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A HOMOGENEOUS RELAXATION LOW MACH NUMBER MODEL

Gloria Faccanoni1,*, Bérénice Grec2 and Yohan Penel3

Abstract. In the present paper, we investigate a new homogeneous relaxation model describing the
behaviour of a two-phase fluid flow in a low Mach number regime, which can be obtained as a low Mach
number approximation of the well-known HRM. For this specific model, we derive an equation of state
to describe the thermodynamics of the two-phase fluid. We prove some theoretical properties satisfied
by the solutions of the model, and provide a well-balanced scheme. To go further, we investigate the
instantaneous relaxation regime, and prove the formal convergence of this model towards the low Mach
number approximation of the well-known HEM. An asymptotic-preserving scheme is introduced to allow
numerical simulations of the coupling between spatial regions with different relaxation characteristic
times.

Mathematics Subject Classification. 35Q35, 35Q79, 65M25, 76T10.

Received February 12, 2021. Accepted June 30, 2021.

1. Introduction

Two-phase flows are found in many industrial applications, such as nuclear reactors and/or heat exchangers
[9, 11], cavitating flow [50], oil and gas production, transport and storage [7, 10].

Modelling and simulating such flows is a challenging task due to the complex nature of the interactions
between the two phases, such as the motion, the topology and the heat and mass transfer across the interfaces.
A wide variety of models exists for two-phase flows. They range from describing the two-phase flow as a pseudo
single-phase fluid (mixture) to a multi-fluid flow. In the most general models, the two fluids (or two phases)
evolve independently. Each phase may be described by an equation of state, which determines all thermodynamic
properties of each phase from the knowledge of two thermodynamic quantities. These thermodynamic quantities
remain unaffected by the local velocity field, and each phase has separate pressures, temperatures, chemical
potentials and velocities. The model is thus formulated as a hyperbolic (relaxation) system with source terms
accounting for phase interactions. By considering the instantaneous limits of each relaxation process, we obtain
a hierarchy of models, each with partial equilibrium in one or more of the aforementioned variables. Most
industrial codes within the nuclear community – for instance CATHARE [11], FLICA [25], NEPTUNE CFD [45],
RELAP [9], THYC [37], TRAC [51], WAHA [27] – rely on these models.

Keywords and phrases. Low Mach number flows, modelling of phase transition, relaxation model, HEM, HRM, analytical
solutions, well-balanced scheme, asymptotic-preserving scheme.
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A hierarchy of relaxation two-phase flow models can be found in [14,26,42,43]. In this hierarchy, two families
can be considered: the inhomogeneous flows [42], with different velocities for the two phases formulated using
two momentum equations and velocity relaxation; and the homogeneous models [43], where there is no relative
velocity between the two phases.

Homogeneous models

In homogeneous models, a single velocity is considered to describe the flow, and the mixture is treated as
a single fluid. These models require three partial differential equations which govern the evolution of the total
mass, the global momentum and the total energy of the whole mixture and some transport equations as well as
a number of externally supplied relations to specify the interaction between the two phases.

The most general homogeneous model is the 6-equation model presented for instance in [22, 31, 32, 46, 48]
where the flow is described using three fractions (mass, volume and energy) and the phase interactions are
accounted by source terms of the form (𝑧eq − 𝑧)/𝜀, where 𝑧eq is the fraction at equilibrium and the exchange
between the two phases occurs with a given characteristic time 𝜀.

A homogeneous model is relaxed when at least one equilibrium between phases is assumed. Relaxed models
will be denoted HRM for Homogeneous Relaxation Model. Among these models, we can consider the models
where only the equality of pressures is taken into account [1], or only the equality of temperatures [1, 36], or
equality of both pressures and temperatures [26, 43], or in the case of liquid and vapour water, equality of
pressures and the saturation of the water vapour phase [4, 12,15,20,23].

The Homogeneous Equilibrium Model (acronym HEM) is the simplest of the homogeneous models. It assumes
that the two phases are at thermodynamic equilibrium. In this case, a set of three equations in order to account
for total mass, total momentum and total energy balances is sufficient to describe the flow.

In this paper we focus on two-phase flows (liquid and vapour phases of the same fluid), described by a four-
equation model with equality of both pressures and temperatures of the phases and supplemented with a source
term relaxing the mass fraction to an equilibrium (saturation) mass fraction.

Low Mach number models

In some applications, like in nuclear cores, convection is characterised by a low Mach number flow, where
the convective velocities are much slower than the speed of sound in the fluid, typically by one to two orders
of magnitude. In fact, when dealing with homogeneous models for liquid-gas flows, the speed of sound in the
mixture can be much lower than the one in the pure phases, leading to a potentially “high” Mach number, even
when the convective velocity of the flow is “small”. Nevertheless, this effect is not so significant in the high
pressure/high temperature regime, making low Mach number models legitimate in nuclear core applications. In
practical terms, the speed of sound in the HEM is always smaller than the speed of sound in the HRM [42],
leading to a higher Mach number. Since the low Mach number hypothesis has already been checked for the
HEM in the nuclear core setting [8], it is also valid for the HRM.

The disparity between the time scales of convective motions and sound waves is a major computational
challenge when convection is the phenomenon of interest [47]. Following sound waves explicitly, as in a traditional
compressible approach, introduces a much shorter time scale than the one driven by the convective motions
in the computation, making it difficult to simulate expected time scales, which are long with respect to the
convective time scale. This made the development of so-called low Mach number models attractive, as sound
waves are filtered out (e.g. [2, 3, 21,44]).

Low Mach number formulations replace the compressible flow equations by a constrained system of partial
differential equations with a similar structure to the incompressible Navier–Stokes equations. The equations
of hydrodynamics are reformulated in order to analytically remove acoustic waves while keeping local com-
pressibility effects due to heat release and phase changes. Because low Mach number models do not track the
propagation of acoustic waves, one can use a time step based on the fluid velocity rather than the speed of sound
and thus often gain an order of magnitude or more in computational efficiency over a traditional compressible
approach.
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The fundamental approximation made in the the low Mach number equations is that the compressible pressure
can be approximated by a reference pressure in the equation of state. Mathematically, this leads to the addition
of a constraint on the velocity field compared to standard hyperbolic evolution equations. The pressure is thus
decomposed as 𝑝(𝑡,𝑥) = 𝑝*(𝑡) + 𝑝(𝑡,𝑥), where 𝑝* is the reference state pressure (or “background” or “ambient
thermodynamic” pressure) and 𝑝 is the perturbed pressure (often called “dynamic pressure”). For low Mach
number flows, an asymptotic analysis shows that 𝑝(𝑡,𝑥)/𝑝(𝑡,𝑥) = 𝒪(ℳ2), where ℳ is the Mach number. We
can then approximate 𝑝(𝑡,𝑥) by 𝑝*(𝑡) in the computation of thermodynamics quantities.

A hierarchy of low Mach number models for nuclear reactors

In the context of pressurised water reactor cores, an asymptotic low Mach number model for the HEM system
has been derived and investigated in a series of papers [8, 16, 19]. The fluid is described by a single equation
of state taking into account the phase transition by supposing that, when both vapour and liquid phases are
present, they have the same pressure, temperature and chemical potential. It incorporates large compressibility
effects due to the vaporisation and thermal processes with a spatially constant background pressure 𝑝* = 155 bar.

In the present paper we are interested in studying an asymptotic low Mach number model for a 4-equation
HRM: we assume that both the vapour and liquid phases have the same pressure and temperature but different
chemical potentials. In the following the low Mach asymptotic expansion of the HEM described in [8] will be
referred to as 3-Lmnc model and the low Mach asymptotic expansion of the 4-equation HRM as 4-Lmnc model,
where Lmnc stands for Low Mach Nuclear Core.

Content of the paper

The organisation of the paper is as follows. We first present the 4-Lmnc model in Section 2: the system of
equations with boundaries and initial conditions. In Section 3, we derive the isothermal isobar equation of state
to close the system based on a Noble-Abel stiffened gas law for each phase. Then, we describe the relaxation
term in Section 4.1 and the different regimes that can be considered.

Section 4 is devoted to the investigation of the non-instantaneous relaxation regime: we prove some properties
of the system (maximum principle, positivity of the source terms, analytical steady solution) and we introduce
a well-balanced numerical scheme mimicking these theoretical properties.

In Section 5, we study the instantaneous relaxation regime towards the 3-Lmnc model: we first recall the
equations governing the 3-Lmnc model and its closure law (isothermal, isobar, iso-chemical potential equation of
state). We then prove the formal convergence of the 4-Lmnc model towards the 3-Lmnc model. An asymptotic-
preserving numerical scheme is then introduced to handle numerical simulations in the stiff relaxation regime.

Let us notice that for the sake of simplicity, the analysis of the present paper is restricted to dimension 1.

2. Governing equations

As for the 3-Lmnc model [16], starting from the 4-equation HRM, a standard asymptotic analysis around
the reference pressure 𝑝* yields the following system of conservative equations (called 4-lmnc model)

(4-LMNC)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡𝜚+ 𝜕𝑦(𝜚𝑣) = 0, (2.1a)
𝜕𝑡(𝜚ℎ) + 𝜕𝑦(𝜚ℎ𝑣) = Φ, (2.1b)
𝜕𝑡(𝜚𝜙) + 𝜕𝑦(𝜚𝜙𝑣) = 𝜚ℛ𝜀(𝜚, 𝜙), (2.1c)
𝜕𝑡(𝜚𝑣) + 𝜕𝑦(𝜚𝑣2 + 𝑝) = 0, (2.1d)

where 𝜚 is the total specific density, 𝑣 the velocity field, ℎ the total specific enthalpy. The power density
Φ(𝑡, 𝑦) ≥ 0 models the heating due to fission reactions, and might be varying in time and space. 𝜙 ∈ [0; 1] is the
mass fraction: if 𝜙 = 1 the fluid is in vapour phase, if 𝜙 = 0 is in liquid phase and when 0 < 𝜙 < 1 the fluid is
a liquid-vapour mixture. Finally ℛ𝜀 is a relaxation term accounting for interactions between phases.
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To close the system, we have to provide a closure relation between the thermodynamic variables 𝜚, ℎ and 𝜙,
called “equation of state”, modelling the thermodynamic properties of the fluid. The fluid can be a pure phase
(liquid or vapour) of the same fluid (e.g. water and steam) or a mixture of both phases.

The fundamental change with respect to the fully compressible model (the HRM model) lies in the replacement
of the full pressure field in the equation of state by the constant reference pressure 𝑝* > 0 (𝑝* = 155 bar for a
Pressurised Water Reactor (PWR)), and in the momentum equation by the dynamic pressure 𝑝.

Under smoothness assumptions we can derive a non-conservative formulation equivalent to (2.1), which is
the one we shall focus on for analysis and derivation of numerical schemes.

Let us define 𝜏 = 1/𝜚 the specific volume. System (2.1) can be written in a nonconservative form⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡𝜏 − 𝜏𝜕𝑦𝑣 + 𝑣𝜕𝑦𝜏 = 0, (2.2a)
𝜕𝑡ℎ+ 𝑣𝜕𝑦ℎ = Φ𝜏, (2.2b)
𝜕𝑡𝜙+ 𝑣𝜕𝑦𝜙 = ℛ𝜀(ℎ, 𝜙), (2.2c)
𝜕𝑡𝑣 + 𝑣𝜕𝑦𝑣 + 𝜏𝜕𝑦𝑝 = 0. (2.2d)

We choose ℎ, 𝜙, 𝑣 and 𝑝 as unknowns and the specific volume 𝜏 is given by the equation of state as a function
of ℎ and 𝜙 (see Sect. 3 for an admissible equation of state for this model based on Noble-Abel stiffened gas laws
for pure phases). From equation (2.2a), we compute

𝜕𝑦𝑣 =
1
𝜏

(𝜕𝑡𝜏 + 𝑣𝜕𝑦𝜏) =
1
𝜏

𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

(𝜕𝑡ℎ+ 𝑣𝜕𝑦ℎ) +
1
𝜏

𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

(𝜕𝑡𝜙+ 𝑣𝜕𝑦𝜙)
(2.2b)−(2.2c)

=
𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

Φ +
𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

ℛ𝜀(ℎ, 𝜙)
𝜏(ℎ, 𝜙)

·

Observe that in dimension 1, this equation allows to integrate directly the velocity (with boundary conditions),
whereas in higher dimensions, this is a divergence constraint (as in the Navier–Stokes system for example). The
(unknown) dynamic pressure 𝑝 is only involved in the fourth equation of System (2.2), and can be computed
as a post-processing after the computation of ℎ, 𝜙 and 𝑣. Because of this decoupling, this last equation will be
left apart in the following.

Finally, we focus on the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑦𝑣 = Φ

𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

+
ℛ𝜀(ℎ, 𝜙)
𝜏(ℎ, 𝜙)

𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

, (2.3a)

𝜕𝑡ℎ+ 𝑣𝜕𝑦ℎ = Φ𝜏(ℎ, 𝜙), (2.3b)
𝜕𝑡𝜙+ 𝑣𝜕𝑦𝜙 = ℛ𝜀(ℎ, 𝜙). (2.3c)

Boundary and initial conditions

The model is set in some bounded domain Ω = (0, 𝐿), which may represent the nuclear core. The fluid is
injected at the bottom with a given enthalpy ℎ𝑒 > 0, mass fraction 𝜙𝑒 ∈ [0; 1] and at a given flow rate 𝐷𝑒(𝑡) > 0:
we assume the flow to be upward (which corresponds to a nuclear power plant of PWR or BWR type). The
boundary conditions are thus written

ℎ(𝑡, 𝑦 = 0) = ℎ𝑒(𝑡), (2.4a)
𝜙(𝑡, 𝑦 = 0) = 𝜙𝑒(𝑡) ∈ [0, 1], (2.4b)
𝑣(𝑡, 𝑦 = 0) = 𝐷𝑒(𝑡) 𝜏 (ℎ𝑒(𝑡), 𝜙𝑒(𝑡)) . (2.4c)

The system is supplemented with initial conditions:

ℎ(𝑡 = 0, 𝑦) = ℎ0(𝑦), (2.5a)
𝜙(𝑡 = 0, 𝑦) = 𝜙0(𝑦) ∈ [0, 1], (2.5b)

and (2.3a) is satisfied at time 𝑡 = 0.
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Closure relation and relaxation source term

As already mentioned, the system requires appropriate equations of state (referred to as the EoS in the
following) in order to describe the “pure vapour” phase, the “pure liquid” phase but also the “mixture” phase.
They are specified in Section 3, and the relaxation source term ℛ𝜀 in Section 4.1.

3. Equation of state for the 4-lmnc model

The equation of state (EoS) corresponds to the modelling of thermodynamic properties of the fluid and
consists of an algebraic relation between thermodynamic variables.

In classic thermodynamics, the thermodynamic state of a pure single-phase fluid is represented by means
of a relation between the internal energy 𝑒, the specific volume 𝜏 and the entropy 𝒮 (see e.g. [13, 29]). As a
preliminary study, we chose a simple analytical form capable of capturing the essential physics of a pure phase,
which is the Noble-Abel stiffened gas equation of state (NASG EoS).

