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CONSTRUCTION AND CONVERGENCE ANALYSIS OF CONSERVATIVE
SECOND ORDER LOCAL TIME DISCRETISATION FOR LINEAR WAVE

EQUATIONS

Juliette Chabassier1 and Sébastien Imperiale2,*

Abstract. In this work we present and analyse a time discretisation strategy for linear wave equations
that aims at using locally in space the most adapted time discretisation among a family of implicit or
explicit centered second order schemes. The proposed family of schemes is adapted to domain decom-
position methods such as the mortar element method. They correspond in that case to local implicit
schemes and to local time stepping. We show that, if some regularity properties of the solution are
satisfied and if the time step verifies a stability condition, then the family of proposed time discretisa-
tions provides, in a strong norm, second order space-time convergence. Finally, we provide 1D and 2D
numerical illustrations that confirm the obtained theoretical results and we compare our approach on
1D test cases to other existing local time stepping strategies for wave equations.
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1. Introduction

The appropriate time integration of linear systems of ordinary differential equations (ODEs) resulting from
the finite element discretisation in space of partial differential equations is of crucial importance to construct
efficient numerical solvers. For linear wave equations problems, fully explicit time discretisations perform better
than implicit ones in non-stiff situations [9], i.e. when wave propagation occurs in homogeneous media and
simple geometries that are quasi-uniformly meshed. However if a strong heterogeneity (high wave speed, low
density) is considered, or if the mesh size and quality degenerate locally in space, then explicit methods reach
their bottlenecks: the time step of the simulation must be adapted to the local perturbation of the discretisation’s
parameters, due to the stability condition of the method, namely the CFL condition. In the case of linear wave
equations, local time discretisation is a well covered topic that aims at overcoming these bottlenecks. Two main
strategies can be distinguished:
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– Local implicit time discretisation, see for instance [7, 18, 21, 30, 31, 39]. The strategy is to treat by an
implicit time integration scheme the ODEs acting on the degrees of freedom corresponding to the region where
the pertubations occur. By doing so, the time step restriction (CFL) is decorrelated from the perturbations.
The price to pay is that a (hopefully small) linear problem must be solved at each iteration.

– Local Time Stepping (LTS), see for instance [17,19,22,26,38]. The strategy is to use a first time marching
scheme in the whole domain and a second one in the perturbed region. The chosen type of time discretisation
used in both regions is often the same but time steps differ: a smaller time step is used locally. One can
distinguish non-conservative strategies (see for instance [22]) from conservative strategies. The latter are
based upon Leap-Frog schemes and can be separated into two categories depending on how sub-domains are
coupled.

∙ Implicit LTS. A domain decomposition strategy is introduced at the continuous level together with some
coupling conditions at the interface of the subdomains (typically by introducing a Lagrange multiplier to
enforce in a weak sense those conditions as in the mortar element method, see [42] or [28]). This idea can
be traced back to the work of Collino et al. [13,14] and has been pursued and improved in [2,17,33,37,38].
Such strategy is referred as implicit since the treatment of the transmission conditions is done implicitly
at the fully discrete level.

∙ Fully explicit LTS. The decomposition of the domain is done at the discrete level through the use of a
discrete restriction operator on the region (and its surrounding) where perturbations occur. The resulting
scheme does not introduce transmission conditions in the classical sense but is fully explicit. It has first
been proposed in [19] and various extensions exist: Maxwell’s equations (see [25]) and multi-level LTS
(see [20]). Recently, in [26, 27], a proof of space-time convergence is given. It shows that, for the scalar
wave equation, a second order space-time convergence holds in the 𝐿2 norm in space.

In general, the space-time convergence analysis for these numerical methods is not always available, Grote
et al. [26, 27] being one exception, and although the methods have been implemented in realistic situations as
2D and 3D frameworks [18,21,22], their theoretical background does not always rely on a robust analysis. The
question of convergence of the method as both the space and time steps vanish together is of crucial importance
when dealing with PDEs as linear wave equations, and to this purpose, the energy based analysis has proved
very efficient [17] and will be followed in the present work.
In this work we construct and analyse local time discretisations that gather in an original framework both local
implicit time discretisation and conservative implicit LTS. Moreover:

– We show that the proposed time discretisations provide, under some regularity and stability conditions,
second order space-time convergence, in a strong norm (for scalar wave equations, it provides convergence
for the 𝐻1-norm in space).

– We provide extensive numerical convergence experiments for a 1D scalar wave propagation problem. The
results show that our approach provides better space-time convergence properties, in the 𝐻1-norm, than
existing LTS approaches. In particular we study some situations where the LTS of [19] converges in ∆𝑡3/2

in 𝐿∞(0, 𝑇 ; 𝐻1(Ω)) whereas our approach always provides second order convergence.

The outline of the article is the following. In Section 2 we give all the necessary notations and assumptions
related to the discretisation in space of linear conservative wave type problems. Section 3 is devoted to the
introduction of a class of time discretisations – parameterised by two polynomial functions 𝒫𝑝 and 𝒫𝑘 – for which
we show stability and second order space-time convergence results under some assumptions on the parameters
(i.e. the coefficients of the polynomials 𝒫𝑝 and 𝒫𝑘) and some CFL conditions. In Section 4 we first present
two preliminary applications of our discretisation framework. By adequately choosing the polynomial functions
𝒫𝑝 and 𝒫𝑘 we construct a local implicit time discretisation (Sect. 4.1) and, in Section 4.2, a first local time-
stepping scheme (with a ratio 2, see Sect. 5.2 for an accurate definition of the term ratio). Finally, in Section 4.3
we propose a strategy to construct general local time-stepping schemes. This strategy is based on the use of
Chebychev polynomials (more precisely on Leap-Frog Chebychev method as introduced in [24]). Space-time
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numerical convergence results illustrate the developed theory for 1D test cases in Section 5 and for 2D test
cases in Section 6. Finally, in Section 7 we compare our approach algorithmically to other local time stepping
strategies: we first compare our approach numerically with the Fully explicit LTS of [19]. Moreover we explain
why the proposed schemes can be seen as a generalisation of the ones proposed in [17].

The source code used to obtain convergence curves of Sections 5 and 7 are available as supplementary materials
at the web link [44].

2. Semi-discrete wave propagation problem

We are interested in the simulation of coupled linear wave propagation problems. The most simple example
one could think of is given by the following problem: being given a bounded connected open domain Ω partitioned
as two disjoint connected domains Ω𝑐 and Ω𝑓 , find 𝑢𝑐(𝑡) ∈ 𝐻1(Ω𝑐) and 𝑢𝑓 (𝑡) ∈ 𝐻1(Ω𝑓 ), for all 𝑡 ∈ [0, 𝑇 ] such
that {︃

𝜕2
𝑡 𝑢𝑐 −∇ · 𝜇𝑐∇𝑢𝑐 = 𝑓𝑐 in Ω𝑐,

𝜕2
𝑡 𝑢𝑓 −∇ · 𝜇𝑓∇𝑢𝑓 = 𝑓𝑓 in Ω𝑓 ,

(2.1)

with for instance homogeneous Neumann boundary conditions on the domain’s boundary

∇𝑢𝑐 · 𝑛 = 0 on 𝜕Ω𝑐 ∩ 𝜕Ω, ∇𝑢𝑓 · 𝑛 = 0 on 𝜕Ω𝑓 ∩ 𝜕Ω,

and some transmission conditions on the complementary boundary Σ, that satisfies Σ ∩ 𝜕Ω = ∅,

𝑢𝑐 = 𝑢𝑓 , 𝜇𝑐∇𝑢𝑐 · 𝑛 = 𝜇𝑓∇𝑢𝑓 · 𝑛 on Σ = 𝜕Ω𝑐 ∩ 𝜕Ω𝑓 ,

where 𝑛 is the outward unitary normal of Ω𝑐. That is completed with initial conditions for 𝑢𝑐 and 𝑢𝑓 and their
time derivative. The scalar functions 𝜇𝑐 ∈ 𝐿∞(Ω𝑐) and 𝜇𝑓 ∈ 𝐿∞(Ω𝑓 ) are positive and bounded from below. Such
problems find applications in the wave scattering by obstacles and are of interest for modeling non destructive
experiments for instance.

2.1. Continuous abstract formulation and main assumptions

In the following 𝑞 stands for either 𝑐 or 𝑓 .
In this section we formulate the coupled wave propagation in a more abstract framework. To do so we use

notations from [16], chapter XVIII, and [6]. We assume given Hilbert spaces (𝐻𝑞, 𝑉𝑞). The space 𝐻𝑞 is equipped
with the scalar product (·, ·)𝑞, the norm in 𝐻𝑞 is denoted | · |𝑞 whereas the norms on 𝑉𝑞 is denoted ‖·‖𝑞. Moreover
we assume that 𝑉𝑞 is dense and continuously embedded in 𝐻𝑞. We assume given a continuous hermitian bilinear
form 𝑎𝑞 : 𝑉𝑞 × 𝑉𝑞 → R that satisfies for some real positive scalars 𝑐𝑞 and 𝐶𝑞,

𝑎𝑞(𝑣, 𝑣) ≥ 0 and 𝑐2
𝑞‖𝑣‖2𝑞 ≤ 𝐶𝑞|𝑣|𝑞 + 𝑎𝑞(𝑣, 𝑣), ∀𝑣 ∈ 𝑉𝑞. (2.2)

We assume also being given another Hilbert space 𝐿 equipped with the norm ‖ · ‖𝐿 as well as a continuous
bilinear form 𝑏𝑞(𝑣, 𝜆) on 𝑉𝑞 × 𝐿. We consider the following abstract wave propagation problem:

Let 𝑓𝑐 ∈ 𝐶0([0, 𝑇 ], 𝐻𝑐) and 𝑓𝑓 ∈ 𝐶0([0, 𝑇 ], 𝐻𝑓 ) be given, find (𝑢𝑐(𝑡), 𝑢𝑓 (𝑡), 𝜆(𝑡)) ∈ 𝑉𝑐 × 𝑉𝑓 × 𝐿 solution, for
all 𝑡 ∈ [0, 𝑇 ], to the coupled system of equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d2

d𝑡2
(𝑢𝑐, 𝑣𝑐)𝑐 + 𝑎𝑐 (𝑢𝑐, 𝑣𝑐) + 𝑏𝑐 (𝑣𝑐, 𝜆) = (𝑓𝑐, 𝑣𝑐)𝑐 ∀ 𝑣𝑐 ∈ 𝑉𝑐,

d2

d𝑡2
(𝑢𝑓 , 𝑣𝑓 )𝑓 + 𝑎𝑓 (𝑢𝑓 , 𝑣𝑓 )− 𝑏𝑓 (𝑣𝑓 , 𝜆) = (𝑓𝑓 , 𝑣𝑓 )𝑓 ∀ 𝑣𝑓 ∈ 𝑉𝑓 ,

𝑏𝑐(𝑢𝑐, 𝜇) = 𝑏𝑓 (𝑢𝑓 , 𝜇) ∀ 𝜇 ∈ 𝐿,

(2.3)
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that is completed with initial conditions for 𝑢𝑐 and 𝑢𝑓 and their time derivative. Note that the scalar wave
equation problem (2.1)–(2.5) enters the abstract framework presented above by choosing

𝐻𝑞 = 𝐿2(Ω𝑞), 𝑉𝑞 = {𝑣 ∈ 𝐻1(Ω𝑞)}, 𝐿 = 𝐻−1/2(Σ),

where 𝐻𝑞 is equipped with the standard 𝐿2 scalar product, and for all 𝑢 and 𝑣 in 𝑉𝑞 and for all 𝜆 in 𝐻−1/2(Σ)

𝑎𝑞(𝑢, 𝑣) = (𝜇𝑞 ∇𝑢,∇𝑣)𝑞 , 𝑏𝑞 (𝑣, 𝜆) = ⟨𝑣|Σ, 𝜆⟩𝐻1/2(Σ),𝐻−1/2(Σ).

However, the setting we consider is rather general and for instance elastodynamics equations could also enter
the abstract framework by writing transmission problems (continuity of displacements and stresses) and using
vectorial forms of all the spaces and scalar products introduced. Moreover the abstract structure is also adapted
to the domain decomposition method with overlapping introduced in [1] to deal with scattering problems in
transient acoustics.

System (2.3) can be rewritten in a more compact form using the following notation: bold letters are used to
define unknowns in 𝑉 = 𝑉𝑐 × 𝑉𝑓 , e.g., 𝑢 = (𝑢𝑐, 𝑢𝑓 ) and we introduce the bilinear forms

𝑎(𝑢, 𝑣) := 𝑎𝑐(𝑢𝑐, 𝑣𝑐) + 𝑎𝑓 (𝑢𝑓 , 𝑣𝑓 ), (𝑢, 𝑣) := (𝑢𝑐, 𝑣𝑐)𝑐 + (𝑢𝑓 , 𝑣𝑓 )𝑓

as well as 𝑏(𝑣, 𝜆) := 𝑏𝑐(𝑣𝑐, 𝜆)− 𝑏𝑓 (𝑣𝑓 , 𝜆). Then (2.3) can be recast as: find (𝑢(𝑡), 𝜆(𝑡)) ∈ 𝑉 × 𝐿 solution to⎧⎨⎩
d2

d𝑡2
(𝑢, 𝑣) + 𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝜆) = (𝑓 , 𝑣) 𝑣 ∈ 𝑉 ,

𝑏(𝑢, 𝜇) = 0 𝜇 ∈ 𝐿.

(2.4)

We complete (2.4) with initial conditions

𝑢(0) = 𝑢0,
d
d𝑡

𝑢(0) = 𝑢1 in 𝑉 , 𝑏(𝑢0, 𝜇) = 𝑏(𝑢1, 𝜇) = 0, 𝜇 ∈ 𝐿. (2.5)

Existence and uniqueness results for this abstract problem rely on the assumption that a so-called inf-sup
condition holds. More precisely we assume that there exists 𝑐𝑏 > 0 such that

inf
𝜆∈𝐿

sup
𝑣∈𝑉

𝑏(𝑣, 𝜆)
‖𝜆‖𝐿 ‖𝑣‖

≥ 𝑐𝑏. (2.6)

where ‖𝑣‖2 = ‖𝑣𝑐‖2𝑐 +‖𝑣𝑓‖2𝑓 (similarly we denote by | · | the composite norm in 𝐻 = 𝐻𝑐×𝐻𝑓 ). Notice that this
condition is the same encountered in steady domain decomposition problems. We refer the reader to Chap. 7
of [5] for a proof. We do not provide here proofs of existence and uniqueness for such problems – they rely on
energy analysis and/or Laplace transform – and refer, for instance to the work of [1,3] for related analysis. See
also the Appendix A of this manuscript for more details on the matter. We assume that the solution has the
following properties

Assumption 2.1. There exists a unique

(𝑢, 𝜆) ∈ 𝐶4([0, 𝑇 ]; 𝐻) ∩ 𝐶3([0, 𝑇 ]; 𝑉 ) × 𝐶2([0, 𝑇 ]; 𝐿) (2.7)

solution to problem (2.4) and (2.5).

2.2. Discretisation in space, main assumptions and stability estimates

We introduce the family of finite dimensional Hilbert spaces {𝑉𝑞,ℎ}ℎ>0 with 𝑉𝑞,ℎ ⊂ 𝑉𝑞 and 𝐿ℎ ⊂ 𝐿. The
space 𝑉𝑞,ℎ (resp. 𝐿ℎ) is equipped with the scalar product ( , )𝑞 (resp ( , )𝐿). As usual, the subscript ℎ is devoted
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to tend to 0 and represents an approximation parameter of 𝑉𝑞,ℎ to 𝑉𝑞 and 𝐿ℎ to 𝐿. For each ℎ we define the
operator 𝐴𝑞,ℎ as 𝐴𝑞,ℎ : 𝑉𝑞,ℎ → 𝑉𝑞,ℎ and

𝐴𝑞,ℎ : 𝑢ℎ ↦→ 𝐴𝑞,ℎ𝑢ℎ such that (𝐴𝑞,ℎ𝑢ℎ, 𝑣ℎ)𝑞 = 𝑎𝑞(𝑢ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉𝑞,ℎ.

Inequality (2.2) implies that the operator 𝐴𝑞,ℎ is self-adjoint and positive semi-definite. Its spectrum, denoted
Sp(𝐴𝑞,ℎ), is composed by a finite number of non-negative eigenvalues. The spectral radius is defined as the
maximum eigenvalue in the set Sp(𝐴𝑞,ℎ), i.e.,

𝜌𝑞,ℎ := max Sp (𝐴𝑞,ℎ) .

We also introduce the operators 𝐵𝑞,ℎ : 𝑉𝑞,ℎ ↦→ 𝐿ℎ and 𝐵𝑡
𝑞,ℎ : 𝐿ℎ ↦→ 𝑉𝑞,ℎ as

(𝐵𝑞,ℎ𝑣𝑞,ℎ, 𝜆ℎ)𝐿 =
(︀
𝐵𝑡

𝑞,ℎ𝜆ℎ, 𝑣𝑞,ℎ

)︀
𝑞

:= 𝑏𝑞 (𝑣𝑞,ℎ, 𝜆ℎ) , ∀𝑣𝑞,ℎ ∈ 𝑉𝑞,ℎ and ∀𝜆ℎ ∈ 𝐿ℎ.

