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GRADIENT DISCRETIZATION OF TWO-PHASE PORO-MECHANICAL
MODELS WITH DISCONTINUOUS PRESSURES AT MATRIX FRACTURE
INTERFACES

FRANCESCO BONALDI*, KONSTANTIN BRENNER!, JEROME DRONIOUZ®,
ROLAND MASSON!, ANTOINE PASTEAU? AND LAURENT TRENTY?

Abstract. We consider a two-phase Darcy flow in a fractured and deformable porous medium
for which the fractures are described as a network of planar surfaces leading to so-called hybrid-
dimensional models. The fractures are assumed open and filled by the fluids and small deforma-
tions with a linear elastic constitutive law are considered in the matrix. As opposed to [F. Bonaldi,
K. Brenner, J. Droniou and R. Masson, Comput. Math. with Appl. 98 (2021)], the phase pressures
are not assumed continuous at matrix fracture interfaces, which raises new challenges in the conver-
gence analysis related to the additional interfacial equations and unknowns for the flow. As shown
in [K. Brenner, J. Hennicker, R. Masson and P. Samier, J. Comput. Phys. 357 (2018)], [J. Aghili,
K. Brenner, J. Hennicker, R. Masson and L. Trenty, GEM — Int. J. Geomath. 10, (2019)], unlike single-
phase flow, discontinuous pressure models for two-phase flows provide a better accuracy than continuous
pressure models even for highly permeable fractures. This is due to the fact that fractures fully filled
by one phase can act as barriers for the other phase, resulting in a pressure discontinuity at the matrix
fracture interface. The model is discretized using the gradient discretization method [J. Droniou, R. Ey-
mard, T. Gallouét, C. Guichard, and R. Herbin, Springer, Mathematics & Applications, 82 (2018)],
which covers a large class of conforming and non conforming schemes. This framework allows for a
generic convergence analysis of the coupled model using a combination of discrete functional tools. In
this work, the gradient discretization of [F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Comput.
Math. with Appl. 98 (2021)] is extended to the discontinuous pressure model and the convergence to
a weak solution is proved. Numerical solutions provided by the continuous and discontinuous pressure
models are compared on gas injection and suction test cases using a Two-Point Flux Approximation
(TPFA) finite volume scheme for the flows and Py finite elements for the mechanics.
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1. INTRODUCTION

Coupled flow and geomechanics play an important role in many subsurface processes such as water manage-
ment, geothermal energy, CO5 sequestration, oil and gas production or nuclear waste storage. This is particularly
the case in the presence of fractures which have a strong impact both on the flow and on the rock mechanical
behavior. This work considers the so called hybrid-dimensional or Discrete Fracture Matrix (DFM) models rep-
resenting the fractures as a network of co-dimension one surfaces coupled with the surrounding matrix domain.
The reduced flow model is then obtained by averaging both the unknowns and the equations in the fracture
width and by imposing appropriate transmission conditions at both sides of the matrix fracture interfaces. The
mechanical model is set on the matrix domain with appropriate boundary conditions on both sides of the frac-
ture interfaces. This type of hybrid-dimensional models has been the object of intensive researches over the last
twenty years due to the ubiquity of fractures in geology and their considerable impact on the flow and transport
of mass and energy in porous media, and on the mechanical behavior of rocks. For the derivation and analysis
of such models, let us refer to [4,6,13,14,27,40,44,46] for single-phase Darcy flows, [2,9,12,15,23,36,45,49] for
two-phase Darcy flows, and [29,30,32-34,38,39,41,42,52] for poroelastic models.

As in [10], this work focuses on a hybrid-dimensional two-phase Darcy flow model coupled with a linear
poroelastic deformation of the matrix. The fractures are assumed to remain open and fully filled by the fluids,
and their propagation over time is neglected. The Poiseuille law is used for the tangential velocity along the
fracture network and extended to two-phase flow based on generalized Darcy laws. As in [17], the concept of
equivalent pressure, used to extend the poro-mechanical coupling to two-phase flow, is based on the capillary
energy density. This is a crucial choice to obtain the stability of the coupled model.

In [10], the continuity of both phase pressures is used as a transmission condition at matrix fracture interfaces.
This is a classical assumption in the case of highly permeable fractures such as open fractures. As shown e.g.,
n [28], this choice is fully justified for the case of single-phase flows. On the other hand, in the case of two-
phase flow, this assumption can lead to inaccurate solutions at the matrix fracture interfaces [2,15]. This is in
particular the case when the fractures are fully filled by one phase and act as barriers for the other phase due
to its very low relative permeability within the fractures, hence leading to a pressure discontinuity. Let us refer
to [2] for striking examples including the desaturation by suction at the interface between the atmosphere and
a low permeable and fractured storage rock.

This potential inaccuracy of continuous pressure models motivates us to consider the extension of the analysis
carried out in [10] to hybrid-dimensional discontinuous pressure flow models [2,15,23,36]. For such flow models,
the Darcy fluxes between the matrix fracture interface and the fracture are modelled using a two-point flux
approximation combined with an upwind approximation of the mobilities [2,15,23]. Following [23], the model
also includes a layer of damaged rock at matrix fracture interfaces. This additional accumulation term plays
a major role in the numerical analysis of the model and also improves the nonlinear convergence at each time
step of the simulation [16,23]. It must be kept sufficiently small to maintain the accuracy of the solution (see
[23]). Following [10, 23], this new hybrid-dimensional poro-mechanical model is discretized using the gradient
discretization method [22]. This framework is based on abstract vector spaces of discrete unknowns combined
with reconstruction operators. The gradient scheme is then obtained by substitution of the continuous operators
by their discrete counterparts in the weak formulation of the coupled model. The main asset of this framework
is to allow a generic convergence analysis based on general properties of the reconstruction operators that
hold for a large class of conforming and non conforming discretizations. Let us point out that, with respect
to [10], additional trace and jump operators need to be defined in this framework, along with new definitions of
coercivity, consistency, limit-conformity, and compactness. The two main ingredients to discretize the coupled
model are the discretizations of the hybrid-dimensional discontinuous pressure two-phase Darcy flow and the
discretization of the mechanics. Let us briefly mention, in both cases, a few families of discretizations typically
satisfying the gradient discretization properties.

For the discretization of the Darcy flow, the gradient discretization framework covers the case of cell-centered
finite volume schemes with Two-Point Flux Approximation on strongly admissible meshes [2, 6, 40], or some
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symmetric Multi-Point Flux Approximations [3,50,51] on tetrahedral or hexahedral meshes. It also accounts
for the families of Mixed Hybrid Mimetic and Mixed or Mixed Hybrid Finite Element discretizations such as in
[7,14,33,44], and for vertex-based discretizations such as the Vertex Approximate Gradient scheme [14,15,23].
For the discretization of the elastic mechanical model, the gradient discretization framework covers conforming
finite element methods such as in [32], the Crouzeix-Raviart discretization [20,35], the Hybrid High Order
discretization [19], and the Virtual Element Method [8].

The main objective of this work is to introduce the gradient discretization of the hybrid-dimensional poro-
mechanical model with discontinuous pressure at matrix fracture interfaces. Then, we prove the convergence
of the discrete solution to a weak solution of the model. Compared with [10], new difficulties arise from the
interfacial additional nonlinear flux and accumulation terms including the damaged rock type. Assuming that
the fracture normal transmissivity is fixed in the interfacial two-point fluxes, i.e., that its fracture aperture
dependence is frozen, we are able to prove the convergence of the gradient scheme solution to a weak solution of
the model. This assumption is rather mild since, in practice, the solution depends only weakly on this fracture
normal transmissivity as long as it remains much larger than the matrix transmissivity. Concerning compactness
estimates, the same techniques as in [10] are used: time translates, uniform-in-time L2-weak estimates, and a
discrete version of the Ascoli-Arzela theorem. In [10], where fields defined in matrix and fracture are related,
matrix and fracture contributions have to be separated by a cut-off argument (since the fracture width vanishes
at tips). On the other hand, in this work, such a separation stems from the model itself, but the damaged rock
layer has to be embedded in the time translates of the saturations, by using ad-hoc test functions combining
the matrix and damaged layer rock types.

As in [10], the proof additionally assumes that the matrix porosity remains bounded from below by a strictly
positive constant, that the fracture aperture remains larger than a fixed aperture vanishing only at the tips,
and that the mobility functions are bounded from below by strictly positive constants. The assumptions on the
porosity and fracture aperture cannot be avoided since the continuous model does not ensure these properties,
which are needed to ensure its well-posedness. The assumption on the mobilities are classical to carry out the
stability and convergence analysis of two-phase Darcy flows with heterogeneous rock types (see [12,23,26]).

The second objective of this work is to compare the discontinuous pressure poro-mechanical model investigated
in this work to the continuous pressure poro-mechanical model presented in [10]. Two test cases are considered.
As in [10], the first test case simulates the gas injection in a cross-shaped fracture network immersed in an
initially water saturated porous medium. The second test case models the desaturation of a low permeable
medium by suction at the interface with a ventilation tunnel. The data set of this second test case is based
on the Callovo-Oxfordian argilite rock properties of the nuclear waste storage prototype facility of Andra. The
geometry uses an axisymmetric DFM model based on a simplified version of the fracture network at the interface
between the storage rock and the ventilation tunnel. In both cases the discretization is based on the Two-Point
Flux Approximation finite volume scheme for the flows and second-order finite elements for the mechanical
deformation.

The rest of the article is organized as follows. Section 2 introduces the continuous hybrid-dimensional coupled
model with discontinuous pressures at matrix fracture interfaces. Section 3 describes the gradient discretization
method for the coupled model including the definition of the reconstruction operators, the discrete variational
formulation and the properties of the gradient discretization needed for the subsequent convergence analysis.
Section 4 proceeds with the convergence analysis. The a priori estimates are established in Subsection 4.1, the
compactness properties in Subsection 4.2 and the convergence to a weak solution is proved in Subsection 4.3.
This convergence falls short, in general, from identifying the limit matrix—fracture nonlinear fluxes; this issue
is discussed in Subsection 4.4, in which an assumption is given on the limit fracture width under which the
fluxes can be fully identified. In Section 5, devoted to numerical experiments, the discontinuous pressure model
is compared to the continuous pressure model presented in [10].
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Fi1GURE 1. Example of a 2D domain 2 with three intersecting fractures I';, i = 1,2, 3.

2. CONTINUOUS MODEL

We consider a bounded polytopal domain Q of R?, d € {2,3}, partitioned into a fracture domain I and a
matrix domain Q\I'. The network of fractures is defined by

r-no
el
where each fracture I'; < €, ¢ € I is a planar polygonal simply connected open domain. Without restriction of
generality, we will assume that the fractures may intersect exclusively at their boundaries (see Fig. 1), that is,
for any ¢,7 € 1,4 # j one has I'; n I'; = ¢J, but not necessarily Tin fj = .

The two sides of a given fracture of I' are denoted by + in the matrix domain, with unit normal vectors n*
oriented outward of the sides +. We denote by 7, the trace operators on the sides a = + of I for functions in
HY(Q\I), by 7aa the trace operator for the same functions on €2, and by [-] the normal trace jump operator
on T for functions in Hg;, (Q\T), defined by

[a] =at -n* +4a~ -n~ for all 4e Hy;y (Q\D).

