A homogeneous relaxation low mach number model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1569-1598

In the present paper, we investigate a new homogeneous relaxation model describing the behaviour of a two-phase fluid flow in a low Mach number regime, which can be obtained as a low Mach number approximation of the well-known HRM. For this specific model, we derive an equation of state to describe the thermodynamics of the two-phase fluid. We prove some theoretical properties satisfied by the solutions of the model, and provide a well-balanced scheme. To go further, we investigate the instantaneous relaxation regime, and prove the formal convergence of this model towards the low Mach number approximation of the well-known HEM. An asymptotic-preserving scheme is introduced to allow numerical simulations of the coupling between spatial regions with different relaxation characteristic times.

DOI : 10.1051/m2an/2021032
Classification : 35Q35, 35Q79, 65M25, 76T10
Keywords: Low Mach number flows, modelling of phase transition, relaxation model, HEM, HRM, analytical solutions, well-balanced scheme, asymptotic-preserving scheme
@article{M2AN_2021__55_4_1569_0,
     author = {Faccanoni, Gloria and Grec, B\'er\'enice and Penel, Yohan},
     title = {A homogeneous relaxation low mach number model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1569--1598},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021032},
     mrnumber = {4292301},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021032/}
}
TY  - JOUR
AU  - Faccanoni, Gloria
AU  - Grec, Bérénice
AU  - Penel, Yohan
TI  - A homogeneous relaxation low mach number model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1569
EP  - 1598
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021032/
DO  - 10.1051/m2an/2021032
LA  - en
ID  - M2AN_2021__55_4_1569_0
ER  - 
%0 Journal Article
%A Faccanoni, Gloria
%A Grec, Bérénice
%A Penel, Yohan
%T A homogeneous relaxation low mach number model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1569-1598
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021032/
%R 10.1051/m2an/2021032
%G en
%F M2AN_2021__55_4_1569_0
Faccanoni, Gloria; Grec, Bérénice; Penel, Yohan. A homogeneous relaxation low mach number model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1569-1598. doi: 10.1051/m2an/2021032

[1] G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. | MR | DOI | Zbl

[2] A. S. Almgren, J. B. Bell, C. A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922. | DOI

[3] A. S. Almgren, J. B. Bell, C. A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927. | DOI

[4] A. Ambroso, J.-M. Hérard and O. Hurisse, A method to couple HEM and HRM two-phase flow models. Comput. Fluids 38 (2009) 738–756. | MR | Zbl | DOI

[5] T. Barberon and P. Helluy, Finite volume simulations of cavitating flows. In: Finite Volumes for Complex Applications, III (Porquerolles, 2002). Lab. Anal. Topol. Probab (2002) 441–448 (electronic). | MR

[6] T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. | Zbl | DOI

[7] K. H. Bendiksen, D. Maines, R. Moe and S. Nuland, The dynamic two-fluid model OLGA: theory and application. SPE Prod. Eng. 6 (1991) 171–180. | DOI

[8] M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Study of a low mach nuclear core model for two-phase flows with phase transition I: stiffened gas law. ESAIM: M2AN 48 (2014) 1639–1679. | MR | Numdam | Zbl | DOI

[9] R. A. Berry, J. W. Peterson, H. Zhang, R. C. Martineau, H. Zhao, L. Zou, D. Andrs and J. Hansel, Relap-7 theory manual. Technical report, Idaho National Lab.(INL), Idaho Falls, ID (United States) (2018).

[10] T. Berstad, C. Dørum, J. P. Jakobsen, S. Kragset, H. Li, H. Lund, A. Morin, S. T. Munkejord, M. J. Mølnvik, H. O. Nordhagen and E. Østbya, CO2 pipeline integrity: a new evaluation methodology. Energy Proc. 4 (2011) 3000–3007. | DOI

[11] D. Bestion, The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229–245. | DOI

[12] Z. Bilicki and J. Kestin, Physical aspects of the relaxation model in two-phase flow. Proc. R. Soc. London. A. Math. Phys. Sci. 428 (1990) 379–397. | Zbl

[13] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition. John Wiley & Sons (1985). | Zbl

[14] M. De Lorenzo, Modelling and numerical simulation of metastable two-phase flows. Ph.D. thesis, Université Paris-Saclay (2018).

[15] M. De Lorenzo, P. Lafon, M. Di Matteo, M. Pelanti, J.-M. Seynhaeve and Y. Bartosiewicz, Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int. J. Multiphase Flow 95 (2017) 199–219. | MR | DOI

[16] S. Dellacherie, On a low Mach nuclear core model. ESAIM Proc. 35 (2012) 79–106. | MR | Zbl | DOI

[17] S. Dellacherie, E. Jamelot and O. Lafitte, A simple monodimensional model coupling an enthalpy transport equation and a neutron diffusion equation. Appl. Math. Lett. 62 (2016) 35–41. | MR | DOI

[18] S. Dellacherie, E. Jamelot, O. Lafitte and R. Mouhamad, Numerical results for the coupling of a simple neutronics diffusion model and a simple hydrodynamics low mach number model. In: IEEE, editor, SYNASC (2016).