As done previously we define 𝑉 ℎ = 𝑉𝑐,ℎ×𝑉𝑓,ℎ and represent by bold letters unknowns in 𝑉 ℎ. The semi-discrete
equation we consider reads:

Let 𝑓ℎ ∈ 𝐶0([0, 𝑇 ], 𝑉𝑞,ℎ) be given: find (𝑢ℎ(𝑡), 𝜆ℎ(𝑡)) ∈ 𝑉 ℎ × 𝐿ℎ and solution, for all 𝑡 ∈ [0, 𝑇 ], of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2

d𝑡2
𝑢𝑐,ℎ + 𝐴𝑐,ℎ𝑢𝑐,ℎ + 𝐵𝑡

𝑐,ℎ𝜆ℎ = 𝑓𝑐,ℎ in 𝑉𝑐,ℎ, (𝑎)

d2

d𝑡2
𝑢𝑓,ℎ + 𝐴𝑓,ℎ𝑢𝑓,ℎ −𝐵𝑡

𝑓,ℎ𝜆ℎ = 𝑓𝑓,ℎ in 𝑉𝑓,ℎ, (𝑏)

𝐵𝑐,ℎ𝑢𝑐,ℎ = 𝐵𝑓,ℎ𝑢𝑓,ℎ in 𝐿ℎ, (𝑐)

(2.8)

together with the initial conditions

𝑢ℎ(0) = 𝑢0,ℎ,
d
d𝑡

𝑢ℎ(0) = 𝑢1,ℎ in 𝑉 ℎ, 𝑏(𝑢0,ℎ, 𝜇) = 𝑏(𝑢1,ℎ, 𝜇) = 0, 𝜇 ∈ 𝐿ℎ. (2.9)

In the rest of the work we assume that the following discrete inf-sup condition holds

inf
𝜆ℎ∈𝐿ℎ

sup
𝑣ℎ∈𝑉 ℎ

𝑏(𝑣ℎ, 𝜆ℎ)
‖𝜆ℎ‖𝐿 ‖𝑣ℎ‖

≥ 𝐶𝑏 (2.10)

where 𝐶𝑏 is independent of ℎ. Since discretisation by finite elements of wave equations is now a well understood
subject, most of the difficulty in constructing System (2.8) is to choose 𝐿ℎ such that (2.10) holds. In fact,
(2.10) is not a consequence of (2.6) and this question requires dedicated analysis. On this specific topic, we refer
the reader to [4, 28, 41, 42] for reference work concerning the mortar finite element method, that is a domain
decomposition method without overlapping, and to [1], for a work concerning a domain decomposition method
with overlapping.

Assumption 2.2. There exists a unique solution (𝑢ℎ, 𝜆ℎ) to (2.8), it satisfies 𝑢ℎ ∈ 𝐶4([0, 𝑇 ]; 𝑉 ℎ) and 𝜆ℎ ∈
𝐶2([0, 𝑇 ]; 𝐿ℎ) as well as the estimate

4∑︁
𝑚=1

sup
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
d𝑚

d𝑡𝑚
𝑢ℎ(𝑡)

⃒⃒⃒⃒
+

3∑︁
𝑚=0

sup
𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
d𝑚

d𝑡𝑚
𝑢ℎ(𝑡)

⃦⃦⃦⃦
≤ 𝐶 (2.11)

where 𝐶 > 0 is independent of ℎ.
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To state a semi-discrete convergence result we introduce the discrepancy error

𝑒ℎ(𝑡) = 𝑢(𝑡)− 𝑢ℎ(𝑡).

Since the main focus of this work is the analysis of time discretisations of the semi-discrete problem (2.8), we
postponed the proof of the theorem below to Appendix A.

Theorem 2.3 (Convergence of the semi-discrete problem). Let Assumptions 2.1 and 2.2 hold. Let us define
the error term,

𝛿ℎ = ‖𝑢ℎ,0 − 𝑢0‖+ |𝑢ℎ,1 − 𝑢1|

+ sup
𝑡∈[0,𝑇 ]

(︃
|𝑓ℎ(𝑡)− 𝑓(𝑡)|+

2∑︁
𝑚=0

inf
𝑣ℎ∈𝑉 ℎ

⃦⃦⃦⃦
𝑣ℎ −

d𝑚

d𝑡𝑚
𝑢(𝑡)

⃦⃦⃦⃦
+

2∑︁
𝑚=0

inf
𝜇ℎ∈𝐿ℎ

⃦⃦⃦⃦
𝜇ℎ −

d𝑚

d𝑡𝑚
𝜆(𝑡)

⃦⃦⃦⃦
𝐿

)︃
,

then, there exists a scalar 𝐶 independent of ℎ such that

sup
𝑡∈[0,𝑇 ]

‖𝑒ℎ(𝑡)‖ ≤ 𝐶 𝛿ℎ.

Remark 2.4. For simplicity of analysis we have assumed that bilinear forms are evaluated exactly. However
the results presented in this work could be extended to take into account the use of quadrature formulae
for the computation of space integrals. Moreover, numerical convergence results will be presented using the
mass-lumping strategy which is obtained using specific quadrature formulae (see [12] or [10]).

3. Time discretisation

The schemes we construct here can be seen as perturbations, for small time step ∆𝑡, of the standard centered
two-steps discretisation of system (2.8). The perturbations are defined by two polynomials 𝒫𝑘(𝑥) and 𝒫𝑝(𝑥) to
be determined. In this section we first construct time discretisation with the minimum assumptions concerning
the properties that should be satisfied by the polynomials and then state a space-time convergence result. In
Section 4 some examples are given that show how efficient local time discretisation can be constructed from
adequate definition of 𝒫𝑘(𝑥) and 𝒫𝑝(𝑥).

3.1. Introduction of local time discretisations

We define the sequences {𝑢𝑛
ℎ = (𝑢𝑛

𝑐,ℎ, 𝑢𝑛
𝑓,ℎ)} and {𝜆𝑛

ℎ} as the approximations of 𝑢ℎ(𝑡) and 𝜆ℎ(𝑡) at time
𝑡 = 𝑛∆𝑡 for a time step ∆𝑡 > 0, and 𝑛 ∈ {1, 2, . . . , 𝑁}. We define the final time of computation as 𝑇 = 𝑁∆𝑡.
These sequences are constructed by solving the following problem:

Let 𝑓ℎ ∈ 𝐶0([0, 𝑇 ], 𝑉 ℎ) be given, find ({𝑢𝑛
ℎ}, {𝜆𝑛

ℎ}) solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛+1
𝑐,ℎ − 2𝑢𝑛

𝑐,ℎ + 𝑢𝑛−1
𝑐,ℎ

∆𝑡2
+ 𝐴𝑐,ℎ𝑢𝑛

𝑐,ℎ + 𝐵𝑡
𝑐,ℎ𝜆𝑛

ℎ = 𝑓𝑐,ℎ (𝑡𝑛) in 𝑉𝑐,ℎ, (𝑎)

𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ 𝑢𝑛+1
𝑓,ℎ − 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

∆𝑡2

+𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀(︂
𝐴𝑓,ℎ

{︁
𝑢𝑛

𝑓,ℎ

}︁
1/4

−𝐵𝑡
𝑓,ℎ𝜆𝑛

ℎ − 𝑓𝑓,ℎ (𝑡𝑛)
)︂

= 0 in 𝑉𝑓,ℎ, (𝑏)

𝐵𝑐,ℎ𝑢𝑛
𝑐,ℎ = 𝐵𝑓,ℎ𝑢𝑛

𝑓,ℎ in 𝐿ℎ, (𝑐)

(3.1)

where

{𝑢𝑛
𝑓,ℎ}1/4 =

𝑢𝑛+1
𝑓,ℎ + 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

4
,
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with the initial conditions

𝑢0
ℎ = 𝑢0,ℎ, 𝑢1

ℎ = 𝑢0,ℎ + ∆𝑡 𝑢1,ℎ +
∆𝑡2

2
d2

d𝑡2
𝑢ℎ(0) in 𝑉 ℎ. (3.2)

We give more detail in Remark 3.5 on how the term 𝑢1
ℎ can be computed.

The scheme (2.3) is consistent only if some conditions are satisfied on the polynomials 𝒫𝑘(𝑥) and 𝒫𝑝(𝑥). Since
we want to construct perturbations, for small ∆𝑡, of the standard centered scheme it seems natural to do the
the following hypothesis.

Assumption 3.1.
𝒫𝑘(0) = 𝒫𝑝(0) = 1.

For stability reasons the time step ∆𝑡 can not be chosen arbitrarily. A so called CFL-condition has to be satisfied
to obtain a stable scheme. In our case it corresponds to the assumption that follows.

Assumption 3.2. The following CFL-condition holds: there exists 0 < 𝛼 ≤ 1 such that

∆𝑡 = 𝛼
2

√
𝜌𝑐,ℎ

(3.3)

and
𝒫𝑘(𝑥) ≥ 0, 𝒫𝑝(𝑥) > 0, ∀𝑥 ∈ [0, ∆𝑡2𝜌𝑓,ℎ]. (3.4)

Note that the spectral radius 𝜌𝑐,ℎ of equation (3.3) is 𝒪(ℎ−2) for regular discretization when standard finite
element methods are used, leading to a classical hyperbolic-type CFL condition. Note also that since

∆𝑡2𝜌𝑓,ℎ = 4 𝛼2 𝜌𝑓,ℎ

𝜌𝑐,ℎ
, (3.5)

and because of Assumption 3.1, we know that there exists ∆𝑡 small enough or equivalently 𝛼 small enough,
such that (3.4) is satisfied for any fixed ℎ. As shown later, these conditions ensure the positivity of a preserved
discrete energy.

We describe now more in detail an algorithm that computes the solution to (3.1). At each iteration, one needs
to compute the Lagrange multiplier 𝜆𝑛

ℎ first, then compute 𝑢𝑛+1
𝑓,ℎ and 𝑢𝑛+1

𝑐,ℎ . More precisely, using the property
that

{𝑢𝑛
𝑓,ℎ}1/4 = 𝑢𝑛

𝑓,ℎ +
∆𝑡2

4
𝑢𝑛+1

𝑓,ℎ − 2𝑢𝑛
𝑓,ℎ + 𝑢𝑛−1

𝑓,ℎ

∆𝑡2
(3.6)

we can re-write equation (3.1b) in the following form

𝑢𝑛+1
𝑓,ℎ − 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

∆𝑡2
+ 𝐷−1

𝑓,ℎ 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ (︀
𝐴𝑓,ℎ𝑢𝑛

𝑓,ℎ −𝐵𝑡
𝑓,ℎ𝜆𝑛

ℎ − 𝑓𝑓,ℎ (𝑡𝑛)
)︀

= 0, (3.7)

with

𝐷𝑓,ℎ := 𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
+

∆𝑡2

4
𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ.

Note that 𝐷𝑓,ℎ is a positive symmetric operator – hence invertible – if equation (3.4) holds. We now use a Schur
complement technique: applying the operator 𝐵𝑓,ℎ to equation (3.7), applying the operator 𝐵𝑐,ℎ to (3.1a), we
obtain by subtraction and thanks to (3.1c) the following system for the Lagrange multiplier 𝜆𝑛

ℎ(︁
𝐵𝑐,ℎ𝐵𝑡

𝑐,ℎ + 𝐵𝑓,ℎ𝐷−1
𝑓,ℎ𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐵𝑡

𝑓,ℎ

)︁
𝜆𝑛

ℎ = 𝐵𝑐,ℎ𝑓𝑐,ℎ (𝑡𝑛)−𝐵𝑐,ℎ𝐴𝑐,ℎ𝑢𝑛
𝑐,ℎ

+ 𝐵𝑓,ℎ𝐷−1
𝑓,ℎ 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ (︀
𝐴𝑓,ℎ 𝑢𝑛

𝑓,ℎ − 𝑓𝑓,ℎ (𝑡𝑛)
)︀
. (3.8)

The well-posedness of the above problem is a consequence of the surjectivity of either 𝐵𝑐,ℎ or 𝐵𝑓,ℎ which is a
consequence of the inf-sup condition (2.10). Assuming that 𝑢𝑛

𝑓,ℎ and 𝑢𝑛
𝑐,ℎ are known, then 𝜆𝑛

ℎ can be computed
using (3.8), it follows that 𝑢𝑛+1

𝑓,ℎ and 𝑢𝑛+1
𝑐,ℎ can be computed using respectively (3.7) and (3.1a).
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Remark 3.3. A drastic simplification occurs when

𝒫𝑘(𝑥) = 1− 𝑥
𝒫𝑝(𝑥)

4
· (3.9)

In that case 𝐷𝑓,ℎ is the identity operator on 𝑉𝑓,ℎ and the volumic unknown 𝑢𝑛+1
𝑓,ℎ can be explicitly updated.

Remark 3.4. With the choice 𝒫𝑝(𝑥) = 1 and 𝒫𝑘(𝑥) = 1− 𝑥/4 we obtain a standard coupled explicit leap-frog
schemes. It is not difficult to prove that the corresponding stability condition reads

∆𝑡2 ≤ min
(︂

4
𝜌𝑐,ℎ

,
4

𝜌𝑓,ℎ

)︂
· (3.10)

Condition (3.10) is penalizing since it depends in the same way in 𝜌𝑐,ℎ and 𝜌𝑓,ℎ but the latter can be large
compared to 𝜌𝑐,ℎ.

Remark 3.5. The computation of the initial data using formula (3.2) involves the computation of the term
𝑑2

𝑡 𝑢ℎ(0). This term is obtained by evaluating (2.8) at time 𝑡 = 0. More precisely, we have⎛⎜⎝ 𝐼𝑐,ℎ 0 𝐵𝑡
𝑐,ℎ

0 𝐼𝑓,ℎ −𝐵𝑡
𝑓,ℎ

−𝐵𝑐,ℎ 𝐵𝑓,ℎ 0

⎞⎟⎠
⎛⎜⎝𝑑2

𝑡 𝑢𝑐,ℎ(0)

𝑑2
𝑡 𝑢𝑓,ℎ(0)

𝜆ℎ(0)

⎞⎟⎠ =

⎛⎜⎝𝑓𝑐,ℎ(0)−𝐴𝑐,ℎ 𝑢𝑐,0,ℎ

𝑓𝑓,ℎ(0)−𝐴𝑓,ℎ 𝑢𝑓,0,ℎ

0

⎞⎟⎠ . (3.11)

Using a Schur complement, the Lagrange multiplier is given(︀
𝐵𝑐,ℎ𝐵𝑡

𝑐,ℎ + 𝐵𝑓,ℎ𝐵𝑡
𝑓,ℎ

)︀
𝜆ℎ(0) = 𝐵𝑐,ℎ (𝑓𝑐,ℎ(0)−𝐴𝑐,ℎ𝑢𝑐,0,ℎ)−𝐵𝑓,ℎ (𝑓𝑓,ℎ −𝐴𝑓,ℎ𝑢𝑓,0,ℎ) .

As already mentioned the well-posedness of the above problem is a consequence of the surjectivity of either
𝐵𝑐,ℎ or 𝐵𝑓,ℎ which is a consequence of the inf-sup condition (2.10). Once 𝜆ℎ(0) is computed, the value of
𝑑2

𝑡 𝑢ℎ(0) is obtained easily from (3.11). Finally note that the initial data satisfy by construction the constraints
𝐵𝑐,ℎ𝑢0

𝑐,ℎ = 𝐵𝑓,ℎ𝑢0
𝑓,ℎ and 𝐵𝑐,ℎ𝑢1

𝑐,ℎ = 𝐵𝑓,ℎ𝑢1
𝑓,ℎ.

3.2. Space-time convergence analysis

We define the error terms 𝑒𝑛
ℎ = (𝑒𝑛

𝑐,ℎ, 𝑒𝑛
𝑓,ℎ) and ℓ𝑛

ℎ as

𝑒𝑛
ℎ = 𝑢ℎ (𝑡𝑛)− 𝑢𝑛

ℎ and ℓ𝑛
ℎ = 𝜆ℎ (𝑡𝑛)− 𝜆𝑛

ℎ.

In this section we show that the terms 𝑒𝑛
ℎ tends to 0 as ℎ and ∆𝑡 go to 0. More precisely we show that under

Assumptions 3.1, 3.2 and 3.7 (given below) we obtain a uniform estimation with respect to ∆𝑡 and ℎ in the
norm 𝐿∞(0, 𝑇 ; 𝑉 ) of the error in 𝑂(∆𝑡2) + 𝑂(𝛿ℎ). The section is organized as follows

– Definition of the consistency errors: we write a system of equations for the sequence 𝑒𝑛
𝑐,ℎ, 𝑒𝑛

𝑓,ℎ and ℓ𝑛
ℎ that is

similar to (3.1) with source terms that correspond to consistency errors that we will then specify.
– Energy identity for the error equation: we proceed by energy analysis and write an energy identity satisfied by

the error terms 𝑒𝑛
𝑐,ℎ and 𝑒𝑛

𝑓,ℎ. The introduced energy is positive under the CFL-condition of Assumption 3.2.
– Stability result: we prove that the energy associated to the error {𝑒𝑛

ℎ} is stable. To do so we use a discrete
by-parts integration and a discrete energy analysis including the use of a discrete Gronwall’s lemma.

– Space-time convergence results: using Theorem 2.3, we deduce space-time convergence results in the norm
𝐿∞(0, 𝑇 ; 𝑉 ),
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3.2.1. Definition of the consistency errors.

We always assume that Assumption 2.2 holds and therefore that the solution is sufficiently smooth, in
particular,

𝑢ℎ ∈ 𝐶4([0, 𝑇 ]; 𝑉 ℎ).

