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CONSTRUCTION AND CONVERGENCE ANALYSIS OF CONSERVATIVE
SECOND ORDER LOCAL TIME DISCRETISATION FOR LINEAR WAVE
EQUATIONS

JULIETTE CHABASSIER' AND SEBASTIEN IMPERIALE®*

Abstract. In this work we present and analyse a time discretisation strategy for linear wave equations
that aims at using locally in space the most adapted time discretisation among a family of implicit or
explicit centered second order schemes. The proposed family of schemes is adapted to domain decom-
position methods such as the mortar element method. They correspond in that case to local implicit
schemes and to local time stepping. We show that, if some regularity properties of the solution are
satisfied and if the time step verifies a stability condition, then the family of proposed time discretisa-
tions provides, in a strong norm, second order space-time convergence. Finally, we provide 1D and 2D
numerical illustrations that confirm the obtained theoretical results and we compare our approach on
1D test cases to other existing local time stepping strategies for wave equations.
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1. INTRODUCTION

The appropriate time integration of linear systems of ordinary differential equations (ODEs) resulting from
the finite element discretisation in space of partial differential equations is of crucial importance to construct
efficient numerical solvers. For linear wave equations problems, fully explicit time discretisations perform better
than implicit ones in non-stiff situations [9], i.e. when wave propagation occurs in homogeneous media and
simple geometries that are quasi-uniformly meshed. However if a strong heterogeneity (high wave speed, low
density) is considered, or if the mesh size and quality degenerate locally in space, then explicit methods reach
their bottlenecks: the time step of the simulation must be adapted to the local perturbation of the discretisation’s
parameters, due to the stability condition of the method, namely the CFL condition. In the case of linear wave
equations, local time discretisation is a well covered topic that aims at overcoming these bottlenecks. Two main
strategies can be distinguished:
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— Local implicit time discretisation, see for instance [7,18,21, 30,31, 39]. The strategy is to treat by an
implicit time integration scheme the ODEs acting on the degrees of freedom corresponding to the region where
the pertubations occur. By doing so, the time step restriction (CFL) is decorrelated from the perturbations.
The price to pay is that a (hopefully small) linear problem must be solved at each iteration.

— Local Time Stepping (LTS), see for instance [17,19,22,26,38]. The strategy is to use a first time marching
scheme in the whole domain and a second one in the perturbed region. The chosen type of time discretisation
used in both regions is often the same but time steps differ: a smaller time step is used locally. One can
distinguish non-conservative strategies (see for instance [22]) from conservative strategies. The latter are
based upon Leap-Frog schemes and can be separated into two categories depending on how sub-domains are
coupled.

e Implicit LTS. A domain decomposition strategy is introduced at the continuous level together with some
coupling conditions at the interface of the subdomains (typically by introducing a Lagrange multiplier to
enforce in a weak sense those conditions as in the mortar element method, see [42] or [28]). This idea can
be traced back to the work of Collino et al. [13,14] and has been pursued and improved in [2,17,33,37,38].
Such strategy is referred as implicit since the treatment of the transmission conditions is done implicitly
at the fully discrete level.

e Fully explicit LTS. The decomposition of the domain is done at the discrete level through the use of a
discrete restriction operator on the region (and its surrounding) where perturbations occur. The resulting
scheme does not introduce transmission conditions in the classical sense but is fully explicit. It has first
been proposed in [19] and various extensions exist: Maxwell’s equations (see [25]) and multi-level LTS
(see [20]). Recently, in [26,27], a proof of space-time convergence is given. It shows that, for the scalar
wave equation, a second order space-time convergence holds in the L? norm in space.

In general, the space-time convergence analysis for these numerical methods is not always available, Grote
et al. [26,27] being one exception, and although the methods have been implemented in realistic situations as
2D and 3D frameworks [18,21,22], their theoretical background does not always rely on a robust analysis. The
question of convergence of the method as both the space and time steps vanish together is of crucial importance
when dealing with PDEs as linear wave equations, and to this purpose, the energy based analysis has proved
very efficient [17] and will be followed in the present work.

In this work we construct and analyse local time discretisations that gather in an original framework both local
implicit time discretisation and conservative implicit LTS. Moreover:

— We show that the proposed time discretisations provide, under some regularity and stability conditions,
second order space-time convergence, in a strong norm (for scalar wave equations, it provides convergence
for the H!-norm in space).

— We provide extensive numerical convergence experiments for a 1D scalar wave propagation problem. The
results show that our approach provides better space-time convergence properties, in the H'-norm, than
existing LTS approaches. In particular we study some situations where the LTS of [19] converges in A3/2
in L°°(0,T; H'(Q)) whereas our approach always provides second order convergence.

The outline of the article is the following. In Section 2 we give all the necessary notations and assumptions
related to the discretisation in space of linear conservative wave type problems. Section 3 is devoted to the
introduction of a class of time discretisations — parameterised by two polynomial functions P, and P}, — for which
we show stability and second order space-time convergence results under some assumptions on the parameters
(i.e. the coefficients of the polynomials P, and Pj) and some CFL conditions. In Section 4 we first present
two preliminary applications of our discretisation framework. By adequately choosing the polynomial functions
P, and Py, we construct a local implicit time discretisation (Sect. 4.1) and, in Section 4.2, a first local time-
stepping scheme (with a ratio 2, see Sect. 5.2 for an accurate definition of the term ratio). Finally, in Section 4.3
we propose a strategy to construct general local time-stepping schemes. This strategy is based on the use of
Chebychev polynomials (more precisely on Leap-Frog Chebychev method as introduced in [24]). Space-time
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numerical convergence results illustrate the developed theory for 1D test cases in Section 5 and for 2D test
cases in Section 6. Finally, in Section 7 we compare our approach algorithmically to other local time stepping
strategies: we first compare our approach numerically with the Fully explicit LTS of [19]. Moreover we explain
why the proposed schemes can be seen as a generalisation of the ones proposed in [17].

The source code used to obtain convergence curves of Sections 5 and 7 are available as supplementary materials
at the web link [44].

2. SEMI-DISCRETE WAVE PROPAGATION PROBLEM

We are interested in the simulation of coupled linear wave propagation problems. The most simple example
one could think of is given by the following problem: being given a bounded connected open domain €2 partitioned
as two disjoint connected domains Q. and Qy, find u.(t) € H'(Q.) and us(t) € H'(Qy), for all t € [0,7] such
that

Pue — V- ueVue = fe in Q,
(2.1)

8tQUf—V'usUf=ff in Qf,

with for instance homogeneous Neumann boundary conditions on the domain’s boundary
Vue-n=0o0n0d0.NIY, Vuyr-n=0on0dQ;NoQ,
and some transmission conditions on the complementary boundary X, that satisfies ¥ N 9Q = 0,
Ue =Up, MeVUc-n=prVur-n onX=08,N0N,

where n is the outward unitary normal of €2.. That is completed with initial conditions for u. and u; and their
time derivative. The scalar functions p. € L>(Q.) and py € L>(£2y) are positive and bounded from below. Such
problems find applications in the wave scattering by obstacles and are of interest for modeling non destructive
experiments for instance.

2.1. Continuous abstract formulation and main assumptions

In the following q stands for either ¢ or f.