3.1. Equation of state for a pure phase

For a given fluid, the Noble-Abel stiffened gas EoS is fully defined by the relation

(𝜏, 𝑒) ↦→ 𝒮 = 𝑐𝑣 [ln(𝑒− 𝑞 − 𝜋(𝜏−𝑏)) + (𝛾 − 1) ln(𝜏−𝑏)] +𝑚. (3.1)

The constant Noble-Abel stiffened gas parameters describing thermodynamic properties of the fluid are the
following:

– 𝑐𝑣 > 0 [J ·K−1 · kg−1] is the specific heat at constant volume,
– 𝛾 > 1 is the adiabatic index, which is a non-dimensional coefficient,
– −𝜋 [Pa] is the minimal admissible pressure,
– 𝑏 [m3 · kg−1] is the covolume, the minimal admissible volume,
– 𝑞 [J · kg−1] is a reference enthalpy,
– 𝑚 [J ·K−1 · kg−1] is a reference entropy (relevant when phase transition is involved).

The Noble-Abel stiffened gas EoS, proposed in [40], is an extension of the classic stiffened gas EoS [38], which
is recovered when 𝑏 = 0. The ideal gas EoS is recovered when 𝜋 = 𝑞 = 𝑏 = 0.

Thanks to the Gibbs relation 𝑇 d𝒮 = d𝑒+𝑝 d𝜏 , the classic definitions in thermodynamics provide the following
expressions of the temperature 𝑇 , the pressure 𝑝, the enthalpy ℎ and the Gibbs potential 𝑔 as functions of the
specific volume 𝜏 and the internal energy 𝑒:

𝑇 (𝜏, 𝑒) def=
(︂
𝜕𝒮
𝜕𝑒

⃒⃒⃒⃒
𝜏

)︂−1

=
𝑒− 𝑞 − 𝜋(𝜏−𝑏)

𝑐𝑣
,

𝑝(𝜏, 𝑒) def= 𝑇
𝜕𝒮
𝜕𝜏

⃒⃒⃒⃒
𝑒

=
(𝛾 − 1)(𝑒− 𝑞 − 𝜋(𝜏−𝑏))

𝜏−𝑏
− 𝜋 =

(𝛾 − 1)(𝑒− 𝑞)
𝜏−𝑏

− 𝛾𝜋,

ℎ(𝜏, 𝑒) def= 𝑒+ 𝑝(𝜏, 𝑒)𝜏,

𝑔(𝜏, 𝑒) def= ℎ(𝜏, 𝑒)− 𝑇 (𝜏, 𝑒)𝒮(𝜏, 𝑒).

The definition of the entropy requires 𝑒 − 𝑞 − 𝜋(𝜏−𝑏) > 0 and 𝜏−𝑏 >0, which is equivalent to 𝑝 + 𝜋 > 0 (we
refer to [49] for a more in-depth discussion on the physical basis for this EoS).

Making a change of thermodynamic variables from (𝜏, 𝑒) to (𝜏, 𝑝), which can be made explicit1 for this kind
of EoS, we obtain the monophasic stiffened gas law:

ℎ(𝜏, 𝑝) =
𝛾(𝑝+ 𝜋)
𝛾 − 1

𝜏 + 𝑞−𝑝+ 𝛾𝜋

𝛾 − 1
𝑏, 𝑇 (𝜏, 𝑝) =

𝑝+ 𝜋

(𝛾 − 1)𝑐𝑣
(𝜏−𝑏).

1𝑒(𝜏, 𝑝) = 𝑞 + (𝜏−𝑏) 𝑝+𝛾𝜋
𝛾−1

.
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If we denote

𝜁(𝑝) def=
𝜕ℎ

𝜕𝜏

⃒⃒⃒⃒
𝑝

=
𝛾

𝛾 − 1
(𝑝+ 𝜋),

then we can express ℎ and 𝑇 as functions of (𝜏, 𝑝)

ℎ(𝜏, 𝑝) = 𝜁(𝑝)𝜏 + 𝑞 − 𝑝+ 𝛾𝜋

𝛾 − 1
𝑏 =

𝜁(𝑝)
𝛾

(𝛾𝜏 − 𝑏) + 𝑞−𝜋𝑏,

𝑇 (𝜏, 𝑝) =
𝜁(𝑝)
𝛾𝑐𝑣

(𝜏−𝑏).

Making a change of thermodynamic variables from (𝜏, 𝑝) to (𝑇, 𝑝) we could also write

ℎ(𝑇, 𝑝) = 𝛾𝑐𝑣𝑇+𝑝𝑏+ 𝑞, 𝜏(𝑇, 𝑝) =
𝛾𝑐𝑣
𝜁(𝑝)

𝑇 + 𝑏.

If we denote

𝑐𝑝
def=

𝜕ℎ

𝜕𝑇

⃒⃒⃒⃒
𝑝

= 𝛾𝑐𝑣, 𝑞(𝑝)def= 𝑞 + 𝑝𝑏,

then

ℎ(𝑇, 𝑝) = 𝑐𝑝𝑇 + 𝑞(𝑝), 𝜏(𝑇, 𝑝) =
𝑐𝑝
𝜁(𝑝)

𝑇+𝑏. (3.2)

and 𝜏 is given as a function of ℎ, 𝑝 by

𝜏(ℎ, 𝑝) =
ℎ− 𝑞(𝑝)
𝜁(𝑝)

+𝑏.

Notice that, with NASG EoS, the specific heat at constant pressure 𝑐𝑝 is always constant while the coefficient
𝜁 depends on 𝑝. We also note that, with the stiffened gas EoS (i.e. when 𝑏 = 0), the enthalpy depends only on
the temperature, but not on the pressure.

Let us use the index 𝜅 = ˜l for the liquid phase or 𝜅 = `g for the vapour phase. If all parameters involved in
pure phase equations of state are given (i.e. 𝑐𝑣,𝜅, 𝛾𝜅, 𝜋𝜅, 𝑏𝜅, 𝑞𝜅, 𝑚𝜅), then 𝑐𝑝,𝜅, 𝑞𝜅 and 𝜁𝜅 are deduced. Let us
denote by 𝑇 sat(𝑝) the solution of the equation 𝑔˜l(𝑇, 𝑝) = 𝑔`g(𝑇, 𝑝) (the so-called temperature at saturation). We
can then define ℎsat

𝜅 (𝑝) def= ℎ𝜅(𝑇 sat(𝑝), 𝑝) and 𝜏 sat
𝜅 (𝑝) def= 𝜏𝜅(𝑇 sat(𝑝), 𝑝).

Notice that, at a fixed pressure 𝑝*, all these quantities are constant and satisfy the equalities

𝜁𝜅(𝑝*) (𝜏 sat
𝜅 (𝑝*)−𝑏𝜅) = 𝑐𝑝,𝜅𝑇

sat(𝑝*) = ℎsat
𝜅 (𝑝*)− 𝑞𝜅 . (3.3)

3.2. Iso-𝑇𝑝 equation of state for a mixture

We consider each phase 𝜅 (𝜅 = `g or ˜l) as a compressible fluid characterised by its thermodynamic properties,
i.e. each fluid is governed by its own given EoS (see Sect. 3.1). The two-fluid mixture is constructed according
to isobar and isothermal assumptions: when fluids coexist (i.e. when 0 < 𝜙 < 1), they have the same pressure
and the same temperature2, so that we consider the volume 𝜏𝜅, the internal energy 𝑒𝜅 and the entropy 𝒮𝜅 as
functions of 𝑝 and 𝑇 .

2Note that this model is a low Mach number approximation of the 4-equation relaxation model of [26, 43] which accounts for
chemical non-equilibrium but assumes thermal and mechanical equilibria. It is different from the HRM model of [4,12,20,23] which
assumes that the vapour phase is always at saturation conditions.
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The mixture specific volume 𝜏 and the mixture internal energy 𝑒 are defined by{︃
𝜏(𝜙, 𝑇, 𝑝) def= 𝜙𝜏`g(𝑇, 𝑝) + (1− 𝜙)𝜏˜l(𝑇, 𝑝), (3.4a)

𝑒(𝜙, 𝑇, 𝑝) def= 𝜙𝑒`g(𝑇, 𝑝) + (1− 𝜙)𝑒˜l(𝑇, 𝑝), (3.4b)

where 𝜙 is the mass fraction. Let ℎ𝜅 be the enthalpy of the phase 𝜅 and ℎ the enthalpy of the mixture. When
the pressure is the same in both fluids, recalling that the internal energy is linked to the enthalpy by the relation
ℎ𝜅 = 𝑒𝜅 + 𝑝𝜏𝜅, it leads to

ℎ(𝜙, 𝑇, 𝑝) = 𝜙ℎ`g(𝑇, 𝑝) + (1− 𝜙)ℎ˜l(𝑇, 𝑝). (3.5)

We now assume that each fluid 𝜅 is described by its own Noble-Abel stiffened gas EoS. Using (3.2), we can
write

ℎ(𝜙, 𝑇, 𝑝) = 𝑐𝑝(𝜙)𝑇+𝑞(𝜙)
𝜏(𝜙, 𝑇, 𝑝) = 𝒢(𝜙)𝑇+𝑏(𝜙)

where we defined

𝑐𝑝(𝜙) def= 𝜙𝑐𝑝,`g + (1− 𝜙)𝑐𝑝,˜l, (3.6)

𝑞(𝜙, 𝑝) def= 𝜙𝑞`g(𝑝) + (1− 𝜙)𝑞˜l(𝑝) (3.7)

𝑏(𝜙) def= 𝜙𝑏`g + (1− 𝜙)𝑏˜l, (3.8)

𝒢(𝜙, 𝑝)) def= 𝜙
𝑐𝑝,`g

𝜁`g(𝑝)
+ (1− 𝜙)

𝑐𝑝,˜l

𝜁˜l(𝑝)
(3.3)
=

𝜙(𝜏 sat
`g −𝑏`g) + (1− 𝜙)(𝜏 sat

˜l −𝑏˜l)

𝑇 sat
· (3.9)

Therefore the temperature 𝑇 verifies
ℎ− 𝑞(𝜙, 𝑝)
𝑐𝑝(𝜙)

= 𝑇 =
𝜏−𝑏(𝜙)
𝒢(𝜙)

·

By defining

1
𝜁(𝜙, 𝑝)

def=
𝒢(𝜙, 𝑝)
𝑐𝑝(𝜙)

we can hence obtain the following expression for the specific volume 𝜏(ℎ, 𝜙, 𝑝)

𝜏(ℎ, 𝜙, 𝑝) =
ℎ− 𝑞(𝜙, 𝑝)
𝜁(𝜙, 𝑝)

+ 𝑏(𝜙).

From now on, let us drop the dependency upon 𝑝 ≡ 𝑝*. Hence

𝜏(ℎ, 𝜙) =
ℎ− 𝑞(𝜙)
𝜁(𝜙)

+ 𝑏(𝜙). (3.10)

Defining
𝜏 sat(𝜙) def= 𝜙𝜏 sat

`g + (1− 𝜙)𝜏 sat
˜l , (3.11)

we express, using (3.3),

𝜁(𝜙) =
𝑐𝑝(𝜙)

𝜏 sat(𝜙)−𝑏(𝜙)
𝑇 sat (3.3)

=
𝜙𝜁`g(𝜏 sat

`g −𝑏`g) + (1− 𝜙)𝜁˜l(𝜏 sat
˜l −𝑏˜l)

𝜏 sat(𝜙)−𝑏(𝜙)
> 0. (3.12)
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Hence the mixture can be considered as a generalised Noble-Abel stiffened gas in the sense that, at constant
pressure, coefficients 𝜁, 𝑏 and 𝑞 only depend on 𝜙 (as in [5, 6] for a generalised stiffened gas).

We can also write the temperature as

𝑇 (ℎ, 𝜙) =
𝜏(ℎ, 𝜙)−𝑏(𝜙)

𝒢(𝜙)
=

𝜏(ℎ, 𝜙)−𝑏(𝜙)
𝜏 sat(𝜙, 𝑝)−𝑏(𝜙)

𝑇 sat.

Remark 3.1. A major remark is that EoS (3.10) not only describes the iso-𝑇𝑝 mixture but also pure phases.
Indeed, 𝜏(ℎ, 𝜙 = 0) = 𝜏˜l(ℎ) and 𝜏(ℎ, 𝜙 = 1) = 𝜏`g(ℎ). Likewise, 𝑇 (ℎ, 𝜙 = 0) = 𝑇˜l(ℎ) and 𝑇 (ℎ, 𝜙 = 1) = 𝑇`g(ℎ). It
is thus different from the EoS at saturation (see Sect. 5.2) which is defined piecewise: in particular, the values
𝜁𝜅 are three different constants for 𝜅 = ˜l, `g and in the mixture, whereas in (3.12), 𝜁 is a continuous function of
𝜙, and we therefore recover that 𝜁(𝜙 = 0) = 𝜁˜l and 𝜁(𝜙 = 1) = 𝜁`g.

4. The non-instantaneous relaxation regime

4.1. Relaxation term

In the 3-Lmnc model [8], the two fluids are the liquid and the vapour phases of the same component. The
mixture is supposed to be at thermodynamic equilibrium and the mass fraction 𝜙 is computed to take into
account the phase transition (i.e. an instantaneous mass transfer from one phase to the other). The rate of mass
transfer from the liquid phase to the vapour phase is due to their difference of Gibbs potentials.

Here the mixture is supposed to be only at isothermal and isobar equilibrium and mass transfer can be
modelled by introducing a relaxation source term ℛ𝜀 allowing the exchange of mass between the two phases
with a given characteristic time 𝜀.

We choose to model the mass transfer as in [4–6,31–33] by setting

ℛ𝜀(ℎ, 𝜙) def=
1
𝜀

(𝜙𝑠(ℎ)− 𝜙) , (4.1)

where the coefficient 𝜀 represents the relaxation time and the mass fraction 𝜙𝑠(ℎ) is computed to ensure the
saturation of the mixture (equality of the pressure, temperature and Gibbs potential of each phase, see Sect. 5.2
for a complete analysis), that is

𝜙𝑠(ℎ) def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if ℎ ≤ ℎsat

˜l ,

𝜙sat(ℎ, 𝑝) =
ℎ− ℎsat

˜l
ℎsat

`g − ℎsat
˜l
, if ℎsat

˜l < ℎ < ℎsat
`g ,

1, if ℎ ≥ ℎsat
`g .

(4.2)

Three regimes can be considered:

– the instantaneous relaxation regime: it corresponds to 𝜀→ 0, and we recover formally the equation of state
at saturation and the 3-Lmnc model (which corresponds to the equality of chemical potentials);

– the infinite relaxation regime: when 𝜀→∞, only the convective part is involved (the thermodynamic is too
slow to affect the hydrodynamic motion, no mass transfer between phases);

– in between: finite values of 𝜀 > 0 lead to an actual relaxation system (non-instantaneous relaxation).