With this assumption, all the manipulations and expression used below make sense in a standard continuous
setting. Using equations (2.8) and (3.1) we obtain, for 𝑛 ∈ {1, 2, . . . , 𝑁 − 1},⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑒𝑛+1
𝑐,ℎ − 2𝑒𝑛

𝑐,ℎ + 𝑒𝑛−1
𝑐,ℎ

∆𝑡2
+ 𝐴𝑐,ℎ𝑒𝑛

𝑐,ℎ + 𝐵𝑡
𝑐,ℎℓ𝑛

ℎ = 𝑟𝑛
𝑐,ℎ in 𝑉𝑐,ℎ,

𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ 𝑒𝑛+1
𝑓,ℎ − 2𝑒𝑛

𝑓,ℎ + 𝑒𝑛−1
𝑓,ℎ

∆𝑡2
+ 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ (︁
𝐴𝑓,ℎ

{︀
𝑒𝑛
𝑓,ℎ

}︀
1/4

−𝐵𝑡
𝑓,ℎℓ𝑛

ℎ

)︁
= 𝑟𝑛

𝑓,ℎ in 𝑉𝑓,ℎ,

𝐵𝑐,ℎ𝑒𝑛
𝑐,ℎ = 𝐵𝑓,ℎ𝑒𝑛

𝑓,ℎ in 𝐿ℎ

(3.12)

with the consistency errors given by

𝑟𝑛
𝑐,ℎ =

𝑢𝑐,ℎ

(︀
𝑡𝑛+1

)︀
− 2𝑢𝑐,ℎ (𝑡𝑛) + 𝑢𝑐,ℎ

(︀
𝑡𝑛−1

)︀
∆𝑡2

+ 𝐴𝑐,ℎ𝑢𝑐,ℎ (𝑡𝑛) + 𝐵𝑡
𝑐,ℎ𝜆ℎ (𝑡𝑛)− 𝑓𝑐,ℎ (𝑡𝑛) (3.13)

and

𝑟𝑛
𝑓,ℎ = 𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ 𝑢𝑓,ℎ(𝑡𝑛+1)− 2𝑢𝑓,ℎ (𝑡𝑛) + 𝑢𝑓,ℎ

(︀
𝑡𝑛−1

)︀
∆𝑡2

+ 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ (︀
𝐴𝑓,ℎ{𝑢𝑓,ℎ (𝑡𝑛)}1/4 −𝐵𝑡

𝑓,ℎ𝜆ℎ (𝑡𝑛)− 𝑓𝑓,ℎ (𝑡𝑛)
)︀
. (3.14)

Standard Taylor expansions allow us to simplify equations (3.13) and (3.14). There exist intermediate times
(𝑡𝑛,♡, 𝑡𝑛,♠, 𝑡𝑛,♣) with

𝑡𝑛−1 ≤ 𝑡𝑛,♡, 𝑡𝑛,♠, 𝑡𝑛,♣ ≤ 𝑡𝑛+1

such that, using equation (2.8a),

𝑟𝑛
𝑐,ℎ =

∆𝑡2

12
d4

d𝑡4
𝑢𝑐,ℎ

(︀
𝑡𝑛,♡)︀ (3.15)

and

𝑟𝑛
𝑓,ℎ = 𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ d2

d𝑡2
𝑢𝑓,ℎ (𝑡𝑛) + 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ (︀
𝐴𝑓,ℎ𝑢𝑓,ℎ (𝑡𝑛)−𝐵𝑡

𝑓,ℎ𝜆ℎ (𝑡𝑛)− 𝑓𝑓,ℎ (𝑡𝑛)
)︀

+
∆𝑡2

12
𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ d4

d𝑡4
𝑢𝑓,ℎ

(︀
𝑡𝑛,♠)︀+

∆𝑡2

4
𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛,♣)︀ .

Then using equation (2.8b) one can further simplify 𝑟𝑛
𝑓,ℎ as

𝑟𝑛
𝑓,ℎ =

(︀
𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
− 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀)︀ d2

d𝑡2
𝑢𝑓,ℎ (𝑡𝑛)

+
∆𝑡2

12
𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ d4

d𝑡4
𝑢𝑓,ℎ

(︀
𝑡𝑛,♠)︀+

∆𝑡2

4
𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛,♣)︀ .

If Assumptions 3.1 and 3.2 hold then there exists a rational function 𝒬 such that

(︀
𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
− 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀)︀ d2

d𝑡2
𝑢𝑓,ℎ (𝑡𝑛) = ∆𝑡2𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝒬
(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ (𝑡𝑛)
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where 𝒬(𝑥) is given by

𝒬(𝑥) := 𝒫−1
𝑝 (𝑥)

𝒫𝑘(𝑥)− 𝒫𝑝(𝑥)
𝑥

· (3.16)

The consistency error 𝑟𝑛
𝑓,ℎ has then the final expression

𝑟𝑛
𝑓,ℎ =

∆𝑡2

12
𝒫𝑘

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ d4

d𝑡4
𝑢𝑓,ℎ(𝑡𝑛,♠) +

∆𝑡2

4
𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛,♣)︀

+ ∆𝑡2𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝒬
(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ (𝑡𝑛) . (3.17)

3.2.2. Energy identity for the error equation

To obtain an energy identity on the error equations (3.12)–(3.15)–(3.17) we use a standard discrete energy
technique. The main ingredients of the strategy is to observe that, if Assumption 3.2 holds then

𝐼𝑐,ℎ −
∆𝑡2

4
𝐴𝑐,ℎ

is a non-negative symmetric operator. Moreover, with the same assumption, if we introduce the following
notation,

ℛ(𝑥) := 𝒫𝑝(𝑥)−1𝒫𝑘(𝑥) (3.18)

then ℛ
(︀
∆𝑡2𝐴𝑓,ℎ

)︀
is well defined and is a non-negative symmetric operator. Note that from (3.18) and (3.16)

we deduce that

𝒬(𝑥) :=
ℛ(𝑥)− 1

𝑥
· (3.19)

After standard algebraic manipulations (similar to the computations done in [7]) one can show the following
lemma.

Lemma 3.6. Let Assumption 3.1 and 3.2 hold. Then, for 𝑛 ∈ {1, 2, . . . , 𝑁 − 1},

ℰ𝑛+1/2
𝑐,ℎ − ℰ𝑛−1/2

𝑐,ℎ

Δ𝑡
+
ℰ𝑛+1/2

𝑓,ℎ − ℰ𝑛−1/2
𝑓,ℎ

Δ𝑡
=

(︃

𝑟𝑛
𝑐,ℎ,

𝑒𝑛+1
𝑐,ℎ − 𝑒𝑛−1

𝑐,ℎ

2Δ𝑡

)︃

𝑐

+

(︃

𝑟𝑛
𝑓,ℎ,𝒫𝑝

(︀
Δ𝑡2𝐴𝑓,ℎ

)︀−1 𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ

2Δ𝑡

)︃

𝑓

, (3.20)

with

ℰ𝑛+1/2
𝑐,ℎ =

1
2

⃒⃒⃒⃒
⃒
(︂

𝐼𝑐,ℎ −
∆𝑡2

4
𝐴𝑐,ℎ

)︂ 1
2 𝑒𝑛+1

𝑐,ℎ − 𝑒𝑛
𝑐,ℎ

∆𝑡

⃒⃒⃒⃒
⃒
2

𝑐

+
1
2

⃒⃒⃒⃒
⃒𝐴1/2

𝑐,ℎ

𝑒𝑛+1
𝑐,ℎ + 𝑒𝑛

𝑐,ℎ

2

⃒⃒⃒⃒
⃒
2

𝑐

, (3.21)

where 𝐼𝑐,ℎ is the identity operator in 𝐻𝑐, and with

ℰ𝑛+1/2
𝑓,ℎ =

1
2

⃒⃒⃒⃒
⃒ℛ (︀∆𝑡2𝐴𝑓,ℎ

)︀ 1
2

𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛

𝑓,ℎ

∆𝑡

⃒⃒⃒⃒
⃒
2

𝑓

+
1
2

⃒⃒⃒⃒
⃒𝐴1/2

𝑓,ℎ

𝑒𝑛+1
𝑓,ℎ + 𝑒𝑛

𝑓,ℎ

2

⃒⃒⃒⃒
⃒
2

𝑓

. (3.22)

Proof. For the sake of conciseness, we only list here the main steps of the proof:

– compute the scalar product (·, ·)𝑐 of the first equation of (3.12) with

𝑒𝑛+1
𝑐,ℎ − 𝑒𝑛−1

𝑐,ℎ

2∆𝑡
,

– compute the scalar product (·, ·)𝑓 of the second equation of (3.12) with

𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀−1 𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ

2∆𝑡
,
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– sum the two obtained equations and use the third equation of (3.12) to get rid of the term involving ℓ𝑛.
– observe that ℰ𝑛+1/2

𝑐,ℎ and ℰ𝑛+1/2
𝑓,ℎ are positive quadratic energy functionals if Assumption 3.2 holds.

�

3.2.3. Stability results.

To obtain meaningful results we need more assumptions on how the spectral radius of 𝐴𝑓,ℎ behaves with
respect to ℎ compare to the spectral radius of 𝐴𝑐,ℎ. More precisely we assume the following property

Assumption 3.7. There exists 𝛽 independent of ℎ such that
𝜌𝑓,ℎ

𝜌𝑐,ℎ
≤ 𝛽2. (3.23)

Let us now suppose that Assumption 3.2 holds. We introduce the positive scalar 𝐶ℛ, independent of ℎ, as

𝐶ℛ := sup
𝑥∈[0,4𝛼2𝛽2]

|ℛ(𝑥)|, (3.24)

where ℛ(𝑥) is given by (3.18). Since ∆𝑡2𝜌𝑓,ℎ ≤ 4𝛼2𝛽2 one can show that for all 𝑣ℎ in 𝑉𝑓,ℎ the following inequality
holds ⃒⃒⃒

ℛ
(︀
∆𝑡2𝐴𝑓,ℎ

)︀ 1
2 𝑣ℎ

⃒⃒⃒
𝑓
≤ 𝐶

1
2
ℛ|𝑣ℎ|𝑓 .

Moreover we define 𝐶𝒬, independent of ℎ, as

𝐶𝒬 := sup
𝑥∈[0,4𝛼2𝛽2]

|𝒬(𝑥)|, (3.25)

where 𝒬(𝑥) is given by (3.19). Again, since ∆𝑡2𝜌𝑓,ℎ ≤ 4𝛼2𝛽2 one can show that for all 𝑣ℎ in 𝑉𝑓,ℎ the following
inequality holds ⃒⃒

𝒬
(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝑣ℎ

⃒⃒
𝑓
≤ 𝐶𝒬|𝑣ℎ|𝑓 .

Theorem 3.8. Let Assumptions 2.2, 3.1, 3.2 and 3.7 hold. Then, there exists a scalar 𝐶 independent on 𝒫𝑘,
𝒫𝑝, ∆𝑡 and ℎ such that we have for 𝑛 ∈ {1, . . . , 𝑁},(︁

ℰ𝑛−1/2
𝑓,ℎ

)︁ 1
2

+
(︁
ℰ𝑛−1/2

𝑐,ℎ

)︁ 1
2 ≤ 𝐶

(︁
1 + 𝐶

1
2
ℛ + 𝐶𝒬

)︁(︂(︁
ℰ1/2

𝑓,ℎ

)︁ 1
2

+
(︁
ℰ1/2

𝑐,ℎ

)︁ 1
2

+ ∆𝑡2
)︂

. (3.26)

Proof. In what follows the scalar 𝐶 – independent on 𝒫𝑘, 𝒫𝑝, ∆𝑡 and ℎ – is allowed to change from one line to
the other. After summing equation (3.20) over 𝑛 = 1 to 𝑛 = 𝑁 − 1 and taking into account equations (3.15)
and (3.17), we find

ℰ𝑁−1/2
𝑐,ℎ + ℰ𝑁−1/2

𝑓,ℎ ≤ ℰ1/2
𝑐,ℎ + ℰ1/2

𝑓,ℎ + 𝐶∆𝑡2
(︀
Ξ𝑁

𝑐 + Ξ𝑁
𝑓 + Π𝑁

𝑓 + Λ𝑁
𝑓

)︀
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ𝑁
𝑐 = ∆𝑡

𝑁−1∑︁
𝑛=1

(︃
d4

d𝑡4
𝑢𝑐,ℎ

(︀
𝑡𝑛,♡)︀ ,

𝑒𝑛+1
𝑐,ℎ − 𝑒𝑛−1

𝑐,ℎ

2∆𝑡

)︃
𝑐

,

Ξ𝑁
𝑓 = ∆𝑡

𝑁−1∑︁
𝑛=1

(︃
ℛ
(︀
∆𝑡2𝐴𝑓,ℎ

)︀ d4

d𝑡4
𝑢𝑓,ℎ(𝑡𝑛,♠),

𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ

2∆𝑡

)︃
𝑓

,

Π𝑁
𝑓 = ∆𝑡

𝑁−1∑︁
𝑛=1

(︃
𝐴𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛,♣)︀ ,

𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ

2∆𝑡

)︃
𝑓

,

Λ𝑁
𝑓 = ∆𝑡

𝑁−1∑︁
𝑛=1

(︃
𝒬
(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ (𝑡𝑛) ,

𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ

2∆𝑡

)︃
𝑓

.
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The proof then proceeds in five steps. One step for the estimation of each of the four terms above and a final
step that collects all the obtained estimations in order to obtain (3.26) using a discrete Gronwall’s lemma.

Step 1. Estimation of Ξ𝑁
𝑐 . Following the proof given in [8] (proof 2.4 of Lem. 2.3 and appendix) it is possible

to show that ⃒⃒⃒⃒
⃒𝑒

𝑛+1
𝑐,ℎ − 𝑒𝑛−1

𝑐,ℎ

2∆𝑡

⃒⃒⃒⃒
⃒
𝑐

≤ 2
(︁
ℰ𝑛+1/2

𝑐,ℎ

)︁ 1
2

+ 2
(︁
ℰ𝑛−1/2

𝑐,ℎ

)︁ 1
2

. (3.27)

It has to be noted that this inequality holds uniformly with respect to the time step (in the limit given by
Assumption 3.2) and in particular it is valid if ∆𝑡 = 2/

√
𝜌𝑐,ℎ. This result is not trivial: it is proven using

a decomposition into low and high frequency components of the solution 𝑢𝑐,ℎ. Then using Cauchy–Schwarz
inequality and the estimate (3.27), as well as standard algebraic manipulations, one gets

Ξ𝑁
𝑐 ≤ ∆𝑡

𝑁−1∑︁
𝑛=1

⃒⃒⃒⃒
d4

d𝑡4
𝑢𝑐,ℎ

(︀
𝑡𝑛,♠)︀⃒⃒⃒⃒

𝑐

⃒⃒⃒⃒
⃒𝑒

𝑛+1
𝑐,ℎ − 𝑒𝑛−1

𝑐,ℎ

2∆𝑡

⃒⃒⃒⃒
⃒
𝑐

(3.28)

≤ 𝐶 sup
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
d4

d𝑡4
𝑢𝑐,ℎ(𝑡)

⃒⃒⃒⃒
𝑐

∆𝑡

𝑁−1∑︁
𝑛=0

(︁
ℰ𝑛+1/2

𝑐,ℎ

)︁ 1
2

. (3.29)

Using the stability estimate (2.11) we obtain

Ξ𝑁
𝑐 ≤ 𝐶∆𝑡

𝑁−1∑︁
𝑛=0

(︁
ℰ𝑛+1/2

𝑐,ℎ

)︁ 1
2

. (3.30)

Step 2. Estimation of Ξ𝑁
𝑓 . Writing 𝑒𝑛+1

𝑓,ℎ − 𝑒𝑛−1
𝑓,ℎ = 𝑒𝑛+1

𝑓,ℎ − 𝑒𝑛
𝑓,ℎ + 𝑒𝑛

𝑓,ℎ − 𝑒𝑛−1
𝑓,ℎ and using the symmetry of

ℛ
(︀
∆𝑡2𝐴𝑓,ℎ

)︀
one can show, with the Cauchy–Schwarz and triangle inequalities, that

Ξ𝑁
𝑓 ≤ ∆𝑡

2

𝑁−1∑︁
𝑛=1

⃒⃒⃒⃒
ℛ
(︀
∆𝑡2𝐴𝑓,ℎ

)︀ 1
2 d4

d𝑡4
𝑢𝑓,ℎ

(︀
𝑡𝑛,♠)︀⃒⃒⃒⃒

𝑓

⎛⎝⃒⃒⃒⃒⃒ℛ (︀∆𝑡2𝐴𝑓,ℎ

)︀ 1
2

𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛

𝑓,ℎ

∆𝑡

⃒⃒⃒⃒
⃒
𝑓

+

⃒⃒⃒⃒
⃒ℛ (︀∆𝑡2𝐴𝑓,ℎ

)︀ 1
2

𝑒𝑛
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ

∆𝑡

⃒⃒⃒⃒
⃒
𝑓

⎞⎠ (3.31)

then, since by definition of the energy (3.22) we have⃒⃒⃒⃒
⃒ℛ (︀∆𝑡2𝐴𝑓,ℎ

)︀ 1
2

𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛

𝑓,ℎ

∆𝑡

⃒⃒⃒⃒
⃒
𝑓

≤
√

2
(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

we can simplify (3.31), and we obtain

Ξ𝑁
𝑓 ≤ ∆𝑡

√
2

2

𝑁−1∑︁
𝑛=1

⃒⃒⃒⃒
ℛ
(︀
∆𝑡2𝐴𝑓,ℎ

)︀ 1
2 d4

d𝑡4
𝑢𝑓,ℎ

(︀
𝑡𝑛,♠)︀⃒⃒⃒⃒

𝑓

(︂(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

+
(︁
ℰ𝑛−1/2

𝑓,ℎ

)︁ 1
2
)︂

≤ 𝐶𝐶
1
2
ℛ sup

𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
d4

d𝑡4
𝑢𝑓,ℎ(𝑡)

⃒⃒⃒⃒
𝑓

∆𝑡

𝑁−1∑︁
𝑛=0

(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

.

