Construction and convergence analysis of conservative second order local time discretisation for linear wave equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1507-1543

In this work we present and analyse a time discretisation strategy for linear wave equations t hat aims at using locally in space the most adapted time discretisation among a family of implicit or explicit centered second order schemes. The proposed family of schemes is adapted to domain decomposition methods such as the mortar element method. They correspond in that case to local implicit schemes and to local time stepping. We show that, if some regularity properties of the solution are satisfied and if the time step verifies a stability condition, then the family of proposed time discretisations provides, in a strong norm, second order space-time convergence. Finally, we provide 1D and 2D numerical illustrations that confirm the obtained theoretical results and we compare our approach on 1D test cases to other existing local time stepping strategies for wave equations.

DOI : 10.1051/m2an/2021030
Classification : 35L05, 65M12, 65M22, 65M60
Keywords: Wave equations, time discretisation, converge analysis, local implicit scheme, local time stepping
@article{M2AN_2021__55_4_1507_0,
     author = {Chabassier, Juliette and Imperiale, S\'ebastien},
     title = {Construction and convergence analysis of conservative second order local time discretisation for linear wave equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1507--1543},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021030},
     mrnumber = {4292299},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021030/}
}
TY  - JOUR
AU  - Chabassier, Juliette
AU  - Imperiale, Sébastien
TI  - Construction and convergence analysis of conservative second order local time discretisation for linear wave equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1507
EP  - 1543
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021030/
DO  - 10.1051/m2an/2021030
LA  - en
ID  - M2AN_2021__55_4_1507_0
ER  - 
%0 Journal Article
%A Chabassier, Juliette
%A Imperiale, Sébastien
%T Construction and convergence analysis of conservative second order local time discretisation for linear wave equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1507-1543
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021030/
%R 10.1051/m2an/2021030
%G en
%F M2AN_2021__55_4_1507_0
Chabassier, Juliette; Imperiale, Sébastien. Construction and convergence analysis of conservative second order local time discretisation for linear wave equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1507-1543. doi: 10.1051/m2an/2021030

[1] J. Albella, H. Ben Dhia, S. Imperiale and J. Rodríguez, Mathematical and numerical study of transient wave scattering by obstacles with a new class of Arlequin coupling. SIAM J. Numer. Anal. 57 (2019) 2436–2468. | MR | DOI

[2] E. Bécache and P. Joly, Space-time mesh refinement for elastodynamics. Comput. Methods Appl. Mech. Eng. 194 (2005) 355–366. | MR | Zbl | DOI

[3] E. Bécache, J. Rodríguez and C. Tsogka, Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. ESAIM: M2AN 43 (2009) 377–398. | MR | Zbl | Numdam | DOI

[4] F. Ben Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257–281. | MR | Zbl | DOI

[5] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Science (2013). | MR | Zbl | DOI

[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Science (2012) 15. | MR | Zbl

[7] J. Chabassier and S. Imperiale, Fourth order energy-preserving locally implicit time discretisation for linear wave equations. Int. J. Numer. Methods Eng. 106 (2016) 593–622. | MR | DOI

[8] J. Chabassier and S. Imperiale, Space/Time convergence analysis of a class of conservative schemes for linear wave equations. C.R. Math. 355 (2017) 282–289. | MR | DOI

[9] J. Chabassier, J. Diaz and S. Imperiale, Construction and analysis of fourth order, energy consistent, family of explicit time discretizations for dissipative linear wave equations. ESAIM: M2AN 54 (2020) 845–878. | MR | Numdam | DOI

[10] G. Cohen, Higher-order Numerical Methods for Transient Wave Equations. Springer-Verlag (2001). | MR | Zbl

[11] G. Cohen, P. Joly and N. Tordjman, Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Elem. Anal. Des. 16 (1994) 329–336. | MR | Zbl | DOI

[12] G. Cohen, P. Joly, J. E. Roberts and N. Tordjman, Higher-order triangular finite elements with mass lumping for the wave equation. SIAM: J. Numer. Anal. 38 (2001) 2047–2078. | MR | Zbl

[13] F. Collino, T. Fouquet and P. Joly, A conservative space-time mesh refinement method for the 1-d wave equation. Part I: Construction. Part I: Construction. Numer. Math. 95 (2003) 197–221. | MR | Zbl

[14] F. Collino, T. Fouquet and P. Joly, A conservative space-time mesh refinement method for the 1-D wave equation. II. Analysis. Numer. Math. 95 (2003) 223–251. | MR | Zbl | DOI

[15] C. Constantin, M. Hochbruck and A. Sturm, On leapfrog-Chebyshev schemes. SIAM J. Numer. Anal. 58 (2020) 2404–2433. | MR | DOI