In this paper we shall study two regimes:

– the non-instantaneous relaxation regime (𝜀 > 0) in Section 4,
– the instantaneous relaxation regime (𝜀→ 0) in Section 5.
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4.2. Properties of the 4-lmnc

Let us first state some properties of model (2.3). The well-posedness of the system is not tackled in this work,
and we assume the existence of a solution smooth enough for the following computations to make sense (in
particular, the velocity is assumed to belong to 𝑊 1,∞(Ω) in order to apply the method of characteristics).

As a preamble, observe that this model makes sense provided that 𝜏(ℎ, 𝜙) > 0, which implies that 𝑇 (ℎ, 𝜙) > 0.
Since the model induces (2.2a), it guarantees the positivity of 𝜏 provided that ℎ0 > 𝑞(𝜙0) and ℎ𝑒 > 𝑞(𝜙𝑒).

We can now state a first lemma which ensures that 𝜙 represents a fraction.

Proposition 4.1 (Maximum principle). Let us assume that 𝜙𝑒 and 𝜙0 take values in [0, 1]. For ℛ𝜀 defined
by (4.1) and (4.2), the solution 𝜙 of (2.3) satisfies the maximum principle and takes values in [0, 1].

Proof. Let us set 𝑧(𝜎) = 𝑧 (𝜎, 𝜒(𝜎; 𝑡, 𝑥)), for 𝑧 ∈ {𝑣, 𝜙, ℎ,Φ}, where the characteristic flow 𝜒 is defined by⎧⎨⎩
d𝜒
d𝜎

= 𝑣(𝜎),

𝜒(𝑡; 𝑡, 𝑥) = 𝑥.

Then for all 𝜎 ≤ 𝑡, (2.3c) yields

𝜙(𝑡, 𝑥) = 𝜙(𝜎)𝑒
𝜎−𝑡

𝜀 +
1
𝜀

∫︁ 𝑡

𝜎

𝜙𝑠
(︁
ℎ̂(𝜍)

)︁
𝑒

𝜍−𝑡
𝜀 d𝜍,

1− 𝜙(𝑡, 𝑥) = (1− 𝜙(𝜎)) 𝑒
𝜎−𝑡

𝜀 +
1
𝜀

∫︁ 𝑡

𝜎

(︁
1− 𝜙𝑠

(︁
ℎ̂(𝜍)

)︁)︁
𝑒

𝜍−𝑡
𝜀 d𝜍.

Depending on whether 𝜒(0; 𝑡, 𝑥) ∈ Ω (resp. whether there exists 𝜎* ∈ (0, 𝑡) such that 𝜒(𝜎*; 𝑡, 𝑥) ∈ 𝜕Ω), then we
can set 𝜎 = 0 (resp. 𝜎 = 𝜎*) so that 𝜙(𝜎) = 𝜙0 (𝜒(0; 𝑡, 𝑥)) ∈ [0, 1] (resp. 𝜙(𝜎) = 𝜙𝑒(𝜎*) ∈ [0, 1]), which finishes
the proof. �

A second result that can be proved about this model is the positivity of the relaxation term ℛ𝜀 which
describes the effect of the relaxation process: there is a discrepancy between the phenomena “ℎ becomes greater
than ℎsat

˜l ” and “𝜙 becomes positive”, due to the non-instantaneous relaxation.

Proposition 4.2 (Positivity). The solution (ℎ, 𝜙) of (2.3) satisfies 𝜙𝑠(ℎ) ≥ 𝜙 for any 𝑡 ≥ 0 provided that
𝜙𝑠(ℎ𝑒) ≥ 𝜙𝑒 and 𝜙𝑠(ℎ0) ≥ 𝜙0.

Proof. First, observe that if ℎ(𝑡, 𝑥) ≥ ℎsat
`g , then 𝜙𝑠(ℎ(𝑡, 𝑥)) = 1, and by the maximum principle, it is obvious

that 𝜙𝑠(ℎ(𝑡, 𝑥)) ≥ 𝜙(𝑡, 𝑥). Moreover, if ℎ(𝑡, 𝑥) ≤ ℎsat
˜l , then 𝜙𝑠(ℎ(𝑡, 𝑥)) = 0, and we can show that 𝜙(𝑡, 𝑥) = 0.

Indeed, using the same computation as in the proof of the previous proposition, we have for all 𝜎 ≤ 𝑡

𝜙(𝑡, 𝑥) = 𝜙(𝜎)𝑒
𝜎−𝑡

𝜀 +
1
𝜀

∫︁ 𝑡

𝜎

𝜙𝑠
(︁
ℎ̂(𝜍)

)︁
𝑒

𝜍−𝑡
𝜀 d𝜍 = 𝜙(𝜎)𝑒

𝜎−𝑡
𝜀 ,

due to the monotonicity of ℎ̂. Now, choosing 𝜎 = 0 or 𝜎 = 𝜎* such that 𝜒(𝜎*; 𝑡, 𝑥) ∈ 𝜕Ω, the assumptions on
𝜙0 and 𝜙𝑒 imply that 𝜙(𝑡, 𝑥) = 0.

Further, for (𝑡, 𝑥) such that ℎsat
˜l < ℎ(𝑡, 𝑥) < ℎsat

`g , let us denote 𝜓(𝑡, 𝑥) = 𝜙sat(ℎ(𝑡, 𝑥)) − 𝜙(𝑡, 𝑥). For all

𝜎 ≤ 𝑡, (2.3c) yields 𝜙′(𝜎) = 1
𝜀𝜓(𝜎) and (2.3b) yields ℎ̂′(𝜎) = Φ̂(𝜎)𝜏(𝜎) > 0. Then we can compute, as long as

ℎ̂(𝜎) ∈
[︁
ℎsat

˜l , ℎsat
`g

]︁
:

(︁
𝜓(𝜎)𝑒𝜎/𝜀

)︁′
= 𝜓′(𝜎)𝑒𝜎/𝜀 +

1
𝜀
𝜓(𝜎)𝑒𝜎/𝜀 =

(︁
𝜙sat

(︁
ℎ̂
)︁
− 𝜙

)︁′
(𝜎)𝑒𝜎/𝜀 +

1
𝜀
𝜓(𝜎)𝑒𝜎/𝜀
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= ℎ̂′(𝜎) (𝜙sat)′
(︁
ℎ̂(𝜎)

)︁
𝑒𝜎/𝜀 − 𝜙′(𝜎)𝑒𝜎/𝜀 +

1
𝜀
𝜓(𝜎)𝑒𝜎/𝜀

= Φ̂(𝜎)𝜏(𝜎) (𝜙sat)′
(︁
ℎ̂(𝜎)

)︁
𝑒𝜎/𝜀 − 1

𝜀
𝜓(𝜎)𝑒𝜎/𝜀 +

1
𝜀
𝜓(𝜎)𝑒𝜎/𝜀

= Φ̂(𝜎)𝜏(𝜎) (𝜙sat)′
(︁
ℎ̂(𝜎)

)︁
𝑒𝜎/𝜀 (4.2)

= Φ̂(𝜎)𝜏(𝜎)
1

ℎsat
`g − ℎsat

˜l
𝑒𝜎/𝜀 > 0.

Three cases have to be considered.

– If for all 𝜎 ∈ [0, 𝑡], ℎ̂(𝜎) ∈ [ℎsat
˜l , ℎsat

`g ] and the previous computation implies that 𝜓(𝑡) > 𝜓(0)𝑒−𝑡/𝜀, which is
nonnegative by assumption.

– If there exists 𝜎* ∈ (0, 𝑡) such that 𝜒 (𝜎*; 𝑡, 𝑥) ∈ 𝜕Ω and ℎ̂(𝜎) ∈ [ℎsat
˜l , ℎsat

`g ] for 𝜎 ∈ (𝜎*, 𝑡), then we have

𝜓(𝑡) > 𝜓 (𝜎*) 𝑒(𝜎*−𝑡)/𝜀, which is again nonnegative by assumption.
– If there exists 𝜎 ∈ (0, 𝑡) such that ℎ̂(𝜎) = ℎsat

˜l and ℎ̂(𝜎) ∈
(︁
ℎsat

˜l , ℎsat
`g

)︁
for 𝜎 ∈ (𝜎, 𝑡), let us show that

necessarily 𝜙(𝜎) = 0. Indeed, we have for 𝜎 < 𝜎, ℎ̂(𝜎) < ℎsat
˜l which implies that 𝜙𝑠

(︁
ℎ̂(𝜎)

)︁
= 0 (due to the

monotonicity of ℎ̂). And if 𝜙 (𝜎) > 0, we would have 𝜙′(𝜎) = −𝜙(𝜎)/𝜀 < 0 which implies that 𝜙(𝜎) > 0 for
𝜎 < 𝜎. Now, choosing 𝜎 = 0 or 𝜎 = 𝜎* such that 𝜒 (𝜎*; 𝑡, 𝑥) ∈ 𝜕Ω, the assumptions on 𝜙0 and 𝜙𝑒 lead to
a contradiction, thus 𝜙 (𝜎) = 0. Therefore, 𝜓 (𝜎) = 0. This implies that for 𝑡 > 𝜎, 𝜓(𝑡) > 𝜓(𝜎)𝑒(𝜎−𝑡)/𝜀 = 0,
and for 𝜎 ∈ (0, 𝜎), we recover the monophasic model where the relaxation term is equal to 0, which concludes
the proof.

�

Concerning the long-time behaviour, we can obtain an explicit form for the steady-state solution for ℎ and
the flow rate 𝐷𝑒 (defined in (2.4c)), as it is stated in the following straightforward proposition. This steady-state
solution will then be used in the next paragraph, where we derive a well-balanced scheme for the model.

Proposition 4.3 (Steady-state solution). Let us assume that ℎ𝑒, 𝜙𝑒 and the flow rate 𝐷𝑒 defined by (2.4c) are
independent from 𝑡, and that the density function Φ depends only on 𝑦. Then, for any EoS, model (2.3) admits
the following steady state:

ℎ∞(𝑦) = ℎ𝑒 +
1
𝐷𝑒

∫︁ 𝑦

0

Φ(𝑥) d𝑥, 𝑣∞(𝑡) = 𝐷𝑒 𝜏 (ℎ∞(𝑦), 𝜙∞(𝑦)) , (4.3)

where 𝜙∞ solves the ODE ⎧⎨⎩
d𝜑
d𝑦

=
1
𝐷𝑒

ℛ𝜀 (ℎ∞(𝑦), 𝜑)
𝜏 (ℎ∞(𝑦), 𝜑)

,

𝜑(0) = 𝜙𝑒.

Proof. The steady-state system in the conservative form is the following⎧⎪⎨⎪⎩
𝜕𝑦(𝜚𝑣) = 0,
𝜕𝑦(𝜚𝑣ℎ) = Φ,
𝜕𝑦(𝜚𝑣𝜙) = 𝜚ℛ𝜀(𝜚, 𝜙).

From the first equation we deduce that 𝜚𝑣 is constant in space, so that (𝜚𝑣)(𝑦) = 𝐷𝑒 for all 𝑦 ∈ [0;𝐿]. The
second equation becomes 𝜕𝑦ℎ = Φ

𝐷𝑒
with ℎ(𝑦 = 0) = ℎ𝑒 so that ℎ(𝑦) = ℎ𝑒 + 1

𝐷𝑒

∫︀ 𝑦

0
Φ(𝑥) d𝑥. �
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4.3. A well-balanced numerical scheme

In previous papers [8, 19], numerical schemes were designed for the 1D 3-Lmnc model based on the method
of characteristics. It was proved to be (temperature) positivity-preserving and second-order in space and time.
In the present paper, there is an additional equation, namely a transport equation for the mass fraction 𝜙. The
previous algorithm could have been used coupled to the method of characteristics applied to the additional
equation. However another strategy is proposed in this paper in order to mimic the theoretical property stated
in the previous proposition: a well-balanced strategy to recover the asymptotic states (Prop. 4.3). The idea is
to ensure the stability of some numerical steady states that are consistent with the continuous steady state in
the same spirit as what it is done in the framework of hyperbolic equations [28, 30, 52]. Such a well-balanced
approach is well-suited since, in a nuclear core setting, simulations are often devoted to steady-state or near
steady-state flows.

Given ∆𝑦 > 0 and ∆𝑡 > 0, we consider a uniform Cartesian grid { 𝑦𝑖 = 𝑖∆𝑦 }0≤𝑖≤𝑁 such that 𝑦0 = 0 and
𝑦𝑁 = 𝐿 as well as a time discretisation { 𝑡𝑛 = 𝑛∆𝑡 }𝑛≥0. Unknowns are collocated at the nodes of the mesh.
We define the initial values 𝑣0

𝑖 = 𝑣0(𝑦𝑖) and 𝜏0
𝑖 = 𝜏0(𝑦𝑖) for 𝑖 = 0, . . . , 𝑁 .

The well-balanced property is based on the mass conservation property for the steady-state flow: 𝜕𝑦

(︀
𝑣∞

𝜏∞

)︀
= 0,

which means that
𝜏∞𝜕𝑦𝑣

∞ = 𝑣∞𝜕𝑦𝜏
∞. (4.4)

From 𝜏∞ = 𝜏(ℎ∞, 𝜙∞) = ℎ∞−𝑞(𝜙∞)
𝜁(𝜙∞) , let us compute 𝜕𝑦𝜏

∞:

𝜕𝑦𝜏∞ =
𝜕𝜏∞

𝜕ℎ

⃒⃒⃒⃒
𝜙

𝜕𝑦ℎ∞ +
𝜕𝜏∞

𝜕𝜙

⃒⃒⃒⃒
ℎ

𝜕𝑦𝜙∞

=
1

𝜁(𝜙∞)
𝜕𝑦ℎ∞ −

(︂
𝑞′(𝜙∞)− (𝜁(𝜙∞)𝑏(𝜙∞))′

𝜁(𝜙∞)
+ 𝜏(ℎ∞, 𝜙∞)

𝜁′(𝜙∞)

𝜁(𝜙∞)

)︂
𝜕𝑦𝜙∞

(3.12)
=

1

𝜁(𝜙∞)

[︃
𝜕𝑦ℎ∞−

(︃
(𝑞`g − 𝑞˜l)− 𝜁(𝜙∞)𝑏′(𝜙∞)+ (𝜏(ℎ∞, 𝜙∞)−𝑏(𝜙∞))

(𝜁`g − 𝜁˜l)(𝜏
sat
`g −𝑏`g)(𝜏

sat
˜l −𝑏˜l)

(𝜏 sat(𝜙∞)−𝑏(𝜙∞))2

)︃
𝜕𝑦𝜙∞

]︃

where 𝜏 sat is defined by (3.11) and where we used the relation (3.12) for 𝜁 and 𝜁 ′.
Our well-balanced scheme strongly relies on the discrete analogue of this computation, which is stated in the

following Lemma.