In this section we formulate the coupled wave propagation in a more abstract framework. To do so we use
notations from [16], chapter XVIII, and [6]. We assume given Hilbert spaces (Hy, V). The space H, is equipped
with the scalar product (-, -)4, the norm in H, is denoted |- |, whereas the norms on V;, is denoted ||-||,. Moreover
we assume that V; is dense and continuously embedded in H,. We assume given a continuous hermitian bilinear
form a4 : Vy, x V4 — R that satisfies for some real positive scalars ¢, and Cq,

ag(v,v) >0 and CZHUHQ < Cylvlg + ag(v,v), YveV,. (2.2)

We assume also being given another Hilbert space L equipped with the norm || - ||, as well as a continuous
bilinear form b,(v,A) on V, x L. We consider the following abstract wave propagation problem:

Let f. € C°([0,T],H.) and f; € C°([0,T], Hy) be given, find (u.(t),us(t),A(t)) € V. x V; x L solution, for
all t € [0, 7], to the coupled system of equations
d2

de?

a2 (2.3)
a2 (wrvp)y +ag (ug,vp) = by (v, A) = (frovp); Vop €V,

(ucvvc)c"_ac (ucavc)"_bc (Um)\) = (fcaUc)c v’Uc € ‘/::7

bc(ucvﬂ’) :bf(uf,ﬂ) V/J € Lv
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that is completed with initial conditions for u. and uy and their time derivative. Note that the scalar wave
equation problem (2.1)—(2.5) enters the abstract framework presented above by choosing

Hq:L2(QQ)’ V;]:{UEHI(Qq)L L:H_1/2(E)7
where H, is equipped with the standard L? scalar product, and for all u and v in Vy and for all X in H -1 (%)

aq(u,v) = (Kq Vu,Vv)q, by (v, A) = (Vs N e (s, m-1/2(x)-

However, the setting we consider is rather general and for instance elastodynamics equations could also enter
the abstract framework by writing transmission problems (continuity of displacements and stresses) and using
vectorial forms of all the spaces and scalar products introduced. Moreover the abstract structure is also adapted
to the domain decomposition method with overlapping introduced in [1] to deal with scattering problems in
transient acoustics.

System (2.3) can be rewritten in a more compact form using the following notation: bold letters are used to
define unknowns in V.=V, x Vy, e.g., u = (u., us) and we introduce the bilinear forms

a(w,v) := ac(ue, ve) +ap(ug, vp), (W, 0) = (e, ve)e + (ug, vy)y

as well as b(v, A) := bo(ve, A) — by(vy, A). Then (2.3) can be recast as: find (u(t), A(t)) € V' x L solution to

(u,v) + a(u,v) + b(v,\) = (f,v) veV,

de? (2.4)
b(u, ) =0 we L.
We complete (2.4) with initial conditions
d .
U(O) = Uo, 7“’(0) =ux m V7 b(’ll,o, M) = b(ula:u) = 07 ne L. (25)

dt

Existence and uniqueness results for this abstract problem rely on the assumption that a so-called inf-sup
condition holds. More precisely we assume that there exists ¢, > 0 such that

) b(v, \)
inf sup ————— > ¢p. 26
XeL yev ML [Jv]| Y

where [[v[|* = [[vc||2 +[lvg[|7 (similarly we denote by |- | the composite norm in H = H,. x Hy). Notice that this
condition is the same encountered in steady domain decomposition problems. We refer the reader to Chap. 7
of [5] for a proof. We do not provide here proofs of existence and uniqueness for such problems — they rely on
energy analysis and/or Laplace transform — and refer, for instance to the work of [1,3] for related analysis. See
also the Appendix A of this manuscript for more details on the matter. We assume that the solution has the
following properties

Assumption 2.1. There exists a unique
(w,2) € CY(0,T]; H)nC3([0,T; V) = C*([0,T}; L) (2.7)
solution to problem (2.4) and (2.5).

2.2. Discretisation in space, main assumptions and stability estimates

We introduce the family of finite dimensional Hilbert spaces {Vg p}n>o with Vg, C V, and L, C L. The
space V5, (vesp. Ly) is equipped with the scalar product (, )4 (resp (, )r). As usual, the subscript & is devoted
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to tend to 0 and represents an approximation parameter of Vg, to V, and Lj to L. For each h we define the
operator Agp as Agp : Vo — Vgn and

Agptup — Agpup such that  (Agnun,vn)q = aq(un,vn), Yon, € Von
Inequality (2.2) implies that the operator A, is self-adjoint and positive semi-definite. Its spectrum, denoted
Sp(Aq.n), is composed by a finite number of non-negative eigenvalues. The spectral radius is defined as the
maximum eigenvalue in the set Sp(4,.1), i-e.,
Pg.h i=maxSp (Agp) .
We also introduce the operators By, : Vi, — Lj and Bé,h tLp— Vg as

(Bq’th’h, )\h)L = (thy,h/\hvvth)q = bq (’Uq’}“)\h), V’Uq’h € V;],h and VA, € Ly,.

As done previously we define V', = V., x V;, and represent by bold letters unknowns in V. The semi-discrete
equation we consider reads:

Let f;, € CY([0,T],V,.n) be given: find (up(t), \n(t)) € Vi, x Ly, and solution, for all ¢ € [0, T, of

d2 .

dtzuch+Achuch+BCh)‘h_fch 1 V;Ju (CL)

d? . 2.8
dt2ufh+Afhufh_th/\h_ffh mn Vfﬁ, (b) ( )

Bepucnh = By pusp in Ly, (c)
together with the initial conditions

d

&Uh(o) =win 0 Vi, b(uopn, p) =b(urn,p) =0, p€ Ly (2.9)

up(0) = uo,p,

In the rest of the work we assume that the following discrete inf-sup condition holds

b A
mf sp @A) o (2.10)
An€LL eV, ||)\h||L ||’Uh||

where C} is independent of h. Since discretisation by finite elements of wave equations is now a well understood
subject, most of the difficulty in constructing System (2.8) is to choose L, such that (2.10) holds. In fact,
(2.10) is not a consequence of (2.6) and this question requires dedicated analysis. On this specific topic, we refer
the reader to [4,28,41,42] for reference work concerning the mortar finite element method, that is a domain
decomposition method without overlapping, and to [1], for a work concerning a domain decomposition method
with overlapping.

Assumption 2.2. There exists a unique solution (up,\p) to (2.8), it satisfies wp, € C4([0,T); V) and \y, €
C?([0,T); Ly,) as well as the estimate

4
Z sup
m=

1 t€[0,T]

3

S| £ > sup

m—o t€[0,T]

m

dtm

uh(t)H <C (2.11)

where C' > 0 is independent of h.



1512 J. CHABASSIER AND S. IMPERIALE

To state a semi-discrete convergence result we introduce the discrepancy error
en(t) = u(t) — un(?).

Since the main focus of this work is the analysis of time discretisations of the semi-discrete problem (2.8), we
postponed the proof of the theorem below to Appendix A.

Theorem 2.3 (Convergence of the semi-discrete problem). Let Assumptions 2.1 and 2.2 hold. Let us define
the error term,

0n = lluno — woll + |un1 — uil
2 m 2 4
RANRAC inf (o — ——ult inf ||, — ——A(t
+t§£?ﬂ <|fh( ) +mZ::()”hu[eth o dtmu( )H +mz::(whl,reth = qem ) L) ’

then, there exists a scalar C' independent of h such that

sup |len(t)]] < Cop,.
t€[0,T]

Remark 2.4. For simplicity of analysis we have assumed that bilinear forms are evaluated exactly. However
the results presented in this work could be extended to take into account the use of quadrature formulae
for the computation of space integrals. Moreover, numerical convergence results will be presented using the
mass-lumping strategy which is obtained using specific quadrature formulae (see [12] or [10]).

3. TIME DISCRETISATION

The schemes we construct here can be seen as perturbations, for small time step At, of the standard centered
two-steps discretisation of system (2.8). The perturbations are defined by two polynomials Py (z) and Pp(z) to
be determined. In this section we first construct time discretisation with the minimum assumptions concerning
the properties that should be satisfied by the polynomials and then state a space-time convergence result. In
Section 4 some examples are given that show how efficient local time discretisation can be constructed from
adequate definition of Py (z) and Py(x).

3.1. Introduction of local time discretisations

We define the sequences {up = (ug;,u},)} and {A}} as the approximations of wy(t) and An(t) at time
t = nAt for a time step At > 0, and n € {1,2,..., N}. We define the final time of computation as T' = NAt.
These sequences are constructed by solving the following problem:

Let f, € C°([0,7],V}) be given, find ({ul}, {\1}) solution to

1 n -1
uZJi; B 2ucih + uzh n t n __ n :

At2 + ACJl’u’c,h + Bc,h)\h - fC,h (t ) m chah’ (a)

n+1 n n—1

U —2u%, +u
P- At2A fih fih fh
k ( fﬁ) A2 (3.1)

+Pp (At?Ay ) (Af,h {“?,h}1/4 = B nAn = frn (t”)> =0 inVppn, (b)
Benugy, = Bppufy, in Ly, (¢

where o )
n n n—
(0 by = L +2uf g, Fupy,

f,hJ1/ 4 ’
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with the initial conditions

0 1 At? 42 .
u, =Uop, U =Uop+ Atur,+ 5 @uh(O) in Vi, (3.2)
We give more detail in Remark 3.5 on how the term wuj can be computed.
The scheme (2.3) is consistent only if some conditions are satisfied on the polynomials Px(x) and Pp(z). Since
we want to construct perturbations, for small At, of the standard centered scheme it seems natural to do the

the following hypothesis.