[16] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology – Volume 5 and 6 – Evolution Problems I and II. Springer-Verlag Berlin (2000). | Zbl | MR

[17] G. Derveaux, P. Joly and J. Rodríguez, Effective Computational Methods for Wave Propagation. Chap 13: Space Time Mesh Refinement Methods. Chapman and Hall/CRC (2008). | MR | Zbl

[18] S. Descombes, S. Lanteri and L. Moya, Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell’s equations. J. Sci. Comput. 56 (2013) 190–218. | MR | Zbl | DOI

[19] J. Diaz and M. J. Grote, Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. 31 (2009) 1985–2014. | MR | Zbl | DOI

[20] J. Diaz and M. J. Grote, Multi-level explicit local time-stepping methods for second-order wave equations. Comput. Methods Appl. Mech. Eng. 291 (2015) 240–265. | MR | DOI

[21] V. Dolean, H. Fahs, L. Fezoui and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. 229 (2010) 512–526. | MR | Zbl | DOI

[22] M. Dumbser, M. Käser and E. F. Toro, An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes – V. Local time stepping and p -adaptivity. Geophys. J. Int. 171 (2007) 695–717. | DOI

[23] M. Durufle, P. Grob and P. Joly, Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Part. Differ. Equ. 25 (2009) 526–551. | MR | Zbl | DOI

[24] J. C. Gilbert and P. Joly, Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Part. Differ. Equ. 16 (2008) 67–93. | MR | Zbl

[25] M. J. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234 (2010) 3283–3302. | MR | Zbl | DOI

[26] M. J. Grote, M. Mehlin and S. Sauter, Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation. SIAM J. Numer. Anal. 56 (2018) 994–1021. | MR | DOI

[27] M. J. Grote, S. Michel and S. Sauter, Stabilized leapfrog based local time-stepping method for the wave equation. Preprint: (2021). | arXiv | MR

[28] P. Hauret and P. Le Tallec, A discontinuous stabilized mortar method for general 3D elastic problems. Comput. Methods Appl. Mech. Eng. 196 (2007) 4881–4900. | MR | Zbl | DOI

[29] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Science & Business Media (2007). | MR | Zbl

[30] M. Hochbruck and A. Sturm, Error analysis of a second-order locally implicit method for linear Maxwell’s equations. SIAM J. Numer. Anal. 54 (2016) 3167–3191. | MR | DOI

[31] M. Hochbruck and A. Sturm, Upwind discontinuous Galerkin space discretisation and locally implicit time integration for linear Maxwell’s equations. Math. Comput. 88 (2019) 1121–1153. | MR | DOI

[32] W. Hundsdorfer and J. G. Verwer, Numerical solution to Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics (2003). | MR | Zbl | DOI

[33] P. Joly and J. Rodrguez, An error analysis of conservative space-time mesh refinement methods for the one-dimensional wave equation. SIAM J. Numer. Anal. 43 (2005) 825–859. | MR | Zbl | DOI

[34] P. Joly and J. Rodríguez, Optimized higher order time discretisation of second order hyperbolic problems: construction and numerical study. J. Comput. Appl. Math. 234 (2010) 1953–1961. | MR | Zbl | DOI

[35] Y. Maday and A. T. Patera, Spectral element methods for the incompressible Navier-Stokes equations. In: State-of-the-art Surveys On Computational Mechanics. American Society of Mechanical Engineers (1989).

[36] Y. Maday, C. Mavriplis and A. T. Patera, Nonconforming mortar element methods: application to spectral discretisations. In: Domain Decomposition Methods. SIAM Philadelphia (1989) 392–418. | MR | Zbl

[37] J. Rodríguez, Une nouvelle méthode de raffinement de maillage spatio-temporel pour l’équation des ondes. C. R. Math. Acad. Sci. Paris 339 (2004) 445–450. | MR | Zbl | DOI

[38] J. Rodríguez, A spurious-free space-time mesh refinement for elastodynamics. Int. J. Multiscale Comput. Eng. 6 (2008) 263–279. | DOI

[39] T. Rylander, Stability of Explicit-Implicit Hybrid Time-Stepping Schemes for Maxwell’s Equations. J. Comput. Phys. 179 (2002) 426–438. | Zbl | DOI

[40] P. J. Van Der Houwen, B. P. Sommeijer, On the internal stability of explicit, m -Stage Runge-Kutta methods for large m -Values. J. Appl. Math. Mech. 60 (1980) 479–485. | MR | Zbl

[41] B. I. Wohlmuth, A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989–1012. | MR | Zbl | DOI

[42] B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition. In Vol. 17 of Lecture Notes in Computational Science and Engineering. Springer, USA (2001). | MR | Zbl

[43] https://eigen.tuxfamily.org/.

[44] https://gitlab.inria.fr/local-schemes/supplementary-sources.

Cité par Sources :