We denote by V.. the tangential gradient and by div, the tangential divergence on the fracture network I". The

symmetric gradient operator e is defined such that e(v) = 3 (Vv +¢(V¥)) for a given vector field v € H* (Q\f)d.
Let us fix a continuous function dop : I' — (0, +00) with zero limits at oI'\ (6" n 09Q) (i.e., the tips of T")

and strictly positive limits at 0T' N 0€2. The fracture aperture, denoted by d ¢ and such that Jf = —[a] for a

displacement field @i € H'(Q\I')¢, will be assumed to satisfy the following open fracture condition

df(x) = do(x) for a.e. xeT.

Let us introduce some relevant function spaces. First, we denote by H C}O (T") the space made of functions vr

in L?(T), such that dSQVT’Ur belongs to L*(T')4~!, and whose traces are continuous at fracture intersections
L'y n Ty, (i,7) € I x I (i # j) and vanish on the boundary ¢I' n 092. We then introduce the space

U° = {ve (H' (D) | vo0v = 0} (2.1)
for the displacement vector, and
VO =V9 x VP, (2.2)

where

m

Vo ={ve H'(Q\T) | yo00 = 0},

for each matrix phase pressure, and
Vi = Hy, (D),
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FIGURE 2. Example of a 2D domain €2 with its fracture network I', the unit normal vectors n*t

to I', the phase pressures pg, in the matrix and p$ in the fracture network, the displacement
vector field u, the matrix Darcy velocities q, and the fracture tangential Darcy velocities qf
integrated along the fracture width.

111 o

FI1GURE 3. Illustration of the flux transmission condition between matrix and fracture, including
a layer of damaged rock of thickness dq, @ = +. It can be seen as an upwind two-point-like
approximation of Q‘;c"a. The arrows show the positive orientation of the normal fluxes q%, - n®

(inward with respect to the damaged layer) and Q‘{ . (outward with respect to the damaged
layer).

for each fracture phase pressure. For v = (0,,,,0¢) € V°, let us denote by
[['D]]a = YaUm — 17]“7

the jump operator on the side a = + of the fractures.

The matrix, fracture and damaged rock types are denoted by the indices rt = m, rt = f, and rt = =+,
respectively, and the non-wetting and wetting phases by the superscripts a« = nw and a = w, respectively.
Finally, for any z € R, we set 27 = max{0,z} and 2= = —(—z)™.
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The PDEs model reads: find the phase pressures %, v € {m, f}, a € {nw,w}, and the displacement vector

field @, such that p., = p5" — py, and for o € {nw, w},

Ot (dm S (Deym)) + div (qf) = A, on (O,
A = — 1 (S5 (Pe,m ) K VD, on (0,
&, (dfs;l(pc,f)) +div(a9) — Q9. —Q_ =hg  on (0,7) xT,
) 1
qf = —nf (57 (Pe.s)) (12@> 2 on (0,7T)
—le( (@) —b pmﬂ) =f on (0,T)
o(a) =2u e(n) + A div(a) I on (0,7) x Q\T,
with the coupling conditions
- AP D
OtPm = b divoyu + Motpfl on (0,
qy, -n" — Q%q = da$a0tSg (YaPe,m) o
QF o = 1a(Sg (YaPe,m )T [P*]a — 1 (SF (Pe,p))Te[p]q o
(o(@) — b pEDnt = —ﬁ?ni o

the initial conditions
ﬁg|t=0 = ]58’1}7 ¢m|t=0 = ¢m7

df = —[u] 0

and normal flux conservation for q7 at fracture intersections not located at the boundary 0€2. Above, the

equivalent pressure pZ, v e {m, f} is defined, following [17], by

ﬁyE = Z a pc y) -U, (ﬁc,v) )

ac{nw,w}

where .
Ualpe) = [ a(52Y (@)da

0

(2.5)

is the capillary energy density function for each rock type rt € {m, f, +}. As already noticed in [10,38,42], this

is a key choice to obtain the energy estimates that are the starting point for the convergence analysis.

We make the following main assumptions on the data:

(H1) For each phase a € {nw,w} and rock type rt € {m, f, +}, the mobility function n% is continuous, non-
decreasing, and there exist 0 < 77} i, < 75 max < +00 such that g o < 7 (s) < N3 ax for all s € [0, 1].
(H2) For each rock type rt € {m, f, £}, the non-wetting phase saturation function S%¥ is a non-decreasing

Lipschitz continuous function with values in [0,1], and S} = 1 — Si".
(H3) For a = =+, the width d, and porosity ¢, of the damaged rock are strictly positive constants.

(H4) b € [0,1] is the Biot coefficient, M > 0 is the Biot modulus, and A > 0, p > 0 are the Lamé coefficients.

These coeflicients are assumed to be constant for simplicity.

constant.

(H5) The initial matrix porosity satisfies ¢2, € L*(€2).

(H6) The initial pressures are such that (pg,,,pg ;) € VO, p§,, € L*(Q) and po s € L7(), a € {nw, w}.
(H7) The source terms satisfy f € L*(Q2)%, hg, € L*((0,T) x Q), and h$ € L*((0,T) x T).

(H8) The normal fracture transmissivity 7y € L*(T"

) is uniformly bounded from below by a strictly positive
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(H9) The matrix permeability tensor K,, is symmetric and uniformly elliptic on €.

Let us denote by C*([0,T) x Q\I') the space of smooth functions v : [0, 7] x (2\I') — R vanishing on 0Q and
at t =T, and whose derivatives of any order admit finite limits on each side of I". We will also use the boldface
notation C*([0,T] x Q\T) for C*([0,T) x Q\T').

Definition 2.1 (Weak solution of the model). A weak solution of the model is given by p* = (py,,p}) €
L?(0,T;V?), a e {nw,w}, and @1 € L*(0,T;UY), such that, for any a € {nw, w}, J;/QVTpf e L2((0,T) x I'))d-1
and, for all % = (¢y,, ¢}) € C([0,T) x O\D) x C([0,T) x T') and all ve C*([0,T] x Q\I'),

T
| ] (FomStemanst + 1 (S0 eV Vi - Vi
0
T _ gfy
+L L (—dfsj%(pchf)a@}* + n}*(S}*(ﬁcJ))EVTﬁ; . VT@}’“>da(x)dt

T
ok 7au_7a7a :11 cticma a7?n
+QZ+L L(Qf,a[[w Ja — da¢a ST (VaPe,m )0t vaP )dO(X)dt 260
- Z J Cia&asg(%ﬁgm)%@gz(oa )da(x)

j 30,52 (5 )p m<o7~>dx— J &53 (5023 (0, -)do (x)

0 JQ

J f v) — b pEdiv(¥) dxdt-&-f fpf [¥] do(x)dt
:L Lf.dedt,

Q.0 = T 1alS5 (aben T = 17 (55 (e NP1 |-
ﬁc,u = ﬁ:}w - pu )

Jf = _[[ﬁ]]7 1

d_)m - d_)?n =b diV(ﬁ - ﬁo) + M(Z_JHL Z_)EQO)’

where J?c = —[u°] and @’ is the solution of (2.6b) without the time integral and using the initial equivalent

(2.6b)
with

(2.6¢)

pressures p2:0 and ﬁ?’o obtained from the initial pressures pj ,,, and pg ¢, a € {nw, w}.

Remark 2.2 (Regularity of the fracture a_perture). Notice that, by the Sobolev—trace embeddings [1,
Thm. 4.12], @ € L*(0,7;U°) implies that df = —[u] € L*(0,T;L*(T)). All the integrals above are thus
well-defined.

3. THE GRADIENT DISCRETIZATION METHOD

The gradient discretization (GD) for the Darcy discontinuous pressure model, introduced in [23], is defined
by a finite-dimensional vector space of discrete unknowns

0 _ 0 0
X3, = Xpy x X1

and
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— two discrete gradient linear operators on the matrix and fracture domains
. Y0 d I . x0 d—1
V%P .XD;R — L*(Q)%, VD,, .XD{; — L),
— two function reconstruction linear operators on the matrix and fracture domains
. yo0 . vO
Mg, : Xp, — L°(Q), I, : Xpy — L),

— for @ = 4, jump reconstruction linear operators [[-]]%p: X%p — L*(T), and trace reconstruction linear
operators T§, : X3, — L*(T').
p

The operators gp, H%p, %p are assumed piecewise constant [22, Definition 2.12]. A consequence of the

piecewise-constant property is the following: there is a basis (e;);er of X9, such that, if v = Y, _; v;e; and if,
p
for a mapping ¢ : R — R with g(0) = 0, we define g(v) = >,,.; g(vi)e; € X2,. by applying g component-wise,
D
then I g(v) = g(II v) and T} g(v) = g(T% v). Note that the basis (e;)ies is usually canonical and chosen
in the design of X3,.. The same property holds for XODf and H{)p. The vector space X%p is endowed with the
p p

following quantity, assumed to define a norm:
3
[vlm, = IVB, vlza@y + 14 VE vlza@ar + D 1119, lr2m-
a=+

The gradient discretization for the mechanics is defined by a finite-dimensional vector space of discrete
unknowns X7, ~and

— a discrete symmetric gradient linear operator ep, : X9, — L?*(2,S4(R)) where S4(R) is the vector space of
real symmetric matrices of size d,

— a displacement function reconstruction linear operator Ip, : X9, — L*(Q)%,

~ a normal jump function reconstruction linear operator [Jp, : X3 — L*(T).

Let us define the divergence operator divp, () = Trace(ep,(-)), the stress tensor operator
op, (V) = 2uep, (v) + Adivp, (V)I,
and the fracture width dyp, = —[u]p,. It is assumed that the following quantity defines a norm on X%u:

IVilp, = lep, (V) L2 (.54(r))- (3.1)
A spatial GD can be extended into a space-time GD by complementing it with

— a discretization 0 = tg < t; < --- <ty = T of the time interval [0,T7],
— interpolators I7, : V9 — X9, ve{m,f}, and Jp L23(Q2) — X9,. of initial conditions.
p P

For n € {0,...,N}, we denote by Stnti = tn+1 — tn the time steps, and by At = max,—o,.. N St"*t3 the
maximum time step.

Spatial operators are extended into space-time operators as follows. Let Up be a spatial GDM operator
defined in XP with D = Dy, Dy* or DJ, and let w = (wn))_g € (X3)N 1. Then, its space-time extension is
defined by

\I/D’UJ(O, ) = Upwq and, Vn € {Oa s, N = ]-}a Vt e (tn»tn+1]v \I]Dw(tv ) = VUpwp41.

For convenience, the same notation is kept for the spatial and space-time operators. Moreover, we define the
discrete time derivative as follows: for f : [0,7] — L'(Q2) piecewise constant on the time discretization, with
Jn = fittn_1 0,1 and fo = f(0), we set 0; f(t) = f:;:nl%%f" for all t € (tn,tny1], n€{0,...,N —1}.
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Notice that the space of piecewise constant X3 -valued functions f on the time discretization together with
the initial value fo = f(0) can be identified with (X%)V*1. The same definition of discrete derivative can thus

be given for an element w € (X%)V 1. Namely, §,w € (X3)V is defined by setting, for any n € {0,..., N—1} and
t € (tn,tni1], Spw(t) = (fpw)py1 = % If Up is a space-time GDM operator, by hnearlty the following
t

commutativity property holds: Updiw(t,-) = &:(¥pw(t,-)).