(3.32)

Using the stability estimate (2.11) we obtain

Ξ𝑁
𝑓 ≤ 𝐶 𝐶

1
2
ℛ ∆𝑡

𝑁−1∑︁
𝑛=0

(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

. (3.33)
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Step 3. Estimation of Π𝑁
𝑓 . The difficulty here is that one can not expect in general to have a uniform bound

on 𝐴𝑓,ℎ𝑑2
𝑡 𝑢𝑓,ℎ(𝑡) in the norm in 𝐻𝑓 . The standard strategy is to use the following equality

(𝐴𝑓,ℎ𝑢ℎ, 𝑣ℎ)𝑞 =
(︁
𝐴

1
2
𝑓,ℎ𝑢ℎ, 𝐴

1
2
𝑓,ℎ𝑣ℎ

)︁
𝑞
, ∀ (𝑢ℎ, 𝑣ℎ) ∈ 𝑉𝑞,ℎ × 𝑉𝑞,ℎ, (3.34)

then, a discrete by part integration in time. The objective is to “exchange space and time derivatives”
between the error term and the solution to the semi-discrete problem. The by-part integration in time is
done using the following algebraic rule: for all sequences of real numbers {𝑣𝑛} and {𝑤𝑛} we have

𝑁−1∑︁
𝑛=1

𝑣𝑛(𝑤𝑛+1 − 𝑤𝑛−1) = −
𝑁−2∑︁
𝑛=1

(𝑣𝑛+1 − 𝑣𝑛)(𝑤𝑛+1 + 𝑤𝑛) + 𝑣𝑁−1(𝑤𝑁 + 𝑤𝑁−1)− 𝑣1(𝑤1 + 𝑤0). (3.35)

We apply the above equality to the term Π𝑁
𝑓 and use property (3.34) as mentioned. We obtain

Π𝑁
𝑓 = −∆𝑡

𝑁−2∑︁
𝑛=1

⎛⎝𝐴
1
2
𝑓,ℎ

∆𝑡

(︂
d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛+1,♣)︀− d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛,♣)︀)︂ , 𝐴

1
2
𝑓,ℎ

𝑒𝑛+1
𝑓,ℎ + 𝑒𝑛

𝑓,ℎ

2

⎞⎠
𝑓

+

(︃
𝐴

1
2
𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑁−1,♣)︀ , 𝐴

1
2
𝑓,ℎ

𝑒𝑁
𝑓,ℎ + 𝑒𝑁−1

𝑓,ℎ

2

)︃
𝑓

−

(︃
𝐴

1
2
𝑓,ℎ

d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡1,♣)︀ , 𝐴

1
2
𝑓,ℎ

𝑒1
𝑓,ℎ + 𝑒0

𝑓,ℎ

2

)︃
𝑓

. (3.36)

Moreover using the mean value theorem we find that⃒⃒⃒⃒
⃒⃒𝐴

1
2
𝑓,ℎ

∆𝑡

(︂
d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛+1,♣)︀− d2

d𝑡2
𝑢𝑓,ℎ

(︀
𝑡𝑛,♣)︀)︂⃒⃒⃒⃒⃒⃒

𝑓

≤ sup
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
𝐴

1
2
𝑓,ℎ

d3

d𝑡3
𝑢𝑓,ℎ(𝑡)

⃒⃒⃒⃒
𝑓

≤ 𝐶, (3.37)

and by the definition of the energy (3.22) one gets⃒⃒⃒⃒
⃒𝐴 1

2
𝑓,ℎ

𝑒𝑛+1
𝑓,ℎ + 𝑒𝑛

𝑓,ℎ

2

⃒⃒⃒⃒
⃒
𝑓

≤
√

2
(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

.

Injecting the estimate above as well as estimate (3.37) into (3.36), one obtains after using Cauchy–Schwarz
inequality

Π𝑁
𝑓 ≤ 𝐶

(︂(︁
ℰ𝑁−1/2

𝑓,ℎ

)︁ 1
2

+
(︁
ℰ1/2

𝑓,ℎ

)︁ 1
2
)︂

+ 𝐶 ∆𝑡

𝑁−1∑︁
𝑛=1

(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

. (3.38)

Step 4. Estimation of Λ𝑁
𝑓 . A similar strategy than for the estimation of Π𝑁

𝑓 can be applied. For that it is
essential to observe the following property

𝒬
(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ = 𝐴

1
2
𝑓,ℎ𝒬

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴

1
2
𝑓,ℎ,

that can be proven by diagonalisation of the operators involved on the family of eigenvectors of 𝐴𝑓,ℎ. Then
the same proof as in step 3 can be used. We obtain

Λ𝑁
𝑓 ≤ 𝐶 𝐶𝒬

(︂(︁
ℰ𝑁−1/2

𝑓,ℎ

)︁ 1
2

+
(︁
ℰ1/2

𝑓,ℎ

)︁ 1
2
)︂

+ 𝐶 𝐶𝒬 ∆𝑡

𝑁−1∑︁
𝑛=1

(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

, (3.39)

where 𝐶𝒬 is given by (3.25).
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Step 5. Final energy estimate and Gronwall’s lemma application. Combining inequalities (3.30), (3.33), (3.38)
and (3.39) obtained above, we find

ℰ𝑁−1/2
𝑐,ℎ + ℰ𝑁−1/2

𝑓,ℎ ≤ 𝐶
(︁
ℰ1/2

𝑐,ℎ + ℰ1/2
𝑓,ℎ

)︁
+ 𝐶 ∆𝑡2 (1 + 𝐶𝒬)

(︂(︁
ℰ𝑁−1/2

𝑓,ℎ

)︁ 1
2

+
(︁
ℰ1/2

𝑓,ℎ

)︁ 1
2
)︂

+ 𝐶 ∆𝑡3
𝑁−1∑︁
𝑛=0

(︂(︁
ℰ𝑛+1/2

𝑐,ℎ

)︁ 1
2

+
(︁

1 + 𝐶
1
2
ℛ + 𝐶𝒬

)︁(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2
)︂

. (3.40)

Then using Young’s inequality we write that

𝐶 ∆𝑡2 (1 + 𝐶𝒬)
(︁
ℰ𝑚−1/2

𝑓,ℎ

)︁ 1
2 ≤ 𝐶2 ∆𝑡4

2
(1 + 𝐶𝒬)2 +

1
2
ℰ𝑚−1/2

𝑓,ℎ ,

for 𝑚 = 1 and 𝑚 = 𝑁 , and, using the above estimation into (3.40) we obtain

ℰ𝑁−1/2
𝑐,ℎ + ℰ𝑁−1/2

𝑓,ℎ ≤ 𝐶
(︁
ℰ1/2

𝑐,ℎ + ℰ1/2
𝑓,ℎ

)︁
+ 𝐶 (1 + 𝐶𝒬)2 Δ𝑡4 + 𝐶

(︂
1 + 𝐶

1
2
ℛ + 𝐶𝒬

)︂
Δ𝑡3

𝑁−1∑︁

𝑛=0

(︁
ℰ𝑛+1/2

𝑐,ℎ + ℰ𝑛+1/2
𝑓,ℎ

)︁ 1
2

. (3.41)

To conclude let us use the following discrete Gronwall’s lemma (see proof in Appendix B): for any real
positive sequences {𝑣𝑛} and any positive scalar numbers 𝐴 and 𝐵 we have, for all 𝑚 ≥ 1,

𝑣𝑚−1 ≤ 𝐴 + 𝐵

𝑚−1∑︁
𝑛=1

(𝑣𝑛)
1
2 ⇒ (𝑣𝑚−1)

1
2 ≤ 𝐴

1
2 + (𝑚− 1)𝐵, (3.42)

where we use the convention that the sum
∑︀

(𝑣𝑛)
1
2 is equal to zero for 𝑚 = 1. Applying this result with

𝑣𝑛 = ℰ𝑛+1/2
𝑐,ℎ + ℰ𝑛+1/2

𝑓,ℎ in (3.41) we obtain, after some algebraic manipulations, the result of the theorem
(note that we use the property (𝑁 − 1)∆𝑡 < 𝑇 ).

�

Estimate (3.26) shows that it is important to obtain reasonable bounds on the coefficients 𝐶ℛ and 𝐶𝒬.
In particular, if 𝒫(𝑥) has some roots then these coefficients may blow up. This is the main difficulty that is
addressed in Section 4.3.2 when constructing polynomials for explicit local time discretisation.

3.2.4. Space-time convergence results.

Corollary 3.9. If the assumptions of Theorems 2.3 and 3.8 hold, then, there exists 𝐶 independent of ∆𝑡 and
ℎ such that, for all 𝑛 ∈ {1, . . . , 𝑁 − 1}

‖{𝑢𝑛
ℎ}1/4 − 𝑢 (𝑡𝑛) ‖ ≤ 𝐶

(︀
∆𝑡2 + 𝛿ℎ

)︀
. (3.43)

Proof. In the proof the notation 𝐶 refers to a positive scalar independent of ∆𝑡 and ℎ than can change from
one line to another. Our first objective is to estimate⃒⃒⃒⃒

𝑒𝑛+1
ℎ − 𝑒𝑛−1

ℎ

2∆𝑡

⃒⃒⃒⃒
by the energy terms. To do so we use the theory developed in [8] that relies on a separation of the unknowns
into two orthogonal subspaces spanned by the eigenvectors of the matrices 𝐴𝑐,ℎ and 𝐴𝑓,ℎ. It is then shown in
[8] that (3.27) holds, i.e, ⃒⃒⃒⃒

⃒𝑒
𝑛+1
𝑐,ℎ − 𝑒𝑛−1

𝑐,ℎ

2∆𝑡

⃒⃒⃒⃒
⃒
𝑐

≤ 2
(︂(︁
ℰ𝑛+1/2

𝑐,ℎ

)︁ 1
2

+
(︁
ℰ𝑛−1/2

𝑐,ℎ

)︁ 1
2
)︂

.
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To show that a similar identity holds for (𝑒𝑛+1
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ )/2∆𝑡, we check the hypothesis 2.2 of [8]. More precisely,
since ℛ(0) = 1 one can check that there exists 𝜂 > 0, 𝐶𝒦 > 0 and 𝐶𝒫 > 0 such that

𝐶𝒦 ≤ ℛ(𝑥), ∀𝑥 ∈ [0, 𝜂], 𝐶𝒫 ≤ 𝑥 ∀𝑥 ∈ (𝜂, 4𝛼2𝛽2],

then, following the proof of Lemma 2.3 in [8] we obtain⃒⃒⃒⃒
⃒𝑒

𝑛+1
𝑓,ℎ − 𝑒𝑛−1

𝑓,ℎ

2∆𝑡

⃒⃒⃒⃒
⃒
𝑓

≤

(︃
𝐶
−1/2
𝒫 +

𝐶
−1/2
𝒦
2

)︃
√

2
(︂(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

+
(︁
ℰ𝑛−1/2

𝑓,ℎ

)︁ 1
2
)︂

.

Combining the two estimates above we obtain,⃒⃒⃒⃒
𝑒𝑛+1

ℎ − 𝑒𝑛−1
ℎ

2∆𝑡

⃒⃒⃒⃒
≤ 𝐶

(︂(︁
ℰ𝑛+1/2

ℎ

)︁ 1
2

+
(︁
ℰ𝑛−1/2

ℎ

)︁ 1
2
)︂

,
(︁
ℰ𝑛+1/2

ℎ

)︁ 1
2

=
(︁
ℰ𝑛+1/2

𝑓,ℎ

)︁ 1
2

+
(︁
ℰ𝑛+1/2

𝑐,ℎ

)︁ 1
2

.

From this inequality we deduce straightforwardly that⃒⃒⃒⃒
𝑒𝑛+1

ℎ + 𝑒𝑛
ℎ

2

⃒⃒⃒⃒
≤
⃒⃒⃒⃒
𝑒1

ℎ + 𝑒0
ℎ

2

⃒⃒⃒⃒
+ 𝐶∆𝑡

𝑛∑︁
𝑚=0

(︁
ℰ𝑚+1/2

ℎ

)︁ 1
2

, ∀𝑛 ∈ {1, · · · , 𝑁 − 1}.

Observe now, thanks to the coercivity (2.2) of the bilinear forms 𝑎(·, ·), that for all 𝑛 ∈ {1, . . . , 𝑁 − 1},⃦⃦⃦⃦
𝑒𝑛+1

ℎ + 𝑒𝑛
ℎ

2

⃦⃦⃦⃦
≤ 𝐶

⃒⃒⃒⃒
𝑒𝑛+1

ℎ + 𝑒𝑛
ℎ

2

⃒⃒⃒⃒
+ 𝐶ℰ𝑛+1/2

ℎ and
⃦⃦⃦
{𝑒𝑛

ℎ}1/4

⃦⃦⃦
≤
⃦⃦⃦⃦

𝑒𝑛+1
ℎ + 𝑒𝑛

ℎ

2

⃦⃦⃦⃦
+
⃦⃦⃦⃦

𝑒𝑛
ℎ + 𝑒𝑛−1

ℎ

2

⃦⃦⃦⃦
·

We obtain ⃦⃦
{𝑒𝑛

ℎ}1/4

⃦⃦
≤ 𝐶

⃒⃒⃒⃒
𝑒1

ℎ + 𝑒0
ℎ

2

⃒⃒⃒⃒
+ 𝐶 sup

𝑛∈{0,··· ,𝑁−1}
ℰ𝑛+1/2

ℎ + 𝐶∆𝑡

𝑁−1∑︁
𝑚=0

(︁
ℰ𝑚+1/2

ℎ

)︁ 1
2

. (3.44)

We now study the initial terms 𝑒0
ℎ and 𝑒1

ℎ. By definition we have

𝑒0
ℎ = 0, 𝑒1

ℎ = 𝑢ℎ(∆𝑡)− 𝑢1
ℎ =

∆𝑡3

6
d3

d𝑡3
𝑢ℎ(𝑡♠)

where 0 ≤ 𝑡♠ ≤ ∆𝑡. Thanks to Assumption 2.2 we have a uniform bound of 𝑢ℎ in 𝐶3([0, 𝑇 ], 𝑉 ℎ) for the
supremum norm in time and ‖ · ‖ in space, moreover we have

ℰ1/2
ℎ ≤ 𝐶

⃒⃒⃒⃒
𝑒1

ℎ − 𝑒0
ℎ

∆𝑡

⃒⃒⃒⃒
+
⃦⃦⃦⃦

𝑒1
ℎ + 𝑒0

ℎ

2

⃦⃦⃦⃦
hence ℰ1/2

ℎ ≤ 𝐶∆𝑡2.

Then, estimation (3.44) can be simplified using Theorem 3.8 and the above estimation of ℰ1/2
ℎ . We obtain

‖{𝑒𝑛
ℎ}1/4‖ ≤ 𝐶

(︃
∆𝑡2 + 𝐶 sup

𝑛∈{0,··· ,𝑁−1}
ℰ𝑛+1/2

ℎ

)︃
⇒ ‖{𝑒𝑛

ℎ}1/4‖ ≤ 𝐶 ∆𝑡2. (3.45)

The statement of the corollary is obtained using an adequate decomposition of the difference {𝑢𝑛
ℎ}1/4 − 𝑢 (𝑡𝑛)

and triangle inequalities. More precisely we have

‖{𝑢𝑛
ℎ}1/4 − 𝑢 (𝑡𝑛) ‖ ≤ ‖{𝑒𝑛

ℎ}1/4‖+ ‖{𝑢ℎ (𝑡𝑛)}1/4 − 𝑢ℎ (𝑡𝑛) ‖+ ‖𝑒ℎ (𝑡𝑛) ‖,

where the first term can be estimated by (3.45); the second term is uniformly bounded (with respect to ℎ) by
∆𝑡2 since 𝑢ℎ ∈ 𝐶2([0, 𝑇 ], 𝑉 ℎ) and (2.11) holds; and the last term can be estimated using Theorem 2.3. �
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Corollary 3.9 means that the “good” quantity that approximates 𝑢 (𝑡𝑛) is ̃︀𝑢𝑛
ℎ = {𝑢𝑛

ℎ}1/4. One way to obtain
this quantity is by post-processing the obtained solution, a more efficient approach is to compute it directly,
indeed, by linearity ̃︀𝑢𝑛

ℎ can be computed solving (3.1) for 𝑛 ∈ {1, . . . , 𝑁−2} with source term ̃︀𝑓𝑛

ℎ = {𝑓ℎ (𝑡𝑛)}1/4

instead of 𝑓ℎ (𝑡𝑛) and with initial data

̃︀𝑢1
ℎ =

𝑢0
ℎ + 2 𝑢1

ℎ + 𝑢2
ℎ

4
, ̃︀𝑢2

ℎ =
𝑢1

ℎ + 2 𝑢2
ℎ + 𝑢3

ℎ

4
·

This involves only a small change in the computation of the source terms and the initial data in (3.1) but allows
to recover the expected estimate ‖̃︀𝑢𝑛

ℎ − 𝑢 (𝑡𝑛) ‖ = 𝑂
(︀
∆𝑡2 + 𝛿ℎ

)︀
.

4. Derivation of local implicit or explicit time discretisations

In this section we derive three specific local time discretisations that enter the framework described in
Section 3. The presented schemes are of increasing complexity and are constructed assuming 𝜌𝑐,ℎ and 𝜌𝑓,ℎ

known.

4.1. Local implicit scheme

Local implicit strategies for wave equations have been developed and analysed by several authors, see for
instance [18, 21, 30, 39]. Moreover in [7] a second order and a fourth order local implicit time discretisation
adapted to domain decomposition have been constructed. The second order method of [7] fits naturally into the
family of discrete problems (3.1) that we have constructed. It is obtained by choosing

𝒫𝑘(𝑥) = 1 and 𝒫𝑝(𝑥) = 1.