Assumption 3.1.

Pi(0) = P,(0) = 1.
For stability reasons the time step At can not be chosen arbitrarily. A so called CFL-condition has to be satisfied
to obtain a stable scheme. In our case it corresponds to the assumption that follows.

Assumption 3.2. The following CFL-condition holds: there exists 0 < o < 1 such that

At =« (3.3)
\/pc,h
and
Pr(x) >0, Py(z) >0, Vzecl0,At*ps4]. (3.4)

Note that the spectral radius p.p of equation (3.3) is O(h™?) for regular discretization when standard finite
element methods are used, leading to a classical hyperbolic-type CFL condition. Note also that since

AtQpﬁh = 4a2 pfi, (35)
Pc,h
and because of Assumption 3.1, we know that there exists At small enough or equivalently « small enough,
such that (3.4) is satisfied for any fixed h. As shown later, these conditions ensure the positivity of a preserved
discrete energy.
We describe now more in detail an algorithm that computes the solution to (3.1). At each iteration, one needs

to compute the Lagrange multiplier A} first, then compute u;“;l and u?ﬁl More precisely, using the property
that
n oo ARG 20, g
Winhpp=ujpp+——"——Fxp (3.6)
we can re-write equation (3.1b) in the following form
un+1 o 2un 4 un—l
h h h -
b DL Py (AP A ) (Apafp = BEA, = frn (1)) = 0, (3.7)

with
2 At? 2
Df7h =P (At Af,h) + 74 Pp (At Aﬁh) AfJL.
Note that Dy, is a positive symmetric operator — hence invertible — if equation (3.4) holds. We now use a Schur

complement technique: applying the operator By, to equation (3.7), applying the operator B, to (3.1a), we
obtain by subtraction and thanks to (3.1c) the following system for the Lagrange multiplier A}

(Bc,hBﬁ,h + BynD5 Py (AP Ay ) ch,h) Ay = Benfen (t") = BenAcnugy,

+ Bf,hD;}L Pp (At2Af7h) (Af,h u?h — ff,h (tn)) . (38)

The well-posedness of the above problem is a consequence of the surjectivity of either B, j or By which is a
consequence of the inf-sup condition (2.10). Assuming that u't , and ug , are known, then A} can be computed

using (3.8), it follows that u}”,;l and u?j;l can be computed using respectively (3.7) and (3.1a).
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Remark 3.3. A drastic simplification occurs when

Pp@).
4

Polz)=1—2 (3.9)

In that case Dy, is the identity operator on V5 and the volumic unknown u?ﬁl can be explicitly updated.

Remark 3.4. With the choice Pp(z) =1 and Pr(x) = 1 — /4 we obtain a standard coupled explicit leap-frog
schemes. It is not difficult to prove that the corresponding stability condition reads

4 4
At? < min ( ) : (3.10)
Peh Pfh

Condition (3.10) is penalizing since it depends in the same way in p. and py; but the latter can be large
compared to p¢ p.

Remark 3.5. The computation of the initial data using formula (3.2) involves the computation of the term
d?u,(0). This term is obtained by evaluating (2.8) at time ¢ = 0. More precisely, we have

Ic,h 0 Bi h d?uc,h(o) fc,h(o) - Ac,h Uc,0,h
0 Ipn B, | | durs(0) | = | frr(0) = Apnugon | - (3.11)
_Bc,h Bf7h 0 )\}L(O) O

Using a Schur complement, the Lagrange multiplier is given

(Bew Bl j, + BpnBj ) An(0) = Ben (fe,n(0) = Acntico.n) — Brn (fr.n — Afntiron) -

As already mentioned the well-posedness of the above problem is a consequence of the surjectivity of either
B, or Byp which is a consequence of the inf-sup condition (2.10). Once Ay (0) is computed, the value of
d?u,(0) is obtained easily from (3.11). Finally note that the initial data satisfy by construction the constraints
Bc,hug’h = Bﬁhu(}’h and BCahu}:,h = Bﬁhu}c’h.

3.2. Space-time convergence analysis

We define the error terms e} = (e, €} ;) and £} as
ey =up (t") —up and £ =N\, (t") — AL

In this section we show that the terms ej tends to 0 as h and At go to 0. More precisely we show that under
Assumptions 3.1, 3.2 and 3.7 (given below) we obtain a uniform estimation with respect to At and h in the
norm L>(0,T; V) of the error in O(At?) + O(8y). The section is organized as follows

— Definition of the consistency errors: we write a system of equations for the sequence e, €% and £} that is
similar to (3.1) with source terms that correspond to consistency errors that we will then specify.

— Energy identity for the error equation: we proceed by energy analysis and write an energy identity satisfied by
the error terms ey, and e? ;. The introduced energy is positive under the CFL-condition of Assumption 3.2.

— Stability result: we prove that the energy associated to the error {e}'} is stable. To do so we use a discrete
by-parts integration and a discrete energy analysis including the use of a discrete Gronwall’s lemma.

— Space-time convergence results: using Theorem 2.3, we deduce space-time convergence results in the norm
L*>(0,T;V),
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3.2.1. Definition of the consistency errors.

We always assume that Assumption 2.2 holds and therefore that the solution is sufficiently smooth, in

particular,
up € 04([07T]; Vh)

With this assumption, all the manipulations and expression used below make sense in a standard continuous
setting. Using equations (2.8) and (3.1) we obtain, for n € {1,2,...,N — 1},

n+1 n n—1
ec,h - 26c,h + ec,h

AtQ + Ac’hez’h + Bé,héz - 'I”Zh in ‘/CJ'H
et —2en, et (3.12)
fih fih fih n m n .
Pk (AtZAﬁh) A2 + Pp (AtQAﬁh) (Aﬁh {ef,h}1/4 — B},hgh) = rﬁh m Vf,h,
Bc,hezh = Bf,he}lﬁ in Ly,
with the consistency errors given by
" Ue,h ) — 2uc,h ") + Ue,h g1 " " "
Teh = ( ) Atg ) ( ) + Ac,huc,h (t ) + Bz,h)‘h (t ) - fc,h (t ) (313)
and
n > upp (") = 2upp (t") +upn (")
rn =P (A Ap) AP
+Pp (AP Af ) (Apn{upn (") ija — By (") = frn (7)) . (3.14)

Standard Taylor expansions allow us to simplify equations (3.13) and (3.14). There exist intermediate times

(™9t ® %) with
tn—l < tn,Q?’tn,Q’tn,& < tn+1

such that, using equation (2.8a),
At? d*

'I“Zh = ﬁguqh (t’n”@) (315)

and

d2
i n = Pr (A2 App) qarn () + Py (A2 Apn) (Apnupn (") = By (") = frn ()
At? d* N At? d? n
+ szk (At2Af7h) @Uﬁh (t ") + TPP (At2Af7h) Afﬁ@ltﬁh (t "") .
Then using equation (2.8b) one can further simplify 7, as

2

d
rin = (Pu(APAr) = Py (AP Apn)) Tzt (E)

At? d4 At? d?
—Pr (AP As ) — )+ =P, (A2 Ap ) Af s %y
+ 33 Pe (AP AgR) s (10%) + =Py (AP Apn) Apn gz ()
If Assumptions 3.1 and 3.2 hold then there exists a rational function Q such that

d? d?
(P (At Ap ) =Py (A2 Apn)) tupn (") = ACP, (AP App) Q (AP App) Apn gz urn (")
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where Q(z) is given by
Pr(x) = Pp(z)

Q(x) :== P, (x) . (3.16)
The consistency error r ), has then the final expression
. A2 d* N At? d? n
T = E'Pk (At2Af7h) @Uf,h(t "‘) + T'Pp (At2Af,h) Af,h@u)gh (t ’*)
d2
+ AtQPp (AtzAf,h) Q (AtQAfvh) Aﬁh@uﬁh (tn) . (317)

3.2.2. Energy identity for the error equation
To obtain an energy identity on the error equations (3.12)—(3.15)—(3.17) we use a standard discrete energy
technique. The main ingredients of the strategy is to observe that, if Assumption 3.2 holds then
At?
fen ==
is a non-negative symmetric operator. Moreover, with the same assumption, if we introduce the following
notation,

Ac,h

R(z) := Pp(m)_lpk(az) (3.18)

then R (At*Ay ) is well defined and is a non-negative symmetric operator. Note that from (3.18) and (3.16)
we deduce that R() -1
) —
Qa) i= =
x
After standard algebraic manipulations (similar to the computations done in [7]) one can show the following
lemma.