Lemma 4.4. By defining

𝜏𝑖 =
ℎ𝑖 − 𝑞𝑖
𝜁𝑖

+ 𝑏𝑖, 𝜁𝑖 =
𝜙𝑖𝜁`g

(︁
𝜏 sat

`g − 𝑏`g

)︁
+ (1− 𝜙𝑖)𝜁˜l

(︀
𝜏 sat

˜l − 𝑏˜l
)︀

𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)
,

𝑏𝑖 = 𝜙𝑖𝑏`g + (1− 𝜙𝑖)𝑏ℓ, 𝑞𝑖 = 𝜙𝑖𝑞`g + (1− 𝜙𝑖)𝑞ℓ,

we have that, for any 𝑖,

𝜁𝑖 (𝜏𝑖 − 𝜏𝑖−1)

= ℎ𝑖− ℎ𝑖−1 −

⎡⎣(︁𝑞`g − 𝑞ℓ

)︁
− 𝜁𝑖

(︁
𝑏`g − 𝑏˜l

)︁
+ (𝜏𝑖−1 − 𝑏𝑖−1)

(︁
𝜁`g− 𝜁˜l

)︁(︁
𝜏 sat

`g −𝑏`g

)︁ (︀
𝜏 sat

˜l −𝑏˜l
)︀

(𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)) (𝜏 sat (𝜙𝑖−1)− 𝑏 (𝜙𝑖−1))

⎤⎦ (𝜙𝑖 − 𝜙𝑖−1)

where we dropped the time superscripts for simplicity, since this property is true for any 𝑛.

Proof. Let us expand the right hand side of the claimed equality, using the definitions of 𝜏𝑖, 𝑞𝑖 and 𝜁𝑖:

RHS = 𝜁𝑖 (𝜏𝑖 − 𝑏𝑖) + 𝑞𝑖 − 𝜁𝑖−1 (𝜏𝑖−1 − 𝑏𝑖−1)− 𝑞𝑖−1 −
(︁
𝑞`g − 𝑞ℓ

)︁
(𝜙𝑖 − 𝜙𝑖−1) +𝜁𝑖

(︁
𝑏`g − 𝑏˜l

)︁
(𝜙𝑖 − 𝜙𝑖−1)
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− (𝜏𝑖−1 − 𝑏𝑖−1) (𝜙𝑖 − 𝜙𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g −𝑏`g

)︁ (︀
𝜏 sat

˜l − 𝑏˜l
)︀

(𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)) (𝜏 sat (𝜙𝑖−1)− 𝑏 (𝜙𝑖−1))
·

Since 𝑞𝑗 = (𝑞`g − 𝑞ℓ)𝜙𝑗 + 𝑞˜l and 𝑏𝑗 = (𝑏`g − 𝑏ℓ)𝜙𝑗 + 𝑏˜l this implies

(𝑏`g − 𝑏˜l)(𝜙𝑖 − 𝜙𝑖−1) = 𝑏𝑖−𝑏𝑖−1 (𝑞`g − 𝑞˜l)(𝜙𝑖 − 𝜙𝑖−1) = 𝑞𝑖 − 𝑞𝑖−1

so that, in the previous equation, the terms involving 𝑞𝑖, 𝑞˜l, 𝑞`g vanish, and we obtain

RHS = 𝜁𝑖 (𝜏𝑖 − 𝑏𝑖) + 𝑞𝑖 − 𝜁𝑖−1 (𝜏𝑖−1 − 𝑏𝑖−1)− 𝑞𝑖−1 − (𝑞𝑖 − 𝑞𝑖−1) + 𝜁𝑖 (𝑏𝑖 − 𝑏𝑖−1)

− (𝜏𝑖−1 − 𝑏𝑖−1) (𝜙𝑖 − 𝜙𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g −𝑏`g

)︁ (︀
𝜏 sat

˜l − 𝑏˜l
)︀

(𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)) (𝜏 sat (𝜙𝑖−1)− 𝑏 (𝜙𝑖−1))

= 𝜁𝑖𝜏𝑖 − 𝜁𝑖𝑏𝑖−1 − 𝜁𝑖−1 (𝜏𝑖−1 − 𝑏𝑖−1)− (𝜏𝑖−1 − 𝑏𝑖−1) (𝜙𝑖 − 𝜙𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g − 𝑏`g

)︁ (︀
𝜏 sat

˜l − 𝑏˜l
)︀

(𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)) (𝜏 sat (𝜙𝑖−1)− 𝑏 (𝜙𝑖−1))

= 𝜁𝑖𝜏𝑖 − 𝜁𝑖𝑏𝑖−1 − (𝜏𝑖−1 − 𝑏𝑖−1)

⎡⎣𝜁𝑖−1 + (𝜙𝑖 − 𝜙𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g − 𝑏`g

)︁ (︀
𝜏 sat

˜l − 𝑏˜l
)︀

(𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)) (𝜏 sat (𝜙𝑖−1)− 𝑏 (𝜙𝑖−1))

⎤⎦ ·
From the definition of 𝜁𝑖, let us compute

𝜁𝑖 − 𝜁𝑖−1 =

(︁
𝜁`g

(︁
𝜏 sat

`g − 𝑏`g

)︁
− 𝜁˜l

(︀
𝜏 sat

˜l − 𝑏˜l
)︀)︁

𝜙𝑖 + 𝜁˜l
(︀
𝜏 sat

˜l − 𝑏˜l
)︀

𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)
−

(︁
𝜁`g

(︁
𝜏 sat

`g − 𝑏`g

)︁
− 𝜁˜l

(︀
𝜏 sat

˜l − 𝑏˜l
)︀)︁

𝜙𝑖−1 + 𝜁˜l
(︀
𝜏 sat

˜l − 𝑏˜l
)︀

𝜏 sat (𝜙𝑖−1)− 𝑏 (𝜙𝑖−1)

= (𝜙𝑖 − 𝜙𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g − 𝑏`g

)︁ (︀
𝜏 sat

˜l − 𝑏˜l
)︀

(𝜏 sat (𝜙𝑖)− 𝑏 (𝜙𝑖)) (𝜏 sat (𝜙𝑖−1)− 𝑏 (𝜙𝑖−1))
,

so that

RHS = 𝜁𝑖𝜏𝑖 − 𝜁𝑖𝑏𝑖−1 − (𝜏𝑖−1 − 𝑏𝑖−1)(𝜁𝑖−1 + 𝜁𝑖 − 𝜁𝑖−1) = 𝜁𝑖(𝜏𝑖 − 𝑏𝑖−1 − 𝜏𝑖−1 + 𝑏𝑖−1) = 𝜁𝑖(𝜏𝑖 − 𝜏𝑖−1),

which finishes the proof. �

Let us now introduce the numerical scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ𝑛+1
𝑖 − ℎ𝑛

𝑖

∆𝑡
+ 𝑣𝑛

𝑖

ℎ𝑛
𝑖 − ℎ𝑛

𝑖−1

∆𝑦
= Φ𝑛

𝑖 𝜏
𝑛
𝑖 , (4.5a)

𝜙𝑛+1
𝑖 − 𝜙𝑛

𝑖

∆𝑡
+ 𝑣𝑛

𝑖

𝜙𝑛
𝑖 − 𝜙𝑛

𝑖−1

∆𝑦
= 𝑅𝑛+1,𝑛+1

𝑖 , (4.5b)

𝑣𝑛+1
𝑖 − 𝑣𝑛+1

𝑖−1

∆𝑦
=

1
𝜁𝑛+1
𝑖

𝑆𝑛+1
𝑖 , (4.5c)

where

𝜏𝑛
𝑖 =

ℎ𝑛
𝑖 − 𝑞𝑛

𝑖

𝜁𝑛
𝑖

+ 𝑏𝑛𝑖 , 𝜁𝑛
𝑖 =

𝜙𝑛
𝑖 𝜁`g

(︁
𝜏 sat

`g − 𝑏`g

)︁
+ (1− 𝜙𝑛

𝑖 ) 𝜁˜l
(︀
𝜏 sat

˜l − 𝑏˜l
)︀

𝜏 sat (𝜙𝑛
𝑖 )− 𝑏𝑛𝑖

, (4.6a)

𝑏𝑛𝑖 = 𝜙𝑛
𝑖 𝑏`g + (1− 𝜙𝑛

𝑖 ) 𝑏ℓ, 𝑞𝑛
𝑖 = 𝜙𝑛

𝑖 𝑞`g + (1− 𝜙𝑛
𝑖 ) 𝑞ℓ, (4.6b)

𝜙𝑠
(︀
ℎ𝑛+1

𝑖

)︀
= max

(︃
min

(︃
ℎ𝑛+1

𝑖 − ℎsat
˜l

ℎsat
`g − ℎsat

˜l
, 1

)︃
, 0

)︃
, 𝑅𝑛+1,𝑛+1

𝑖 =
1
𝜀

(︀
𝜙𝑠(ℎ𝑛+1

𝑖 )− 𝜙𝑛+1
𝑖

)︀
, (4.6c)
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𝑆𝑛+1
𝑖 = Φ𝑛+1

𝑖 − 𝑅𝑛+1,𝑛+1
𝑖

𝜏𝑛+1
𝑖

⎡⎣(︁𝑞`g − 𝑞ℓ

)︁
−
(︁
𝑏`g − 𝑏˜l

)︁
𝜁𝑛+1
𝑖 −

(︀
𝜏𝑛+1
𝑖−1 − 𝑏𝑛+1

𝑖−1

)︀ (︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g − 𝑏`g

)︁
(𝜏 sat

ℓ − 𝑏˜l)(︀
𝜏𝑠
(︀
𝜙𝑛+1

𝑖

)︀
− 𝑏𝑛+1

𝑖

)︀ (︀
𝜏𝑠
(︀
𝜙𝑛+1

𝑖−1

)︀
− 𝑏𝑛+1

𝑖−1

)︀
⎤⎦ .

(4.6d)

Observe that since equation (4.5b) can be stiff for small values of 𝜀 due to the right hand side (4.6c), the
source term is discretised implicitly. In fact, this does not induce longer computational costs, since the equation
is linear in 𝜙 and can be solved explicitly. The CFL condition is thus only related to the transport equation
(4.5a) for ℎ.

Proposition 4.5. Scheme (4.6) is at order 1 (in space and time) and well-balanced in the sense that it preserves
the numerical steady state satisfying for any 0 ≤ 𝑖 ≤ 𝑁

𝑣𝑖

𝜏𝑖
=
𝑣0
𝜏0

= 𝐷𝑒, (4.7)

ℎ𝑖 − ℎ𝑖−1

∆𝑦
=

Φ𝑖

𝐷𝑒
, (4.8)

which is consistent with the properties of the continuous steady state given in Proposition 4.3. More precisely,
if for any 𝑖,

(︀
𝑣𝑛+1

𝑖 , ℎ𝑛+1
𝑖 , 𝜙𝑛+1

𝑖

)︀
= (𝑣𝑛

𝑖 , ℎ
𝑛
𝑖 , 𝜙

𝑛
𝑖 ), then (𝑣𝑛

𝑖 , ℎ
𝑛
𝑖 , 𝜙

𝑛
𝑖 )𝑖 satisfies (4.7) and (4.8).

Proof. Assume that (𝑣𝑛
𝑖 , ℎ

𝑛
𝑖 , 𝜙

𝑛
𝑖 ) =

(︀
𝑣𝑛+1

𝑖 , ℎ𝑛+1
𝑖 , 𝜙𝑛+1

𝑖

)︀
. Dropping the time indices, Scheme (4.5) reduces to

𝑣𝑖(ℎ𝑖 − ℎ𝑖−1) = ∆𝑦Φ𝑖𝜏𝑖, (4.9a)
𝑣𝑖(𝜙𝑖 − 𝜙𝑖−1) = ∆𝑦𝑅𝑖, (4.9b)

𝑣𝑖 − 𝑣𝑖−1 =
∆𝑦
𝜁𝑖
𝑆𝑖. (4.9c)

We first prove (4.7), which is the discrete analogue of the mass conservation property (4.4). This is equivalent
to proving

𝑣𝑖(𝜏𝑖 − 𝜏𝑖−1) = 𝜏𝑖 (𝑣𝑖 − 𝑣𝑖−1) .

Using successively the equations on 𝑣, ℎ and 𝜙 of the scheme (4.9), we have

𝜁𝑖𝜏𝑖 (𝑣𝑖 − 𝑣𝑖−1)
(4.9c)

= ∆𝑦𝑆𝑖𝜏𝑖

= ∆𝑦Φ𝑖𝜏𝑖 −∆𝑦𝑅𝑖

⎡⎣(︁𝑞`g − 𝑞ℓ

)︁
− 𝜁𝑖

(︁
𝑏`g − 𝑏˜l

)︁
− (𝜏𝑖−1 − 𝑏𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g − 𝑏`g

)︁
(𝜏 sat

ℓ − 𝑏˜l)

(𝜏 sat (𝜙𝑖)− 𝑏𝑖) (𝜏 sat (𝜙𝑖−1)− 𝑏𝑖−1)

⎤⎦
(4.9a)

= 𝑣𝑖 (ℎ𝑖 − ℎ𝑖−1)−∆𝑦𝑅𝑖

⎡⎣(︁𝑞`g − 𝑞ℓ

)︁
− 𝜁𝑖

(︁
𝑏`g − 𝑏˜l

)︁
− (𝜏𝑖−1 − 𝑏𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g − 𝑏`g

)︁
(𝜏 sat

ℓ − 𝑏˜l)

(𝜏 sat (𝜙𝑖)− 𝑏𝑖) (𝜏 sat (𝜙𝑖−1)− 𝑏𝑖−1)

⎤⎦
(4.9b)

= 𝑣𝑖 (ℎ𝑖 − ℎ𝑖−1)− 𝑣𝑖 (𝜙𝑖 − 𝜙𝑖−1)

⎡⎣(︁𝑞`g − 𝑞ℓ

)︁
− 𝜁𝑖

(︁
𝑏`g − 𝑏˜l

)︁
− (𝜏𝑖−1 − 𝑏𝑖−1)

(︁
𝜁`g − 𝜁˜l

)︁(︁
𝜏 sat

`g − 𝑏`g

)︁
(𝜏 sat

ℓ − 𝑏˜l)

(𝜏 sat (𝜙𝑖)− 𝑏𝑖) (𝜏 sat (𝜙𝑖−1)− 𝑏𝑖−1)

⎤⎦
= 𝜁𝑖𝑣𝑖 (𝜏𝑖 − 𝜏𝑖−1) by Lemma 4.4.

We then prove (4.8) by writing
ℎ𝑖 − ℎ𝑖−1

∆𝑦
(4.9a)

= Φ𝑖
𝜏𝑖
𝑣𝑖

(4.7)
=

Φ𝑖

𝐷𝑒
·

�
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Remark 4.6. Let us observe that (4.9b) implies

𝜙𝑖 − 𝜙𝑖−1

∆𝑦
=

1
𝐷𝑒

𝑅𝑖

𝜏𝑖

thanks to (4.7), which is consistent with the ODE in Proposition 4.5.

Notice that a similar strategy can be adapted to the 3-Lmnc model for which the steady state is completely
known (see Appendix A) without any ODE to solve.