With this choice, Assumption 3.2 holds for any 0 < 𝛼 ≤ 1. Moreover we have

𝒬(𝑥) ≡ 0 and ℛ(𝑥) ≡ 1.

The complete scheme reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛+1
𝑐,ℎ − 2𝑢𝑛

𝑐,ℎ + 𝑢𝑛−1
𝑐,ℎ

∆𝑡2
+ 𝐴𝑐,ℎ𝑢𝑛

𝑐,ℎ + 𝐵𝑡
𝑐,ℎ𝜆𝑛

ℎ = 𝑓𝑐,ℎ (𝑡𝑛) in 𝑉𝑐,ℎ,

𝑢𝑛+1
𝑓,ℎ − 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

∆𝑡2
+ 𝐴𝑓,ℎ

{︀
𝑢𝑛

𝑓,ℎ

}︀
1/4

−𝐵𝑡
𝑓,ℎ𝜆𝑛

ℎ = 𝑓𝑓,ℎ (𝑡𝑛) in 𝑉𝑓,ℎ,

𝐵𝑐,ℎ𝑢𝑛
𝑐,ℎ = 𝐵𝑓,ℎ𝑢𝑛

𝑓,ℎ in 𝐿ℎ.

(4.1)

Notice that this means that the first equation of (2.8) is discretised with an explicit leap-frog scheme, while the
second is discretised with an unconditionally stable implicit 𝜃-scheme with 𝜃 = 1/4. It has been shown in [7]
that at each time iteration, one needs to solve the following problem(︃

1
Δ𝑡2 𝐼𝑓,ℎ + 1

4𝐴𝑓,ℎ −𝐵𝑡
𝑓,ℎ

𝐵𝑓,ℎ 𝐵𝑡
𝑐,ℎ𝐵𝑐,ℎ

)︃(︃
𝑢𝑛+1

𝑓,ℎ

𝜆𝑛
ℎ

)︃
=

(︃
𝑓𝑛

𝑓,ℎ

𝑔𝑛
ℎ

)︃
, (4.2)

where 𝐼𝑓,ℎ is the identity operator in 𝑉𝑓,ℎ and where 𝑓𝑛
ℎ and 𝑔𝑛

ℎ are some source terms that depend on previous
iterates and of 𝑓ℎ (𝑡𝑛). The invertibility of the above system is guaranteed if the discrete inf-sup condition
(2.10) holds as explained in Section 3.1. Since 𝒬(𝑥) and ℛ(𝑥) are independent of 𝑥 then 𝐶𝒬 = 0 and 𝐶ℛ = 1
are obviously independent of 𝛽 that can be arbitrarily high (hence the ratio 𝜌𝑓,ℎ/𝜌𝑐,ℎ can be arbitrarily high).
Finally, the application of Corollary 3.9 proves the space-time convergence of (4.1).
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Note that, when applied to the wave equation (2.1), solving System (4.2) corresponds to solving the wave
equation in Ω𝑓 with an implicit scheme augmented by some operator acting on boundaries that accounts for
the transmission of fluxes between Ω𝑐 and Ω𝑓 as well as the equality between 𝑢𝑐 and 𝑢𝑓 on Σ. This scheme is
particularly adapted if a very strong and very local heterogeneity is considered in the propagating medium. In
that case (4.2) is not well conditioned but the algebraic system has a small size and can be solved efficiently.

4.2. Stabilised explicit scheme

Our objective in this section is to construct a time discretisation that allows to treat situations for which we
have

𝜌𝑓,ℎ ≤ 4𝜌𝑐,ℎ, (4.3)

that is to say 𝛽 = 2 in Assumption 3.7. Note that we expect 𝜌𝑓,ℎ ≃ 4𝜌𝑐,ℎ for the scheme to be meaningful and
efficient. For instance, in the case of standard P𝑘-finite elements on a uniform mesh for the scalar wave equation
(2.1), if the mesh size used to discretise Ω𝑓 is two times smaller than the mesh size used to discretise Ω𝑐, we
have 𝜌𝑓,ℎ = 4𝜌𝑐,ℎ.

The scheme is constructed by choosing
𝒫𝑝(𝑥) = 1− 𝑥

16
(4.4)

and setting

𝒫𝑘(𝑥) = 1− 𝑥
𝒫𝑝(𝑥)

4
= 1− 𝑥

4
+

𝑥2

64

(︂
=
(︁𝑥

8
− 1
)︁2
)︂

. (4.5)

With this choice, scheme (3.1) is explicit (see Rem. 3.3). The complete scheme reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛+1
𝑐,ℎ − 2𝑢𝑛

𝑐,ℎ + 𝑢𝑛−1
𝑐,ℎ

∆𝑡2
+ 𝐴𝑐,ℎ𝑢𝑛

𝑐,ℎ + 𝐵𝑡
𝑐,ℎ𝜆𝑛

ℎ = 𝑓𝑐,ℎ (𝑡𝑛) in 𝑉𝑐,ℎ,

𝑢𝑛+1
𝑓,ℎ − 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

∆𝑡2

+
(︂

𝐼𝑓,ℎ −
∆𝑡2

16
𝐴𝑓,ℎ

)︂(︀
𝐴𝑓,ℎ𝑢𝑛

𝑓,ℎ −𝐵𝑡
𝑓,ℎ𝜆𝑛

ℎ − 𝑓𝑓,ℎ (𝑡𝑛)
)︀

= 0 in 𝑉𝑓,ℎ,

𝐵𝑐,ℎ𝑢𝑛
𝑐,ℎ = 𝐵𝑓,ℎ𝑢𝑛

𝑓,ℎ in 𝐿ℎ.

(4.6)

Observe that at each time iteration, computing 𝜆𝑛
ℎ requires to solve:(︂

𝐵𝑐,ℎ𝐵𝑡
𝑐,ℎ + 𝐵𝑓,ℎ

(︂
𝐼𝑓,ℎ −

∆𝑡2

16
𝐴𝑓,ℎ

)︂
𝐵𝑡

𝑓,ℎ

)︂
𝜆𝑛

ℎ = 𝐵𝑐,ℎ𝑓𝑐,ℎ (𝑡𝑛)−𝐵𝑐,ℎ𝐴𝑐,ℎ𝑢𝑛
𝑐,ℎ

+ 𝐵𝑓,ℎ

(︂
𝐼𝑓,ℎ −

∆𝑡2

16
𝐴𝑓,ℎ

)︂(︀
𝐴𝑓,ℎ𝑢𝑛

𝑓,ℎ − 𝑓𝑓,ℎ (𝑡𝑛)
)︀
. (4.7)

Then 𝜆𝑛
ℎ is used to compute 𝑢𝑛+1

𝑐,ℎ and 𝑢𝑛+1
𝑓,ℎ explicitly using the first two equations of (4.6). The well-posedness

property of (4.7) is a consequence of the discrete inf-sup condition (2.10). To apply Corollary 3.9 one needs to
check that Assumption 3.2 holds. Since we have assumed 𝛽 = 2 (i.e. 𝜌𝑓,ℎ ≤ 4 𝜌𝑐,ℎ), we need to check (3.4),
which reads, using (3.5),

𝒫𝑘(𝑥) ≥ 0, 𝒫𝑝(𝑥) > 0, ∀𝑥 ∈ [0, 16 𝛼2].

From the definition of 𝒫𝑘(𝑥) given by (4.5) (see Fig. 1) it is clear that 𝒫𝑘(𝑥) ≥ 0 for all positive 𝛼 ≤ 1 (it has a
double root at 𝑥 = 8). However from the definition of (4.4) we see that 𝒫𝑝(𝑥) > 0 only if 𝛼 is strictly less than
one, moreover we have

𝒬(𝑥) =
− 3

16 + 𝑥
64

1− 𝑥
16

, ℛ(𝑥) =
1− 𝑥

4 + 𝑥2

64

1− 𝑥
16

· (4.8)
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Figure 1. Representation of 𝒫𝑝(𝑥) defined by (4.4), 𝒫𝑘(𝑥) defined by (4.5) and 𝒬(𝑥) and ℛ(𝑥)
given by (4.8).

and therefore

𝐶𝒬 = max
𝑥∈[0,16𝛼2]

|𝒬(𝑥)| ∼
𝛼→1

1
16(1− 𝛼2)

, 𝐶ℛ = max
𝑥∈[0,16𝛼2]

|ℛ(𝑥)| ∼
𝛼→1

1
(1− 𝛼2)

·

This estimate illustrates that the value 𝛼 = 1 is forbidden to apply Theorem 3.8. However we will see that in
practice a value really close to 1 gives satisfactory results (to back up this claim, several space-time convergence
curves for different values of 𝛼 are presented in Sect. 5.2). To conclude, we have constructed a time discretisation
that is stable and convergent if 𝜌𝑓,ℎ ≤ 4𝜌𝑐,ℎ and ∆𝑡 is chosen strictly below the optimal value 2/

√
𝜌𝑐,ℎ.

4.3. Local time discretisation using the Leap-Frog Chebychev method

4.3.1. Principle

In the same spirit than Section 4.2, we construct now a method that can be characterised as a conservative
local time stepping technique with an implicit treatment of transmission terms. As in Section 4.2, the unknown
𝑢𝑛

𝑓,ℎ should be explicitly updated, hence following Remark 3.3, we assume that 𝒫𝑘(𝑥) satisfies

𝒫𝑘(𝑥) = 1− 𝑥
𝒫𝑝(𝑥)

4
· (4.9)

The complete scheme reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛+1
𝑐,ℎ − 2𝑢𝑛

𝑐,ℎ + 𝑢𝑛−1
𝑐,ℎ

∆𝑡2
+ 𝐴𝑐,ℎ𝑢𝑛

𝑐,ℎ + 𝐵𝑡
𝑐,ℎ𝜆𝑛

ℎ = 𝑓𝑐,ℎ (𝑡𝑛) in 𝑉𝑐,ℎ,

𝑢𝑛+1
𝑓,ℎ − 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

∆𝑡2
+ 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ (︀
𝐴𝑓,ℎ𝑢𝑛

𝑓,ℎ −𝐵𝑡
𝑓,ℎ𝜆𝑛

ℎ − 𝑓𝑓,ℎ (𝑡𝑛)
)︀

= 0 in 𝑉𝑓,ℎ,

𝐵𝑐,ℎ𝑢𝑛
𝑐,ℎ = 𝐵𝑓,ℎ𝑢𝑛

𝑓,ℎ in 𝐿ℎ.

(4.10)

We do not yet specify the polynomial 𝒫𝑝(𝑥), but from Assumption 3.1 (consistency assumption) we must have
𝒫𝑝(0) = 𝒫𝑘(0) = 1. Notice that by definition (4.9) we have

𝒫𝑝(0) = 1 ⇒ 𝒫𝑘(0) = 1.
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Our objective is then to construct a sequence of functions 𝒫𝑝,ℓ that satisfy the properties⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝒫𝑝,ℓ is a polynomial (4.11a)

𝒫𝑝,ℓ(0) = 1, (4.11b)

1− 𝑥
𝒫𝑝,ℓ(𝑥)

4
≥ 0, ∀𝑥 ∈

[︀
0, 4 𝛽2

ℓ

]︀
(4.11c)

𝒫𝑝,ℓ(𝑥) > 0, ∀𝑥 ∈
[︀
0, 4 𝛽2

ℓ

]︀
(4.11d)

for a monotonically increasing sequence 𝛽ℓ > 2. To satisfy Assumption 3.2 (stability assumption) it is sufficient
to check that

∆𝑡2 𝜌𝑐,ℎ = 4𝛼2 𝛼 ∈ [0, 1] and ∆𝑡2 𝜌𝑓,ℎ ≤ 4𝛽2
ℓ

(︃
⇒

(3.5)

𝜌𝑓,ℎ

𝜌𝑐,ℎ
≤ 𝛽2

ℓ

𝛼2

)︃
·

The last inequality means that Assumption 3.7 is verified with 𝛽 = 𝛽ℓ/𝛼. Observe that this is an improvement
compared to condition (4.3) associated to scheme (4.6).

In Section 4.3.2 below we present a procedure to construct the sequence of polynomials that satisfy the
property (4.11) for some increasing sequence of 𝛽ℓ. In Section 4.3.3 we apply the algorithm of Section 4.3.2
below and construct a family of polynomials for which we have

𝛽2 ≃ 3, 𝛽3 ≃ 4 and 𝛽4 ≃ 5. (4.12)

Remark 4.1. The stability condition of the scheme (4.10) with 𝒫𝑝 ≡ 𝒫𝑝,ℓ can be rewritten

∆𝑡2 ≤ min
(︂

4
𝜌𝑐,ℎ

,
4𝛽2

ℓ

𝜌𝑓,ℎ

)︂
· (4.13)

Because of (4.12), this is clearly in improvement compared to the stability condition (3.10).

4.3.2. Construction of a parametrized polynomials sequence

To construct the sequence of polynomials that satisfy property (4.11) for a monotonically increasing sequence
𝛽ℓ, we start from the polynomials introduced in [24] that correspond to shifted and stretched Chebychev’s
polynomials. They are given by

̃︀𝒫𝑝,ℓ(𝑥) =
2
𝑥

[︂
1− 𝒯ℓ+1

(︂
1− 2𝑥

4(ℓ + 1)2

)︂]︂
(4.14)

where 𝒯ℓ(𝑥) is the ℓth Chebychev polynomial. The first polynomials are given by

𝒯3(𝑥) = 4𝑥3 − 3𝑥, 𝒯4(𝑥) = 8𝑥4 − 8𝑥2 + 1, 𝒯5(𝑥) = 16𝑥5 − 20𝑥3 + 5𝑥,

hence for ℓ = {2, 3, 4}, we have

̃︀𝒫𝑝,2(𝑥) = 1− 6
34

𝑥 +
1
36

𝑥2, ̃︀𝒫𝑝,3(𝑥) = 1− 20
44

𝑥 +
8
46

𝑥2 − 1
48

𝑥3,

̃︀𝒫𝑝,4(𝑥) = 1− 50
54

𝑥 +
35
56

𝑥2 − 10
58

𝑥3 +
1

510
𝑥4.

It is proven in [24] that the polynomials ̃︀𝒫𝑝,ℓ(𝑥) satisfy

̃︀𝒫𝑝,ℓ(0) = 1, 1− 𝑥 ̃︀𝒫𝑝,ℓ(𝑥)
4

≥ 0, ̃︀𝒫𝑝,ℓ(𝑥) ≥ 0 ∀𝑥 ∈
[︁
0, 4 (ℓ + 1)2

]︁
. (4.15)
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Figure 2. Representation of the polynomial 𝑥𝒫𝜀
𝑝,ℓ(𝑥) given by (4.16) for ℓ = 2 and for different

values of the parameters (𝑎, 𝑏, 𝜀) obtained by following the procedure of paragraph 4.3.2.

The polynomials satisfy the good requirements that we have stated in order to construct the local time stepping
process, i.e. (4.11), except for the fact that the ̃︀𝒫𝑝,ℓ(𝑥) do vanish for some 𝑥 ≤ 4(ℓ + 1)2. An idea used in
[40] and [32] in the context of stabilisation of the Runge–Kutta method is to transform ̃︀𝒫𝑝,ℓ(𝑥) to obtain the
required behavior (i.e. ̃︀𝒫𝑝,ℓ(𝑥) > 0). Note that a similar idea is used concurrently in the context of non-linear
wave propagation phenomena in [15]. We define the family of functions 𝒫𝜀

𝑝,ℓ(𝑥) parametrized by (𝑎, 𝑏, 𝜀) such
that, for 𝜀 positive and sufficiently small,

𝒫𝜀
𝑝,ℓ(𝑥) =

1
𝑥

(︁(︁
1− 𝜀

4

)︁
(𝑎𝑥 + 𝑏) ̃︀𝒫𝑝,ℓ(𝑎𝑥 + 𝑏) + 𝜀

)︁
, (4.16)

see Figure 2 for an illustration of a representation of the polynomial 𝒫𝜀
𝑝,ℓ for various parameters values. Note

that if 𝑎 = 1, 𝑏 = 0 and 𝜀 = 0 one recovers 𝒫𝜀
𝑝,ℓ = ̃︀𝒫𝑝,ℓ.

Let us suppose given 0 < 𝜀 < 4 small enough. We propose a procedure (see again Fig. 2) that computes
𝑎 ≡ 𝑎𝜀 and 𝑏 ≡ 𝑏𝜀 such that 𝒫𝜀

𝑝,ℓ is a well-defined polynomial and consistency as well as stability are ensured.
Namely, one should check that equations (4.11) holds.

Step i. From the definition (4.16) one can check that 𝒫𝜀
𝑝,ℓ is a polynomial if the a-priori blow-up at 𝑥 = 0 is

compensated, this means, that one should have,(︁
1− 𝜀

4

)︁
𝑏𝜀 ̃︀𝒫𝑝,ℓ (𝑏𝜀) + 𝜀 = 0 ⇒ 𝑏𝜀 ̃︀𝒫𝑝,ℓ (𝑏𝜀) = − 𝜀

1− 𝜀
4

· (4.17)

It can be observed that 𝑏𝜀 is a root of polynomial of order ℓ + 1. However since the polynomial 𝑥 ̃︀𝒫𝑝,ℓ(𝑥)
behave like the linear function 𝑥 is a neighborhood of 𝑥 = 0 for 𝜀 positive and sufficiently small there exists
a real negative solution to (4.17). Hence, we choose 𝑏𝜀 as the negative solution to (4.17) with the smallest
absolute value. Note that we have 𝑏𝜀 → 0 when 𝜀 → 0.
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Table 1. Computed values of 𝑎 and 𝑏 for given values of 𝜀 and associated 𝛽𝜀
ℓ .