Lemma 3.6. Let Assumption 3.1 and 3.2 hold. Then, forn € {1,2,...,N — 1},

(3.19)

gnzl/2 N gn;1/2 gn+1/2 o gnfl/Q en+1 o en—l B en«l»l o 6”71
c, c, fih fh _ n c,h c,h n 2 1 ©fh fih
At + At = ’I“CJ” 72At + Tfyh,,Pp (At Af,h) 72At , s (320)
with )
3 ontl +1
nttje 1 7 At2A 2 e —eln 1 4L/ enn teon 91
N N R At 2 |Teh 2 ’ (3:21)
C C
where Iy, is the identity operator in H., and with
2
1 st —et, 1| a€fn +etn
ETE = SR (A2 Ay ,)? LIy ST LT 3.22
fih 2 ( f,h) At ; + ) fih 2 ; ( )

Proof. For the sake of conciseness, we only list here the main steps of the proof:
— compute the scalar product (-, ). of the first equation of (3.12) with
€k~ %on’
28t
— compute the scalar product (-,-)s of the second equation of (3.12) with
n+1 n—1

e — €
AtZA —1%fh fih
7DP ( f,h) 2At ?
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— sum the two obtained equations and use the third equation of (3.12) to get rid of the term involving ¢".

— observe that 5:21/ ? and 8;};1/ % are positive quadratic energy functionals if Assumption 3.2 holds.

3.2.8. Stability results.

To obtain meaningful results we need more assumptions on how the spectral radius of A;; behaves with
respect to h compare to the spectral radius of A, ;. More precisely we assume the following property

Assumption 3.7. There exists 3 independent of h such that

Prh o g2 (3.23)
pc,h
Let us now suppose that Assumption 3.2 holds. We introduce the positive scalar Cr, independent of h, as
Cr:= sup [|R(z)], (3.24)
z€[0,4a232]

where R(z) is given by (3.18). Since At?py , < 4a?(3% one can show that for all vy, in Vy,, the following inequality
holds . .
"R (AtzAf’h) 2 ’Uh‘f < sz|vh|f.

Moreover we define Cg, independent of h, as

Coi= sw |0@) (3.25)
z€[0,4a2 2]
where Q(x) is given by (3.19). Again, since At?ps ), < 40?3 one can show that for all vy, in Vy, the following

inequality holds
|Q (AtzAﬁh) ”Uh|f S CQ|1)h|f.

Theorem 3.8. Let Assumptions 2.2, 3.1, 3.2 and 3.7 hold. Then, there exists a scalar C independent on Py,
Py, At and h such that we have forn € {1,...,N},

(5}*,;”2)% + (52;1/2)% <0 (1+0}+0o) ((5}(,3); + (sjf)% + At2> . (3.26)

Proof. In what follows the scalar C' — independent on Py, Pp, At and h — is allowed to change from one line to
the other. After summing equation (3.20) over n = 1 to n = N — 1 and taking into account equations (3.15)
and (3.17), we find

N-1/2 N-1/2 1/2 1/2 —_ —
e el P <e e+ on (B +2f + 1Y +AY)

c, c

N—1 n+1 n—1

- d* e —€un
=N = At (u W (V) S )
(&

where
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The proof then proceeds in five steps. One step for the estimation of each of the four terms above and a final
step that collects all the obtained estimations in order to obtain (3.26) using a discrete Gronwall’s lemma.

Step 1. Estimation of Z%. Following the proof given in [8] (proof 2.4 of Lem. 2.3 and appendix) it is possible
to show that o .
n n—
ec,h - ec,h

~ <2(5”+1/2) +2 (5" 1/2) . (3.27)

(&

It has to be noted that this inequality holds uniformly with respect to the time step (in the limit given by
Assumption 3.2) and in particular it is valid if At = 2/,/pc ;. This result is not trivial: it is proven using
a decomposition into low and high frequency components of the solution u. 5. Then using Cauchy-Schwarz
inequality and the estimate (3.27), as well as standard algebraic manipulations, one gets

en{];l _ enhl
2V <A (1™ [ 3.28
¢ = ; dt4uCh )c 2AL (3:28)
4 N-1 / 1
<C sup | ——uen(t)] At (53*1 2) : (3.29)
tefo,7] | dt* . nz:% "
Using the stability estimate (2.11) we obtain
N—1 1
n 2
=N < CAt (50;1/2) . (3.30)
n=0
Step 2. Estimation of Z¥. Writing e}”gl — e;? hl = e?}bl — ey et — e?;ll and using the symmetry of
R ( tQAf,h) one can show, with the Cauchy—Schwarz and triangle inequalities, that
N—-1 n+1
At 1 d4 1e — e’
=N 2 S 24 f.h Fh
=F S? R(At Afyh)2 dt4ufh(t ) |R(At Aj,h)z T
n=1 f f
) 1€}y, — e}’;l
+ IR (At Af h) 2 : (331)
’ At
f
then, since by definition of the energy (3.22) we have
2 1 6}”}21 —€fn n+1/2 B
R (A As) " LT <2 (g711%)
f
we can simplify (3.31), and we obtain
V2 = 9 14t - nt1/2\ 2 n—1/2\ 2
=y R(AAsp)* Tqupn (07%) ; <(5f, ) B (5f,h ) >
- (3.32)
OC% d4 ( )’ A Z_:l 51’7,—‘,—1/2 %
< sup |—=——urn(t t ( ) .
Rte[o,T] de? 4 "0 Fh
Using the stability estimate (2.11) we obtain
N-1 1
1 2
= <cciay ()7 (3.33)
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Step 3. Estimation of H}V . The difficulty here is that one can not expect in general to have a uniform bound
on As pd?usp(t) in the norm in Hy. The standard strategy is to use the following equality

1 1
(Aﬁhuh,vh)q = (A;,h“th;,hth’ V(uh,vh) € Vg X Vo, (3.34)
then, a discrete by part integration in time. The objective is to “exchange space and time derivatives”

between the error term and the solution to the semi-discrete problem. The by-part integration in time is
done using the following algebraic rule: for all sequences of real numbers {v™} and {w"} we have

N-1 N-2
Z ,Un(wn—H _ wn—l) - _ Z (Un—i-l _ Un)(wn+1 + wn) + UN_l(’LUN + ’LUN_l) _ ’Ul(wl + wO). (335)
n=1 n=1

We apply the above equality to the term Hj‘\-/ and use property (3.34) as mentioned. We obtain

N-2 3 n+1 n
Az d2 d2 e +ety,
HN - _ At fih [ S tn+1,.$ = tn’* A2 “fh T Cfh
’ ;1 ar \agten 70F) = g (%) )5 A7 =7
- f
1 d2 No1.a 1 e}\fh+e?f;1
+ <A;,hdtguf>h (2 Af -5
f
1 d2 1 el h + 60 h
- (A?,hdﬁuf,h (th%), Af, ) (3.36)
f
Moreover using the mean value theorem we find that
1
Az d2 d2 1 d3
f,h n+1,& n,de D)
il grtldy t < Az, — t)] <C, 3.37
Al (dt2 upn (t"7F) = s ( )) < S (Al gt )‘f (3.37)

and by the definition of the energy (3.22) one gets
€fh +€hn

1
A;,h )

<3 (g)
f

Injecting the estimate above as well as estimate (3.37) into (3.36), one obtains after using Cauchy—Schwarz
inequality
N—

