In the present paper, we investigate a new homogeneous relaxation model describing the behaviour of a two-phase fluid flow in a low Mach number regime, which can be obtained as a low Mach number approximation of the well-known HRM. For this specific model, we derive an equation of state to describe the thermodynamics of the two-phase fluid. We prove some theoretical properties satisfied by the solutions of the model, and provide a well-balanced scheme. To go further, we investigate the instantaneous relaxation regime, and prove the formal convergence of this model towards the low Mach number approximation of the well-known HEM. An asymptotic-preserving scheme is introduced to allow numerical simulations of the coupling between spatial regions with different relaxation characteristic times.
Keywords: Low Mach number flows, modelling of phase transition, relaxation model, HEM, HRM, analytical solutions, well-balanced scheme, asymptotic-preserving scheme
@article{M2AN_2021__55_4_1569_0,
author = {Faccanoni, Gloria and Grec, B\'er\'enice and Penel, Yohan},
title = {A homogeneous relaxation low mach number model},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1569--1598},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {4},
doi = {10.1051/m2an/2021032},
mrnumber = {4292301},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021032/}
}
TY - JOUR AU - Faccanoni, Gloria AU - Grec, Bérénice AU - Penel, Yohan TI - A homogeneous relaxation low mach number model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 1569 EP - 1598 VL - 55 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021032/ DO - 10.1051/m2an/2021032 LA - en ID - M2AN_2021__55_4_1569_0 ER -
%0 Journal Article %A Faccanoni, Gloria %A Grec, Bérénice %A Penel, Yohan %T A homogeneous relaxation low mach number model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 1569-1598 %V 55 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021032/ %R 10.1051/m2an/2021032 %G en %F M2AN_2021__55_4_1569_0
Faccanoni, Gloria; Grec, Bérénice; Penel, Yohan. A homogeneous relaxation low mach number model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1569-1598. doi: 10.1051/m2an/2021032
[1] , and , A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. | MR | DOI | Zbl
[2] , , and , Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922. | DOI
[3] , , and , Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927. | DOI
[4] , and , A method to couple HEM and HRM two-phase flow models. Comput. Fluids 38 (2009) 738–756. | MR | Zbl | DOI
[5] and , Finite volume simulations of cavitating flows. In: Finite Volumes for Complex Applications, III (Porquerolles, 2002). Lab. Anal. Topol. Probab (2002) 441–448 (electronic). | MR
[6] and , Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. | Zbl | DOI
[7] , , and , The dynamic two-fluid model OLGA: theory and application. SPE Prod. Eng. 6 (1991) 171–180. | DOI
[8] , , , and , Study of a low mach nuclear core model for two-phase flows with phase transition I: stiffened gas law. ESAIM: M2AN 48 (2014) 1639–1679. | MR | Numdam | Zbl | DOI
[9] , , , , , , and , Relap-7 theory manual. Technical report, Idaho National Lab.(INL), Idaho Falls, ID (United States) (2018).
[10] , , , , , , , , , and , CO2 pipeline integrity: a new evaluation methodology. Energy Proc. 4 (2011) 3000–3007. | DOI
[11] , The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229–245. | DOI
[12] and , Physical aspects of the relaxation model in two-phase flow. Proc. R. Soc. London. A. Math. Phys. Sci. 428 (1990) 379–397. | Zbl
[13] , Thermodynamics and an Introduction to Thermostatistics, 2nd edition. John Wiley & Sons (1985). | Zbl
[14] , Modelling and numerical simulation of metastable two-phase flows. Ph.D. thesis, Université Paris-Saclay (2018).
[15] , , , , and , Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int. J. Multiphase Flow 95 (2017) 199–219. | MR | DOI
[16] , On a low Mach nuclear core model. ESAIM Proc. 35 (2012) 79–106. | MR | Zbl | DOI
[17] , and , A simple monodimensional model coupling an enthalpy transport equation and a neutron diffusion equation. Appl. Math. Lett. 62 (2016) 35–41. | MR | DOI
[18] , , and , Numerical results for the coupling of a simple neutronics diffusion model and a simple hydrodynamics low mach number model. In: IEEE, editor, SYNASC (2016).