The gradient scheme for (2.3) consists in writing the weak formulation (2.6a) and (2.6b) with continuous
spaces and operators substituted by their discrete counterparts, after a formal integration by part: find p® =
(P, %) € (X%p)N“, o € {nw,w}, and u € (X§ )N, such that for all p* = (P #F) € (X%p)N+1, v €
(X3 )V and o € {nw, w},

T
[ (5o, s ) 103, 0, o (0, 52V - U, 5, )
0o Ja
T
+ f f o (dy.0,1h s;)ng Pdo(x)dt
Du «@
f J n (115, f V4 p} - Vh ofdo(x)dt (3.2a)

' uZJo L Q3ale"1h, + dadadi (T, 55 ) Th, 6 )do(x)dt

T T
= f f h;’;LH%p@%dxdtJrf Jh?Hép@?da(x)dt,
0 JQ 0 Jr ’

J f op pu(v) — b II3 pE divDu(v))dxdt
f Jn{j p¥ [v]p,do(x)dt = L Lf-npuv dxdt,

with the closure equations, for v € {m, f} and a = +,
Q0 = T2 (T, 50)[°18,) " — 13 (W s3)([p°13,,)" .
Pew =P —0), sp =Sy (Pew);,  s§ = Sq(Pem)s

sz/:7 = 2 p - (pc 1/)
ae{nw,w} (32C)

¢op — 11 ¢9, = b divp, (u— ) + LIIE (pZ — p20),
dfaDu = _[[u]]Du7
op, (V) = 2uep, (v) + Adivp, (V)L

(3.2b)

\

The initial conditions are given by pf, = I} p(, (o € {nw,w}, v € {m, f}), @0 = Jgpd_)o, and the initial
displacement u' is the solution in XODu of (3.2b) without the time variable and with the equivalent pressures
obtained from the initial pressures (pf)aefnw,w}-

3.1. Properties of gradient discretizations

Let (D]lg) leN and (Dfl) 1en be sequences of GDs. We state here the assumptions on these sequences which ensure
that the solutions to the corresponding schemes converge. Most of these assumptions are adaptation of classical
GDM assumptions [22], except for the chain-rule and product rule used in Subsection 4.2 to obtain compactness
properties; we note that all these assumptions hold for standard discretizations used in porous media flows.
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Following [23], the spatial GD of the Darcy flow

Dp = (X%pav'lélﬂn’lépvr]r%p’ [[]]QDP’I/ € {m’f}7a — i),

is assumed to satisfy the following coercivity, consistency, limit-conformity and compactness properties.
Coercivity of D,. Let Cp, > 0 be defined by

ITIB, vmll 22 (0) + HH&WHN(F) + Dt 1T, vml 2(r)
Cp, = max . (3.3)

0£v=(vm,vy)EXP HUHDP
Then, a sequence of spatial GDs (Dé) len is said to be coercive if there exists C}, > 0 such that CD; < C), for all
leN.

Consistency of D,. Let r > 8 be given, and for all (W, vy,) € CL(Q\L) x X2, and all (wg,v) € CP(T) x X%,,

let us define

SD;" (Wi, Vi) = Hv$pvm - vwm“L2(Q) + ”ngvm - meLQ(Q)
+ 3 (1T, v — ety + 1m0, — [, Oz ).
a=+ (3.4)

Sps(ws,vp) = [V v = Vewg| 1oy + [T, 05 = wyloey + 5 110,05)1%, = [0, wp)lal2(r,
a=%+

and Spy(w,) = min, e xo  Spy (wy,vy,), v € {m, f}. Then, a sequence of spatial GDs (D]lg)zeN is said to be
P

consistent if for all w, € V,) one has lim;_, 4o Spui(w,) = 0, v € {m, f}. Moreover, if (D})en is a sequence of
p
space-time GDs, then it is said to be consistent if the underlying sequence of spatial GDs is consistent as above
and if, for any ¢ = (¢m,¢f) € VO and ¢ € L*(Q2), as | — +o0,
N0,
f

HH%ZI%;% - <Pm”L2(Q) + HHszsz)fo - %0f||L2(F)+ (”T%,,I%}Pm - %<Pm”L2(r)) — 0, (3.5)
a=+ :

I gLJgLéw —Y|lL2() — 0.

Remark 3.1 (Consistency). In [23], the consistency is only considered for r = 2. We have here to adopt a
slightly stronger assumption to deal with the coupling and non-linearity involving the fracture aperture dy.
Note that, under standard mesh regularity assumptions, this stronger consistency property is still satisfied for
all classical GDs.

Limit-conformity of D,. For all q = (qn,qy) € CP(Q\[)? x C* ()41, p, € C*(T), and v = (v, vs) € X%p7
let us define

Wp,(q, pa,v) = L (qm “Vp, vm + 1p vy, diV(qm))dX

+J‘ (Qf : V%pvf + Hépvf diVT(q]f))dO'(X)
r

3.6
- Z f TaDpvmqm ‘nedo(x) (36)
a=+JT
+ 3 | 0a(Th,0m ~ 1,07 — [l ) o),
a=+JT
and Wp, (q, pa) = MaXgzoexy, W‘WDP (4, ¢a,v)|. Then, a sequence of spatial GDs (D} )y is said to be

limit-conforming if for all g € C®(Q\[')4 x CX(T)4~! and ¢, € C®(T') one has lim;_, , Wt (4, vq) = 0. Here
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C>(I')4=1 denotes the space of functions whose restriction to each T; is in C®(T;)4~! tangent to T';, compactly
supported away from the tips, and satisfying normal flux conservation at fracture intersections not located at
the boundary 0f2.

(Local) compactness of D,. A sequence of spatial GDs (D )ien is said to be locally compact if for all sequences
(V') 1ene (X%é)leN such that sup,ey || HD; < 4o and all compact sets K,, < Q and Ky < I, such that Ky is

disjoint from the intersections (T'; N fj)#ﬁ the sequences (HDZ v ey and (HD, v!)jen are relatively compact in
L*(K,,) and L*(Ky), respectively.

Remark 3.2 (Local compactness through estimates of space translates). For K,,, K; as above, set

Tp i, K (&n) =max,_,,, vf)eX“l \{0} HvHDL (Hﬂgévm(‘ +&) - Hg;vaLQ(Km)

JrZ”HDL Uf( +771) HD;}’UfHLZ(KfﬂFi)
el

+Z Z HTDL U (- + 1) — T%Lvmﬂm(xfmm))

i€l a=+

where ¢ € R, 1 = (1;)ier with 7; tangent to I';; for ¢ and 7 small enough, this expression is well defined since
K,, and Ky are compact in § and T, respectively. Following [22, Lem. 2.21], An equivalent formulation of the
local compactness property is: for all K,,, K¢ as above,

lim supTpt g, K, (&n) =0.

£n—0 |eN
Remark 3.3 (Usual compactness property for GDs). The standard compactness property for GD is not local
but global, that is, on the entire domain not any of its compact subsets (see, e.g., 22, Def. 2.8] and also below
for Dy). Two reasons pushed us to consider here the weaker notion of local compactness: firstly, for standard
GDs, the global compactness does not seem obvious to establish (or even true) in the fractures, because of the
weight dg in the norm |-||p,, which prevents us from estimating the translates of the reconstructed function by
the gradient near the fracture tips; secondly, we will only use compactness on saturations, which are uniformly
bounded by 1 and for which local and global compactness are therefore equivalent.

In the following, for brevity we refer to the local compactness of (Df,)zeN simply as the compactness of this

sequence of GDs.

Bounds on reconstruction operators of (DL)ZGN.

— Chain rule estimate. For any Lipschitz-continuous function F' : R — R, there is Cr > 0 such that, for all

le N and any v, € XDrn Iy

IV%, F(vm)llz20) < CrIVE vmllL2 (@)

— Product rule estimate. There exists Cp > 0 such that, for any [ € N and any u!_,v! e X0 it holds

m Ym .Dml7

IV, Gy ob o) < Cr (Jubalool VB, oha Ly + [0ha ko VB, b 1)),

where |wy, | = maxjer,, |w;| whenever w,, = >,._; w;e; with (e;)es,, the canonical basis of X
m

m D7YL 1
— Bound on the jump operator. For any [ € N and any v' = (v! vf) € Xol , there is C' = 0 such that

m’

0 Tall ey < € (Jobaloo + 5o ),

where |vf|e = maxer, [v;| whenever vy = Zidf vie; with (e;)ier, the canonical basis of X%N.
P
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Coercivity of (D.)ien. Let Cp, > 0 be defined by

Cp. = max ITpy vz + [V L)

. (3.7)
OiveX%L HVHD{,

Then, the sequence of spatial GDs (DL)IEN is said to be coercive if there exists C'y > 0 such that CD{, < Cy, for
all l e N.
Consistency of (D.,);en. For all w e U°, it holds lim;_, ;o Spi (w) = 0 where

Spy(w) = min |leny (v) = (W) 20,5, + Moy v = Wiz + [VIoy = W] oy |- 39)

veX?0 .
DU

Limit-conformity of (D.)en. Let CF(Q\T, S4(R)) denote the vector space of smooth functions o : Q\I' —
Sa(R) whose derivatives of any order admit finite limits on each side of I', and such that o™ (x)n* +¢~ (x)n™ = 0
and (0" (x)n*)xn* = 0 for a.e. x € T'. For all 0 € CF(Q\I', S4(R)), it holds lim;—, ;o Wp (o) = 0 where

1

max T
orvexs, [Vl

Wo (0) = [fﬂ (o epy (V) + Hpr v div(o))dx — L(onJr) -n*t [[vﬂpflda(x)} .

0

Compactness of (D})en. For any sequence (v)jene (X9, )ien such that sup;ey [v![|pr < +00, the sequences

l
u

(HDLVl)leN and ([[VZHDL)ZEN are relatively compact in L?(Q)? and in L*(T) for all s < 4, respectively.

Remark 3.4 (Compactness through estimates of space translates). Similarly to Remark 3.2 (see also [22,
Lem. 2.21]), the compactness of (D!,)ien is equivalent to

lim supTp 4(&,n) =0 Vs <4,
&n—0 ey W

where

Mpr v(- + &) = Tp VL2 ) + Dier H [[VIHD{,(' + 1) — [[VZHDL‘H(F,)
TDl 9(5777) = mnax - )
w vexy, \(o} Iv[oy,

with € € R%, ) = (1;)ic; with n; tangent to T';, and the functions extended by 0 outside their respective domain
Qorl.

4. CONVERGENCE ANALYSIS

The main theoretical result of this work is the following convergence theorem.