1 1 1 1
N N—1/2)2 1/2) 2 +1/2) 2
) gc((em )+ (g%) >+C’At > (&) (3.38)
n=1
Step 4. Estimation of A;cv . A similar strategy than for the estimation of H;V can be applied. For that it is
essential to observe the following property

Q (APApy) Apn = A2, Q (APAp,) A2,
that can be proven by diagonalisation of the operators involved on the family of eigenvectors of A ;. Then
the same proof as in step 3 can be used. We obtain
1 1 N-1 1
AY < 0 ((‘%1/2) (g ) +CCo At Y (£1717)7, (3.39)
n=1

where Cg is given by (3.25).
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Step 5. Final energy estimate and Gronwall’s lemma application. Combining inequalities (3.30), (3.33), (3.38)
and (3.39) obtained above, we find

gC]?,h,l/Q +g}\"};1/2 <C (51/2 +51/2) +CAt? (14 Cp) ((g;\’]huz)% + (5}/’3)2%)

+ O AL Ni <(5;f;fl/ 2)% + (1+C4+Co) (£7517) i’) . (3.40)

n=0
Then using Young’s inequality we write that

C? At*
<

— 1 o
C A2 (1+Cg) (5 1/2) (L+Co)* + 5&75 %,

for m =1 and m = N, and, using the above estimation into (3.40) we obtain

1 ) N-1
e Prel P <o (51/2 + 51/2) +C(1+Co)2 At +C (1 +C2+ CQ) N (5”“/2 + 8”*1/2) . (3.41)
n=0

To conclude let us use the following discrete Gronwall’s lemma (see proof in Appendix B): for any real

positive sequences {v™} and any positive scalar numbers A and B we have, for all m > 1,

m—1
VIS A+BY (M) = (mTHE<A

n=1

-
Nl

+(m—1)B, (3.42)

1
where we use the convention that the sum > (v™)2 is equal to zero for m = 1. Applying this result with
= €n+1/2 + 5n+1/2 in (3.41) we obtain, after some algebraic manipulations, the result of the theorem

(note that we use the property (N — 1)At < T).
O

Estimate (3.26) shows that it is important to obtain reasonable bounds on the coefficients Cr and Cg.
In particular, if P(z) has some roots then these coefficients may blow up. This is the main difficulty that is
addressed in Section 4.3.2 when constructing polynomials for explicit local time discretisation.

3.2.4. Space-time convergence results.

Corollary 3.9. If the assumptions of Theorems 2.3 and 3.8 hold, then, there exists C independent of At and
h such that, for alln € {1,...,N —1}

H{uptija —u ()] <C (At2 + 5h) . (3.43)
Proof. In the proof the notation C refers to a positive scalar independent of At and h than can change from
one line to another. Our first objective is to estimate
et —ep!
2At

by the energy terms. To do so we use the theory developed in [8] that relies on a separation of the unknowns
into two orthogonal subspaces spanned by the eigenvectors of the matrices A, and Ay j. It is then shown in

[8] that (3.27) holds, i.e,
<2 ((sgf;l/?)é + (5;fh1/2)é> .

C

n+1 n—1
ec,h N )

2At
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To show that a similar identity holds for (e’}zl — e fh 1)/2At, we check the hypothesis 2.2 of [8]. More precisely,

since R(0) = 1 one can check that there exists n > 0, Cxx > 0 and Cp > 0 such that
Cx <R(z), Vzelo,n], Cp<az Ve (nda’s?,

then, following the proof of Lemma 2.3 in [8] we obtain

—1/2 0;51/2 41/2\ 2 _1/2\ 2
< |0+ - \/i((ef?h )+ () )
Combining the two estimates above we obtain,

<o (@) ). (@) - )t @)’

From this inequality we deduce straightforwardly that

B?Jﬁl - e? hl
2At

f

n+1 n—1
€n — €,

2At

n+1 + eh
2

1, .0
e, te;

<
- 2

+0At§n: (s;”“”)%, Vne{l,--,N—1}

m=0

Observe now, thanks to the coercivity (2.2) of the bilinear forms a(-,-), that for all n € {1,..., N — 1},

n+1 n+1 n+1 n n—1
+ ey + e} +1/2 n + e} e, +e
PP res™ md e < P >
We obtain
h+eh nt1/2 =/ pmt1ya) 3
lHephal < |22l w0 sup €77 roary) (sh ) . (3.44)
n€{0, - ,N—1} m=0
We now study the initial terms 62 and e,ll. By definition we have
At a3
eh =0, e} =up(At)—uj = T@“h(t‘)
where 0 < t® < At. Thanks to Assumption 2.2 we have a uniform bound of uy; in C3([0,7], V) for the
supremum norm in time and || - || in space, moreover we have
0 1 0
g2 <c Ateh 2T hence £ < 0nr

Then, estimation (3.44) can be simplified using Theorem 3.8 and the above estimation of 8}/ *. We obtain

ne{0,--- ,N

[{el}1/4]l < C (At2+0 sup }5’,:“/2> = |{er}ial < C AR (3.45)
-1

The statement of the corollary is obtained using an adequate decomposition of the difference {w}}1/4 — u (")
and triangle inequalities. More precisely we have

{ub s —w (@) < [{eh}all + [{un () F1/a — un @) [ + llen ) ],

where the first term can be estimated by (3.45); the second term is uniformly bounded (with respect to h) by
At? since uy, € C%([0,T], V) and (2.11) holds; and the last term can be estimated using Theorem 2.3. O
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Corollary 3.9 means that the “good” quantity that approximates w (t") is uj, = {u}}; /4- One way to obtain
this quantity is by post-processing the obtained solution, a more efficient approach is to compute it directly,
indeed, by linearity u), can be computed solving (3.1) for n € {1,..., N —2} with source term }'Z ={fnt")}1/a
instead of f), (¢") and with initial data

0 1 2 1 2 3
u, +2u;, +uj aQ_uh+2uh+uh.

~1
“n = 1 v Uh T 1

This involves only a small change in the computation of the source terms and the initial data in (3.1) but allows
to recover the expected estimate |[u, —u (¢") || = O (A? + 63).

4. DERIVATION OF LOCAL IMPLICIT OR EXPLICIT TIME DISCRETISATIONS

In this section we derive three specific local time discretisations that enter the framework described in
Section 3. The presented schemes are of increasing complexity and are constructed assuming p.n and psp
known.

4.1. Local implicit scheme

Local implicit strategies for wave equations have been developed and analysed by several authors, see for
instance [18, 21, 30, 39]. Moreover in [7] a second order and a fourth order local implicit time discretisation
adapted to domain decomposition have been constructed. The second order method of [7] fits naturally into the
family of discrete problems (3.1) that we have constructed. It is obtained by choosing

Pr(z) =1 and Py(z)=1

With this choice, Assumption 3.2 holds for any 0 < a < 1. Moreover we have
Q(x)=0 and R(z)=1.

The complete scheme reads

utt — 2ul, + u?;l

h ) .
: A + Acpully, + BL AR = fon (t7) in Ve,
gl = 2up, +up! , (4.1)
L A ufa)y = Br N = fra () in Vi,
Bc,hu?’h = Bf,hu?’h in Lh.

Notice that this means that the first equation of (2.8) is discretised with an explicit leap-frog scheme, while the
second is discretised with an unconditionally stable implicit 6-scheme with § = 1/4. It has been shown in [7]
that at each time iteration, one needs to solve the following problem

aelon+ 34 =Biw \ (uit™\  (fia (4.2)
By B!y Ben) \ A i)

where Iy, is the identity operator in Vy ;, and where f}’: and g; are some source terms that depend on previous
iterates and of f; (t"). The invertibility of the above system is guaranteed if the discrete inf-sup condition
(2.10) holds as explained in Section 3.1. Since Q(x) and R(x) are independent of = then Cg =0 and Cg =1
are obviously independent of 3 that can be arbitrarily high (hence the ratio ps5/pe,n can be arbitrarily high).
Finally, the application of Corollary 3.9 proves the space-time convergence of (4.1).
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Note that, when applied to the wave equation (2.1), solving System (4.2) corresponds to solving the wave
equation in {2y with an implicit scheme augmented by some operator acting on boundaries that accounts for
the transmission of fluxes between (2. and Qf as well as the equality between u. and uy on 3. This scheme is
particularly adapted if a very strong and very local heterogeneity is considered in the propagating medium. In
that case (4.2) is not well conditioned but the algebraic system has a small size and can be solved efficiently.