ℓ 𝜀 𝑏𝜀 𝑎𝜀 𝛽𝜀
ℓ

2 1 −1.220497601922388 1.123332443935161 2.878
2 0.5 −0.548885078878804 1.055702443069509 2.941
2 0.1 −0.101795082372209 1.010360937184039 2.988
3 1 −1.214605698792632 1.112468647367209 3.828
3 0.5 −0.547676655750322 1.051055803796928 3.918
3 0.1 −0.101753177452728 1.009529277032937 3.984
4 1 −1.211812534393700 1.107473444638217 4.779
4 0.5 −0.547112834621174 1.048910062073242 4.895
4 0.1 −0.101733760636154 1.009144480323238 4.979

Step ii. To satisfy Assumption 3.1, i.e. the consistency assumption, one must check that 𝒫𝜀
𝑝,ℓ(0) = 1. To do so

we first differentiate (4.16) with respect to 𝑥, we obtain

𝒫𝜀
𝑝,ℓ(𝑥) + 𝑥

(︀
𝒫𝜀

𝑝,ℓ

)︀′ (𝑥) =
(︁

1− 𝜀

4

)︁
𝑎𝜀
(︁ ̃︀𝒫𝑝,ℓ (𝑎𝜀𝑥 + 𝑏𝜀) + (𝑎𝜀𝑥 + 𝑏𝜀) ̃︀𝒫 ′𝑝,ℓ (𝑎𝜀𝑥 + 𝑏𝜀)

)︁
and therefore

𝒫𝜀
𝑝,ℓ(0) = 1 ⇒ 𝑎𝜀 =

1(︀
1− 𝜀

4

)︀ (︁ ̃︀𝒫𝑝,ℓ(𝑏𝜀) + 𝑏𝜀 ̃︀𝒫 ′𝑝,ℓ(𝑏𝜀)
)︁ · (4.18)

Note that for 𝜀 positive and small enough the coefficient 𝑎𝜀 is well defined and close to one and we we have
𝑎𝜀 → 1 when 𝜀 → 0.

Step iii. The last step concerns the definition of 𝛽𝜀
ℓ such that (4.11c) and (4.11d) hold. From the definition

(4.16) and the property (4.15) one can see that (4.11) holds for

4 (𝛽𝜀
ℓ )2 =

4(ℓ + 1)2 − 𝑏𝜀

𝑎𝜀
·

Notice that 𝛽𝜀
ℓ → ℓ + 1 when 𝜀 → 0. Regarding stability, the resulting scheme indeed needs the constants

𝐶ℛ and 𝐶𝒬 to be bounded in order to provide second order accuracy in the ‖·‖𝑞 norm. If 𝒫𝜀
𝑝,ℓ reaches 0,

𝐶ℛ and 𝐶𝒬 degenerate. For the value of 𝛽𝜀
ℓ given above, it can be shown that 4 (𝛽𝜀

ℓ )2 𝒫𝜀
𝑝,ℓ

(︁
4 (𝛽𝜀

ℓ )2
)︁

= {𝜀, 4}
depending on the parity of 𝑝.

4.3.3. Numerical construction

In this subsection we apply the algorithm explained above for ℓ = 2 to ℓ = 4. Since the proposed algorithm
is parametrized by 𝜀 we choose 𝜀 ∈ {0.1, 0.5, 1}. Table 1 gives the values of (𝑎𝜀, 𝑏𝜀) that are computed, along
with the corresponding values of 𝛽𝜀

ℓ . The script used to compute these values is also provided at the web link
[44]. In Figure 3 we have plotted the obtained polynomials.

Remark 4.2. The process we have presented can be used for arbitrarily large ℓ however 𝜀 should be chosen
small enough (and presumably smaller and smaller as ℓ increase) and in that case the constants 𝐶𝜀

𝒬 and 𝐶𝜀
ℛ

will degenerate. Numerical results presented Sections 5.2 and 5.3 confirm the fact that it is necessary to have
𝐶𝜀
𝒬 and 𝐶𝜀

ℛ bounded to obtain second order convergence in the norm ‖ · ‖𝑞.
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Figure 3. Plain line: Representation of 𝑥𝒫𝜀
𝑝,ℓ(𝑥) for different values of ℓ and for 𝜀 = 0.1 (in

black) or 𝜀 = 1 (in blue). Dashed line: Representation of 𝑥 ̃︀𝒫𝑝,ℓ(𝑥) for different values of ℓ. (a)
𝑙 = 2. (b) 𝑙 = 3. (c) 𝑙 = 4.

4.3.4. Algorithmic discussion

In practice System (4.10) is solved by in three steps.

(1) Explicit computation of intermediate unknowns 𝑢𝑛,*
𝑐,ℎ and 𝑢𝑛,*

𝑓,ℎ by⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑛,*

𝑐,ℎ − 2𝑢𝑛
𝑐,ℎ + 𝑢𝑛−1

𝑐,ℎ

∆𝑡2
+ 𝐴𝑐,ℎ𝑢𝑛

𝑐,ℎ = 𝑓𝑐,ℎ (𝑡𝑛) ,

𝑢𝑛,*
𝑓,ℎ − 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

∆𝑡2
+ 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀ (︀
𝐴𝑓,ℎ𝑢𝑛

𝑓,ℎ − 𝑓𝑓,ℎ (𝑡𝑛)
)︀

= 0.

(4.19)

The evaluation of the term
𝒫𝜀

𝑝,ℓ

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐴𝑓,ℎ𝑢𝑛

𝑓,ℎ (4.20)

requires ℓ+1 evaluations of the operator 𝐴𝑓,ℎ (i.e. matrix-vector product with its algebraic representation).
These evaluations can be done in two different ways, either by computing explicitly the coefficient of the
polynomials 𝒫𝜀

𝑝,ℓ(𝑥) and using Horner algorithm, or using the second order recurrence relation of the
Chebychev polynomials that can be derived from the definitions (4.14) and (4.16). For numerical stability
issues, this latter choice should be privileged if ℓ is large, however for small values of ℓ both algorithms
perform similarly and Horner algorithm is – in our opinion – easier to implement.

(2) Computation of 𝜆𝑛
ℎ by solving(︀

𝐵𝑐,ℎ𝐵𝑡
𝑐,ℎ + 𝐵𝑓,ℎ𝒫𝜀

𝑝,ℓ

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐵𝑡

𝑓,ℎ

)︀
𝜆𝑛

ℎ = 𝐵𝑐,ℎ𝑢𝑛,*
𝑐,ℎ −𝐵𝑓,ℎ𝑢𝑛,*

𝑓,ℎ. (4.21)

Note that in the context of the domain decomposition method, the Lagrange multiplier 𝜆𝑛
ℎ corresponds to

an unknown discretised on an interface and therefore the size of the system to invert in (4.21) is limited.
Note also that, at the algebraic level, the corresponding matrix has a bandwidth that increases with ℓ and
is pre-computed before iterating (see Sect. 6.2 for more details on practical algorithmic aspects).

(3) Computation of 𝑢𝑛+1
𝑐,ℎ and 𝑢𝑛+1

𝑓,ℎ by correction of 𝑢𝑛,*
𝑐,ℎ and 𝑢𝑛,*

𝑓,ℎ.⎧⎨⎩
𝑢𝑛+1

𝑐,ℎ = 𝑢𝑛,*
𝑐,ℎ −𝐵𝑡

𝑐,ℎ𝜆𝑛
ℎ,

𝑢𝑛+1
𝑓,ℎ = 𝑢𝑛,*

𝑓,ℎ + 𝒫𝑝

(︀
∆𝑡2𝐴𝑓,ℎ

)︀
𝐵𝑡

𝑓,ℎ𝜆𝑛
ℎ.

(4.22)



SECOND ORDER LOCAL TIME DISCRETIZATION 1529

This step involves ℓ evaluations of the operator 𝐴𝑓,ℎ. This is clearly an over-cost compared to an ideal local
time stepping strategy. Note however that the term 𝐵𝑡

𝑓,ℎ𝜆𝑛
ℎ may have a small support, this property is used

in practice to reduce the amount of computations needed in this step.

To summarize, the main complexity of the algorithm comes from – at each time iteration – the product
with the operator 𝐴𝑐,ℎ, 2ℓ + 1 products with 𝐴𝑓,ℎ and the solving step of (4.21). The time step being relaxed
𝛽𝜀

ℓ ≃ ℓ+1 times, the proposed algorithm is especially efficient when the operator 𝐴𝑐,ℎ is more costly to evaluate
than the operator 𝐴𝑓,ℎ.

The proposed algorithmic complexity is the same as in the local time stepping introduced in [17]. The strategy
presented in [19] required a smaller number of matrix-vector product is required and no system must be solved.
Therefore, in the same configuration (same mesh and same time step for which both methods are stable), the
algorithm proposed in [19] should be more efficient. However, this method does not rely on a decomposition
domain approach and has yet to be extended to transmission problems between non-conformal meshes. For
these reasons, definitive comparisons between both methods are difficult.

Remark 4.3. Note that although the size of the matrix system corresponding to equation (4.21) may be
relatively small (it is reduced to the Lagrange multiplier unknown on the interface) the matrix may become full
for large ℓ. In that case the local implicit scheme of Section 4.1 may be preferred.

5. Numerical illustrations in 1D

The computational code used to obtain the results of this section is available as supplementary material
at the web link [44].

In this section we present numerical results in 1D that illustrate the convergence behavior of the schemes we
have proposed. We consider the wave equation (2.1), with homogeneous Neumann boundary condition, posed
on the domain Ω = (−0.5, 0.5) with Ω𝑐 = (−0.5, 0), Ω𝑓 = (0, 0.5) and Σ = {0}. We assume that 𝜇𝑐 = 1 and we
denote 𝜇 ≡ 𝜇𝑓 ≤ 1. Note that 𝜇 is therefore a measure of the contrast between the two subdomains.
We consider the propagation problem of a pulse generated by a source term. More precisely, initial data are null
and the source term is computed so that the exact solution is given by, for 𝑡 ∈ [0, 𝑇 ] with 𝑇 = 0.5,

𝑢(𝑥, 𝑡) =
{︂

𝑢𝑐(𝑥, 𝑡) 𝑥 < 0
𝑢𝑓 (𝑥, 𝑡) 𝑥 > 0

=

{︃
ℎ
(︁

𝑡−𝜏
𝑡0

)︁
𝑟(𝑥− 𝑡) +ℛ 𝑟(−𝑥− 𝑡) 𝑥 < 0

𝒯 𝑟(𝑥−√𝜇 𝑡) 𝑥 > 0
(5.1)

with 𝑟(𝑥) = 1[𝑥0−𝜎,𝑥0+𝜎]𝑒
−2/(1−(𝑥−𝑥0)

2/𝜎2) (a smooth compactly supported pulse), 𝑥0 = −0.25, 𝜎 = 0.05 and

ℛ =
1−√𝜇

1 +
√

𝜇
and 𝒯 = 1 +ℛ = 2

1
1 +

√
𝜇

,

𝜏 = 0.025, 𝑡0 = 0.0625, ℎ(𝑡) =

⎧⎪⎨⎪⎩
0 𝑡 ≤ 0,
1 𝑡 ≥ 1,

1

1 + 𝑒
1
𝑡 + 1

𝑡−1
0 < 𝑡 < 1.

Qualitatively speaking the sought solution corresponds after time 𝑡 > 𝜏 + 𝑡0 to a right propagating pulse that
is solution to a transport problem – with no source term – before it reaches the interface Σ.

For the space discretisation we use standard second order Galerkin finite elements with a lumped mass matrix
(see for instance [10–12]) on a uniform mesh of Ω𝑐 and Ω𝑓 and we denote ℎ𝑐 and ℎ𝑓 the respective mesh sizes
and 𝑞𝑓 the refinement rate. We have s

ℎ𝑐 = ℎ, ℎ𝑓 =
ℎ

𝑞𝑓
and

𝜌𝑓,ℎ

𝜌𝑐,ℎ
= 𝜇 𝑞2

𝑓 . (5.2)
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Figure 4. Space-time convergence plot for local implicit schemes for different values of (𝜇, 𝑞𝑓 ).

The chosen space discretisation provides a second order convergence in space for the 𝐻1-norm (see [23]).
We recall that ∆𝑡 = 2𝛼/

√
𝜌𝑐,ℎ for some 0 < 𝛼 ≤ 1. In what follows, we plot space-time convergence curves

by setting 𝛼 to some given values, and computing the solution to the discrete problem for some sequence ℎ
going to zero (this implies that ∆𝑡 goes to zero accordingly). Then the discrete solution (𝑢𝑛

𝑐,ℎ, 𝑢𝑛
𝑓,ℎ) is compared

to the analytic expression (5.1) and we plot

sup𝑛Δ𝑡≤𝑇 ‖ℐ𝑐,ℎ𝑢𝑐 (𝑡𝑛)− 𝑢𝑛
𝑐,ℎ‖𝑐

sup𝑛Δ𝑡≤𝑇 ‖ℐ𝑐,ℎ𝑢𝑐 (𝑡𝑛) ‖𝑐
+

sup𝑛Δ𝑡≤𝑇 ‖ℐ𝑓,ℎ𝑢𝑓 (𝑡𝑛)− 𝑢𝑛
𝑓,ℎ‖𝑓

sup𝑛Δ𝑡≤𝑇 ‖ℐ𝑓,ℎ𝑢𝑓 (𝑡𝑛) ‖𝑓

where ℐ𝑐,ℎ and ℐ𝑓,ℎ denote the interpolation operators on the nodal finite element spaces.

5.1. Local implicit scheme

In order to assess numerically the behavior of local implicit schemes described in Section 4.1, we set 𝒫𝑘(𝑥) = 1
and 𝒫𝑝(𝑥) = 1. More specifically, this means that the left-hand side of the domain is discretized with an explicit
leap-frog scheme, while the right-hand side of the domain is discretized with an unconditionally stable implicit
𝜃-scheme with 𝜃 = 1/4. We have chosen the optimal value 𝛼 = 1 and the values for the refinement ratio and
the ratio of velocity (𝑞𝑓 , 𝜇) = (10, 1) and (𝑞𝑓 , 𝜇) = (20, 2).

This configuration is difficult since the constraint on the time step is severe (a pure explicit case would require
a time step around 10 to 30 smaller). Nevertheless, the convergence plots represented in Figure 4 show that a
second order rate of convergence is achieved. In fact this was to be expected since Corollary 3.8 can be applied
with 𝐶𝒬 = 0 and 𝐶ℛ = 1.

5.2. Stabilised explicit scheme

In order to assess the behavior of the stabilised explicit scheme described in Section 4.2, we set

𝒫𝑝(𝑥) = 1− 𝑥

16
and 𝒫𝑘(𝑥) = 1− 𝑥

𝒫𝑝(𝑥)
4

= 1− 𝑥

4
+

𝑥2

64
·

We first investigate the situation of a homogeneous medium (𝜇 = 1) where the subdomain Ω𝑓 is refined by a
factor 𝑞𝑓 = 2. We make the value of 𝛼 increase from 𝛼 = 0.9 to 1. As stated in Section 4.2, the value 𝛼 = 1
prevents us from applying Corollary 3.9 since the values of 𝐶ℛ and 𝐶𝒬 blow up when 𝛼 approaches 1. The
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Figure 5. Space-time convergence plots for the stabilised explicit scheme for different values
of (𝛼, 𝜇, 𝑞𝑓 ). (a) 𝜇 = 1 and 𝑞𝑓 = 2. (b) 𝜇 = 0.25 and 𝑞𝑓 = 4.

numerical results displayed in Figure 5a show that values of 𝛼 very close to 1 (up to 0.999) give the expected
convergence rate of 2, and that indeed, choosing 𝛼 = 1 does not lead to a second order space/time convergence
(the convergence is of order 1 before diverging). As a second example, we consider an inhomogeneous medium
with 𝜇 = 0.25, we choose 𝑞𝑓 = 4, and we perform the same numerical tests. As observed in Figure 5b, the same
conclusions can be drawn.

5.3. Local time stepping using the Leap-Frog Chebychev method

In order to assess the behavior of the schemes constructed in Section 4.3, we set, for a given 𝜀, 𝒫𝑝(𝑥) = 𝒫𝜀
𝑝,ℓ(𝑥)

according to the values given in Table 1 or 𝒫𝑝(𝑥) = ̃︀𝒫ℓ(𝑥) and we always choose 𝒫𝑘(𝑥) as in (4.9) meaning that
we are using explicit schemes. We consider 𝜇 = 1, and 𝑞𝑓 = 3 or 𝑞𝑓 = 4.

According to equation (5.2) we have 𝜌𝑓,ℎ = 𝑞2
𝑓 𝜌𝑐,ℎ. The polynomial 𝒫𝜀

𝑝,ℓ is chosen such that ℓ = 𝑞𝑓 − 1 and
𝜀 = 0.1, and the value of 𝛼 ≡ 𝛼𝜀 is chosen as

𝛼𝜀 = 𝛽𝜀
ℓ

√︂
𝜌𝑐,ℎ

𝜌𝑓,ℎ
=

𝛽𝜀
ℓ

𝑞𝑓

where the values of 𝛽𝜀
ℓ are given in Table 1. This choices of parameters ensure that the stability condition is

fulfilled. In Figure 6, we have displayed the convergence obtained. In all the cases we observe second order
space-time convergence with the polynomials 𝒫𝑝(𝑥) = 𝒫𝜀

𝑝,ℓ(𝑥) while the choice 𝒫𝑝(𝑥) = ̃︀𝒫ℓ(𝑥) only gives a first
order convergence behavior.