4.4. Semi-analytical steady state solution

To assess the well-balanced property of the present scheme, we have to compute a steady state solution. We
apply Proposition 4.3 to compute the asymptotic solution:

– the enthalpy ℎ∞(𝑦) is given by (4.3);
– we compute the mass fraction 𝜙∞ by solving the Cauchy problem⎧⎨⎩

d𝜑
d𝑦

=
1
𝐷𝑒

ℛ𝜀 (ℎ∞(𝑦), 𝜑)
𝜏 (ℎ∞(𝑦), 𝜑)

,

𝜑(0) = 𝜙𝑒,

with an explicit Runge–Kutta scheme at order 6 (with 7 stages) on a very fine grid using 51201 points;
– we can then compute the velocity 𝑣∞ using the EoS:

𝑣∞(𝑦) = 𝐷𝑒𝜏 (ℎ∞(𝑦), 𝜙∞(𝑦)) = 𝐷𝑒
ℎ∞(𝑦)− 𝑞 (𝜙∞(𝑦))

𝜁(𝜙∞(𝑦))
·

4.5. Numerical simulations

4.5.1. Thermodynamic parameters

In the following numerical tests we use a Noble-Abel stiffened gas law to close the model with parameter
values chosen as in [40]:

𝛾˜l = 1.39 𝛾`g = 1.95

𝑐𝑣,˜l = 3.202× 103 J ·K−1 · kg−1 𝑐𝑣,`g = 462 J ·K−1 · kg−1

𝑞˜l = −1.244191× 106 J ·K−1 𝑞`g = 2.287484× 106 J ·K−1

𝑏˜l = 4.78× 10−4 m3 · kg−1 𝑏`g = 0 m3 · kg−1

𝑚˜l = −1.28129× 106 J ·K−1 · kg−1 𝑚`g = 2.28193× 104 J ·K−1 · kg−1

so that

𝑐𝑝,˜l = 𝛾˜l𝑐𝑣,˜l = 4.450× 103 J ·K−1 · kg−1 𝑐𝑝,`g = 𝛾`g𝑐𝑣,`g = 900.9 J ·K−1 · kg−1.

With 𝑝* = 1.55× 107 Pa, we also obtain

𝜁˜l = 3.22694× 109 Pa 𝜁`g = 3.18158× 107 Pa

𝑞˜l = −1.23678× 103 J ·K−1 · kg−1 𝑞`g = 2.28748× 106 J ·K−1 · kg−1.

By solving 𝑔˜l(𝑇, 𝑝*) = 𝑔`g(𝑇, 𝑝*), we find 𝑇 sat = 636.474 K so that

𝜏 sat
˜l = 1.356× 10−3 m3 · kg−1 𝜏 sat

`g = 1.802× 10−2 m3 · kg−1

ℎsat
˜l = 1.59603× 106 J ·K−1 ℎsat

`g = 2.86088× 106 J ·K−1.
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4.5.2. Constant Φ test case

In the first test, we investigate the ability of our model to deal with two-phase flows with non-instantaneous
phase transition (𝜀 = 1.0× 10−1).

The power density is set constant in space and time and equal to Φ = 170× 106 W ·m−3. The boundary and
initial conditions are ℎ0(𝑦) = ℎ𝑒(𝑡) = 0.9ℎsat

˜l , 𝑣0(𝑦) = 𝑣𝑒(𝑡) = 0.4 m · s−1, so that 𝐷𝑒 = 306.2 m · kg · s−1 ·m−3

and 𝜙0(𝑦) = 𝜙𝑒(𝑡) = 0 . With these parameters, the domain [0;𝐿] with 𝐿 = 4.2 m is initially filled with liquid.
With these constant values, we can apply the algorithm presented at Section 4.4 to compute a semi-analytic
asymptotic solution.

Figure 1 displays numerical results at instants 𝑡 = 0 s (blue) and 𝑡 = 6.57 s (red) and the steady solution
(magenta dotted) for the enthalpy ℎ, the mass fraction 𝜙 and the velocity 𝑣. At this last time the solution has
already reached the asymptotic regime. The (green dotted) line represents the solution when the mixture is at
instantaneous equilibrium (i.e. 𝜙 = 𝜙𝑠(ℎ)). The computation is performed on a grid with 101 points and the
CFL constant is equal to 0.99. At final time we have

max
𝑖

⃒⃒⃒
𝑣𝑖

𝜏𝑖
−𝐷𝑒

⃒⃒⃒
𝐷𝑒

= 5.384× 10−15, max
𝑖

|ℎ𝑖 − ℎ∞(𝑦𝑖)|
ℎ∞(𝑦𝑖)

= 5.380× 10−15,

which means that the scheme is well-balanced even with few points. Moreover, we observe

𝜙𝑠(ℎ𝑖)− 𝜙𝑖 ∈ [0; 0.003],

thus the relaxation term remains positive according to the Proposition 4.2.
On the first and second plots (enthalpy and mass fraction) we indicated the points 𝑦sat

˜l and 𝑦sat
`g where the

enthalpy is equal to ℎsat
˜l and ℎsat

`g respectively. We remark that, for 𝑦 > 2.566 m, the fluid is still a mixture (i.e.
0 < 𝜙 < 1) even if ℎ(𝑦) > ℎsat

`g , which enlightens the influence of the time 𝜀 delaying the mass transfert between
the phases.

Notice that, although the steady enthalpy is the same for both 4-Lmnc and 3-Lmnc models, (which is reached
within the same time), the mass fraction evolution is delayed with respect to the enthalpy (with a time scale
of order 𝜀). This can induce some difficulties to approach numerically the position of appearance of the pure
phase in the 4-Lmnc model, and rounding errors can lead to a large error on the position of the interface.
Nevertheless, in the context of the 4-Lmnc model, it is not crucial to identify if the fluid is a pure phase (𝜙 = 0
or 1) or if there is a small fraction of the other phase, since the definition of the iso-Tp mixture also describes
pure phases continuously (cf. Rem. 3.1). This is a remarkable difference with respect to the closure law of the
3-Lmnc model, and represents a major benefit of the 4-Lmnc model since it is less sensitive to small errors in
determining the parameters.

4.5.3. Sinusoidal Φ test case

In the second test, we consider a space-dependent constant in time power density function equal to

Φ(𝑦) =
(︂

1 + sin
(︂

6
𝜋
𝐿𝑦

)︂)︂
Φ*

with Φ* = 170× 106 W ·m−3.
The boundary and initial conditions, the domain and 𝜀 are the same as for the test of Section 4.5.2.
As previously, Figure 2 displays numerical results at instants 𝑡 = 0 s (blue) and 𝑡 = 4.09 s (red) and the

steady solution (magenta dotted) for the enthalpy ℎ, the mass fraction 𝜙 and the velocity 𝑣. At this last time
the solution has already reached the asymptotic regime. The (green dotted) line represents the solution when
the mixture is at instantaneous equilibrium (i.e. 𝜙 = 𝜙𝑠(ℎ)). The computation is performed on a grid with
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Figure 1. ℎ, 𝜙 and 𝑣 for constant Φ.

Figure 2. ℎ, 𝜙 and 𝑣 for sine-like Φ.

201 points and the CFL coefficient is equal to 0.99. At final time, the scheme satisfies again the well-balanced
property and the positivity of ℛ𝜀:

max
𝑖

⃒⃒⃒
𝑣𝑖

𝜏𝑖
−𝐷𝑒

⃒⃒⃒
𝐷𝑒

= 1.63× 10−14, max
𝑖

|ℎ𝑖 − ℎ∞(𝑦𝑖)|
ℎ∞(𝑦𝑖)

= 3.52× 10−3, 𝜙𝑠(ℎ𝑖)− 𝜙𝑖 ∈ [0; 0.198].

5. The instantaneous relaxation regime

As we already stated, the 4-Lmnc model describes a two-phase flow under the assumption of instantaneous
mechanical and thermal equilibrium (but the two phases will in general not be at chemical equilibrium). In this
section we wish to derive the 3-Lmnc model [8], where the phase change is instantaneous, as the instantaneous
relaxation limit of the above 4-Lmnc model. The relaxation term deals with phase change and forces the phases
towards chemical equilibrium.

We first recall the equations governing the 3-Lmnc model and its closure law (isothermal, isobar and iso-
chemical potential equation of state). We then study the relaxation limit of the 4-Lmnc model towards the
3-Lmnc model, and we finally introduce an asymptotic-preserving numerical scheme for the 4-Lmnc model.

5.1. Systems of equations

In a non conservative formulation, the 3-lmnc and the 4-lmnc models can be written as follows.
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4-Lmnc

– Unknowns: ℎ, 𝜙, 𝑣.
– EoS: (ℎ, 𝜙) ↦→ 𝜏(ℎ, 𝜙) (iso-Tp EoS of Sect. 3.2).
– Governing equations:⎧⎪⎨⎪⎩

𝜕𝑦𝑣 = S(ℎ, 𝜙)
𝜕𝑡ℎ+ 𝑣𝜕𝑦ℎ = Φ𝜏(ℎ, 𝜙)
𝜕𝑡𝜙+ 𝑣𝜕𝑦𝜙 = 1

𝜀 (𝜙𝑠(ℎ)− 𝜙)
(5.1)

where

S(ℎ, 𝜙) def= Φ
𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

+
ℛ𝜀(ℎ, 𝜙)
𝜏(ℎ, 𝜙)

𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

.

3-Lmnc

– Unknowns: ℎ, 𝑣.
– EoS: ℎ ↦→ 𝜏𝑠(ℎ) (iso-Tpg EoS of Sect. 5.2).
– Governing equations:{︃

𝜕𝑦𝑣 = S𝑠(ℎ)
𝜕𝑡ℎ+ 𝑣𝜕𝑦ℎ = Φ𝜏𝑠(ℎ)

(5.2)

where

S𝑠(ℎ) def= Φ (𝜏𝑠)′ (ℎ).

Remark 5.1. Observe that for any EoS, the steady-state enthalpy is the same for Models (5.1) and (5.2), but
it is not the case for other variables. However, even if the steady-state enthalpy is the same, the position of the
phase interfaces is not necessarily the same (as noted in the previous numerical test at Sect. 4.5.2). Although
the computation of 𝑦sat

𝜅 (solution of ℎ∞(𝑦) = ℎsat
𝜅 ) allows to determine the location of phase change in the

3-Lmnc model, it is not the case in the 4-Lmnc model, since we can have, at some point 𝑦, for instance, both
ℎ∞(𝑦) > ℎsat

`g and 𝜙∞(𝑦) < 1: in this model, enthalpy and mass fraction are independent, and only the mass
fraction determines the composition of the fluid.

5.2. Iso-𝑇𝑝𝑔 equation of state for a mixture

We recall that 𝑝 = 𝑝*, thus we drop the dependence on 𝑝 in the description of the equation of state. We
proved in [8, 19] that the EoS at saturation reads as follows, given 𝑇 sat, ℎsat

𝜅 , 𝜏 sat
𝜅 , as described in Section 3.1.

– The specific volume in the 3-Lmnc model is given by

𝜏𝑠(ℎ) =
ℎ− 𝑞𝑠(ℎ)
𝜁𝑠(ℎ)

+ 𝑏𝑠(ℎ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜏˜l(ℎ) =
ℎ− 𝑞˜l

𝜁˜l
+ 𝑏˜l, if ℎ ≤ ℎsat

˜l ,

𝜏 sat(ℎ) =
ℎ− 𝑞sat

𝜁sat
, if ℎsat

˜l < ℎ < ℎsat
`g ,

𝜏`g(ℎ) =
ℎ− 𝑞`g

𝜁`g
+ 𝑏`g, if ℎ ≥ ℎsat

`g ,

where3

𝜁𝑠(ℎ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜁˜l, if ℎ ≤ ℎsat
˜l ,

𝜁sat def=
ℎsat

`g −ℎsat
˜l

𝜏sat`g −𝜏sat
˜l
, if ℎsat

˜l < ℎ < ℎsat
`g ,

𝜁`g, if ℎ ≥ ℎsat
`g ,

𝑞𝑠(ℎ) =

⎧⎪⎪⎨⎪⎪⎩
𝑞˜l, if ℎ ≤ ℎsat

˜l ,

𝑞sat def= ℎsat
𝜅 − 𝜏 sat

𝜅 𝜁sat =
ℎsat

˜l 𝜏sat
`g −ℎsat

`g 𝜏sat
˜l

𝜏sat`g −𝜏sat
˜l

, if ℎsat
˜l < ℎ < ℎsat

`g ,

𝑞`g, if ℎ ≥ ℎsat
`g .

3Given notations from [8], we have 𝜁𝑠(ℎ) = 𝛽(ℎ, 𝑝*)/𝑝*.
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𝑏𝑠(ℎ) =

⎧⎪⎨⎪⎩
𝑏˜l, if ℎ ≤ ℎsat

˜l ,

0, if ℎsat
˜l < ℎ < ℎsat

`g ,

𝑏`g, if ℎ ≥ ℎsat
`g .

– The mass fraction in the 3-Lmnc model is given by (4.2).
– Temperature in the 3-Lmnc model is expressed by

𝑇 𝑠(ℎ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇ℓ(ℎ) = ℎ−𝑞˜l

𝑐
𝑝,˜l

= 𝜏˜l(ℎ)−𝑏˜l
𝜏sat

˜l −𝑏˜l
𝑇 sat, if ℎ ≤ ℎsat

˜l ,

𝑇 sat, if ℎsat
˜l < ℎ < ℎsat

`g ,

𝑇`g(ℎ) =
ℎ−𝑞`g
𝑐𝑝,`g

=
𝜏`g(ℎ)−𝑏`g
𝜏sat`g −𝑏`g

𝑇 sat, if ℎ ≥ ℎsat
`g .

– The coefficient 𝑐𝑝 is not defined in the iso-Tpg equation of state, since

1
𝑐𝑝

=
𝜕𝑇 𝑠

𝜕ℎ

⃒⃒⃒⃒
𝑝

,

which is equal to zero in the mixture at saturation.

To study the relaxation of the 4-Lmnc towards the 3-Lmnc system, we first compare the equations of state
of the iso-𝑇𝑝 and the iso-𝑇𝑝𝑔 mixtures.

Proposition 5.2 (Iso-𝑇𝑝 vs. iso-𝑇𝑝𝑔 mixtures). Although in the mixture 𝜁(𝜙sat(ℎ)) ̸= 𝜁sat, 𝑏(𝜙sat(ℎ)) ̸= 0 and
𝑞(𝜙sat(ℎ)) ̸= 𝑞sat, the following relations hold

𝜏(ℎ, 𝜙sat(ℎ)) = 𝜏 sat(𝜙sat(ℎ)) = 𝜏 sat(ℎ), 𝑇 (ℎ, 𝜙sat(ℎ)) = 𝑇 sat.

Proof. Since in the mixture 𝑞(𝜙sat(ℎ)) and 𝜁(𝜙sat(ℎ)) depend on ℎ while 𝑞sat and 𝜁sat are constant then
𝑞(𝜙sat(ℎ)) ̸= 𝑞sat and 𝜁(𝜙sat(ℎ)) ̸= 𝜁sat. Moreover, in the mixture 𝑏(𝜙sat(ℎ)) depend on ℎ while 𝑏𝑠(ℎ) = 0.