4.2. Stabilised explicit scheme

Our objective in this section is to construct a time discretisation that allows to treat situations for which we
have

P < 4pen, (4.3)

that is to say 8 = 2 in Assumption 3.7. Note that we expect py ) ~ 4p. p for the scheme to be meaningful and
efficient. For instance, in the case of standard Pj-finite elements on a uniform mesh for the scalar wave equation
(2.1), if the mesh size used to discretise Q; is two times smaller than the mesh size used to discretise €., we
have Pf,h = 4pc,h-

The scheme is constructed by choosing

Pp(x) =1- 16 (4.9)
and setting
Pk(x)zl—xppix) =1—§+% <= <§_1)2>' (4.5)

With this choice, scheme (3.1) is explicit (see Rem. 3.3). The complete scheme reads

un}tl _ 2unh + un;l .
- Ach2 LI Ac,huzh + Bih)\z = fen (t") in V.,
u’;‘zl —2uf},, + u?;l
At (4.6)
At? . .o § .
+(Trn = S Arn ) (Apnfg = Biadh = fra(t) =0 in Vi,
Bc,huzh = nyhu’fih in Lh~

Observe that at each time iteration, computing A}l requires to solve:

At? ,
<Bc,hB§,h + By (If,h - 16Af7h> B},h> h = Benfen (t") — BenAcnugy,

2
+ By (If,h - AlgAf,h> (Apnufy = frn (™).  (47)
Then A} is used to compute u?‘gl and u;}‘,‘;l explicitly using the first two equations of (4.6). The well-posedness
property of (4.7) is a consequence of the discrete inf-sup condition (2.10). To apply Corollary 3.9 one needs to
check that Assumption 3.2 holds. Since we have assumed 8 = 2 (i.e. psn < 4pc,n), we need to check (3.4),
which reads, using (3.5),
Pr(z) >0, Py(xr) >0, Vxel0,16a7].

From the definition of Py (z) given by (4.5) (see Fig. 1) it is clear that Py (x) > 0 for all positive o < 1 (it has a
double root at « = 8). However from the definition of (4.4) we see that P,(z) > 0 only if « is strictly less than
one, moreover we have

Q) = 2=, R(z) = —+"% (4.8)
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1
- PP(I)
0.8} | Pr(x)
— Q()
0.6 1]— R(z)
0.4} .
02} .
0 ,,,,,,,,,,,,,,,,,,,,,,,,
702 | | |
0 5 10 15
T

FIGURE 1. Representation of P,(x) defined by (4.4), Py(x) defined by (4.5) and Q(x) and R(z)
given by (4.8).

and therefore

1 1
Cgo = max )| ~ = max [R(z)] ~ —
© 7 2e0,1602] (=)l a—1 16(1 — a?) R ze[0,16a2]| ()] a—1 (1 —a?)

This estimate illustrates that the value o = 1 is forbidden to apply Theorem 3.8. However we will see that in
practice a value really close to 1 gives satisfactory results (to back up this claim, several space-time convergence
curves for different values of «v are presented in Sect. 5.2). To conclude, we have constructed a time discretisation
that is stable and convergent if psj < 4p.j and At is chosen strictly below the optimal value 2/, /pc.p.

4.3. Local time discretisation using the Leap-Frog Chebychev method
4.3.1. Principle

In the same spirit than Section 4.2, we construct now a method that can be characterised as a conservative
local time stepping technique with an implicit treatment of transmission terms. As in Section 4.2, the unknown
u j, should be explicitly updated, hence following Remark 3.3, we assume that Py (z) satisfies

P
Prlz)=1-=x #~ (4.9)
The complete scheme reads
n+1 n n—1
u, g —2ul, +u, )
s Aenuly + B = fon () i Ve,
n+1 n n—1
uly = 2uf, Uk, " , ) (4.10)
T Py (AP Ap ) (Apwufp = By = frn (1) =0 in Vi,
Benugy, = Bpauf in Ly,

We do not yet specify the polynomial Pp(z), but from Assumption 3.1 (consistency assumption) we must have
P,(0) = Pr(0) = 1. Notice that by definition (4.9) we have

Pp0)=1 = Pu(0)=1.
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Our objective is then to construct a sequence of functions P, that satisfy the properties

Pp.e is a polynomial (4.11a)
Ppe(0) =1, (4.11b)
1—x Pp’fl(z) >0, vz € [0,4 5] (4.11c)
Ppo(x) >0, vz € 0,4 6] (4.11d)

for a monotonically increasing sequence By > 2. To satisfy Assumption 3.2 (stability assumption) it is sufficient
to check that

2
At? Pe,n = 402 o €[0,1] and At? prn < 437 = Pfh < 674”2 )
(35) Pe,h «

The last inequality means that Assumption 3.7 is verified with 8 = 3;/a. Observe that this is an improvement
compared to condition (4.3) associated to scheme (4.6).

In Section 4.3.2 below we present a procedure to construct the sequence of polynomials that satisfy the
property (4.11) for some increasing sequence of Gy. In Section 4.3.3 we apply the algorithm of Section 4.3.2
below and construct a family of polynomials for which we have

B2 ~3, B3~4 and (4~ 5. (4.12)

Remark 4.1. The stability condition of the scheme (4.10) with P, = P, can be rewritten

4 2
, 5@) - (4.13)
Pen Prh

At? < min (
Because of (4.12), this is clearly in improvement compared to the stability condition (3.10).

4.8.2. Construction of a parametrized polynomials sequence

To construct the sequence of polynomials that satisfy property (4.11) for a monotonically increasing sequence
B¢, we start from the polynomials introduced in [24] that correspond to shifted and stretched Chebychev’s
polynomials. They are given by

~ 2

Ppe(z) =~ [1 —To4a (1 - 4@3?1)2)] (4.14)

where 7;(x) is the £th Chebychev polynomial. The first polynomials are given by
T3(x) = 42® — 32, Ti(x) =82* —82° + 1, Ts(zx) = 162° — 202> + 5z,

hence for ¢ = {2, 3, 4}, we have

5 6 L o 5 20 8 5 1 4
Pp,2($)21—341'+3f61' ) ’Pp,B(l'):].—El"i‘EZE _478x s
~ 50 35 10 1

PP,4($) =1- yx + 576‘%2 — 758 5173 + 7510 IE4.

It is proven in [24] that the polynomials 75p7g(:c) satisfy

> M >0, ,ﬁ/p7£(m) >0 Ve [074(54- 1)2} . (4.15)
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4 T ~ g - /
3 [ I/ \\\\ /, Il -
L P — (a,b,e) = (1,0,0)
21 /I ' \\':“ ! ’/ B - (a,b, 5) = (1,0, 1)
II \ \\\ /I ,/ (av b 5) (15 -1 22 1)
/ NN r/ - (a,b,e) ~ (1.12,-1.22,1)
1l RGP |
| | | | | |
15 20 25 30 35

5 10
x

FIGURE 2. Representation of the polynomial zP, ,(z) given by (4.16) for £ = 2 and for different
values of the parameters (a, b, ¢) obtained by following the procedure of paragraph 4.3.2

2. An idea used in

The polynomials satisfy the good requirements that we have stated in order to construct the local time stepping
process, i.e. (4.11), except for the fact that the P, ((z) do vanish for some z < 4(¢ + 1)

[40] and [32] in the context of stabilisation of the Runge-Kutta method is to transform P, ;(x) to obtain the
required behavior (i.e. Pp¢(z) > 0). Note that a similar idea is used concurrently in the context of non-linear
wave propagation phenomena in [15]. We define the family of functions Py ,(z) parametrized by (a,b,¢) such
that, for € positive and sufficiently small
1 €
Piola) =~ ((1 - Z> (az + ) Pyelaz + b) + e) (4.16)
for various parameters values. Note

see Figure 2 for an illustration of a representation of the polynomial P¢

that if a =1, b= 0 and € = 0 one recovers P; , = Pp ¢
Let us suppose given 0 < ¢ < 4 small enough. We propose a procedure (see again Fig. 2) that computes
a = a° and b = b° such that Py, is a well-defined polynomial and consistency as well as stability are ensured.