6. Numerical illustrations in 2D

In this section we present numerical results in 2D that illustrate the convergence behavior of the scheme
(4.10) as well as the performance gain one could achieved with such method with 𝒫𝑝 = 𝒫𝜀

ℓ where ℓ ∈ {2, 3} and
𝜀 = 0.1. We systematically use Galerkin high order spectral finite elements on quadrangles (see [10]) for the
construction of the spaces 𝑉𝑐,ℎ and 𝑉𝑓,ℎ, whereas for the construction of 𝐿ℎ we use discontinuous nodal finite
elements (on Gauss points, see [29]) on the edges defined by the intersection of the boundary Σ and the coarse
mesh of Ω𝑐. Numerical results are obtained with an in-house solver developed in C++, parallelization is done
using OpenMP and Eigen [43] is used as a linear algebra library.
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Figure 6. Space-time convergence plots for the local time stepping explicit scheme for different
values of 𝑞𝑓 and 𝒫𝑝(𝑥). (a) 𝑞𝑓 = 3, 𝛼 = 0.9960. (b) 𝑞𝑓 = 4, 𝛼 = 0.9960.

6.1. Convergence result

We consider the wave equation (2.1), with homogeneous Neumann boundary condition, posed on the domain
Ω = (0, 1)2 and Ω𝑓 = (0.6, 0.7)2. We assume that 𝜇𝑐 = 1 and 𝜇𝑓 = 1, so that the domain decomposition is
artificial, but allow us to compare the simulations to an accurate reference solution. We consider the propagation
of initial data. More precisely, the source term is null and the initial data are computed so that the reference
solution is given by, for 𝑡 ∈ [0, 𝑇 ] with 𝑇 = 0.35,

𝑢(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡 + 0.1) (6.1)

where 𝑔 is the solution to the wave propagation problem

𝜕2
𝑡 𝑔 −∆𝑔 = 0, 𝑔(·, 0) = 0 and 𝜕𝑡𝑔(·, 0) = exp(−𝛼(𝑥− 0.5)2 − 𝛼(𝑦 − 0.5)2) in R2 with 𝛼 = 1000.

The solution 𝑔 can be computed semi-analytically using the expression of the Green’s function for the wave
equation in R2.

The meshes of Ω𝑐 and Ω𝑓 are discretised uniformly with ℎ𝑓/ℎ𝑐 = 8. The order used in Ω𝑐 (resp. Ω𝑓 ) is
8 (resp. 4). Consequently, the meshes are not conform. Order 7 is used to construct the space 𝐿ℎ. Using the
macro-element analysis of [28] one can check that (2.10) holds. Indeed it is sufficient to check an injectivity
property on a reference configuration (see Eq. (30) in [28]). In our case, such injectivity property is guaranteed
by the high number of test functions of 𝑉ℎ,𝑓 on the transmission boundary. The time step is chosen as

∆𝑡2 = min
(︂

4 𝛼

𝜌𝑐,ℎ
,

4 𝛼 𝛽2
ℓ

𝜌𝑓,ℎ

)︂
, (6.2)

where 𝛼 = 0.99 and (𝜌𝑐,ℎ, 𝜌𝑓,ℎ) are approximations of (𝜌𝑐,ℎ, 𝜌𝑓,ℎ) computed by power iteration. The approxi-
mated spectral radii are close enough to the exact spectral radii such that (6.2) implies the stability condition
(4.13). Figure 7 displays a snapshot of the solution at different times. The relative error is computed at the final
simulated time. Table 2 shows the relative errors as the discretisation diminishes. A second order convergence
rate is observed.
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Figure 7. Snapshot of the solution at times 0.2 and 0.35 (up to a ∆𝑡). Order 8 elements are
used on the coarse domain whereas order 4 elements are used on the fine one (for visualisation,
high-order solutions are interpolated on a low order finite element space using a splitted mesh).

Table 2. Convergence result: parameters of the numerical experiments.

ℎ𝑐 0.1 0.05 0.025 0.0125
ℎ𝑓 0.0125 0.00625 0.003125 0.0015625√︀

𝜌𝑓,ℎ/𝜌𝑐,ℎ 2.3 2.3 2.3 2.3
Δ𝑡 0.0030 0.0015 0.00075 0.00038
‖ℐ𝑐,ℎ𝑢𝑐(𝑡𝑁 )−𝑢𝑁

𝑐,ℎ‖𝑐

‖ℐ𝑐,ℎ𝑢𝑐(𝑡𝑁 )‖𝑐
0.029 0.0074 0.0019 0.00053

Conv. order – 1.98 1.97 1.79

6.2. Performance illustration

The chosen configuration is the same as in the previous section expect that the domain Ω differs. Indeed, in
this configuration the domain Ω𝑓 includes a circular hole that is meshed with quadrangles (see Figs 8 and 9).
Order 10 finite elements are used in Ω𝑐 while order 9 are used to construct the space 𝐿ℎ and second order finite
elements are used in Ω𝑓 . We aim at comparing the computational cost of two schemes: (4.10) with 𝒫𝑝 = 𝒫𝜀

2

and with 𝒫𝑝 = 𝒫𝜀
3 where 𝜀 = 0.1 (the time step being chosen by formula (6.2)) and (4.10) with 𝒫𝑝 equals to

the polynomial 1. In this latter case the scheme reads

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛+1
𝑐,ℎ − 2𝑢𝑛

𝑐,ℎ + 𝑢𝑛−1
𝑐,ℎ

∆𝑡2
+ 𝐴𝑐,ℎ𝑢𝑛

𝑐,ℎ + 𝐵𝑡
𝑐,ℎ𝜆𝑛

ℎ = 0,

𝑢𝑛+1
𝑓,ℎ − 2𝑢𝑛

𝑓,ℎ + 𝑢𝑛−1
𝑓,ℎ

∆𝑡2
+ 𝐴𝑓,ℎ𝑢𝑛

𝑓,ℎ −𝐵𝑡
𝑓,ℎ𝜆𝑛

ℎ = 0,

𝐵𝑐,ℎ𝑢𝑛
𝑐,ℎ = 𝐵𝑓,ℎ𝑢𝑛

𝑓,ℎ,

(6.3)
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Figure 8. Meshes used for the configuration with a circular defect.

Figure 9. Snapshot of the solution at times 0.2, 0.35 and 0.50 (up to a ∆𝑡).

and corresponds to the straightforward discretization of (2.8) by a Leap-frog approach. For (6.3) the time step
is chosen as

∆𝑡2 = min
(︂

4 𝛼

𝜌𝑐,ℎ
,

4 𝛼

𝜌𝑓,ℎ

)︂
,

with 𝛼 = 0.99. To compute the new iterate with either choice of polynomial we follow the approach described
in Section 4.3.4.

The simulation is run on a long time period (𝑇 = 10) and time spent in each steps (see Tab. 3) of the
algorithm are measured. There are five measured steps:

(0) Computation of the matrix involved in (4.21) as well as the time spend to compute its factorization.
(1c) Prediction in Ω𝑐. Computation of 𝑢𝑛,*

𝑐,ℎ in Step 1 of the algorithm described Section 4.3.4.
(1f) Prediction in Ω𝑓 . Computation of 𝑢𝑛,*

𝑓,ℎ in the same step.
(2) Transmission. Computation of 𝜆𝑛

ℎ by solving System (4.21).
(3c) Correction in Ω𝑐. Computation of 𝑢𝑛+1

𝑐,ℎ thanks to the first equation of (4.22).
(3f) Correction in Ω𝑓 . Computation of 𝑢𝑛+1

𝑓,ℎ thanks to the second equation.

We give in Table 3 the parameters of the experiments as well as the measured times spent in each steps (in
relative values). In the specific chosen configuration the proposed algorithms reaches the final simulation time,
approximately 2.27 (resp. 2.63) times faster for ℓ = 2 (resp. ℓ = 3). One can see in Table 3 that the time spent
in the computation of 𝑢𝑛,*

𝑓,ℎ is constant for the three methods whereas the time spent to compute 𝑢𝑛,*
𝑐,ℎ , 𝑢𝑛+1

𝑐,ℎ

and 𝜆𝑛
ℎ decreases by a factor 3 and 4 approximately which is a consequence of the time step increase. Finally
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Table 3. Performance illustration: parameters of the numerical experiments and relative time
spent by the algorithm in each steps.

Dim(𝑉𝑐,ℎ) 40040
Dim(𝑉𝑓,ℎ) 4224
Dim(𝐿ℎ) 80
𝜌𝑐,ℎ 3.98× 106

𝜌𝑓,ℎ 9.69× 107

Scheme (4.10) 𝒫𝑝 = 1 𝒫𝑝 = 𝒫0.1
2 𝒫𝑝 = 𝒫0.1

3

Δ𝑡 2.01× 10−4 6.01× 10−4 8.01× 10−4

𝑁 49711 16637 12478
Step 0 4.3× 10−5 2.5× 10−4 3.4× 10−4

Step 1c 0.61 0.20 0.16
Step 1f 0.11 0.10 0.10
Step 2 0.041 0.013 0.010
Step 3c 0.22 0.072 0.055
Step 3f 0.024 0.047 0.053
Total 1 0.44 0.38

note that the time spent in Step 3f (computation of 𝑢𝑛+1
𝑓,ℎ ) increases with ℓ without penalizing too much the

performances, so does Step 0 (computation and factorization of the matrix used in Step 2). This latter step
representing a marginal effort in term of computations.

To sum-up, this case well illustrates the actual performance gain one can expect with this method. Note that
this gain tends to 3 (resp. 4) for ℓ = 2 (resp. 3) as Dim(𝑉𝑓,ℎ)/Dim(𝑉𝑐,ℎ) tends to zero.

7. Comparisons with existing approaches

7.1. The fully explicit Local Time Stepping of [26]

The computational code used to obtain the results of this section is available as supplementary material
at the web link [44].

In [19,26], an explicit Local Time Stepping Algorithm is proposed and is proved to be second order convergent
for the 𝐿2-norm. It is used in the context of solving the following semi-discrete wave equation:

d2

d𝑡2
𝑢ℎ + 𝐴ℎ𝑢ℎ = 𝑓ℎ. (7.1)

From formula (12) of [26] with 𝑝 = 2 one can derive the following scheme

𝑢𝑛+1
ℎ − 2𝑢𝑛

ℎ + 𝑢𝑛−1
ℎ

∆𝑡2
+
(︂

𝐴ℎ −
∆𝑡2

16
𝐴ℎ𝑃ℎ𝐴ℎ

)︂
𝑢𝑛

ℎ = 𝑓𝑛
ℎ , (EX-2b)

where 𝑃ℎ : 𝑉ℎ ↦→ 𝑉ℎ is a restriction operator on a region discretised with a fine grid (with an overlap of one
element in our computations). Notice that this algorithm amounts to solving a leap-frog scheme for the kernel
of 𝑃ℎ and to a modified scheme for the complement. Moreover, from Algorithm 1 (page 1000) of [26] we can
deduce a variant of (EX-2b),

𝑢𝑛+1
ℎ − 2𝑢𝑛

ℎ + 𝑢𝑛−1
ℎ

∆𝑡2
+
(︂

𝐴ℎ −
∆𝑡2

16
𝐴ℎ𝑃ℎ𝐴ℎ

)︂
𝑢𝑛

ℎ = 𝑓𝑛
ℎ −

∆𝑡2

16
𝐴ℎ𝑃ℎ𝑓𝑛

ℎ , (EX-2)

where 𝑓𝑛
ℎ can be defined in two ways, denoting 𝑓

𝑛+ 1
2

ℎ = 𝑓ℎ(𝑡𝑛 + ∆𝑡/2) we set

𝑓𝑛
ℎ =

1
4
𝑃ℎ

(︁
𝑓

𝑛+ 1
2

ℎ + 2 𝑓𝑛
ℎ + 𝑓

𝑛− 1
2

ℎ

)︁
+ (𝐼ℎ − 𝑃ℎ)𝑓𝑛

ℎ (𝑎) or 𝑓𝑛
ℎ = 𝑓𝑛

ℎ (𝑏). (7.2)



1536 J. CHABASSIER AND S. IMPERIALE

Figure 10. Space-time convergence plots for the LTS explicit scheme. The analytical solution
is a propagating pulse.

The choice (7.2a) gives exactly the Algorithm 1 of [26] while the more simple choice (7.2b) gives similar observed
convergence behavior and so will be used in what follows.

In the following we present a numerical assessment, in a one-dimensional setting, of local time stepping
procedures that have the same computational cost: the stabilised explicit scheme (4.6) of Section 4.2, the
scheme (EX-2) and its variant (EX-2b).

The considered case is the same as in Section 5 with 𝜇 = 1 (homogeneous medium). More precisely, we solve
up to time 𝑇 = 0.5, the equation

𝜕2
𝑡 𝑢− 𝜕2

𝑥𝑢 = 𝑓, 𝑥 in (−0.5,−0.5), (7.3)

with homogeneous Neumann boundary condition. The discretisation parameters are 𝛼 = 0.99 and 𝑞𝑓 = 2. The
purpose of these tests is to quantify the relative 𝐿2 and 𝐻1-errors with respect to three chosen continuous
analytical solutions associated with adequate source terms or initial data.

7.1.1. Propagating pulse

The first considered case is a propagating pulse as described in Section 5. In Figure 10 are displayed the
relative 𝐿2 and 𝐻1-errors between the solutions of the three numerical schemes (Scheme (4.6), (EX-2) and
(EX-2b)) and the analytical solution, with respect to the mesh size ℎ (note that ∆𝑡 goes to zero with ℎ because
of Assumption 3.2).

7.1.2. Quasi-static solution

We choose vanishing initial data for the wave equation (7.3) and choose 𝑓 such that the solution is smooth
and given by

𝑢(𝑥, 𝑡) = 𝑔(𝑥) ℎ

(︂
𝑡− 𝜏

𝑡0

)︂
,

with 𝜏 = 0.1, 𝑡0 = 0.25 and

𝑔(𝑥) =

⎧⎨⎩𝑥2
(︀
𝑥 + 1

2

)︀2
𝑥 < 0,

𝑥2
(︀
𝑥− 1

2

)︀2
𝑥 > 0,

Note that the solution reaches a static state after time 𝑡 ≥ 0.35. The obtained convergence curves are displayed
in Figure 11. One can see that the three schemes behave similarly in terms of convergence in the 𝐿2-norm,
however the scheme (EX-2b) is less accurate in the 𝐻1-norm. More precisely, half an order of convergence is
lost.
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Figure 11. Space-time convergence plots for the LTS explicit schemes. The analytical solution
is static for 𝑡 ≥ 0.35.

Figure 12. Space-time convergence plots for the LTS explicit schemes. The analytical solution
is constant in space.

7.1.3. Spatially constant solution

We choose vanishing initial data for the wave equation (7.3) and choose 𝑓 such that the solution is smooth
and given by

𝑢(𝑥, 𝑡) = ℎ

(︂
𝑡− 𝜏

𝑡1

)︂
·

with 𝜏 = 0.1 and 𝑡1 = 0.8. The analytical solution is therefore constant in space. The obtained convergence
curves are displayed in Figure 12. Again, one the one hand, one can see that the three schemes behave similarly
in terms of convergence in the 𝐿2-norm. On the other hand, it is this time the scheme (EX-2) which is less
accurate in the 𝐻1-norm (half an order of convergence is lost).

7.2. The implicit LTS of [17]

In equations (13.74)–(13.76) of [17], we find an algebraic formulation for conservative local time stepping.
This formulation is written for the system of elastodynamics written in a first order form in time. However,
by elimination of the variable corresponding to the velocity, one can show that the algebraic formulation is
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equivalent to the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀𝜎,𝑐
Σ2𝑛+1

𝑐 − 2Σ2𝑛−1
𝑐 + Σ2𝑛−3

𝑐

(2∆𝑡)2
+ 𝐾𝑐Σ2𝑛−1

𝑐 − 𝐶*𝑐
𝐽2𝑛+1 − 𝐽2𝑛−3

4∆𝑡
= 0, (7.4a)

𝑀𝜎,𝑓

Σ2𝑛+1
𝑓 − 2Σ2𝑛

𝑓 + Σ2𝑛−1
𝑓

∆𝑡2
+ 𝐾𝑓 Σ2𝑛

𝑓 − 𝐶*𝑓
𝐽2𝑛+1 − 𝐽2𝑛−1

2∆𝑡
= 0, (7.4b)

𝑀𝜎,𝑓

Σ2𝑛
𝑓 − 2Σ2𝑛−1

𝑓 + Σ2𝑛−2
𝑓

∆𝑡2
+ 𝐾𝑓 Σ2𝑛−1

𝑓 − 𝐶*𝑓
𝐽2𝑛+1 − 𝐽2𝑛−3

4∆𝑡
= 0. (7.4c)

𝐶𝑐Σ2𝑛+1
𝑐 + 𝐶𝑓 Σ2𝑛+1

𝑓 = 0. (7.4d)

In this formulation the unknowns Σ𝑛
𝑐 and Σ𝑛

𝑓 are vectors corresponding to stresses in a coarse and fine region
respectively and, 𝐽𝑛 are vectors corresponding to normal stresses, 𝐾𝑐 and 𝐾𝑓 are stiffness matrices (equal
respectively to 𝐵*

𝑐 𝑀−1
𝑣,𝑐 𝐵𝑐 and 𝐵*

𝑓𝑀−1
𝑣,𝑐 𝐵𝑓 with the notation given in [17]), 𝑀𝜎,𝑐 and 𝑀𝜎,𝑓 are mass matrices.

Now we aim at eliminating intermediate steps in the evaluation for the fine region, more precisely, the sequence
of even iterates {Σ2𝑛

𝑓 } for 𝑛 ≥ 0. To do so, we write (7.4b) centered at time 𝑡2𝑛 and subtract two times equation
(7.4c) centered around 𝑡2𝑛−1 and add the equation (7.4b) centered at time 𝑡2𝑛−2. We obtain

𝑀𝜎,𝑓

Σ2𝑛+1
𝑓 − 4Σ2𝑛

𝑓 + 6Σ2𝑛−1
𝑓 − 4Σ2𝑛−2

𝑓 + Σ2𝑛−3
𝑓

∆𝑡2
+ 𝐾𝑓

[︁
Σ2𝑛

𝑓 − 2Σ2𝑛−1
𝑓 + Σ2𝑛−2

𝑓

]︁
= 0.