Since 𝜁(𝜙sat(ℎ)) = 𝑐𝑝(𝜙sat(ℎ))𝑇 sat

𝜏𝑠(𝜙sat(ℎ))−𝑏(𝜙sat(ℎ)) then

𝜏 (ℎ, 𝜙sat(ℎ)) =
ℎ− 𝑞 (𝜙sat(ℎ))
𝜁 (𝜙sat(ℎ))

+ 𝑏 (𝜙sat(ℎ)) =
ℎ− 𝑞 (𝜙sat(ℎ))
𝑐𝑝 (𝜙sat(ℎ))𝑇 sat

(𝜏𝑠 (𝜙sat(ℎ))− 𝑏 (𝜙sat(ℎ))) + 𝑏 (𝜙sat(ℎ)) .

Since

𝑐𝑝 (𝜙sat(ℎ))𝑇 sat = 𝜙sat(ℎ)𝑐𝑝,`g𝑇
sat + (1− 𝜙sat(ℎ)) 𝑐𝑝,˜l𝑇

sat (3.3)
= 𝜙sat(ℎ)(ℎsat

`g − 𝑞`g) + (1− 𝜙sat(ℎ))
(︁
ℎ˜l

`g − 𝑞˜l

)︁
then

𝜏 (ℎ, 𝜙sat(ℎ)) =
ℎ− 𝑞 (𝜙sat(ℎ))

𝜙sat(ℎ)
(︁
ℎsat

`g − 𝑞`g

)︁
+ (1− 𝜙sat(ℎ))

(︀
ℎsat

˜l − 𝑞˜l
)︀ (𝜏𝑠 (𝜙sat(ℎ))− 𝑏 (𝜙sat(ℎ))) + 𝑏 (𝜙sat(ℎ)) .

Since 𝜙sat(ℎ) def=
ℎ−ℎsat

˜l
ℎsat`g −ℎsat

˜l
, we have 1− 𝜙sat(ℎ) =

ℎsat
`g −ℎ

ℎsat`g −ℎsat
˜l

, and thus

ℎ− 𝑞 (𝜙sat(ℎ))

𝜙sat(ℎ)
(︁
ℎsat

`g − 𝑞`g

)︁
+ (1− 𝜙sat(ℎ))

(︀
ℎsat

˜l − 𝑞˜l
)︀ =

ℎ− 𝑞 (𝜙sat(ℎ))
𝜙sat(ℎ)ℎsat

`g + (1− 𝜙sat(ℎ))ℎsat
˜l − 𝜙sat(ℎ)𝑞`g − (1− 𝜙sat(ℎ)) 𝑞˜l

=
ℎ− 𝑞 (𝜙sat(ℎ))

𝜙sat(ℎ)ℎsat
`g + (1− 𝜙sat(ℎ))ℎsat

˜l − 𝑞 (𝜙sat(ℎ))
·
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Since

𝜙sat(ℎ)ℎsat
`g + (1− 𝜙sat(ℎ))ℎsat

˜l =
ℎ− ℎsat

˜l
ℎsat

`g − ℎsat
˜l
ℎsat

`g +
ℎsat

`g − ℎ

ℎsat
`g − ℎsat

˜l
ℎsat

˜l = ℎ

then

ℎ− 𝑞(𝜙sat(ℎ))
𝜙sat(ℎ)ℎsat

`g + (1− 𝜙sat(ℎ))ℎsat
˜l − 𝑞(𝜙sat(ℎ))

= 1

and finally

𝜏(ℎ, 𝜙sat(ℎ)) = (𝜏𝑠(𝜙sat(ℎ))− 𝑏(𝜙sat(ℎ))) + 𝑏(𝜙sat(ℎ)) = 𝜏𝑠(𝜙sat(ℎ)).

Since 𝜙sat(ℎ) def=
ℎ−ℎsat

˜l
ℎsat`g −ℎsat

˜l
=

𝜏sat(ℎ)−𝜏sat
˜l

𝜏sat`g −𝜏sat
˜l

then, by definition (3.11) of 𝜏 sat(𝜙)

𝜏 sat(𝜙sat(ℎ)) = 𝜙sat(ℎ)𝜏 sat
`g + (1− 𝜙sat(ℎ))𝜏 sat

˜l =
𝜏 sat(ℎ)− 𝜏 sat

˜l
𝜏 sat

`g − 𝜏 sat
˜l

𝜏 sat
`g +

𝜏 sat
`g − 𝜏 sat(ℎ)

𝜏 sat
`g − 𝜏 sat

˜l
𝜏 sat

˜l = 𝜏 sat(ℎ).

Finally, for the temperature, we can compute

𝑇 (ℎ, 𝜙sat(ℎ)) =
𝜏(ℎ, 𝜙sat(ℎ))−𝑏(𝜙sat(ℎ))
𝜏 sat(𝜙sat(ℎ))−𝑏(𝜙sat(ℎ))

𝑇 sat =
𝜏 sat(ℎ)
𝜏 sat(ℎ)

𝑇 sat = 𝑇 sat.

�

Figure 3 displays the iso-Tp and the iso-Tpg EoS with parameters of the Section 4.5.1.
In pure phases, all quantities (𝜁, 𝑞, 𝑏, 𝜏 and 𝑇 ) clearly coincide. Moreover, although phase change is described

by 𝜙 = 0 (resp. 1) in the iso-Tp EoS whereas it is described by ℎ = ℎsat
˜l (resp. ℎsat

`g ) in the iso-Tpg EoS, the two
descriptions coincide when 𝜙 = 𝜙𝑠(ℎ), and phase change thus occurs at the same point.

As far as the mixture is concerned, we notice on Figure 3A that the function 𝜁(𝜙𝑠(ℎ)) is different from the
function 𝜁𝑠(ℎ), since it is continuous while 𝜁𝑠(ℎ) is phasewise constant. In a similar way, we see on Figures 3B
and 3C that the functions 𝑞(𝜙𝑠(ℎ)) and 𝑏(𝜙𝑠(ℎ)) are different from the function 𝑞𝑠(ℎ) and 𝑏𝑠(ℎ), since they
are phasewise linear while 𝑞𝑠(ℎ) are 𝑏𝑠(ℎ) are phasewise constant. Last, we observe on Figures 3D and 3E that
𝜏(ℎ, 𝜙𝑠(ℎ)) ≡ 𝜏𝑠(ℎ) and 𝑇 (ℎ, 𝜙𝑠(ℎ)) ≡ 𝑇 𝑠, as stated in Proposition 5.2.

5.3. Convergence of the 4-lmnc model towards the 3-lmnc model

In the following proposition, we relate the 3-Lmnc system to the 4-Lmnc one, as its limit when 𝜀→ 0. o this
end, we assume the existence of a smooth solution to (5.1).

Proposition 5.3. Let (𝑣𝜀, ℎ𝜀, 𝜙𝜀) be a solution of (5.1) with ℛ𝜀(ℎ, 𝜙) = 1
𝜀 (𝜙𝑠(ℎ)−𝜙). The solution (𝑣𝜀, ℎ𝜀, 𝜙𝜀)

converges formally as 𝜀→ 0 towards (𝑣, ℎ, 𝜙𝑠
(︀
ℎ
)︀
) solution of (5.2).

Proof. Let us introduce some function 𝜓𝑠
𝛿 of class at least C 1 for some 𝛿 > 0, bounded in [0, 1] such that 𝜓𝑠

𝛿(ℎ)
tends to 𝜙𝑠(ℎ) in a strong sense as 𝛿 → 0:

𝜓𝑠
𝛿(ℎ) = 𝜙𝑠(ℎ) +𝒪(𝛿).

Then we consider the following modified system:⎧⎪⎪⎨⎪⎪⎩
𝜕𝑦𝑣 = S(ℎ, 𝜙), (5.3a)
𝜕𝑡ℎ+ 𝑣𝜕𝑦ℎ = Φ𝜏(ℎ, 𝜙), (5.3b)

𝜕𝑡𝜙+ 𝑣𝜕𝑦𝜙 =
1
𝜀

(𝜓𝑠
𝛿(ℎ)− 𝜙) . (5.3c)
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Figure 3. Iso-Tp vs. Iso-Tpg EoS. (A) ℎ ↦→ 1
𝜁(𝜙𝑠(ℎ)) vs. ℎ ↦→ 1

𝜁𝑠(ℎ) . (B) ℎ ↦→ 𝑞 (𝜙𝑠(ℎ)) vs.
ℎ ↦→ 𝑞𝑠(ℎ). (C) ℎ ↦→ 𝑏 (𝜙𝑠(ℎ)) vs. ℎ ↦→ 𝑏𝑠(ℎ). (D) ℎ ↦→ 𝜏 (ℎ, 𝜙𝑠(ℎ)) vs. ℎ ↦→ 𝜏𝑠(ℎ). (E) ℎ ↦→
𝑇 (ℎ, 𝜙𝑠(ℎ)) vs. ℎ ↦→ 𝑇 𝑠(ℎ).

Let us expand any variable of Model (5.3) as 𝑓𝜀 = 𝑓 (0) + 𝜀𝑓 (1) +𝒪(𝜀2). At order 𝜀−1, we get from the form
ℛ𝜀 = (𝜓𝑠

𝛿(ℎ)− 𝜙) /𝜀 that

𝜙(0) = 𝜓𝑠
𝛿

(︁
ℎ(0)

)︁
.

Moreover, at order 𝜀0, we have from (5.3c)

𝜕𝑡𝜙
(0) + 𝑣(0)𝜕𝑦𝜙

(0) = (𝜓𝑠
𝛿)′
(︁
ℎ(0)

)︁
ℎ(1) − 𝜙(1), (5.4)

and from (5.3b)

𝜕𝑡ℎ
(0) + 𝑣(0)𝜕𝑦ℎ

(0) = 𝜏
(︁
ℎ(0), 𝜙(0)

)︁
Φ. (5.5)

Since we obtained 𝜙(0) = 𝜓𝑠
𝛿

(︀
ℎ(0)

)︀
, we get

𝜏
(︁
ℎ(0), 𝜙(0)

)︁
= 𝜏

(︁
ℎ(0), 𝜓𝑠

𝛿

(︁
ℎ(0)

)︁)︁
= 𝜏

(︁
ℎ(0), 𝜙𝑠

(︁
ℎ(0)

)︁)︁
⏟  ⏞  

𝜏𝑠(ℎ(0))

+
(︁
𝜓𝑠

𝛿

(︁
ℎ(0)

)︁
− 𝜙𝑠

(︁
ℎ(0)

)︁)︁
⏟  ⏞  

=𝒪(𝛿)

∫︁ 1

0

𝜕𝜏

𝜕𝜙

(︁
ℎ(0), 𝜙𝑠

(︁
ℎ(0)

)︁
+ 𝜎

(︁
𝜓𝑠

𝛿

(︁
ℎ(0)

)︁
− 𝜙𝑠

(︁
ℎ(0)

)︁)︁)︁
d𝜎⏟  ⏞  

bounded
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which leads to the second equation of (5.2) for ℎ(0) up to a correction of order 𝛿.
Further, we compute from the definition of S

𝜕𝑦𝑣
(0) = Φ

𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

(︁
ℎ(0), 𝜙(0)

)︁
+
𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

(︁
ℎ(0), 𝜙(0)

)︁ (𝜓𝑠
𝛿)′
(︀
ℎ(0)

)︀
ℎ(1) − 𝜙(1)

𝜏
(︀
ℎ(0), 𝜙(0)

)︀
(5.4)
= Φ

𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

(︁
ℎ(0), 𝜙(0)

)︁
+
𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

(︁
ℎ(0), 𝜙(0)

)︁ 𝜕𝑡𝜙
(0) + 𝑣(0)𝜕𝑦𝜙

(0)

𝜏
(︀
ℎ(0), 𝜙(0)

)︀
= Φ

𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

(︁
ℎ(0), 𝜙(0)

)︁
+
𝜕𝑡ℎ

(0) + 𝑣(0)𝜕𝑦ℎ
(0)

𝜏
(︀
ℎ(0), 𝜙(0)

)︀ (𝜓𝑠
𝛿)′
(︁
ℎ(0)

)︁ 𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

(︁
ℎ(0), 𝜙(0)

)︁
(5.5)
= Φ

(︃
𝜕𝜏

𝜕ℎ

⃒⃒⃒⃒
𝜙

(︁
ℎ(0), 𝜙(0)

)︁
+ (𝜓𝑠

𝛿)′
(︁
ℎ(0)

)︁ 𝜕𝜏

𝜕𝜙

⃒⃒⃒⃒
ℎ

(︁
ℎ(0), 𝜙(0)

)︁)︃
= Φ

d
dℎ

[︁
𝜏
(︁
ℎ(0), 𝜓𝑠

𝛿

(︁
ℎ(0)

)︁)︁]︁
⏟  ⏞  
𝜏(ℎ(0),𝜙𝑠(ℎ(0)))+𝒪(𝛿)

.

The assumption on the EoS leads to

𝜕𝑦𝑣
(0) = Φ(𝜏𝑠)′

(︁
ℎ(0)

)︁
+𝒪(𝛿),

which is exactly the first equation of (5.2) for 𝑣(0) up to a correction of order 𝛿. Last, letting 𝛿 tend to zero
concludes the proof. �

Remark 5.4. This proposition is true for any equations of state satisfying that 𝜏 (ℎ, 𝜙𝑠(ℎ)) = 𝜏𝑠(ℎ) and 𝜏 of
class C 1. The requirement 𝜏 (ℎ, 𝜙𝑠(ℎ)) = 𝜏𝑠(ℎ) is in particular satisfied for the EoS we chose (see Prop. 5.2).

5.4. An asymptotic-preserving numerical scheme for the 4-lmnc model

In this section, an asymptotic-preserving strategy is proposed to be able to simulate the 4-lmnc model in
stiff regimes (small values of 𝜀) with a reasonable computational cost. The scheme relies on a time splitting
between the relaxation step (stiff, thus implicit) and the transport one (explicit). It is inspired by the standard
asymptotic-preserving approach introduced by Jin [24,34,35].