[19] , , and , Accurate steam-water equation of state for two-phase flow LMNC model with phase transition. Appl. Math. Model. 65 (2019) 207–233. | MR | DOI
[20] , , and , The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. | Zbl | DOI
[21] , Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Part. Differ. Equ. 12 (1987) 1227–1283. | MR | Zbl | DOI
[22] , Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (November 2008).
[23] , , and , Computation of flashing flows in variable cross-section ducts. Int. J. Comput. Fluid Dyn. 13 (2000) 365–391. | MR | Zbl | DOI
[24] and , A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229 (2010) 7625–7648. | MR | Zbl | DOI
[25] , , and , FLICA-OVAP: A new platform for core thermal–hydraulic studies. Nucl. Eng. Des. 241 (2011) 4348–4358. | DOI
[26] and , Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. | MR | Zbl | DOI
[27] , and , Two-fluid model of the waha code for simulations of water hammer transients. Multiphase Sci. Technol. 20 (2008). | DOI
[28] and , A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. | MR | Zbl | DOI
[29] , and , Thermodynamics and Statistical Mechanics. Springer (1997). | Zbl
[30] and , A two-fluid hyperbolic model in a porous medium. ESAIM: M2AN 44 (2010) 1319–1348. | MR | Zbl | Numdam | DOI
[31] and , Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. | MR | Zbl | Numdam | DOI
[32] , Application of an homogeneous model to simulate the heating of two-phase flows. Int. J. Finite 11 (2014) 1–37. | MR
[33] and , A homogeneous model for compressible three-phase flows involving heat and mass transfer. ESAIM: Proc. Surv. 66 (2019) 84–108. | MR | DOI
[34] , Runge-kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. | MR | Zbl | DOI
[35] , Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Math. Univ. Parma (N.S.) 3 (2012) 177–216. | MR | Zbl
[36] , , , and , Two-phase modelling of DDT in granular materials: reduced equations. Phys. Fluids 13 (2001) 3002–3024. | Zbl | DOI
[37] , , , , and , The “THYC” computer code. A finite volume approach for 3 dimensional two-phase flows in tube bundles. Bulletin de la Direction des Etudes et Recherches, Serie A (1989) 61–76.
[38] , and , Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265–276.
[39] , and , Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567–610. | MR | Zbl | DOI
[40] and , The Noble-Abel Stiffened-Gas equation of state. Phys. Fluids 28 (2016). | DOI
[41] , and , Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg, MD (1998).
[42] and , A hierarchy of non-equilibrium two-phase flow models. ESAIM: Proc. Surv 66 (2019) 109–143. | MR | DOI
[43] , A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Math. 72 (2012) 1713–1741. | MR | Zbl | DOI
[44] and , Simplified equations for low Mach number combustion with strong heat release. In: Vol. 35 of IMA Vol. Math. Appl. Dynamical Issues in Combustion Theory. Springer-Verlag (1991). | MR | Zbl
[45] , , , and , Validation of NEPTUNE-CFD two-phase flow models using experimental data. Sci. Technol. Nucl. Installations 2014 (2014). | DOI
[46] , Étude théorique et numérique des écoulements avec transition de phase. Ph.D. thesis, Université de Strasbourg (2010). | MR | Zbl
[47] , , and , Comparison of low mach number models for natural convection problems. Heat Mass Transfer 36 (2000) 567–573. | DOI
[48] , Simulation d’ écoulements diphasiques eau-vapeur en présence d’incondensables. Ph.D. thesis, Université de Strasbourg (2020).
[49] , Simulation of water-vapor two-phase flows with non-condensable gas. Theses, Université de Strasbourg (September 2020).
[50] , and , Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313–350. | MR | Zbl | DOI
[51] , et al., TRAC-M/FORTRAN 90 Theory Manual. Los Alamos National Laboratory, Los Alamos, NM. Technical report, NUREG/CR-6724 (2001).
[52] and , A well-balanced scheme for a one-pressure model of two-phase flows. Phys. Scr. 79 (2009). | Zbl | DOI
Cité par Sources :