Theorem 4.1. Let (D.)ien, (DL)en, {(tﬁl)fl\io}leN, be sequences of space time GDs assumed to satisfy the
properties described in Section 3.1. Let ¢ min > 0 and assume that, for each l € N, the gradient scheme (3.2a)

and (3.2b) has a solution p}* = (pg, ;,0%,) € (X3 WL e fnw, w), ul e (X2, VN1 such that
9 b P u

(i) dgpr(t,x) = do(x) for a.e. (t,x) € (0,T) x T,
(ii) ¢pi(t,X) = Ppmmin for a.e. (t,x) € (0,T) x Q.
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Then, there exist p* = (py,,P}) € L2(0,T;V?), a € {nw,w}, . € L*(0,T;U°) and Q;’;u e L?(0,T; L*(T))
satisfying the weak formulations (2.6a) and (2.6b) such that for a € {nw,w} and up to a subsequence

5 prt — Do weakly in L2(0,T; L*(Q)),

1,93 — weakly in L2(0,T; L*(T)),

Ipu —a weakly — * in L*(0,T; L*(2)%),

$pt — b weakly — » in L (0, T; L*(52)),

dg.py, — dy in L*(0,T; LP(T)) for 2 < p < 4,
Bt S (D) = Sy (Pem) in L*(0,T; L*()),

1,1 57 (e, ) = 57 (Pe.r) in L*(0, T L*(I")),

Qfa— Qfa weakly in L?(0,T; L*(T)).

_ _ 1 _
where ¢, = @0, + b div(a —a°) + M(ﬁﬁ —pZ0y, dy = —[u], and p. = p™ —p".

We first present in Subsections 4.1 and 4.2 a sequence of intermediate results that will be useful for the proof
of Theorem 4.1 detailed in Subsection 4.3.

Remark 4.2 (Limit interface fluxes). The theorem states that the limit functions satisfy all but the first closure
equations in (2.6¢). It does not, however, identify the limit interface fluxes Q;ﬂ‘ «» @ € {nw, w}. This identification
requires the limit functions to satisfy an energy equality, which is known under some assumption on the limit
fracture width dy. See the discussion in Subsection 4.4 for more details.

4.1. Energy estimates

Using the phase pressures and velocity (time derivative of the displacement field) as test functions, the
following a priori estimates can be inferred.
Lemma 4.3 (A priori estimates). Let p* = (pf,,p}),u be a solution to problem (3.2) such that
(i) dfp,(t,x) = do(x) for a.e. (t,x)e (0,T) x T,
(i) ¢p(t,x) = P min for a.e. (t,x) € (0,T) x Q, where ¢m min > 0 is a constant.

Under Hypotheses (H1)—(H9), there ezists a real number C' > 0 depending on the data, the coercivity constants
C’Dp, Cp,, and ¢, min, such that the following estimates hold:

IVE, Pl L2 (0.7 x) < C, dev/fpuvéppﬂm((o,:r)xr) <C,

11D, |L2(0,7)xT) < C, |1Ua(Tp, Pe,m) L= 0,101 (1)) < C,

|Um (05, pe.m) | e 0,7501 (2) < C |doU (T pe. )l e o.1ir (ry) < C,
HﬂgmeLw(o,T;Lz(Q)) <C, lep, (@) Lo 0,7;02(Q,5.®)) < C; (4.1)

lds Dyl L (0,m;0(r)) < C.

Remark 4.4 (Existence of the discrete solution). Since these a priori estimates are obtained assuming lower
bounds on the fracture aperture and porosity, the existence of the discrete solution cannot be deduced from
these estimates and will be assumed in the following convergence analysis. As noticed in the introduction, these
assumptions on lower bounds of the fracture aperture and porosity are mandatory since the model itself does
not account for possible contact of fracture walls nor a nonlinear behavior of pore volume contraction, and thus
cannot yield such lower bounds. The analysis of a model with contact is a topic for future work.
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Proof. For a piecewise constant function v on [0, T] with v(t) = v,41 for allt € (4, tn41], n € {0,..., N—1}, and
the initial value v(0) = v, we define the piecewise constant function ¢ such that 6(t) = v, for all t € (t,,, tpy1]-
We notice the following expression for the discrete derivative of the product of two such functions:

8¢ (uv)(t) = @(t)5pu(t) + v(t)dpult). (4.2)

In (3.2a), upon choosing ¢ = p® we obtain Ty + Ty + T3 + Ty + 3 _ (T + T3') = T5 + Tp, with

T
T =J f Ot (quH%pS?n)H%pp%dxdt f f Mo (15, 530) K V5, D5, - Vi, P, dxdt,
0 JQ

T 3

_ f J 5 (dyp,TTh, 55 ) Th, pido(x)dt, T f f I %) nguvépp?~V£pp?da(x)dt,
0 r 0
T

_ f f dudeds (T, 53 ) T, pdo(x)dt, T = J f e T (1%, ) do ()t
0 T 0 T
T T

Ts :J J R TIR p*dxdt, Ts = f J h$TL,, p™do(x)dt,

0 Ja r o Jr r

where ng = 13 (Tp sq) if [p*]p, = 0 and ng , = n;‘c‘(H{)ps‘}‘) otherwise. First, we focus on the matrix and frac-
ture accumulation terms 77 and T3, respectively. Using (4.2) and the piecewise constant function reconstruction
property of H%p, rt € {m, [}, we can write

Su(¢D S (1B, pe.m)) = 6061 S (B pe.m) + Soo (TF, pem) 6160,
01(dy ST, pe.f)) = dyp,0:5F (T pes) + SF (I pe.r)didy,p,.

Summing on « € {w,nw}, we obtain

(e

Z(Tl +13) = <J J SR, P, 6055 (TP, pe.m)dxdt +J J (015, pe,m )5, Py, 6 ppdxdi

T
+J J dfvpuﬂépp? 5tS?(H{)ppc7f)dcr(x)dt + J J S¢ (H{)pqu)l_[{)pp;’c‘ étdfpudo(x)dt) .
o Jr o Jr

Now, for rt € {m, f},

ZHD prt 51553; HD De, rt) ngpc,rt 5tSBcW(H%ppc,rt) = 5tUrt(H%ppc,rt)- (44)

Indeed, for n € {0,.. — 1}, by the definition (2.5) of the capillary energy Uy and letting 7}, = IS Dty
we have

nt1
Te,rt

e (S () = SR (7)) = Une(me 1) = Ure(mee) + J (Sie" (@) = S (el e ) )dg

n
Teort

= Urt (ﬂ.z;ﬁ;l) - Urt (Trg,rt)v

where the last inequality holds since S5 is a non-decreasing function. Thus, we obtain

Z(TH—T?,)ZJ

= 0 Jo

T T
$D6: Uy (1B, pe.m )dxdt +J f dy p, 06U (T pe,g)do(x)dt
0 r

T T
2 f J SMH%,Jpc’m)H&pmdexdt+jo J S7 (0, pe. 1T, P30y p,do(x)dt).
«
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Applying again (4.2), we have

éDétUm(ngpc,m) = 5t(¢DUm(ngpc,m)) - Um(ngpc,m)5t¢D»
dy. 0,6 (I pe.y) = 6u(dyp,Us (I, pe.y)) = Us (1, pe.s)dudy.p, -

In the light of the closure equations (3.2¢), this allows us to infer that

T T
Z(Tl +T3) ZL JQ 5t(¢DUm(ngpc,m))dth + JO J; (5t(df’puUf(Héprf))dO'(X)dt

«
T

T
1 £)? E 1
+ L LZ 5 (5t( popm> dxdt + L . bIIT pp, divp, (6ru)dxdt

T
_ f f 1}, ¥ [ulp, do(x)dt,
o Jr
where we have used the fact that, for v piecewise constant on [0, 77,

v

2
v(5tv = §t <2> . (46)
Using, as in (4.4), the relation

Z T%pp% 5th (TaDppc,m) = TaDppc,m 51552‘” (TaDppc,m) = 5tUa(TaDppc,m)v

we obtain

DT = L L da$abt(Ua(Th pe.m))do(x)dt. (4.7)

Then, taking into account Hypotheses (H1)—(H9) and (i) in the lemma, there exists a real number C' > 0
depending only on the data such that

T T
Z(Tg + Ty + Z T5) = C(J J Z |V"Dlpp%|2dxdt + f f Z |djc/72DuV{)pp?‘\2da(x)dt
a=+ 0 JQ 0 JI' o

+LTLZ(¥:|[[pa]]%p2da(x)dt>. (4.8)

On the other hand, upon choosing v = §;u in (3.2b), we get Ty + Ts + Ty = T, with

T T
T = f J op, (u) : ep, (Su)dxdt, Tg = —f f b1 ph divp, (Su)dxdt
0 JQ o Ja

T T (49)
Ty =J J ngp}? [6:u]p,do(x)dt, Tip = J f f-TIp, (§,u)dxdt.
o Jr 0 Jo
Using (4.6) and developing the definition of op,, we see that
T 1
T >J J 5t(foDu(u) :epu(u))dxdt, (4.10)
0o Jo \2

so that, all in all, taking into account

[ [e3%

Z(Tl + T+ T+ Ty + Z(T5+T§)) +Tr + T + To = Y (T5 + Ts) + Tho,
a=%+
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and inequalities (4.5), (4.8) and (4.10), we obtain the following estimate for the solutions of (3.2): there is a
real number C' > 0 depending on the data such that

T T
f j 503D U (I pem)) dxdt + f f 51(ds.p,Us (I pe.s)) do(x)dt
0 Q 0 T

* 2 JTJ;(StUa(TaDPPC,m)dU(X)dt

a=+ 70

+JTJ g GGD“(“) D, (W) + 2]1\4(11@ ) > dxdt

+ZJ J'VD pm|2dxdt+2J _[Idd/2 Vb, 0[P do(x)dt
+22f | 15715, Pasgar

a a=+

T T T
C f ff-dtﬂpuudxdt+ZJ fh%l‘[% P2 dxdt +ZJ jh}‘l‘[{) pFdo(x)dt | .
0 Ja ~ Jo Ja i ~ Jo Jr ’

Now, we have

(4.11)

T
J J f-5p, udxdt = f f- Tp,u(T)—f-Up,u(0))dx
0 Ja Q

< Cp,|If] 20 (lep, (0)(T)| £2(0,s.®)) + lep, (1) (0)]L2(0,s.(®)))

T T

Z(J J heTIE pl dxdt + J f ng1) p da(x)dt)
0 Q 0 T

< Cp, Z(Hh%Hm((o,T)xsz) + [h$ HLz((O,T)xI‘))

m o 3/2 (o1 o
% (198, sz msnzc@n + 4]0, Vh Pl meeay + 3 103, oo moaay )

where we have used the coercivity properties of the two gradient discretizations along with the Cauchy—Schwarz
inequality and dy < dyp,. Using Young’s inequality in the last two estimates as well as Hypotheses (H1)—(H9)
and (ii) in the lemma, and using telescopic sums on the terms involving d;, it is then possible to infer from (4.11)
the existence of a real number C' > 0 depending on the data and on ¢, min such that

| U (TEB, P ) (1) 22y + [doUp (T pe, ) (T) 1)

+ Z 1Ua(T%, pem) (D)2 ry + 1B, o) (D) 220y + lep, (@)(D)IZ2 (s, m)

+ Z(HV  DlZz0mra) + Hd Vi PF 720,102y T Z H[[Pa]]%p||2L2(o,T;L2(r)))
a=+
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< O (210 + LI oirywen + 1151 0,174

+ | U (T3, Pe.m) (0) [ 3 (02) + 7,0, (0) U (T, pe ) (0) |y

+ 2 [Ua(Th, pem) (O)[zrry + (I8, p72) (0) 320y + | (117, pf)(o)“%?(F))'
a=+

The above inequality,along with the fact that T' can be replaced by any ¢ € (0,7] in the left-hand side, and in
view of (3.5), (4.22) and (4.23), yields the a priori estimates (4.1) on p2, pc.., p% and u. The estimate on dy p,
follows from its definition and from the definition (3.7) of Cp,. O

4.2. Compactness properties

Throughout the analysis, we write a < b for a < Cb with constant C' depending only on the coercivity
constants Cp,, Cp, of the considered GDs, and on the physical parameters.