Namely, one should check that equations (4.11) holds.
Step i. From the definition (4.16) one can check that P¢, is a polynomial if the a-priori blow-up at = 0 is
compensated, this means, that one should have,
(1”)1;673 ) +e=0 = b P, 0) c

(4.17)

B

It can be observed that b° is a root of polynomial of order ¢ + 1. However since the polynomial 2P ¢(x)

behave like the linear function z is a neighborhood of z = 0 for € positive and sufficiently small there exists
a real negative solution to (4.17). Hence, we choose b° as the negative solution to (4.17) with the smallest

absolute value. Note that we have b* — 0 when ¢ — 0
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TABLE 1. Computed values of a and b for given values of € and associated 35.

{ € b® a® B

2 1 —1.220497601922388  1.123332443935161  2.878
2 0.5 —0.548885078878804 1.055702443069509 2.941
2 0.1 —0.101795082372209 1.010360937184039 2.988
3 1 —1.214605698792632  1.112468647367209  3.828
3 0.5 —0.547676655750322 1.051055803796928 3.918
3 0.1 —0.101753177452728 1.009529277032937 3.984
4 1 —1.211812534393700 1.107473444638217 4.779
4 0.5 —0.547112834621174 1.048910062073242 4.895
4 0.1 —0.101733760636154  1.009144480323238 4.979

1527

Step ii. To satisfy Assumption 3.1, i.e. the consistency assumption, one must check that 77;’4(0) =1. To do so
we first differentiate (4.16) with respect to z, we obtain

and therefore

p,0(0) =

so@)+ 2 (Pog) (@) = (1 5) 0 (Pre (0o +5°) + (0w + %) Py (o + b°)

4

1 = da=

1

(1= %) (o) + 027, 0))

)

(4.18)

Note that for € positive and small enough the coefficient a® is well defined and close to one and we we have

a® — 1 when € — 0.

Step iii. The last step concerns the definition of 37 such that (4.11c) and (4.11d) hold. From the definition
(4.16) and the property (4.15) one can see that (4.11) holds for

274(€+1)2—bE

4(67)” =

a&‘

Notice that 87 — ¢ + 1 when ¢ — 0. Regarding stability, the resulting scheme indeed needs the constants
Cr and Cg to be bounded in order to provide second order accuracy in the [-[|, norm. If P; , reaches 0,

Cr and Cg degenerate. For the value of 35 given above, it can be shown that 4 (55)

depending on the parity of p.

4.3.8. Numerical construction

(4(5°) = 4= 4}

In this subsection we apply the algorithm explained above for £ = 2 to £ = 4. Since the proposed algorithm
is parametrized by e we choose € € {0.1,0.5,1}. Table 1 gives the values of (a%,b°) that are computed, along
with the corresponding values of 3;. The script used to compute these values is also provided at the web link
[44]. In Figure 3 we have plotted the obtained polynomials.

Remark 4.2. The process we have presented can be used for arbitrarily large ¢ however € should be chosen
small enough (and presumably smaller and smaller as ¢ increase) and in that case the constants Cg and Cg
will degenerate. Numerical results presented Sections 5.2 and 5.3 confirm the fact that it is necessary to have

o and C% bounded to obtain second order convergence in the norm || - [[,.
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4.8.4. Algorithmic discussion

In practice System (4.10) is solved by in three steps.

(1) Explicit computation of intermediate unknowns .} and u’y,; by

3)

n,* n n—1
Uep — 2uc,h + Ue h

+ Ac,hu?,h = fen (t"),

At?
e om i (4.19)
(O u’,h—i—u’h . N
: Aft2 Lo 4 Py (AP Apn) (Apaa}p — fra (t7) = 0.
The evaluation of the term
oo (AP App) Apnuf, (4.20)

requires £+ 1 evaluations of the operator Ay (i.e. matrix-vector product with its algebraic representation).
These evaluations can be done in two different ways, either by computing explicitly the coefficient of the
polynomials sze(x) and using Horner algorithm, or using the second order recurrence relation of the
Chebychev polynomials that can be derived from the definitions (4.14) and (4.16). For numerical stability
issues, this latter choice should be privileged if ¢ is large, however for small values of ¢ both algorithms
perform similarly and Horner algorithm is — in our opinion — easier to implement.

Computation of A} by solving

(BewBey + BraPy g (A2 Ap 1) Bf ) Al = Bepuyy — Baufy. (4.21)

Note that in the context of the domain decomposition method, the Lagrange multiplier A} corresponds to
an unknown discretised on an interface and therefore the size of the system to invert in (4.21) is limited.
Note also that, at the algebraic level, the corresponding matrix has a bandwidth that increases with ¢ and
is pre-computed before iterating (see Sect. 6.2 for more details on practical algorithmic aspects).

Computation of u?ng and u}”,rll by correction of w.; and u'y;.
+1 _ »¥ t
gy =gy = BLpAL, w2
4.22
+1 _ s 2
uph =+ Py (AP Apn) By AL
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This step involves ¢ evaluations of the operator Ay ;. This is clearly an over-cost compared to an ideal local
time stepping strategy. Note however that the term B}) »An may have a small support, this property is used
in practice to reduce the amount of computations needed in this step.

To summarize, the main complexity of the algorithm comes from — at each time iteration — the product

with the operator A, p, 2¢ 4+ 1 products with A and the solving step of (4.21). The time step being relaxed

7 o~ (+1 times, the proposed algorithm is especially efficient when the operator A. j is more costly to evaluate
than the operator Ay .

The proposed algorithmic complexity is the same as in the local time stepping introduced in [17]. The strategy
presented in [19] required a smaller number of matrix-vector product is required and no system must be solved.
Therefore, in the same configuration (same mesh and same time step for which both methods are stable), the
algorithm proposed in [19] should be more efficient. However, this method does not rely on a decomposition
domain approach and has yet to be extended to transmission problems between non-conformal meshes. For
these reasons, definitive comparisons between both methods are difficult.

Remark 4.3. Note that although the size of the matrix system corresponding to equation (4.21) may be
relatively small (it is reduced to the Lagrange multiplier unknown on the interface) the matrix may become full
for large £. In that case the local implicit scheme of Section 4.1 may be preferred.

5. NUMERICAL ILLUSTRATIONS IN 1D

The computational code used to obtain the results of this section is available as supplementary material
at the web link [44].

In this section we present numerical results in 1D that illustrate the convergence behavior of the schemes we
have proposed. We consider the wave equation (2.1), with homogeneous Neumann boundary condition, posed
on the domain Q = (—0.5,0.5) with Q. = (—0.5,0), Q; = (0,0.5) and ¥ = {0}. We assume that p. = 1 and we
denote v = p1y < 1. Note that p is therefore a measure of the contrast between the two subdomains.

We consider the propagation problem of a pulse generated by a source term. More precisely, initial data are null
and the source term is computed so that the exact solution is given by, for ¢ € [0,T] with T' = 0.5,

Ue(T, T <0 t—7 _ e
u(z,t)_{ (2,t) _ h( - ) rzx—t)+Rr(—z—t) x<0 (5.1)
Uf(l',t) x>0 Tr(.r—\/ﬁt) x>0
with r(z) = 1[mo_a,zﬁa]6*2/(1*(90*5”0)2/”2) (a smooth compactly supported pulse), g = —0.25, 0 = 0.05 and

1— 1
R-1=VE 4 T—1+R=2 ,
L+ /n 1+n
0 t<0,

>
7=0.025 t,=00625 h(t) = ! 1 r=h

1+ette
Qualitatively speaking the sought solution corresponds after time ¢t > 7 + ¢y to a right propagating pulse that
is solution to a transport problem — with no source term — before it reaches the interface X.
For the space discretisation we use standard second order Galerkin finite elements with a lumped mass matrix
(see for instance [10-12]) on a uniform mesh of . and Q; and we denote h. and hy the respective mesh sizes
and gy the refinement rate. We have s

h
he="h, hy=— and pf—’h:uq?. (5.2)

qf Pc,h
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FIGURE 4. Space-time convergence plot for local implicit schemes for different values of (u, gf).