[19] S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Accurate steam-water equation of state for two-phase flow LMNC model with phase transition. Appl. Math. Model. 65 (2019) 207–233. | MR | DOI

[20] P. Downar-Zapolski, Z. Bilicki, L. Bolle and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. | Zbl | DOI

[21] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Part. Differ. Equ. 12 (1987) 1227–1283. | MR | Zbl | DOI

[22] G. Faccanoni, Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (November 2008).

[23] E. Faucher, J.-M. Herard, M. Barret and C. Toulemonde, Computation of flashing flows in variable cross-section ducts. Int. J. Comput. Fluid Dyn. 13 (2000) 365–391. | MR | Zbl | DOI

[24] F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229 (2010) 7625–7648. | MR | Zbl | DOI

[25] P. Fillion, A. Chanoine, S. Dellacherie and A. Kumbaro, FLICA-OVAP: A new platform for core thermal–hydraulic studies. Nucl. Eng. Des. 241 (2011) 4348–4358. | DOI

[26] T. Flåtten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. | MR | Zbl | DOI

[27] J. Gale, I. Tiselj and A. Horvat, Two-fluid model of the waha code for simulations of water hammer transients. Multiphase Sci. Technol. 20 (2008). | DOI

[28] J. M. Greenberg and A.-Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. | MR | Zbl | DOI

[29] W. Greiner, L. Neise and H. Stöcker, Thermodynamics and Statistical Mechanics. Springer (1997). | Zbl

[30] L. Gurault and J.-M. Hérard, A two-fluid hyperbolic model in a porous medium. ESAIM: M2AN 44 (2010) 1319–1348. | MR | Zbl | Numdam | DOI

[31] P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. | MR | Zbl | Numdam | DOI

[32] O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows. Int. J. Finite 11 (2014) 1–37. | MR

[33] O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer. ESAIM: Proc. Surv. 66 (2019) 84–108. | MR | DOI

[34] S. Jin, Runge-kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. | MR | Zbl | DOI

[35] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Math. Univ. Parma (N.S.) 3 (2012) 177–216. | MR | Zbl

[36] A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son and D. S. Stewart, Two-phase modelling of DDT in granular materials: reduced equations. Phys. Fluids 13 (2001) 3002–3024. | Zbl | DOI

[37] G. Le Coq, S. Aubry, J. Cahouet, P. Lequesne, G. Nicolas and S. Pastorini, The “THYC” computer code. A finite volume approach for 3 dimensional two-phase flows in tube bundles. Bulletin de la Direction des Etudes et Recherches, Serie A (1989) 61–76.

[38] O. Le Métayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265–276.

[39] O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567–610. | MR | Zbl | DOI

[40] O. Le Métayer and R. Saurel, The Noble-Abel Stiffened-Gas equation of state. Phys. Fluids 28 (2016). | DOI

[41] E. W. Lemmon, M. O. Mclinden and D. G. Friend, Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg, MD (1998).

[42] G. Linga and T. Flåtten, A hierarchy of non-equilibrium two-phase flow models. ESAIM: Proc. Surv 66 (2019) 109–143. | MR | DOI

[43] H. Lund, A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Math. 72 (2012) 1713–1741. | MR | Zbl | DOI

[44] A. Majda and K. G. Lamb, Simplified equations for low Mach number combustion with strong heat release. In: Vol. 35 of IMA Vol. Math. Appl. Dynamical Issues in Combustion Theory. Springer-Verlag (1991). | MR | Zbl

[45] J. P. Mañes, V. H. Sánchez Espinoza, S. Chiva Vicent, M. Böttcher and R. Stieglitz, Validation of NEPTUNE-CFD two-phase flow models using experimental data. Sci. Technol. Nucl. Installations 2014 (2014). | DOI

[46] H. Mathis, Étude théorique et numérique des écoulements avec transition de phase. Ph.D. thesis, Université de Strasbourg (2010). | MR | Zbl

[47] H. Paillere, C. Viozat, A. Kumbaro and I. Toumi, Comparison of low mach number models for natural convection problems. Heat Mass Transfer 36 (2000) 567–573. | DOI

[48] L. Quibel, Simulation d’ écoulements diphasiques eau-vapeur en présence d’incondensables. Ph.D. thesis, Université de Strasbourg (2020).

[49] L. Quibel, Simulation of water-vapor two-phase flows with non-condensable gas. Theses, Université de Strasbourg (September 2020).

[50] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313–350. | MR | Zbl | DOI

[51] J. W. Spore, et al., TRAC-M/FORTRAN 90 Theory Manual. Los Alamos National Laboratory, Los Alamos, NM. Technical report, NUREG/CR-6724 (2001).

[52] M. D. Thanh and A. Izani Md Ismail, A well-balanced scheme for a one-pressure model of two-phase flows. Phys. Scr. 79 (2009). | Zbl | DOI

Cité par Sources :