4.2.1. Estimates on time translates

Proposition 4.5. Let D, Dy, (t,))_, be given space time GDs and ¢ min > 0. It is assumed that the gradient
scheme (3.2a) and (3.2b) has a solution p* = (py,,p§) € (X%p)NH, o€ {nw,w}, u e (X3 )N+ such that
dp(t,X) = Gmomin for a.e. (t,x) € (0,T) x Q and dyp, (t,x) = do(x) for a.e. (t,x) € (0,T) xT. Let ,7" € (0,T)
and, for s € (0,T], denote by ns the natural number such that s € (tn,,tn,+1]. For any ¢ = (¢m,pf) € X%p, it
holds

[6pT1B, 55,1(7) — 60118, 55,1(7'), 115, o)1 (o)
+ (dg.p, 15, 551(r) = (A0, 571(7), 11, @) 2(ry

+ 3 (uta[ T, 537) = T3, 557 Th, omdroee) (4.12)

< Y o (D TR ol + €00 ITh orluea
n=nr+1

an a,n 1),a,n+1
FEQSM IR o2y + €T, plliam + Y €60 Wﬂﬂ%p”wm)’

with
N-1 N 2 2
DI A] I W i D W (el S
n=0 rt=m,f,+ rt=m, f
and
e ReRD n a,n n 3
et |V g oy, T = (@) VE 0 e ||L/i(r),
1 tn+1 tn+1
(2),a,m+1 _ H J A (t.)dE (2),a,n+1 — H J he(t. dt
fm (Sthr% . m(? ) LQ(Q), f (Sthr% . f(a ) L2(F)’
al a,n+1 =|[p & 2y
gt = [, |
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Proof. For any ¢ € X%y, writing the difference of piecewise-constant functions at times 7 and 7/ as the sum of
their jumps between these two times, one has

K[enT3, 56,1(7) = [6pT18, 55,1(7'). T, )2
+{[dy.p 1T, sF1(7) = [y 015, s§1(7), 11, @) 2y
£ 3 (dada| T, 55(r) = T, s2(7) |, T, emdraco)

a=+

’ﬂT/
1
< 3 e

n=nr+1

+ <5t[df,DuH{>p5?](tn+1)»H£p<ﬁf>L2(F) + 22 daabi[ T s81(tn 1), T, Pmdra(r) |- (4.13)
a==+

Oe[ppllp s (tns1), 115 @m)r2(a)

From the gradient scheme discrete variational equation (3.2a), we deduce that

KO[BDTIB, 55,1 (tn 1), T8, Pmdnacoy + Gildy o, T 5§1(tn 1), T, 02y

+ D (dababi[Th, 551 (b 1), TH, o) L2 (r)
a=+

S IVB, o ez IVB, emliz@) + 1dfs) "V, 05" iz 1dfs,) "V, erlza)

fDu
SN [y E Py B 2 E P2

a=+
1 tn41 e
n HW Ln he d ‘ HD,,‘PWHLz @ + Hﬁ Jn hf(lf7 ~)dt
(1),a,n+1
< 5(1 Ja, n+1Hv (PmHLZ(Q + Ef ), n+ HV <PfHL8(1")

a,n 2),a,n+1 1),a,n+1
+ EDOTIE o2 + €IS @fllary + 2 e elS, 2y, (4.14)

s
L2(Q) L2(T) I DPWHL?(F)

where the term | (d?%lu)s/ ZVf @l z2(r) has been estimated using the generalized Holder inequality with exponents

(8,8/3), which satisfy § + 32 = 1. The result follows from (4.13) and (4.14), the a priori estimates of Lemma 4.3,
and from the assumptions A, € L*((0,T) x Q), h§ € L*((0,T) x T'). O

Remark 4.6. Summing the estimate (4.12) on a € {nw, w}, and using the fact that the two-phase saturations
add up to 1 in each medium, we obtain the following time translate estimates on ¢p and dy p,:

‘<¢D(7—) — ¢p(7), 0D Ymyrz(9) + {dfp. (1) — dfp, (), Hzf)p90f>L2(F))

g 1 a,mn m ]
< XY (DR pmlrao) + €IV orlliay

ae{nw,w} n=n,+1

,a,n (2),a,n+1 ),a,n+1
+ ERA IR o2y + €914, orlaa + ), e [l e ) (4.15)
a=+

4.2.2. Compactness properties ofH s2 and ']T“Dpsﬁ‘

m

Proposition 4.7. Let (D})en, (Du)leN, {(tﬁl)flvzlo}leN be sequences of space time GDs assumed to satisfy the
coercivity and compactness properties, and such that lim;_, o Atl = 0. Let Om,min > 0 and assume that, for
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each l € N, the gradient scheme (3.2a) and (3.2b) has a solution pi* = (pyy, ;. p§,) € (XD )Nl“, a € {nw,w},

Le (X%L)Nl+1 such that ¢pi(t,X) = ¢mmin for a.e. (t,x) € (0,T) x Q and djp (t,x) > do(x) for a.c.
(t,x) € (0,T) xT. Then, the sequences (I, 5% )ien and (TS, sON) e, with st = Sg (P ) and sgh = Se(pL ),
are relatively compact in L?((0,T) x Q) and L*((0,T) x T), respectively.

Proof. The superscript [ € N will be dropped in the proof and all hidden constants in the following estimates

are independent of [. Setting
Fo(p) = Squ(p) + ), S&(p)
a==+
it results from Hypothesis (H2) that

(sa0) - s20)” < (s20) - 550)) (F°) - F().

forrt € {m, £}. Using that ¢p(t,X) = ¢y min for a.e. (¢,x) € (0,7) xQ and noting that Iy s, = S5 (117 pe.m) €
[0,1] and T%, sg = Sg(Th, pem) € [0,1], we obtain

T T

L 5,5, +7.) = 18,5 gt + 3, f T8, s +7,7) — T, 55|20y dt
T—7
<ra ] ] oo(mB e 15,15 ) (P13 o 7. P73 ) e
Q
T—1 o
+ ) J f daa (T%ps‘;‘(- ) — T;gpsg) (F“(T%ppc,m(' +7,0) — F“(T%ppc,m))dxdt
— 0 N

=7+T) + 15,

where

T—1
T, - f ([SoTTE 521(t + 7) — [BpTIE s21(6), T 2 (5 20y

0
£ ) o T, 52t + 7) = T, s2(8)] T, G (0wt
a=+

T—7
T = L (@p(t+7) = 6p(t). TIB, X5 () L2t

with €2 (t) = (Fa(pm(t+7)) (Pem t))) and X3, (£) = (2, (1) 55 (¢ +7). Let us set ¢ (t) = (2 (1),0) € X .
In view of the estimates (4.12) for ¢ = (*(t), we have

T r Metr)
< J Z 5t te (ff(ﬁ)’a’ VS, G ()] 2) + gy B G ()2
0

n=ns+1

+ 3 eV @], e ) d
a=+

T—7 M(t+7)
S R I (G R e e W &

0 n=ns+1 a=+

+ VB, Oz () + ITB, G )2y + H[[C“(t)]]%pHizm) dt
a=+
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From Proposition 4.5, we have

N—-1
Z §tn+%<(£g),a,n+l)2+(£g),a,n+1)2+ ( gl),a,nJrl)Q) < 1.
n=0

a=+

X
S¢ and SZ, the chain rule estimate on the sequence of GDs (D))en, and the bound on the jump operator, we
obtain that

Using the a priori estimates of Lemma 4.3, h%, € L?((0,T) x Q), the Lipschitz property and boundedness of
)
P

T—T
| (93,600 + 0B, O + 3 1C O, Fary )t < 1.
a=+

We deduce from [5, Lem. 4.1] that T < 7 + At. Similarly, using the time translate estimate (4.15) and the

product rule estimate on the sequence of GDs (Dé)leN, one shows that T < 7 + At, which provides the time

translates estimates on Il sy, in L2(0,T; L?(2)) and on Tp,sq in L2(0,T; L*(T)).

Let us consider any compact sets K,,, < @ and K; < I'. The space translates estimates for ngs% in
L?(0,T; L*(K,,)) and for Tp,sq in L%(0,T; L*(Ky)) derive from the a priori estimates of Lemma 4.3, the Lips-
chitz properties of S5, and S, and from the local compactness property of the sequence of spatial GDs (Dfo)leN
(¢f., Rem. 3.2). Combined with the time translate estimates above, the Fréchet—Kolmogorov theorem implies
that I} s, is relatively compact in L?(0,T; L?(K;,)) and that T, sg is relatively compact in L(0, T3 L*(K)).
Since I s7, € [0,1] and T%, sg € [0, 1] it results that I s, is relatively compact in L?(0,T; L?(2)) and that
T, sq is relatively compact in L?(0, T; L*(T')). O

4.2.3. Uniform-in-time L*-weak convergence of dy p, H{)p s¢ and df p,

Proposition 4.8. Let (Dé)zeN, (D) en, {(til),]:[:lo}leN be sequences of space time GDs assumed to satisfy the
coercivity and consistency properties. Let ¢, min > 0 and assume that, for each | € N, the gradient scheme

(3:2a) and (3.2b) has a solution pi* = (p, ;,p%,) € (X3, YW g e {nw,w}, ul € (X2, YN such that
L Py L 4

(i) dgpi(t,x) = do(x) for a.e. (t,x) € (0,T) x T,
(ii) ¢pi(t,X) = Ppmmin for a.e. (t,x) € (0,T) x Q.

Then, the sequences (dypi)ien and (df7'D£lH£pS?7l)leN, with s?’l = S}’(plcyf), converge up to a subsequence
uniformly in time and weakly in L*(T), as per [22, Def. C.14].

Proof. In the following, the superscript [ € N is dropped when not required for the clarity of the proof, and the
hidden constants are independent of [. Let %, € C(T') and let ¢ € X% ; the element that realizes the minimum
p

of Spy (@f,¢¢) in (3.4). From Proposition 4.5 (with ¢,, = 0) we have

KLy o1t 5§1r) = [dg 0,11, $§10"). T, o))

< max (Mf;p o1l ITp, ol 2y, max |10, 1), Lzm)

3 3
’I’LT/ 2 2 TLT/ )
% ( Z 5tn+% ((5}1)@,714-1) n (5}(02),04,71-&-1) >> % ( Z 5tn+2>
n=n,+1 n=n,+1
< (|T — 7|7 + At%).