Now we use the fact that

Σ2𝑛+1
𝑓 − 4Σ2𝑛

𝑓 + 6Σ2𝑛−1
𝑓 − 4Σ2𝑛−2

𝑓 + Σ2𝑛−3
𝑓

∆𝑡2
=

Σ2𝑛+1
𝑓 − 2Σ2𝑛−1

𝑓 + Σ2𝑛−3
𝑓

∆𝑡2
− 4

∆𝑡2

[︁
Σ2𝑛

𝑓 − 2Σ2𝑛−1
𝑓 + Σ2𝑛−2

𝑓

]︁
,

(7.5)

and therefore we obtain

𝑀𝜎,𝑓

Σ2𝑛+1
𝑓 − 2Σ2𝑛−1

𝑓 + Σ2𝑛−3
𝑓

∆𝑡2
+
[︂
𝐾𝑓 −

4
∆𝑡2

𝑀𝜎,𝑓

]︂(︁
Σ2𝑛

𝑓 − 2Σ2𝑛−1
𝑓 + Σ2𝑛−2

𝑓

)︁
= 0.

Now using (7.4c), we replace the quantity inside the parenthesis

𝑀𝜎,𝑓

Σ2𝑛+1
𝑓 − 2Σ2𝑛−1

𝑓 + Σ2𝑛−3
𝑓

∆𝑡2
+ ∆𝑡2

[︂
𝐾𝑓 −

4
∆𝑡2

𝑀𝜎,𝑓

]︂(︂
−𝑀−1

𝜎,𝑓𝐾𝑓 Σ2𝑛−1
𝑓 + 𝑀−1

𝜎,𝑓𝐶*𝑓
𝐽2𝑛+1 − 𝐽2𝑛−3

4∆𝑡

)︂
= 0.

Dividing by 4 the previous equation and rearranging terms we obtain

𝑀𝜎,𝑓

Σ2𝑛+1
𝑓 − 2Σ2𝑛−1

𝑓 + Σ2𝑛−3
𝑓

(2∆𝑡)2
+
[︂
𝐼𝑓 −

(2∆𝑡)2

16
𝐾𝑓𝑀−1

𝜎,𝑓

]︂ [︂
𝐾𝑓 Σ2𝑛−1

𝑓 − 𝐶*𝑓
𝐽2𝑛+1 − 𝐽2𝑛−3

4∆𝑡

]︂
= 0, (7.6)

where 𝐼𝑓 is the identity matrix in the appropriate vector space. Let us denote

𝑈𝑛
𝑓 := Σ2𝑛−1

𝑓 , 𝑈𝑛
𝑐 := Σ2𝑛−1

𝑐 , ∆𝜏 := 2∆𝑡 and Λ𝑛 :=
𝐽2𝑛+1 − 𝐽2𝑛−3

4∆𝑡
·

then collecting (7.4a), (7.4d) and (7.6), one can show that the following system holds⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑀𝜎,𝑐
𝑈𝑛+1

𝑐 − 2𝑈𝑛
𝑐 + 𝑈𝑛−1

𝑐

∆𝜏2
+ 𝐾𝑐𝑈

𝑛
𝑐 − 𝐶*𝑐 Λ𝑛 = 0,

𝑀𝜎,𝑓

𝑈𝑛+1
𝑓 − 2𝑈𝑛

𝑓 + 𝑈𝑛−1
𝑓

∆𝜏2
+
[︂
𝐼𝑓 −

∆𝜏2

16
𝐾𝑓𝑀−1

𝜎,𝑓

]︂ [︀
𝐾𝑓 𝑈𝑛

𝑓 − 𝐶*𝑓 Λ𝑛
]︀

= 0,

𝐶𝑐𝑈
𝑛+1
𝑐 + 𝐶𝑓𝑈𝑛+1

𝑓 = 0.
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This new formulation of system (7.4) shows that the local time stepping proposed in [17] is in fact equivalent to
the scheme developed in Section 4.2 (compare the above equations with (4.6)). Therefore the local time stepping
proposed in [17] can be seen as a transmission problem between two second order schemes, one of which having
a relaxed stability condition by adding stabilising terms. The computational burden of the schemes we propose
in Section 4.3 is equivalent to the one of the schemes proposed in [17]. In fact we conjecture that, the local
time stepping of [17] can be recast in the formalism of Section 4.3 with 𝒫𝑝 ≡ ̃︀𝒫𝑝,ℓ. It has to be noted that the
schemes in [17] are not proven to be second order convergent (in space and time) for the 𝐻1-norm which is in
accordance with the convergence results of Section 5.3.

8. Conclusions

In this work we have presented and analysed a family of second order in time discretisation strategy for
linear wave equations. We have shown that they correspond to either locally implicit schemes or to local time
stepping. For the analysis we have considered the case of smooth solutions. Then, we have shown that, if a
well-defined stability condition holds, then second order space-time convergence property holds in the context
of abstract Galerkin approximations of the wave equation. Finally, we have presented 1D numerical convergence
results that confirm the obtained theoretical results. As far as local time stepping strategies are concerned, after
comparisons with existing methods we have confirmed the interest of the proposed approach since, in terms
of accuracy, it yields second order convergence results in the 𝐻1-norm (contrary to [17, 19]) and in terms of
computational cost, it is equivalent to the method proposed in [17].

Appendix A. Convergence result for the semi-discrete problem

In Section 2.1 we have assumed that the solution to the continuous problem satisfies some extra-regularity in
time. One can expect that, in general, existence and uniqueness results of solutions for source term and initial
data do not immediately provide the adequate time regularity. Such extra regularity can be obtained in several
ways. A simple one is to assume that initial data are null and the source term is smooth and vanishes at the
initial time. More precisely, let 𝑚 ∈ N* and assume 𝑓 ∈ 𝑊𝑚,1(0, 𝑇 ; 𝐻) and 𝑓 (𝑛)(0) = 0 for 𝑚 ∈ N such that
𝑛 < 𝑚, then it is expected that the unique solution of Problem 2.4 with null initial data belongs to

(𝑢, 𝜆) ∈ 𝐶𝑚+1([0, 𝑇 ]; 𝐻) ∩ 𝐶𝑚([0, 𝑇 ]; 𝑉 ) × 𝐶𝑚−1([0, 𝑇 ]; 𝐿). (A.1)

Such result is obtained by straightforward differentiation in time of the variational formulation. If initial data do
not vanish then the question of the regularity of solution in time is more intricate since the initial data should
be sufficiently smooth in space (or in a abstract framework, it should belong to the domain of some unbounded
operator). Moreover, the same question arises at the semi discrete level, since it is not clear that the continuous
result in general transfers to the semi-discrete setting.

Existence and uniqueness results for the semi-discrete problem are generally a direct consequence of the
results obtained at the continuous level, and the uniform estimates of Assumption 2.2 are obtained by energy
techniques.

To obtain smooth semi-discrete solutions one can assume again that initial data are null and the source term
is smooth and vanishes at the initial time, then one can define the source term for the semi-discrete problem as
follows: the source term 𝑓ℎ(𝑡) is chosen at every time 𝑡 as the orthogonal projection of 𝑓(𝑡) in 𝑉 ℎ with respect
to the scalar product of 𝐻, i.e., 𝑓ℎ(𝑡) ∈ 𝑉 ℎ and

(𝑓ℎ(𝑡), 𝑣ℎ) = (𝑓(𝑡), 𝑣ℎ), 𝑣ℎ ∈ 𝑉 ℎ. (A.2)

From this definition we deduce that if 𝑓 ∈ 𝑊𝑚,1(0, 𝑇 ; 𝐻) then 𝑓ℎ ∈ 𝑊𝑚,1(0, 𝑇 ; 𝑉 ℎ) and

𝑚∑︁
𝑛=0

∫︁ 𝑇

0

⃒⃒⃒⃒
d𝑛

d𝑡𝑛
𝑓ℎ(𝑡)

⃒⃒⃒⃒
d𝑡 ≤

𝑚∑︁
𝑛=0

∫︁ 𝑇

0

⃒⃒⃒⃒
d𝑛

d𝑡𝑛
𝑓(𝑡)

⃒⃒⃒⃒
d𝑡.
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Then, one can prove that the semi-discrete solution is smooth in time by first differentiating in time the
semi-discrete variational formulation and second, by using the standard existence, uniqueness and regularity
results for wave propagation problems for the successive time derivatives of the solution.

For the sake of completeness we now give the proof of Theorem 2.3 that is rather standard and is inspired
from the one given in [1].

Proof of Theorem 2.3. By assumption there exists a solution to (2.3) such that (2.7) holds (or (A.1) with 𝑚 = 3).
Then, System (2.8) can be recast as: find (𝑢ℎ(𝑡), 𝜆ℎ(𝑡)) ∈ 𝑉 ℎ × 𝐿ℎ solution to⎧⎨⎩

d2

d𝑡2
(𝑢ℎ, 𝑣ℎ) + 𝑎(𝑢ℎ, 𝑣ℎ) + 𝑏(𝑣ℎ, 𝜆ℎ) = (𝑓ℎ, 𝑣ℎ) 𝑣ℎ ∈ 𝑉 ℎ,

𝑏 (𝑢ℎ, 𝜇ℎ) = 0 𝜇ℎ ∈ 𝐿ℎ,

(A.3)

We introduce the elliptic projection 𝑢̂ℎ(𝑡) of 𝑢(𝑡) defined as: for (𝑢(𝑡), 𝜆(𝑡)) ∈ 𝑉 ×𝐿 find (𝑢̂ℎ(𝑡), 𝜆̂(𝑡)) ∈ 𝑉 ℎ×𝐿ℎ

such that, for some 𝐶𝑎 > 0 sufficiently large,{︃
𝐶𝑎 (𝑢̂ℎ − 𝑢, 𝑣ℎ) + 𝑎(𝑢̂ℎ − 𝑢, 𝑣ℎ) + 𝑏(𝑣ℎ, 𝜆̂ℎ − 𝜆) = 0 𝑣ℎ ∈ 𝑉 ℎ,

𝑏(𝑢̂ℎ − 𝑢, 𝜇ℎ) = 0 𝜇ℎ ∈ 𝐿ℎ.
(A.4)

Notice that 𝑢̂ℎ can be seen as the solution to a static problem of mixed type and depends on the time 𝑡 only
because the terms 𝑢 and 𝜆 do so. Therefore, 𝑢̂ℎ inherits directly from 𝑢 and 𝜆 its regularity in the parameter 𝑡.

Since the inf-sup condition (2.10) is satisfied and because of the ellipticity and continuity of 𝑎(·, ·) (see
Eq. (2.2)) one can use standard results on mixed problem – see [6] – to show that for all 𝑡 ∈ [0, 𝑇 ], there exists
𝐶 independent of ℎ such that, for 𝑚 ∈ {0, 1, 2},⃦⃦⃦⃦

d𝑚

d𝑡𝑚
𝑢̂ℎ −

d𝑚

d𝑡𝑚
𝑢

⃦⃦⃦⃦
≤ 𝐶

(︂
inf

𝑣ℎ∈𝑉 ℎ

⃦⃦⃦⃦
𝑣ℎ −

d𝑚

d𝑡𝑚
𝑢

⃦⃦⃦⃦
+ inf

𝜇ℎ∈𝐿ℎ

⃦⃦⃦⃦
𝜇ℎ −

d𝑚

d𝑡𝑚
𝜆

⃦⃦⃦⃦
𝐿

)︂
. (A.5)

The strategy is now to obtain an estimation of ‖𝑢ℎ − 𝑢̂ℎ‖. One can show, using (A.3), (2.4) and (A.4) that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2

d𝑡2
(𝑢ℎ − 𝑢̂ℎ, 𝑣ℎ) + 𝑎(𝑢ℎ − 𝑢̂ℎ, 𝑣ℎ) + 𝑏

(︁
𝑣ℎ, 𝜆ℎ − 𝜆̂ℎ

)︁
= − d2

d𝑡2
(𝑢̂ℎ − 𝑢, 𝑣ℎ) + (𝑓ℎ − 𝑓 , 𝑣ℎ) + 𝐶𝑎 (𝑢̂ℎ − 𝑢, 𝑣ℎ) 𝑣ℎ ∈ 𝑉 ℎ,

𝑏 (𝑢ℎ − 𝑢̂ℎ, 𝜇ℎ) = 0 𝜇ℎ ∈ 𝐿ℎ,

By standard energy estimates, one can show that there exists 𝐶 independent of 𝑇 and ℎ such that

sup
𝑡∈[0,𝑇 ]

(︃⃒⃒⃒⃒
d
d𝑡

𝑢ℎ(𝑡)− d
d𝑡

𝑢̂ℎ(𝑡)
⃒⃒⃒⃒2

+ 𝑎 (𝑢ℎ(𝑡)− 𝑢̂ℎ(𝑡), 𝑢ℎ(𝑡)− 𝑢̂ℎ(𝑡))

)︃ 1
2

≤

(︃⃒⃒⃒⃒
𝑢1,ℎ −

d
d𝑡

𝑢̂ℎ(0)
⃒⃒⃒⃒2

+ 𝑎 (𝑢0,ℎ − 𝑢̂ℎ(0), 𝑢0,ℎ − 𝑢̂ℎ(0))

)︃ 1
2

+ 𝐶

∫︁ 𝑇

0

(︂
|𝑢̂ℎ(𝑡)− 𝑢(𝑡)|+

⃒⃒⃒⃒
d2

d𝑡2
𝑢̂ℎ(𝑡)− d2

d𝑡2
𝑢(𝑡)

⃒⃒⃒⃒
+ |𝑓ℎ(𝑡)− 𝑓(𝑡)|

)︂
d𝑡.
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This estimate can be further simplified by deducing first a control in the norm | · | of the discrepancy which is
obtained thanks to the following estimation, for all 𝑡 ∈ [0, 𝑇 ],

|𝑢ℎ(𝑡)− 𝑢̂ℎ(𝑡)| ≤ |𝑢ℎ,0 − 𝑢̂ℎ(0)|+ 𝑇 sup
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
d
d𝑡

𝑢ℎ(𝑡)− d
d𝑡

𝑢̂ℎ(𝑡)
⃒⃒⃒⃒
,

second, by introducing another scalar 𝐶 independent of 𝑇 and ℎ such that,

𝑎(𝑢0,ℎ − 𝑢̂ℎ(0), 𝑢0,ℎ − 𝑢̂ℎ(0)) ≤ 𝐶‖𝑢0,ℎ − 𝑢̂ℎ(0)‖2

and third using the ellipticity of the bilinear form 𝑎(·, ·). We obtain,

sup
𝑡∈[0,𝑇 ]

‖𝑢ℎ(𝑡)− 𝑢̂ℎ(𝑡)‖ ≤ 𝐶

(︂⃒⃒⃒⃒
𝑢1,ℎ −

d
d𝑡

𝑢̂ℎ(0)
⃒⃒⃒⃒

+ ‖𝑢0,ℎ − 𝑢̂ℎ(0)‖
)︂

+ 𝐶 sup
𝑡∈[0,𝑇 ]

(︂
|𝑢̂ℎ(𝑡)− 𝑢(𝑡)|+

⃒⃒⃒⃒
d2

d𝑡2
𝑢̂ℎ(𝑡)− d2

d𝑡2
𝑢(𝑡)

⃒⃒⃒⃒
+ |𝑓ℎ(𝑡)− 𝑓(𝑡)|

)︂
,

for another positive scalar 𝐶 independent of and ℎ. Finally, the result of the theorem is a consequence of (A.5)
and the triangle inequality that is used after writing

𝑢ℎ − 𝑢̂ℎ = (𝑢ℎ − 𝑢) + (𝑢− 𝑢̂ℎ).

Note that a similar decomposition is used to deal with the estimation of the initial conditions. �

Appendix B. Proof of the discrete Gronwall’s lemma

The purpose of this section is to provide a proof of the discrete Gronwall’s lemma (3.42). Let

𝑤𝑚−1 := 𝐴 + 𝐵

𝑚−1∑︁
𝑛=1

(𝑣𝑛)1/2. (B.1)

Suppose that for all 𝑚 ≥ 1,
𝑣𝑚−1 ≤ 𝑤𝑚−1 (B.2)

(i) Suppose that 𝑤𝑚−1 = 0 then 𝑣𝑚−1 = 0 which proves the result.
(ii) Suppose that 𝑤𝑚−1 ̸= 0. Then

𝑤𝑚 − 𝑤𝑚−1 = 𝐵 (𝑣𝑚)1/2 ≤ 𝐵 (𝑤𝑚)1/2 (B.3)

by hypothesis. Then(︁
(𝑤𝑚)1/2 −

(︀
𝑤𝑚−1

)︀1/2
)︁(︁

(𝑤𝑚)1/2 +
(︀
𝑤𝑚−1

)︀1/2
)︁
≤ 𝐵

(︁
(𝑤𝑚)1/2 +

(︀
𝑤𝑚−1

)︀1/2
)︁

(B.4)

since 𝑤𝑚−1 ≥ 0. Therefore
(𝑤𝑚)1/2 ≤ 𝐵 +

(︀
𝑤𝑚−1

)︀1/2
. (B.5)

By summation we get
(𝑣𝑚)1/2 ≤ (𝑤𝑚)1/2 ≤

(︀
𝑤0
)︀1/2

+ 𝑚𝐵. (B.6)

Since 𝑤0 = 𝐴 we get the expected result.
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