Let us consider the following semi-discrete (in time) scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ* = ℎ𝑛 + ∆𝑡Φ 𝜏 (ℎ𝑛, 𝜙𝑛) ,

𝜙* = 𝜙𝑛 +
∆𝑡
𝜀

(𝜙𝑠 (ℎ*)− 𝜙*) ,

𝐷
(︀
𝑣𝑛+1

)︀
=

Φ
𝜁 (𝜙*)

+
1

𝜏 (ℎ𝑛, 𝜙𝑛)
𝜙𝑠 (ℎ*)− 𝜙*

𝜀
𝐴 (ℎ𝑛, 𝜙𝑛, 𝜙*) ,

ℎ𝑛+1 = ℎ* −∆𝑡 𝑣𝑛+1𝐷 (ℎ*) ,
𝜙𝑛+1 = 𝜙* −∆𝑡 𝑣𝑛+1𝐷 (𝜙*) ,

(5.6a)

where

𝐴(ℎ𝑛, 𝜙𝑛, 𝜙*) = − 1
𝜁 (𝜙*) 𝜁 (𝜙𝑛)

[︂
(𝑞`g − 𝑞ℓ)𝜁 (𝜙𝑛)−(𝑏`g − 𝑏˜l)𝜁 (𝜙*) 𝜁 (𝜙𝑛) + (ℎ𝑛 − 𝑞 (𝜙𝑛))

𝜁 (𝜙*)− 𝜁 (𝜙𝑛)
𝜙* − 𝜙𝑛

]︂
(5.6b)

is an approximation of 𝜕𝜙𝜏 and 𝐷(·) is any discretisation of 𝜕𝑦(·).
As for the previous scheme, since the second equation of (5.6a) can be stiff for small values of 𝜀, the source

term is discretised implicitly. Again, this does not induce longer computational costs, since the equation is
linear in 𝜙 and can be solved explicitly. The CFL condition is thus only related to the transport equation on
the enthalpy at speed 𝑣 (two last equations of (5.6a)).

Assume that the discrete linear operator 𝐷 satisfies the requirements
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– for 𝑓 ∈ R𝑁 such that 𝑓𝑖 = 𝒪(𝜀) for all 𝑖, then 𝐷(𝑓)𝑖 = 𝒪(𝜀);
– for 𝑓 ∈ R𝑁 such that 𝐷(𝑓)𝑖 = 𝒪(𝜀) for all 𝑖 and 𝑓0 = 0, then 𝑓𝑖 = 𝒪(𝜀);
– 𝐷(𝑐𝑠𝑡) = 0.

Proposition 5.5. Under the previous assumptions, Scheme (5.6) is weakly asymptotic-preserving in the mix-
ture, in the sense that its numerical solution is an 𝒪(𝜀)-approximation of the numerical solution to the scheme⎧⎪⎪⎪⎨⎪⎪⎪⎩

ℎ
*

= ℎ
𝑛

+ ∆𝑡Φ 𝜏𝑠
(︁
ℎ

𝑛
)︁
,

𝐷
(︀
𝑣𝑛+1

)︀
=

Φ
𝜁𝑠
,

ℎ
𝑛+1

= ℎ
* −∆𝑡 𝑣𝑛+1𝐷

(︁
ℎ
*)︁
,

in the mixture.

Proof. Let us denote 𝛿1 = ℎ− ℎ, 𝛿2 = 𝜙− 𝜙𝑠
(︀
ℎ
)︀
, 𝛿3 = 𝑣 − 𝑣 and ∆ = 𝜙𝑠(ℎ)− 𝜙𝑠

(︀
ℎ
)︀
. First, we have

𝛿*1 = ℎ𝑛 − ℎ
𝑛

+ Φ∆𝑡
(︁
𝜏 (ℎ𝑛, 𝜙𝑛)− 𝜏𝑠

(︁
ℎ

𝑛
)︁)︁

= 𝛿𝑛
1 + Φ∆𝑡 (𝛿𝑛

1 𝒞1 + 𝛿𝑛
2 𝒞2) , (5.7)

where we used a Taylor expansion of 𝜏 (which is a C 1 function with respect to ℎ and 𝜙), and the constants 𝒞1

and 𝒞2 are given by

𝒞1 =
∫︁ 1

0

𝜕𝜏

𝜕ℎ

(︁
ℎ

𝑛
+ 𝜎

(︁
ℎ𝑛 − ℎ

𝑛
)︁
, 𝜙𝑠

(︁
ℎ

𝑛
)︁

+ 𝜎
(︁
𝜙𝑛 − 𝜙𝑠

(︁
ℎ

𝑛
)︁)︁)︁

d𝜎,

𝒞2 =
∫︁ 1

0

𝜕𝜏

𝜕𝜙

(︁
ℎ

𝑛
+ 𝜎

(︁
ℎ𝑛 − ℎ

𝑛
)︁
, 𝜙𝑠

(︁
ℎ

𝑛
)︁

+ 𝜎
(︁
𝜙𝑛 − 𝜙𝑠

(︁
ℎ

𝑛
)︁)︁)︁

d𝜎.

Then,

𝛿*2 = 𝜙* − 𝜙𝑠
(︁
ℎ
*)︁

= 𝜙* − 𝜙𝑛 + 𝜙𝑛 − 𝜙𝑠
(︁
ℎ

𝑛
)︁

+ 𝜙𝑠
(︁
ℎ

𝑛
)︁
− 𝜙𝑠

(︁
ℎ
*)︁

=
∆𝑡
𝜀

(𝜙𝑠 (ℎ*)− 𝜙*)⏟  ⏞  
=𝜙𝑠(ℎ*)−𝜙𝑠(ℎ

*)−𝛿*2

+𝛿𝑛
2 + 𝜙𝑠

(︁
ℎ

𝑛
)︁
− 𝜙𝑠

(︁
ℎ
*)︁
,

due to the first equation of (5.6a). Hence

𝛿*2 =
∆𝑡

𝜀+ ∆𝑡
∆
*

+
𝜀

𝜀+ ∆𝑡

(︁
𝛿𝑛
2 + 𝜙𝑠

(︁
ℎ

𝑛
)︁
− 𝜙𝑠

(︁
ℎ
*)︁)︁

. (5.8)

Moreover, we have from the first equation of (5.6a)

𝜙* − 𝜙𝑛

∆𝑡
=
𝜙* − 𝜙𝑛

ℎ* − ℎ𝑛

ℎ* − ℎ𝑛

∆𝑡
=
𝜙* − 𝜙𝑛

ℎ* − ℎ𝑛
Φ𝜏 (ℎ𝑛, 𝜙𝑛) .

Hence, using the second equation of (5.6a)

1
𝜏(ℎ𝑛, 𝜙𝑛)

𝜙𝑠 (ℎ*)− 𝜙*

𝜀
= Φ

𝜙* − 𝜙𝑛

ℎ* − ℎ𝑛
·

Notice that 𝑞`g − 𝑞˜l = 𝑞(𝜙*)−𝑞(𝜙𝑛)
𝜙*−𝜙𝑛 and 𝑏`g − 𝑏˜l = 𝑏(𝜙*)−𝑏(𝜙𝑛)

𝜙*−𝜙𝑛 . Therefore thanks to equation (5.6b)

𝐴 (ℎ𝑛, 𝜙𝑛, 𝜙*)
𝜏 (ℎ𝑛, 𝜙𝑛)

𝜙𝑠 (ℎ*)− 𝜙*

𝜀
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= − Φ
ℎ* − ℎ𝑛

(𝑞 (𝜙*)− 𝑞 (𝜙𝑛)) 𝜁 (𝜙𝑛)− (𝑏 (𝜙*)− 𝑏 (𝜙𝑛)) 𝜁 (𝜙*) 𝜁 (𝜙𝑛) + (ℎ𝑛 − 𝑞 (𝜙𝑛)) (𝜁 (𝜙*)− 𝜁 (𝜙𝑛))
𝜁 (𝜙*) 𝜁 (𝜙𝑛)

= Φ
1

ℎ* − ℎ𝑛

[︂
ℎ𝑛 − 𝑞 (𝜙*)
𝜁 (𝜙*)

+𝑏 (𝜙*)− ℎ𝑛 − 𝑞 (𝜙𝑛)
𝜁 (𝜙𝑛)

−𝑏 (𝜙𝑛)
]︂

= Φ
𝜏 (ℎ𝑛, 𝜙*)− 𝜏 (ℎ𝑛, 𝜙𝑛)

ℎ* − ℎ𝑛

and the third equation of (5.6a) becomes together with previous equalities

𝐷(𝑣𝑛+1) = Φ
𝜏 (ℎ*, 𝜙*)− 𝜏 (ℎ𝑛, 𝜙𝑛)

ℎ* − ℎ𝑛
·

Applying a Taylor expansion to the function 𝜏 with respect to 𝜙, we obtain

𝜏 (ℎ*, 𝜙*) = 𝜏 (ℎ*, 𝜙𝑠 (ℎ*))⏟  ⏞  
=𝜏𝑠(ℎ*)

+ (𝜙* − 𝜙𝑠 (ℎ*))⏟  ⏞  
=𝛿*2−Δ

*

𝒞3, 𝜏 (ℎ𝑛, 𝜙𝑛) = 𝜏 (ℎ𝑛, 𝜙𝑠 (ℎ𝑛))⏟  ⏞  
=𝜏𝑠(ℎ𝑛)

+ (𝜙𝑛 − 𝜙𝑠 (ℎ𝑛))⏟  ⏞  
=𝛿𝑛

2−Δ
𝑛

𝒞4,

where

𝒞3 =
∫︁ 1

0

d𝜏
d𝜙

(ℎ*, 𝜙𝑠 (ℎ*) + 𝜎 (𝜙* − 𝜙𝑠 (ℎ*))) d𝜎, 𝒞4 =
∫︁ 1

0

d𝜏
d𝜙

(ℎ𝑛, 𝜙𝑠 (ℎ𝑛) + 𝜎 (𝜙𝑛 − 𝜙𝑠 (ℎ𝑛))) d𝜎.

Hence

𝐷
(︀
𝑣𝑛+1

)︀
= Φ

𝜏𝑠 (ℎ*)− 𝜏𝑠 (ℎ𝑛)
ℎ* − ℎ𝑛

+
Φ

ℎ* − ℎ𝑛

[︁(︁
𝛿*2 −∆

*)︁ 𝒞3 −
(︁
𝛿𝑛
2 −∆

𝑛
)︁
𝒞4

]︁
.

Recalling that 𝜏𝑠(ℎ) = (ℎ− 𝑞𝑠)/𝜁𝑠 and 𝐷(𝑣𝑛+1) = Φ/𝜁𝑠, we finally obtain

𝐷(𝛿𝑛+1
3 ) =

(︁
𝛿*2 −∆

*)︁ 𝒞3 −
(︁
𝛿𝑛
2 −∆

𝑛
)︁
𝒞4

∆𝑡 𝜏 (ℎ𝑛, 𝜙𝑛)
, (5.9)

where we used the first equation of (5.6a).
Then, the second part of the splitting is computed as

𝛿𝑛+1
1 = ℎ𝑛+1−ℎ𝑛+1

= ℎ*−ℎ*−∆𝑡𝑣𝑛+1𝐷 (ℎ*)+∆𝑡𝑣𝑛+1𝐷
(︁
ℎ
*)︁

= 𝛿*1−∆𝑡
[︁
𝑣𝑛+1𝐷 (𝛿*1) + 𝛿𝑛+1

3 𝐷
(︁
ℎ
*)︁]︁

. (5.10)

Likewise, in the mixture, we have that

𝛿𝑛+1
2 = 𝜙𝑛+1 − 𝜙sat

(︁
ℎ

𝑛+1
)︁

= 𝜙* − 𝜙sat
(︁
ℎ
*)︁−∆𝑡𝑣𝑛+1𝐷 (𝜙*) + ∆𝑡𝑣𝑛+1

𝐷
(︁
ℎ
*)︁

ℎsat
`g − ℎsat

˜l

= 𝛿*2 −∆𝑡
[︀
𝛿𝑛+1
3 𝐷 (𝜙*) + 𝑣𝑛+1𝐷 (𝛿*2)

]︀
, (5.11)

since
𝐷(ℎ

*)
ℎsat`g −ℎsat

˜l
= 𝐷 (𝜙sat (ℎ*)) due to the properties of the operator 𝐷.

We can now conclude the proof. Let us assume that 𝛿𝑛
1 = 𝒪(𝜀) and 𝛿𝑛

2 = 𝒪(𝜀). Then

– Equation (5.7) shows that 𝛿*1 = 𝒪(𝜀).
– Observe that for any ℎ1, ℎ2 such that ℎ1 − ℎ2 = 𝒪(𝜀), we have 𝜙𝑠(ℎ1)− 𝜙𝑠(ℎ2) = 𝒪(𝜀) for 𝜀 small enough.

It thus follows that 𝛿*1 = 𝒪(𝜀) implies that ∆
*

= 𝒪(𝜀).
– Equation (5.8) coupled to the previous points and the fact that 𝜙𝑠 is bounded in [0, 1] imply that 𝛿*2 = 𝒪(𝜀).
– From (5.9), we have that 𝐷

(︀
𝛿𝑛+1
3

)︀
= 𝒪(𝜀) and thus 𝛿𝑛

3 = 𝒪(𝜀) since 𝑣0 = 𝑣0 = 𝑣𝑒.
– The previous points and (5.10) induce that 𝛿𝑛+1

1 = 𝒪(𝜀).
– Finally (5.11) leads to 𝛿𝑛+1

2 = 𝒪(𝜀).

�
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Figure 4. Asymptotic-preserving behaviour of the scheme.

5.5. Numerical simulations in both the non-instantaneous and instantaneous regimes

5.5.1. Asymptotic-preserving behaviour of the scheme

In this section, we illustrate numerically the good behaviour of the numerical scheme (5.6). Let us set the
discretisation parameter ∆𝑦 = 2.1× 10−2. The CFL condition is equal to 0.99. Since the velocity remains less
than 10 in this test case, the time step ∆𝑡 is always greater than 2.1× 10−3, independently of the value of 𝜀.

Let us define the following three constants:

ℎ⋆ = 1.01ℎsat
˜l = 1.612× 106 J ·K−1, 𝑣⋆ = 1 m · s−1, 𝜙⋆ = 𝜙𝑠(ℎ*).

The boundary conditions are of course equal for the 3-lmnc and 4-lmnc models

– ℎ𝑒,3(𝑡) = ℎ𝑒,4(𝑡) = ℎ⋆,
– 𝑣𝑒,3(𝑡) = 𝑣𝑒,4(𝑡) = 𝑣⋆,
– 𝜙𝑒,4(𝑡) = 𝜙⋆.

In order to assess the asymptotic-preserving behaviour of the scheme, we choose different initial conditions
for the two systems

– ℎ0
3(𝑦) = ℎ⋆,

– ℎ0
4(𝑦) = (1 + 𝑦/10)ℎ⋆, 𝜙0

4(𝑦) = 𝜙𝑠(ℎ0
4(𝑦))/2.

Let us emphasise that for the 4-lmnc model, we also choose “ill-prepared” initial conditions (in the sense
that 𝜙0

4 ̸= 𝜙𝑠(ℎ0
4)). The power density is set constant in space and time and equal to Φ = 170× 106 W ·m−3.

With these parameters, the domain [0;𝐿] with 𝐿 = 4.2 m is initially filled with a mixture in both cases.
We compare the solutions computed with the 4-lmnc and the 3-Lmnc models for different values of the

relaxation parameter 𝜀, from 10−2 to 10−7. Figure 4 displays the 𝐿2 norm of the relative error between these
solutions in semi-log-y scale for 𝑡 ∈ [0 s; 2.5 s] for the enthalpy ℎ (left), the mass fraction 𝜙 (center) and the
velocity 𝑣 (right). We see that the scheme has actually the behaviour of a relaxed asymptotic-preserving scheme,
meaning that even if the initial conditions are not the same between the two models, after some time the solution
of the 4-lmnc model converges to the solution of the 3-lmnc model up to an error of order 𝜀.