Notice that, since V{)pgof — Vo5, H{)pgof — ¢y and [(0,¢5)]p, — [(0,8)]a in their respective spaces, their
norms are bounded, so that the maximum in the right-hand side above is well defined. Using the estimate

<[df,DuH§;p5?](T) - [df,DuﬂépS?](T/)v oF— Hép@f>L2(F) < ldgpullzeo,7;z2r)) 265 — H{;p@fHLz(r)-
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and the a priori estimates of Lemma 4.3 we deduce that
_ 1
(dg0 15, s§1(7) = [0 h, sF1(r"). ) 12| S wllr —7']) + At +wp,,

with limp_ow(h) = 0 and wp, = ||¢f — HépgofHLz(r) a consistency error term such that lim;, o wpy = 0. It
follows from the discontinuous Ascoli-Arzela theorem [22, Thm. C.11] that (up to a subsequence) the sequence
df,DuH{)ps‘]%‘ converges uniformly in time weakly in L?(T'). Summing over a € {nw,w}, we also deduce the

uniform-in-time L?(T')-weak convergence of dy p,. O
4.2.4. Strong convergence of dy p,, df}DuHQPS?, and Héps‘;

Proposition 4.9. Let (D]lg)zeN, (DL)en, {(tﬁl)ﬁio}lm be sequences of space time GDs assumed to satisfy the
coercivity, consistency and compactness properties. Let ¢, min > 0 and assume that, for each l € N, the gradient
scheme (3.2a) and (3.2b) has a solution pi* = (py, ;,p},) € (X%,p)NIH, a€ {nw,w}, ule (X%L)NIJrl such that
(i) dgpr(t,x) = do(x) for a.e. (t,x) € (0,T) x T,
(i) ¢pi(t,%x) = P min for a.e. (t,x) e (0,T) x Q.

Then, the sequence (del )ieN converges up to a subsequence in L®(0,T; LP(T)) for all 2 < p < 4, and

the sequences (dy, DzH Lsf )leN and ( ,Sf )leN, with sf = S?(plc’f) converge, up to a subsequence, in
L4(0,T; L*(T)).
Proof. The proof is based on the same arguments employed in the proof of [10, Prop. 4.8]. ]

4.3. Convergence to a weak solution

Proof of Theorem 4.1. The superscript [ will be dropped in the proof, and all convergences are up to appropriate
subsequences. From Lemma 4.3 and Proposition 4.9, there exist dy € L*(0,T; L*(I")) and 8¢ € L*((0,T) x I)
such that

drp, — df in L*(0,T; LP(T")), 2 < p < 4,
1, S%(pe.s) — 5% in L4(0, T; L*(I)). (4.16)
From Proposition 4.7, there exist §% € L*((0,T) x Q) and 55 € L*((0,T) x I') such that
07 So(Pe,m) = 5, in L2(0,T; L*(Q2)),
T$, Se (Pe;m) — 54 in L*(0,T; L*(T)). (4.17)

The identification of the limit [14, Prop. 3.1], resulting from the limit-conformity property, can easily be adapted

to our definition of V9, with weight dg/ * and the use in the definition of limit-conformity of fracture flux functions
that are compactly supported away from the tips. Using this lemma and the a priori estimates of Lemma 4.3,
we obtain p* = (ﬁ%,ﬁ?) e L2(0,T; V) and g% € L?(0,T; L?(T")4~1), such that the following weak limits hold

7, v — P, in L2(0,T; L*(2)) weak,

H%pp? — Py in L?(0,T; L*(T")) weak,

TS, P — Vel in L*(0,T; L*(I")) weak, (4.18)
Vp,Pm — Vi, in L2(0, T; L*(Q)%) weak,

[r*15, — [P°la in L?(0,T; L*(T")) weak,

dy*Vh p§ — d{* V.5 in L2(0,T; L*(T)4") weak,

dl Vi § — g} in L2(0,T; L2()41) weak.
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Let ¢ € C2((0,T) x I')4~! whose support is contained in (0,7) x K, with K compact set not containing the

tips of I'. We have
f J d’ V{)pf p do(x) dt—>J Jgf p do(x)dt.

On the other hand, it results from (4.18) and the fact that dy is bounded away from 0 on K (because dy is
continuous and does not vanish outside the tips of I') that Vépp;‘} — V.p¢ in L*(0,T; L*(K)"). Combined

with the convergence dj,/fbucp — (df)”*¢ in L®(0,T; L?(I')4~1) given by (4.16), we infer that

ff 0V2p, V- 0 do(x) dtﬁf | @95 - dotiat.

This shows that g§ = (&f)B/QVTﬁ? on (0,7) x T.

Combining the strong convergence of I} S5 (pem) = Sp (L) pem), the weak convergence of I pem, it
results from the Minty trick (see, e.g., [26, Lem. 2.6]) that 3, = S% (Pe,m) With (Pe.msDe,f) = Pe = (Poy —
Do DY — ]3‘}") = p™ — p¥. Using the same arguments, we also have 5§ = 5¢ (Pe,f) and 5§ = S (VaDe,m )-

From the a priori estimates of Lemma 4.3 and the limit-conformity property of the sequence of GDs (DL )en
(see [10, Lem. A.3]), there exists @ € L®(0,T;U"), such that

Mp,u — 0 in L°(0,T; L*(Q)%) weak x,

ep, (u) — e(i) in L®(0,T; L*(Q, Sq(R))) weak x, (4.19)
divp,u — div(a) in L®(0,T; L*(Q)) weak *,

d¢p, = —[u]lp, — —[1] in L*(0,T; L*(T')) weak *,

from which we deduce that dy = —[@] and that op, (u) converges to o(@) in L*(0,T; L*(2, Sa(R))) weak *.
From the a priori estimates and the closure equations (3.2c), there exist ¢,, € L°(0,T;L?() and pE e
L®(0,T; L?(£2) such that

D — Pm in L°(0,T; L*(Q)) weak *,
7, pE —~pf in L®(0,T; L*(Q)) weak *. (4.20)
Since 0 < = §0a(S5") (9)dq < 2|p| for 1t € {m, f}, it results from the a priori estimates of Lemma 4.3

that there ex1st pf e L*(0,T; L2( ), Uy € L2(0,T; L*(T)) and U, € L*(0,T; L*(Q2)) such that

1, pf — pf in L2(0,T; L*(T)) weak,
T, Us(pe.s) — Uy in L2(0,T; L*(T)) weak, (4.21)
115 U (Pem) = Unm in L2(0,T; L?(2)) weak.

For rt € {nw, w}, it is shown in [23], following ideas from [21], that Uy (p) = B (SS¥(p)) where s € [0,1] —
Byi(s) € (—o0,+0] is a convex lower semi-continuous function with finite limits at s = 0 and s = 1 (note
that By is therefore continuous). Since I s;" converges strongly in L2((0,T) x Q) to S2%(Pem), it converges
a.e. in (0,T) x Q. It results that B, (Il nW) converges a.e. in (0,7) x Q to By, (S5 (Pe,m)), and hence that

m

Un = Bn(S2 (Pemn)) = Un(Pem)- Similarly, Uy = By (S¥ (Pe,)) = Us(Pe,f). We deduce, using the strong
convergences of the saturations and the weak convergences of the pressures, that

ﬁﬁ = Z ﬁa‘sgn(ﬁc,m) - Um(ﬁc,m) and p? = Z Z_)asj%(ﬁc,f) - Uf(ﬁc,f)-

ae{nw,w} ae{nw,w}
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Using the estimate

|Ure(p2) — Ur(p1)| =

P2
J L](S?tw)/(Q)dQI < |p2 — pi| + (P25 (p2) — P15 (p1)],
P1

the Lipschitz property of S, p§ = (9§, 55 ;) € VO 0 (L*(Q) x L?(T)), a € {nw, w}, and the consistency of
the sequence of GDs (Dé)leN, we deduce that

113, B0 — B0 i L2(0),
i, py® — pp’ in L2(ID). (4.22)
Then, from [10, Prop. A.4] it holds that
divp, (u’) — div(a?) in L*(Q),
[’]p, — [0°] = —d} in L*(T). (4.23)
It results from (4.19), (4.20), (4.22), (4.23) and the definition of ¢p that
_ _ 1
m = O + b div(a —1°) + 72 (= Pr”)-

Let us now prove that the functions p%, a € {nw, w}, and @ satisfy the variational formulation (2.6a) and (2.6b)
by passing to the limit in the gradient scheme (3.2).

For § € C([0,T)) and v = (¢m,1b5) € CP(Q\) x CL(T') let us set, with Pp 1 = (Pg’pwm,Pjépwf) € X%p
and ng 1, realising the minimum of SDZ (),

p=(p" ..., ¢N) e (Xp )V with ' = (¢}, %) = 0(ti—1)(Pp, ).

Let us set ¢, = (oL,...,0N),v € {m, f}. From the consistency properties of (D]l[,)leN with given r > 8, we
deduce that
L5 PR — m  in L(Q), M Py —wr  in L*(D),
15 @m — 0 in L°(0,T; L*()), H;;pg)f — Oy in L°(0,T; L*(T)), (4.24)
B om — OV, in L*(0, T; L*(Q)%), Vi 5 = 0V in L*(0,T; L™ ()41,
T, em = 07atbm in L(0,T; L*(T)), [, — O[¥]a in L*(0,T; L*(T)).
Setting

T
T = f f 60 (OpTIB, 5, ) TIB, oy dxat
0 Q
T
T, = f fnm B S VK VI -V o dxdt

T
Ty = f f 6 (dy.p, Tt 55 )T, oy do(x)dt
0 Jr

T a3
« [e% ’Du (a7
Ty = f Lﬁf (H{DPS ) le véppf : v{vp@f do(x)dt

T T
Ts :J J RETIE o dxdt+f f h$TL,, ¢y do(x)dt,
o Ja ? o Jr i

=3
I
S
}ﬂ
5

dadat (T, 52 ) T, om do(x)dt
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the gradient scheme variational formulation (3.2a) states that

Ty +Ty+Ts+Ty+ > (TF +T§) = Ts.
a==+

For w e C*([0,T)) and a smooth function w : Q\I' — R? vanishing on 0§ and admitting finite limits on each
side of I", let us set
_ oyl N 0 \N i1 i _
v=(v,...,v')e (Xp,)" with v' = w(t;_1)(Pp, W)

where Pp,w realises the minimum in the definition (3.8) of Sp, (w). From the consistency properties of (D), )en,
we deduce that

Ilp, v — wy in L*(0,T; L?(Q)%),
ep, (V) — we(w) in LP(0,T; L2(2, S4(R))), (4.25)
[vlp, — w[w] in L*®(0,T; L*(T)).

Setting
T
T =f J (om. (W) : €5, (v) — b(ILE, P )divo, (v) )dxd,
0 Q

T
T — L L(ngppf)[[v]]puda(x)dt,

T
Ty = f J f . TIp,v dxdt.
0 Q

the gradient scheme variational formulation (3.2b) states that
Te + 17 =Tg.
Using a discrete integration by part [22, Section D.1.7], we have T} = Ty; + T12 with
T
0 Jo
Tip = — L(H&J{a"péo)(ﬂﬁﬁ%(Ig‘pﬁ%o))(ﬂﬁpﬁw)e(o) dx.

