejad, Numerical modeling of two-phase fluid flow in deformable fractured porous media using the extended finite element method and an equivalent continuum model. Ad. Water Resour. 94 (2016) 510–528. | DOI

[42] J. Kim, H. A. Tchelepi and R. Juanes, Rigorous coupling of geomechanics and multiphase flow with strong capillarity. Soc. Petrol. Eng. 18 (2013) 123–1139.

[43] J. Kim, H. A. Tchelepi and R. Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200 (2011) 1591–1606. | MR | Zbl | DOI

[44] V. Martin, J. Jaffré and J. E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. | MR | Zbl | DOI

[45] J. E. P. Monteagudo and A. Firoozabadi, Control-volume model for simulation of water injection in fractured media: incorporating matrix heterogeneity and reservoir wettability effects. SPE J. 12 (2007) 355–366. | DOI

[46] J. M. Nordbotten, W. M. Boon, A. Fumagalli and E. Keilegavlen, Unified approach to discretization of flow in fractured porous media. Comput. Geosci. 23 (2019) 225–237. | MR | DOI

[47] E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics, Vol. 1: Basis and Solids of Lect. Notes Numer. Methods Eng. Sci. Springer, Netherlands (2009). | MR | Zbl

[48] M. Pernice and H. F. Walker, NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19 (1998) 302–318. | MR | Zbl | DOI

[49] V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29 (2006) 1020–1036. | DOI

[50] T. H. Sandve, I. Berre and J. M. Nordbotten, An efficient multi-point flux approximation method for discrete fracture-matrix simulations. J. Comput. Phys. 231 (2012) 3784–3800. | MR | Zbl | DOI

[51] X. Tunc, I. Faille, T. Gallouët, M. C. Cacas and P. Havé, A model for conductive faults with non matching grids. Comput. Geosci. 16 (2012) 277–296. | Zbl | DOI

[52] E. Ucar, E. Keilegavlen, I. Berre and J. M. Nordbotten, A finite-volume discretization for deformation of fractured media. Comput. Geosci. 22 (2018) 993–1007. | MR | Zbl | DOI

Cité par Sources :