Figure 5 displays the error calculated at time 𝑡 = 2.5 s for the enthalpy ℎ, the mass fraction 𝜙 and the velocity
𝑣 as a function to of 𝜀 in loglog-scale. We see that the scheme is at order 1 in 𝜀 for all variables.

5.5.2. Spatial coupling of the two regimes

In this section, we investigate the spatial coupling of non-instantaneous and the instantaneous regimes, and
compare qualitatively the results with a classic compressible test case (coupling spatially HRM and HEM



A HOMOGENEOUS RELAXATION LOW MACH NUMBER MODEL 1593

Figure 5. Convergence in 𝜀 of the asymptotic-preserving scheme.

models). To this end, we chose a similar physical setting as in [4]. More precisely, we set 𝐿 = 80 m, which
represents a part of the coolant circuit containing the core on the left half of the domain. The power density is
thus located in the region 18 m ≤ 𝑦 ≤ 23 m, and is set in this region to the constant value Φ = 75× 106 W ·m−3.
The computation is done on a coarse grid, and the discretisation parameter is ∆𝑦 = 0.4. The CFL condition is
equal to 0.99, and in this test case, the time step ∆𝑡 is always greater than 0.03.

Concerning the thermodynamical parameters, it is well-known that the values computed in [39] or [40] are
not adapted to PWR simulations. In [19], we showed the drawbacks related to these values for the pressure of
interest 𝑝* = 155 bar (compared to experimental values [41]), and we introduced a new strategy to compute
an incomplete EoS which is exact at saturation and rich enough to close the 3-lmnc model. Here another
complete set of parameters is computed by fitting to experimental data around a reference point adapted to
PWR simulations. First, we take ℎsat

𝜅 , 𝜏 sat
𝜅 and 𝑇 sat from NIST experimental values at 𝑝 = 𝑝*: 𝑇 sat = 617.939 K

and

𝜏 sat
˜l = 1.68243× 10−3 m3 · kg−1 𝜏 sat

`g = 9.81065× 10−3 m3 · kg−1

ℎsat
˜l = 1.629× 106 J ·K−1 ℎsat

`g = 2.596× 106 J ·K−1.

Then, we choose to set 𝑏𝜅 = 0 and 𝑐𝑝,𝜅 to the values of [39]:

𝑐𝑝,˜l = 4.268× 103 J ·K−1 · kg−1 𝑐𝑝,`g = 1.4874× 103 J ·K−1 · kg−1.

Finally, according to (3.3), we set 𝜁𝜅 = 𝑐𝑝,𝜅
𝑇 sat

𝜏sat
𝜅 −𝑏𝜅

and 𝑞𝜅 = ℎsat
𝜅 − 𝜁𝜅(𝜏 sat

𝜅 − 𝑏𝜅):

𝜁˜l = 1.567× 109 Pa 𝜁`g = 9.369× 107 Pa

𝑞˜l = −1.008× 106 J ·K−1 𝑞`g = 1.677× 106 J ·K−1.

The boundary conditions are given by

– ℎ𝑒(𝑡) = 1.653× 106 J ·K−1,
– 𝑣𝑒(𝑡) = 10 m · s−1,
– 𝜙𝑒(𝑡) = 0.025.

The initial conditions are set equal to the boundary conditions.
In order to mimic the resolution of HEM and HRM models on either side of a coupling interface, we set the

relaxation time 𝜀 as

𝜀(𝑦) =

{︃
1 if 𝑦 < 40 m,
10−10 if 𝑦 > 40 m.

(5.12)
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Figure 6. Liquid mass fraction at final time for different values of 𝜀 (in blue the area where
Φ ̸= 0; the dashed line corresponds to the discontinuity of 𝜀). (A) 1 − 𝜙 for 𝜀 = 1. (B) 1 − 𝜙
for 𝜀(𝑦) of (5.12). (C) 1− 𝜙 for 𝜀 = 10−10.

On Figure 6, we plot the liquid mass fraction 1− 𝜙 at time 𝑡 = 3 s, as well as the one for 𝜀 = 1 in the whole
domain and the one for 𝜀 = 10−10 in the whole domain. The asymptotic-preserving scheme handles perfectly
the coupling, without having to determine artificial boundary conditions on the coupling interface. Moreover,
we can observe the influence of the mass transfer relaxation time when 𝜀 = 1. Of course, comparisons with
compressible test cases are limited to low Mach number regimes, where no shock waves appear.

6. Conclusion

In this paper, we derived the low Mach number approximation of a 4-equation HRM system, with equality
of velocities, pressures and temperatures between phases. This model takes into account a relaxation term
allowing the exchange of mass between phases through a given characteristic time. In order to describe properly
the thermodynamics of the fluid, we derived an equation of state for the model, and compared it with the one
at saturation (used in the 3-lmnc model). One particularly important feature of this equation of state is the
fact that it is not defined piecewise, avoiding discontinuities which may lead to large numerical errors due the
approximation of the physical parameters.

For the 4-lmnc model, we were able to prove some results on the analytical steady-state solution, as well
as positivity properties on the unknowns and the relaxation term. A well-balanced scheme has been designed,
which preserves the properties of a steady-state solution for any value of the relaxation parameter (thus being
possibly far from the explicit steady-state solution of the 3-lmnc model). This allows in particular to be
extremely accurate on the flux conservation, as well as on the slope of the enthalpy. A similar scheme is also
given in Appendix for the 3-lmnc model. This work could be a preliminary study to more realistic 2D/3D
computations, taking into account the coupling with a simplified neutronics model, as it in [17,18].

Finally, we studied the formal convergence of the 4-lmnc model towards the 3-lmnc one, when the relaxation
parameter 𝜀 tends to zero. An asymptotic-preserving scheme has also been derived, for which we proved and
observed numerically that it provides, after some time iterations, a numerical solution close to the one of the
3-lmnc model up to an error of order 𝜀. This scheme can be particularly useful for the coupling of spatial
regions where the unrelaxed 4-equation model is needed with spatial regions where the 3-equation HEM model
may be used (instantaneous relaxation of the chemical potentials).

A natural extension of this paper will be to investigate the low Mach number models that can be obtained from
the hierarchy of models mentioned in the introduction, with possible disequilibria in pressures, temperatures,
chemical potentials and velocity. This shall be the topic of further works.
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Appendix A. A well-balanced numerical scheme for the 3-lmnc model

A 1D numerical scheme for System (5.2) has been developed in [8]. The scheme, based on the method of
characteristics, is at order 2 in space but it is not well balanced: the numerical steady solution does not satisfy
𝑣 = 𝐷𝑒𝜏

𝑠(ℎ) at the discrete level. In this appendix we present a new 1D numerical scheme for the 3-lmnc model
which is well-balanced, based on the same approach as the well-balanced scheme introduced in Section 4.3 for
the 4-lmnc model.

Let us consider the numerical scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℎ𝑛+1
𝑖 = ℎ𝑛

𝑖 −
∆𝑡
∆𝑦

𝑣𝑛
𝑖 (ℎ𝑛

𝑖 − ℎ𝑛
𝑖−1) + Φ𝑛

𝑖 ∆𝑡𝜏𝑠(ℎ𝑛
𝑖 ), (A.1a)

𝑣𝑛+1
𝑖 = 𝑣𝑛+1

𝑖−1 + Φ𝑛+1
𝑖 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦*˜l − 𝑦𝑖−1

𝜁˜l
+
𝑦𝑖 − 𝑦*˜l
𝜁sat

if ℎ𝑛+1
𝑖−1 ≤ ℎsat

˜l ≤ ℎ𝑛+1
𝑖 ,

𝑦*`g − 𝑦𝑖−1

𝜁sat
+
𝑦𝑖 − 𝑦*`g

𝜁`g
if ℎ𝑛+1

𝑖−1 ≤ ℎsat
`g ≤ ℎ𝑛+1

𝑖 ,

∆𝑦
𝜁𝑠(ℎ𝑛+1

𝑖 )
otherwise,

(A.1b)

where 𝜏𝑠(ℎ), 𝜁𝑠(ℎ) and 𝑞𝑠(ℎ) are defined in Section 5.2 and

𝑦*˜l
def=

ℎsat
˜l − ℎ𝑛

𝑖

ℎ𝑛
𝑖 − ℎ𝑛

𝑖−1

∆𝑦 + 𝑦𝑖, 𝑦*`g
def=

ℎsat
`g − ℎ𝑛

𝑖

ℎ𝑛
𝑖 − ℎ𝑛

𝑖−1

∆𝑦 + 𝑦𝑖.

Proposition A.1. Scheme (A.1) is at order 1 (in space and time) and well-balanced in the sense that it
preserves the numerical steady state satisfying for any 0 ≤ 𝑖 ≤ 𝑁

𝑣𝑖

𝜏𝑠(ℎ𝑖)
=

𝑣0
𝜏𝑠(ℎ0)

= 𝐷𝑒, (A.2)

ℎ𝑖 − ℎ𝑖−1

∆𝑦
=

Φ𝑖

𝐷𝑒
, (A.3)

which is consistent with the properties of the continuous steady state given in [8]. More precisely, if for any 𝑖,
(𝑣𝑛+1

𝑖 , ℎ𝑛+1
𝑖 ) = (𝑣𝑛

𝑖 , ℎ
𝑛
𝑖 ), then (𝑣𝑛

𝑖 , ℎ
𝑛
𝑖 )𝑖 satisfies (A.2) and (A.3).

Proof. Assume that the scheme converges in large time, so that (𝑣𝑛+1
𝑖 , ℎ𝑛+1

𝑖 ) = (𝑣𝑛
𝑖 , ℎ

𝑛
𝑖 ) and let us thus drop

the time indices. Thus (A.1a) becomes:

𝑣𝑖(ℎ𝑖 − ℎ𝑖−1) = 𝜏𝑠(ℎ𝑖)∆𝑦Φ𝑖, (A.4)

and (A.1b) remains unchanged. In order to prove that the scheme is well-balanced, we have to recover at the
discrete level the fact that 𝑣/𝜏 = 𝐷𝑒 and 𝜕𝑦ℎ = Φ/𝐷𝑒, that is

𝑣𝑖

𝜏𝑠(ℎ𝑖)
=

𝑣0
𝜏𝑠(ℎ0)

= 𝐷𝑒,
ℎ𝑖 − ℎ𝑖−1

∆𝑦
=

Φ𝑖

𝐷𝑒
·

We first observe that,

– if ℎ𝑖−1 ≤ ℎsat
˜l ≤ ℎ𝑖, by using the definition of 𝑦*˜l , we have

𝑦*˜l − 𝑦𝑖−1

𝜁˜l
+
𝑦𝑖 − 𝑦*˜l
𝜁sat

=
∆𝑦

ℎ𝑖 − ℎ𝑖−1

[︂
ℎsat

˜l − ℎ𝑖−1

𝜁˜l
+
ℎ𝑖 − ℎsat

˜l
𝜁sat

]︂
=

∆𝑦
ℎ𝑖 − ℎ𝑖−1

[︂
ℎsat

˜l −𝑞˜l + 𝜁˜l𝑏˜l + 𝑞˜l − 𝜁˜l𝑏˜l − ℎ𝑖−1

𝜁˜l
+
ℎ𝑖 − 𝑞sat + 𝑞sat − ℎsat

˜l
𝜁sat

]︂
=

∆𝑦
ℎ𝑖 − ℎ𝑖−1

[𝜏 sat
˜l − 𝜏𝑠(ℎ𝑖−1) + 𝜏𝑠(ℎ𝑖)− 𝜏 sat

˜l ] =
∆𝑦

ℎ𝑖 − ℎ𝑖−1
[𝜏𝑠(ℎ𝑖)− 𝜏𝑠(ℎ𝑖−1)] ;
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– if ℎ𝑖−1 ≤ ℎsat
`g ≤ ℎ𝑖, by using the definition of 𝑦*`g , we have

𝑦*`g − 𝑦𝑖−1

𝜁sat
+
𝑦𝑖 − 𝑦*`g

𝜁`g
=

∆𝑦
ℎ𝑖 − ℎ𝑖−1

[︃
ℎsat

`g − ℎ𝑖−1

𝜁sat
+
ℎ𝑖 − ℎsat

`g

𝜁`g

]︃

=
∆𝑦

ℎ𝑖 − ℎ𝑖−1

[︃
ℎsat

`g − 𝑞sat + 𝑞sat − ℎ𝑖−1

𝜁sat
+
ℎ𝑖−𝑞`g + 𝑏`g + 𝑞`g − 𝑏`g − ℎsat

`g

𝜁`g

]︃

=
∆𝑦

ℎ𝑖 − ℎ𝑖−1

[︁
𝜏 sat

`g − 𝜏𝑠(ℎ𝑖−1) + 𝜏𝑠(ℎ𝑖)− 𝜏 sat
`g

]︁
=

∆𝑦
ℎ𝑖 − ℎ𝑖−1

[𝜏𝑠(ℎ𝑖)− 𝜏𝑠(ℎ𝑖−1)] ;

– otherwise, ℎ𝑖 and ℎ𝑖−1 are in the same phase, thus 𝜁𝑠(ℎ𝑖) = 𝜁𝑠(ℎ𝑖−1), so that

∆𝑦
𝜁𝑠(ℎ𝑖)

=
∆𝑦

𝜁𝑠(ℎ𝑖) [𝜏𝑠(ℎ𝑖)− 𝜏𝑠(ℎ𝑖−1)]
[𝜏𝑠(ℎ𝑖)− 𝜏𝑠(ℎ𝑖−1)] =

∆𝑦
ℎ𝑖 − ℎ𝑖−1

[𝜏𝑠(ℎ𝑖)− 𝜏𝑠(ℎ𝑖−1)] .

We can conclude that, in any case, equation (A.1b) is equivalent to

𝑣𝑖 − 𝑣𝑖−1 = Φ𝑖
∆𝑦

ℎ𝑖 − ℎ𝑖−1
[𝜏𝑠(ℎ𝑖)− 𝜏𝑠(ℎ𝑖−1)] . (A.5)

We can thus prove the two well-balanced properties. We first compute

𝑣𝑖 − 𝑣𝑖−1

𝜏𝑠(ℎ𝑖)− 𝜏𝑠(ℎ𝑖−1)
(A.5)
= Φ𝑖

∆𝑦
ℎ𝑖 − ℎ𝑖−1

(A.4)
=

𝑣𝑖

𝜏𝑠(ℎ𝑖)
ℎ𝑖 − ℎ𝑖−1

ℎ𝑖 − ℎ𝑖−1
=

𝑣𝑖

𝜏𝑠(ℎ𝑖)

which implies (A.2). Further,
ℎ𝑖 − ℎ𝑖−1

∆𝑦
(A.4)
= Φ𝑖

𝜏𝑠(ℎ𝑖)
𝑣𝑖

(A.2)
= =

Φ𝑖

𝐷𝑒
,

which completes the proof. �
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