Using (4.24) and (4.20), and that IIf sp, € [0,1] converges to ST, (De,m) a.e. in (0,7) x  (this follows from
(4.17)), it holds that

T
Tll i *L J;Z d_)msgy,(ﬁc,m,)q/}mel(t) dxdt.

Using (4.24), that IIp Jp 0 converges in L?(€) to ¢° and that 7 Sp (I3, Do) € [0, 1] converges a.e. in 2 to
S (Do 0); we deduce that

Tig = — | 7S5 (P5,.0)Ym0(0) dx.
Q
Writing T3 = T31 + T30 with

T
Ty = — f f dy.p, (I, s§)(I1 Ph v5)0'(t) do(x)dt,

o Jr
Tso = | [0, (I, S7(1 PF0)) (5 Ph 47)6(0) do(x)
32 - uw o, \lp, ~rUp, Pro D, D,Yf o(X),

we obtain, using similar arguments and (4.23), that

T —
Ty J J 0753 (e s (1) do(x)dt,
0 T
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and
T = = | @S7030)0,0(0) dox).
Writing T = Ty, + 17, with

T —_ =
Tﬁ:—jfdmw%gﬁwamm%wmddmw
0 I

T8, = = | doda(Th, 5215, 750)) (T, PB, 0)0(0) do(x).
we also obtain that "
18—~ [ | dau S5 OuPm) v () o)t
and v
zﬁa—Laawmﬁm%wmmw@»

Using that 0 < 77, (II5 s7.) < 7f max, the continuity of 7y, the convergence of I s7, a.e. in (0,T) x  to

S& (Pe,m), (4.18) and (4.24), it holds that

T
I — f f 0% (S (P ) K VDL, - OV, dxdt
0 Q

The convergence
73

T d
T || (S o)) Ty Vo - 05 o
o Jr
is established using 0 < 1% (H{)p %) < Nfmax: the continuity of n%, the convergence of H;;p 8¢ a.e.in (0,T) x T
t0 S (Pe,r), combined with the weak convergence of d;/fDuV{)pp? to Jj’c/Qvaf in L2((0,T) x I)4~1, the strong
convergence of djl/;)u to cf}/z in L*((0,T)xT) for all 2 < s <  (resulting from (4.16)), and the strong convergence

(4.24) of VI, o5 to OV-4by in L*(0,T; L (T')) with r > 8.
From (4.24) we readily obtain the convergence

T T
Ts — f f ho 0, dxdt +J f h§ 0vy do(x)dt.
o Ja o Jr
The convergence
T
TS5 J J Q% Ol adxdt,
o Jr

results from the weak convergence of Q% , to Q?‘ . in L?(0,7; L*(T")) combined with the strong convergence of

[¢]%, to 0[¢]a in L2(0,T; L3(T)).
The following convergences of Tg, 17, Ty

Ts — LT fQ (0(1—1) ce(w)w — bﬁﬁdiv(w)w) dxdt,
T; — f{ )Tfpp,’? [w]w do(x)dt,

T
Tg—»f jf-wwdxdt
o Jo

classically result from the strong convergences (4.25) combined with the weak convergences (4.19).
Using the above limits in T} + To + 13 + T4 + Zc_i(Tf‘ + T§) =T and Ts + T7 = Ty concludes the proof
that p*, a € {nw,w}, and u satisfy the variational formulation (2.6a) and (2.6b). O
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4.4. Identification of the limit interface fluxes

As mentioned in Remark 4.2, the proof above does not identify the limit fluxes Q?u of
Q%o = Tr [13(S8 (T, pean)) ([p°15,) " = 15 (S5 (T, pe))([p°15,)" |

as T [na(ng(%ﬁc’m))[[ﬁ“]]I - nf(S?(ﬁC,f))[[ﬁ“]];]. The reason is that although the saturations Sg'(T% pe,m)

and S?(Hg;ppc, #) converge strongly, the pressure jumps [[_p"‘]]“Dp only converge weakly, which challenges the
identification of the limits of their positive and negative parts (non-linear functions of the pressure jumps).

The expression of Q;‘é, « is however monotonic in terms of the pressure jumps [[po‘]]%p, a feature that was used
in [23, Section 4.3] to identify the limit of these matrix—fracture fluxes in absence of mechanical deformations.
The argument used there relies on a Minty technique (see, e.g., [22, Section D.5]). A key ingredient to this
argument relies on being able to establish a energy equality for the limit of the approximations, which is done
using the limit functions themselves as test functions in the weak equations (2.6a) and (2.6b) they satisfy and
using fine integrating-by-parts in time results from [21].

The caveat here is that space of test functions for (2.6a), which is C*([0,T) x Q\I') x C¥([0,T) x T), is
not obviously dense in the space of trial functions L?(0,T; V"), in which the limit pressures are found. Hence,
it is not clear that we can indeed use these limit pressures as test functions in (2.6a). The density issue comes
from the fact that we would need to find smooth functions (@?’k)kgl such that cfj’/ QVT@;‘:JQ — Jj’/ QVTp? in
L2((0,T) x T'); in other words, we would like smooth functions to be dense in the weighted space Héf ().

Such a density result has been established in [32], but under an additional assumption on the weight. Specif-
ically:
d ¢ is bounded in time, smooth in space away from the fracture tips,

and, near the tips, df(t,z,y) ~ £2+¢ f(y) with e > 0

(above, z is the distance to the tip, y is the coordinate parallel to the tip, and [ is smooth). Under this
assumption, the arguments of [23] can be reproduced and the limit fluxes Qf , can be shown to satisfy the first
equation in (2.6¢).

5. NUMERICAL EXPERIMENTS

The objective of this numerical section is to compare the discontinuous pressure poro-mechanical model
investigated in this work with the continuous pressure poro-mechanical model presented in [10]. Two test cases
are considered. The first one already described in [10] considers the injection of gas in a cross-shaped fracture
network coupled with the matrix domain initially liquid saturated. The second test case models the desaturation
by suction at the interface between a ventilation tunnel and a low-permeability fractured porous medium.

For both test cases, the flow part of system (2.3) is discretized in space by a Two-Point Flux Approximation
(TPFA) cell-centered finite volume scheme with additional face unknowns at matrix fracture interfaces [2]. The
mechanical part of (2.3) is discretized using second-order finite elements (P3) for the displacement field in the
matrix [18,37], adding supplementary unknowns on the fracture faces to account for the discontinuities. The
computational domain 2 is decomposed using admissible triangular meshes for the TPFA scheme (cf., [25,
Section 3.1.2]) as illustrated in Figure 4.

For the TPFA scheme, the GD operators %’p and H{)p are respectively cell-wise and fracture face-wise
constant. It results that the porosity and the fracture aperture defined by the closure laws (3.2c) will be
projected in the matrix and fracture accumulation terms (cf., first two terms in (3.2a)) to cell-wise and face-
wise constant spaces respectively. For simplicity, this face-wise constant projection of the fracture aperture is
also used in the fracture conductivity.
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FIGURE 4. Example of admissible triangular mesh with three fracture edges in bold. The dot
lines joining each cell center to the center of each of its edges are assumed orthogonal to the
edge. The discrete unknowns of the discontinuous pressure model are presented for the two-
phase flow and the mechanics. Note that the discontinuities of the pressures, of the saturations
and of the displacement are captured at matrix fracture interfaces. Note also that additional
nodal unknowns are defined at intersections of at least three fractures.

Let n € N* denote the time step index. The time stepping is adaptive, defined as
52 = min {gét”fé,AtmaX} ,

where 6t2 = 0.001 days is the initial time step, At™?* = 10 days in the first test case and 10 years in the second
one, and ¢ = 1.1. At each time step, the flow unknowns are computed by a Newton-Raphson algorithm. At each
Newton-Raphson iteration, the Jacobian matrix is computed analytically and the linear system is solved using
a GMRes iterative solver. The time step is reduced by a factor 2 whenever the Newton-Raphson algorithm does
not converge within 50 iterations, with the stopping criteria defined by the relative residual norm lower than
107° or a maximum normalized variation of the primary unknowns lower than 10~%. On the other hand, given
the matrix and fracture equivalent pressures pZ and p?, the displacement field u is computed using the direct
solver MA48 (see [24]). The coupled nonlinear system is then solved at each time step using a Newton-Krylov
acceleration [48] of the fixed point algorithm which, for a given displacement field, solves the two-phase Darcy
flow problem, then computes the new displacement field given the new equivalent pressures (see [11] for more
details). The stopping criterion is fixed to 1075 on the relative displacement field increment. This Newton-Krylov
algorithm is compared in [11] to the fixed stress algorithm [43] extended to DFM models in [31]. It is shown to
solve the robustness issue of fixed stress algorithms w.r.t. to small initial time steps in the case of incompressible
fluids.
For this section, we introduce the following notation for the total stress:

ol =0 + o(u) — bpZl, (5.1)

0

where ¢" is a possible pre-stress state [47, Section 4.2.4].

5.1. Gas injection in a cross-shaped fracture network

The data set of the continuous pressure model is the one described in [10]. We recall it briefly here. We consider
the square Q = (0,L)? lying in the zy-plane, with L = 100m, containing a cross-shaped fracture network T

made up of four fractures, each one of length % intersecting at (%, %) and aligned with the coordinate axes. The
@\2 «
matrix and fracture network have the following mobility laws: n% (s*) = (SHQ) ;nf(s®) = o5, a € {w,nw}, where
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1Y = 1073 Pa-s and ™ = 1.851 x 1075 Pa-s are the dynamic viscosities of the wetting and non-wetting phases,
respectively. Notice that 7y, and 7§ do not satisfy the assumptions of our analysis, as they are not bounded
below by a strictly positive number; nevertheless, the results of the numerical experiments are not affected by
this circumstance. The saturation—capillary pressure relation is Corey’s law:

st = S (pe) = max (1 — exp (— ]];Ct) ,O> , tte{m,f}, (5.2)

with R,, = 10* Pa and R; = 10Pa. The matrix is homogeneous and isotropic, i.e., K,, = A,,l, characterized
by a permeability A, = 3 x 107® m?, an initial porosity ¢!, = 0.2, effective Lamé parameters A = 833 MPa,
© = 1250 MPa, Biot’s coefficient b = 1 — II% ~ (.81, and Biot’s modulus M = 18.4 GPa. The pre-stress state is
assumed null: ¢° = 0. The domain is assumed to be clamped all over its boundary, i.e., u = 0 on (0,T) x 0€;
for the flows, we impose a wetting saturation s}), = 1 on the upper side of the boundary (0,7") x ((0, L) x {L}),
whereas the remaining part of the boundary is considered impervious (q%, - n = 0,« € {nw,w}). The system
is subject to the initial conditions pg™ = p§ = 10° Pa, which in turn results in an initial saturation s§%, = 0,
rt € {m, f}. The final time is set to T = 1000 days = 8.64 x 107 s. The system is excited by the following source
term, representing injection of non-wetting fluid at the center of the fracture network:

g (X) Vpor
j g(x)do(x) °T
T

R (t,x) = (t,x) € (0,T) x T,

where Vpor = f #Y (x) dx is the initial porous volume and g(x) = e Ploe—x0)/LI |y = (£,L), with 8 = 1000
Q

and |-| the Euclidean norm. The remaining source terms A} and hy,, a € {w,nw}, are all set to zero.

To define the discontinuous pressure model, we consider additionally the normal fracture transmissivity
Ty =107% m.

From Figure 5, it is clear that both the continuous and discontinuous pressure models provides roughly the
same solutions. Nevertheless, the continuous pressure model provides a rather smoothed non-wetting phase
saturation at matrix fracture interfaces while the discontinuous pressure model is more accurate as discussed in
[2]. Also, Figure 6 shows the axial total stresses o 0;{ , and the shear total stress Ufy in the matrix at the final
time, for the discontinuous pressure model; from the mechanics viewpoint, in this case the difference between
the two models is not so remarkable. As expected, stresses are concentrated in the neighborhood of fracture
tips. To conclude this subsection, we give an insight into the performance of our method in Table 1, where

— NbCells is the number of mesh cells,

— Na; is the number of successful time steps,

— Nchops is the number of time step chops,

— NNewton is the total number of Newton-Raphson iterations,
— NaMRes 18 the total number of GMRes iterations,

— Nk is the total number of Newton-Krylov iterations,

— CPU[s] is the total computational time in seconds.

5.2. Desaturation by suction of a low-permeability fractured porous medium

In this test case, we consider a hollow cylinder (Fig. 7) made up of a low-permeability porous medium,
containing an azisymmetric fracture network, subject to axisymmetric loads — uniform pressures exerted on the
internal and external surfaces. Using cylindrical coordinates (z, r,#), the problem can therefore be reduced to a
two-dimensional formulation on the diametral section of the medium, shown in Figure 8 along with the fracture
network, and the displacement field only consists of its axial and radial components:

u(z,r,0) = uy(x,r)e, + ur(x,r)er(0), e.() = (cosb)e, + (sinb)e.,
0<$<L, RintgrgRexty 0<9<2ﬂ-7
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FI1GURE 5. Top: matrix non-wetting phase saturation at final time obtained by the discontin-
uous pressure (left) and continuous pressure (right) models. Bottom left: mean non-wetting
phase saturations in the matrix and in the fracture network as a function of time for both the
continuous and discontinuous pressure models. Bottom right: mean fracture apertures (m) as
a function of time for both the continuous and discontinuous pressure models.
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FIGURE 6. Axial normal stresses o} and o, (Pa) and shear stress o, (Pa) at final time for
the discontinuous pressure model.
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TABLE 1. Performance of the method for the plane problem, in terms of the number of mesh
elements, the number of successful time steps, the number of time step chops, the total number
of Newton-Raphson iterations, the total number of GMRes iterations, the total number of
Newton-Krylov iterations, and the total computational time.

Discontinuous pressure  Continuous pressure

NbCells 14336 14 336
Nat 187 187
NChops 0 0
NNewton 2525 2294
Namres 47733 32841
NNk 1711 1618
CPUJs]  307.4 246.7

FIGURE 7. Hollow cylinder of length L and internal and external radii Rj,; and Rext, respec-
tively. The diametral section is highlighted in gray, the fracture network is not shown for
simplicity.

where we have dropped time dependence for simplicity, and taken into account the system of cylindrical coor-
dinates in Figure 7, denoting by e, the axial unit vector, by e, = e,.(f) the radial unit vector, and by ey the
orthoradial unit vector. The final time for this simulation is set to 7" = 200 years. The geometry is characterized
by the following data set: length L = 10 m, internal and external radii Rj,; = 5m, Rexy = 35 m; two consecutive
fractures are spaced by 1.25m. The matrix is characterized by the Lamé parameters A = 1.5 GPa, u = 2 GPa,
by a permeability A,, = 5 x 10720 m?, Biot’s coefficient and modulus b = 1 and M = 1 GPa respectively, and by
an initial porosity ¢,, = 0.15. The normal transmissibility of fractures is 7y = 107? m and the initial fracture
aperture is set to 1072 m.

The matrix relative permeabilities of the liquid and gas phases are defined by the following Van Genuchten
laws:

0 if 8% < Sy,
B () = ! , Bl S (53)
\/g*w(l (- (gw)l/q)q> if S < 5% <1 — Sy,
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FIGURE 8. Diametral section (not scaled) of the cylinder, with mechanical boundary conditions:
zero normal displacement on the two sides * = 0 et z = L and uniform pressures 0% on the
surface 7 = Rext and pagm on the surface r = R;yt. The fracture network is highlighted in red.

FIGURE 9. Zoom on the matrix non-wetting phase saturations at final time for the discontinuous
(left) and continuous (right) pressure models.

E
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FIGURE 10. Zoom on the matrix equivalent pressure (Pa) at final time for the discontinuous
(left) and continuous (right) pressure models.

0 if s7Y < Sy,
k'?’\:/n(snw) _ 1 ifs™ >1-— S]r, (54)

2
N (1 - (§W)1/‘1) ! if Sgr < 8" <1 — 5,
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FIGURE 11. Zoom on the matrix porosity ¢,, and on the fracture aperture d; at final time for
the discontinuous (left) and continuous (right) pressure models.
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FIGURE 12. Mean fracture aperture (m) as a function of time for both models.

and the parameter ¢ = 0.328, the residual liquid and gas saturations S, = 0.40 and S, = 0; in the fractures, we
take kY ¢ (s) = s for both phases. The phase mobilities are then 7y, (s*) = &y, (s*)/u® and 0§ (s®) = k¥ ;(5%)/u?,
a € {w,nw} both in the matrix and in the fractures, with the same viscosities as in the previous test case. Again,
N, and 7y are not bounded below by a strictly positive number, but this does not have an influence on the
numerical results.

The saturation—capillary pressure relation is again Corey’s law, as in (5.2), with R,, = 2 x 10® Pa and
Ry = 10? Pa. Moreover, the medium is supposed to be pre-stressed with the following pre-stress state:

' =0le,®e, +0le, e, +0pes® ey, oY = 16 MPa, 0° = ) = 12MPa.

Full saturation of the liquid phase is assumed at the initial state, both in the matrix and in the fracture
network, with an initial uniform pressure p§ = pg*™ = 4 MPa.

Concerning flow boundary conditions, the porous medium is assumed impervious (vanishing fluxes) on the
lateral boundaries corresponding to x = 0 and x = L. On the inner surface 7 = Ry, a given gas saturation
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FIGURE 13. Top: zoom on the radial and orthoradial total stresses o and ol (Pa) at final
time for the discontinuous pressure model. Bottom: zoom on the axial and shear total stresses
ol and ol (Pa) at final time for the discontinuous pressure model.
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FIGURE 14. Profile of the orthoradial total stress o} (Pa) at final time along the line z = 5.5 m
as a function of the distance to the bottom boundary in m and for both models.
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TABLE 2. Performance of the method for the axisymmetric problem, in terms of the number of
mesh elements, the number of successful time steps, the number of time step chops, the total
number of Newton-Raphson iterations, the total number of GMRes iterations, the total number
of Newton-Krylov iterations, and the total computational time.

Discontinuous pressure  Continuous pressure

NbCells 28945 28945
Nat 169 176
NChops 0 1
NNewton 2509 3758
NaMmRres 104329 122183
Nk 693 721
CPU[s] 11745 1413.6
is imposed: sp" = 0.35 on the matrix side and s3% =1 — 10~® at fracture nodes, and atmospheric pressure

Patm = 10° Pa everywhere. On the outer surface 7 = Reyt, a liquid saturation s¥, = 1 and pressure p¥ = 4 MPa
are imposed.

As for the mechanical boundary conditions, we impose a vanishing axial displacement u, on the lateral
boundaries corresponding to x = 0 and « = L. Moreover, on the same boundaries, the tangential stress is set
to zero. On the other hand, external surface loads g (uniform pressures) are applied on the inner and outer
surfaces:

—okn, ok, >0, ifr= R,
g = .
—PatmB, Patm > 0, if r = Ry,

where n = e, for r = Ry and n = —e,. for r = R;,;. We consider 0% = 10.95 MPa as the numerical value for
the uniform pressure on the outer surface.

As shown in Figures 9 and 10 strong capillary forces induce the desaturation of the matrix in the neighborhood
of the inner surface combined with a high negative liquid pressure. As exhibited in Figures 11 and 12 this negative
liquid pressure triggers the contraction of the pores as well as the spreading of the fracture sides. Figure 9
also displays a comparison between the matrix non-wetting saturations obtained with the discontinuous and
continuous pressure models at final time. It can be clearly seen that, unlike the continuous pressure model, the
discontinuous pressure model is able to capture the barrier effect induced on the liquid phase by the fractures
almost fully filled by the gas phase. This is particularly remarkable at the intersection of the horizontal and
oblique fractures. Figure 10 shows a comparison of matrix equivalent pressures at final time obtained for the
continuous and discontinuous pressure models; in the first case, discontinuities at the matrix-fracture interface
can be clearly detected. Figure 12 shows the time history of the average fracture aperture for the continuous and
discontinuous pressure models, with significant differences induced by the equivalent pressures pZ computed in
the two models. Finally, in Figure 13 we display the radial, orthoradial, axial, and shear total stresses o7, ag,
ol and o, respectively in the matrix at the final time for the discontinuous pressure model. Again, stresses are
concentrated in the neighborhood of fracture tips, as expected. The arching effect is clearly visible by comparison
of the radial and orthoradial stresses in the neighborhood of the inner surface. As expected, the radial stresses
are transmitted across the horizontal fracture as opposed to the orthoradial stresses. The comparison of the
results given by the two models is shown in Figure 14, where a different behavior in the orthoradial total stresses
09T given by the two models along the vertical line = 5.5 (intersecting the horizontal fracture) can be detected.

As in the previous subsection, we summarize also here the performance of our method in Table 2.
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6. CONCLUSIONS

This work extends the gradient discretization and convergence analysis carried out in [10] to the case of
hybrid-dimensional poro-mechanical models with discontinuous phase pressures at matrix fracture interfaces.
The model considers a linear elastic mechanical model with open fractures coupled with a two-phase Darcy flow.
The Poiseuille law is used for the tangential fracture conductivity and the dependence of the normal fracture
transmissivity on the fracture aperture is frozen. The model accounts for a general network of planar fractures
including immersed, non-immersed fractures and fracture intersections, and considers different rock types in the
matrix and fracture network domains as well as at the matrix fracture interfaces.

Two test cases were considered to compare the continuous pressure hybrid-dimensional poro-mechanical
model investigated in [10] to the discontinuous pressure model studied in this work. The first test case simulates
the gas injection in a cross-shaped fracture network immersed in a two-dimensional porous medium initially
water saturated. The second test case is based on an axisymmetric DFM model and simulates the desaturation
by suction at the interface between a ventilation tunnel and a Callovo-Oxfordian argilite fractured storage rock.
In both cases, it is shown that the discontinuous pressure model provides a better accuracy at matrix fracture
interfaces than the continuous pressure model and allows in particular to account for the barrier effect induced
on the liquid phase by the gas filled fractures.

Acknowledgements. We are grateful to Andra and to the Australian Research Council’s Discovery Projects (project
DP170100605) funding scheme for partially supporting this work.
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