The chosen space discretisation provides a second order convergence in space for the H'-norm (see [23]).

We recall that At = 2a/ V/Peh for some 0 < a < 1. In what follows, we plot space-time convergence curves
by setting a to some given values, and computing the solution to the discrete problem for some sequence h
going to zero (this implies that At goes to zero accordingly). Then the discrete solution (u? po WS ») is compared
to the analytic expression (5.1) and we plot

SuPpAt<T [ Ze,nue () — u?,h”C SuPpAt<T 1Zgnuy (") — u?,h”f
sup, <t 1 Ze,ntie () | sup,ac<r 1 Zrnus (%) ||

where Z. , and Zyj, denote the interpolation operators on the nodal finite element spaces.

5.1. Local implicit scheme

In order to assess numerically the behavior of local implicit schemes described in Section 4.1, we set Py (z) = 1
and P, (z) = 1. More specifically, this means that the left-hand side of the domain is discretized with an explicit
leap-frog scheme, while the right-hand side of the domain is discretized with an unconditionally stable implicit
f-scheme with 6§ = 1/4. We have chosen the optimal value o« = 1 and the values for the refinement ratio and
the ratio of velocity (gr, ) = (10,1) and (gr, 1) = (20,2).

This configuration is difficult since the constraint on the time step is severe (a pure explicit case would require
a time step around 10 to 30 smaller). Nevertheless, the convergence plots represented in Figure 4 show that a
second order rate of convergence is achieved. In fact this was to be expected since Corollary 3.8 can be applied
with CQ =0 and CR =1.

5.2. Stabilised explicit scheme

In order to assess the behavior of the stabilised explicit scheme described in Section 4.2, we set

Pp(x) x oz
= 1 —_ = _
4 4 + 64

Pp(x)=1-— % and Prlx)=1-=z
We first investigate the situation of a homogeneous medium (p = 1) where the subdomain Q; is refined by a
factor g = 2. We make the value of « increase from o = 0.9 to 1. As stated in Section 4.2, the value o =1
prevents us from applying Corollary 3.9 since the values of Cx and Cg blow up when « approaches 1. The
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FIGURE 5. Space-time convergence plots for the stabilised explicit scheme for different values
of (o, it,qf). (a) p=1and gy =2. (b) p=0.25 and gy = 4.

numerical results displayed in Figure 5a show that values of « very close to 1 (up to 0.999) give the expected
convergence rate of 2, and that indeed, choosing av = 1 does not lead to a second order space/time convergence
(the convergence is of order 1 before diverging). As a second example, we consider an inhomogeneous medium
with u = 0.25, we choose g = 4, and we perform the same numerical tests. As observed in Figure 5b, the same
conclusions can be drawn.

5.3. Local time stepping using the Leap-Frog Chebychev method

In order to assess the behavior of the schemes constructed in Section 4.3, we set, for a given e, Py(z) = P} ,(v)

according to the values given in Table 1 or P,(x) = Py(x) and we always choose Py (z) as in (4.9) meaning that
we are using explicit schemes. We consider p = 1, and ¢y = 3 or ¢y = 4.
According to equation (5.2) we have py ), = q]% Pe,h- The polynomial PJ , is chosen such that ¢=gq;—1and
e = 0.1, and the value of @ = o is chosen as
of =05 Peh _ pi
Pf.h ar
where the values of 3; are given in Table 1. This choices of parameters ensure that the stability condition is
fulfilled. In Figure 6, we have displayed the convergence obtained. In all the cases we observe second order
space-time convergence with the polynomials P,(z) = P, ,(z) while the choice Py(x) = P,(z) only gives a first
order convergence behavior.

6. NUMERICAL ILLUSTRATIONS IN 2D

In this section we present numerical results in 2D that illustrate the convergence behavior of the scheme
(4.10) as well as the performance gain one could achieved with such method with P, = P; where £ € {2,3} and
e = 0.1. We systematically use Galerkin high order spectral finite elements on quadrangles (see [10]) for the
construction of the spaces V., and Vyj, whereas for the construction of L;, we use discontinuous nodal finite
elements (on Gauss points, see [29]) on the edges defined by the intersection of the boundary ¥ and the coarse
mesh of Q.. Numerical results are obtained with an in-house solver developed in C++, parallelization is done
using OpenMP and FEigen [43] is used as a linear algebra library.
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FIGURE 6. Space-time convergence plots for the local time stepping explicit scheme for different
values of ¢f and Pp(x). (a) ¢r = 3,a = 0.9960. (b) ¢5 = 4, = 0.9960.

6.1. Convergence result

We consider the wave equation (2.1), with homogeneous Neumann boundary condition, posed on the domain
Q = (0,1)% and Qs = (0.6,0.7)%. We assume that y. = 1 and pus = 1, so that the domain decomposition is
artificial, but allow us to compare the simulations to an accurate reference solution. We consider the propagation
of initial data. More precisely, the source term is null and the initial data are computed so that the reference
solution is given by, for ¢ € [0,T] with T' = 0.35,

u(z,y,t) = g(z,y,t +0.1) (6.1)
where g is the solution to the wave propagation problem
02g—Ag=0, g(-,0) =0 and d;g(-,0) = exp(—a(z — 0.5)%> — a(y — 0.5)?) in R? with a = 1000.

The solution g can be computed semi-analytically using the expression of the Green’s function for the wave
equation in R2.

The meshes of Q. and Qy are discretised uniformly with hy/h. = 8. The order used in Q. (resp. Q) is
8 (resp. 4). Consequently, the meshes are not conform. Order 7 is used to construct the space Lj. Using the
macro-element analysis of [28] one can check that (2.10) holds. Indeed it is sufficient to check an injectivity
property on a reference configuration (see Eq. (30) in [28]). In our case, such injectivity property is guaranteed
by the high number of test functions of V}, y on the transmission boundary. The time step is chosen as

2
A#2 = min (‘fo‘ , 4?‘5@) , (6.2)
Pe,h Pf,h

where a = 0.99 and (p¢,n, pf,n) are approximations of (pcpn,py,n) computed by power iteration. The approxi-
mated spectral radii are close enough to the exact spectral radii such that (6.2) implies the stability condition
(4.13). Figure 7 displays a snapshot of the solution at different times. The relative error is computed at the final
simulated time. Table 2 shows the relative errors as the discretisation diminishes. A second order convergence
rate is observed.
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FIGURE 7. Snapshot of the solution at times 0.2 and 0.35 (up to a At). Order 8 elements are
used on the coarse domain whereas order 4 elements are used on the fine one (for visualisation,
high-order solutions are interpolated on a low order finite element space using a splitted mesh).

TABLE 2. Convergence result: parameters of the numerical experiments.

he
hy

0.1 0.05 0.025 0.0125
0.0125 0.00625 0.003125 0.0015625

ornlpen 2.3 2.3 2.3 2.3

At

0.0030  0.0015 0.00075 0.00038

N N
IZe e V) —ul, e
Ze nue )]

Conv. order - 1.98 1.97 1.79

0.029 0.0074 0.0019 0.00053

6.2. Performance illustration

The chosen configuration is the same as in the previous section expect that the domain 2 differs. Indeed, in
this configuration the domain Qy includes a circular hole that is meshed with quadrangles (see Figs 8 and 9).
Order 10 finite elements are used in 2. while order 9 are used to construct the space Lj and second order finite
elements are used in ;. We aim at comparing the computational cost of two schemes: (4.10) with P, = P5
and with P, = P§ where ¢ = 0.1 (the time step being chosen by formula (6.2)) and (4.10) with P, equals to

the polynomial 1. In this latter case the scheme reads

un—}&;l _ 2unh + un;l
= AQQ -+ Ac gy + BZ,h/\Z =0,
u™tt —2un, 4wt (6.3)
fih fih fih
INE + Apnugp — By AL =
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FIGURE 9. Snapshot of the solution at times 0.2, 0.35 and 0.50 (up to a At).

and corresponds to the straightforward discretization of (2.8) by a Leap-frog approach. For (6.3) the time step

is chosen as
4 4
At? = min ( @ @ )
Pe,h Pf h

with a = 0.99. To compute the new iterate with either choice of polynomial we follow the approach described
in Section 4.3.4.

The simulation is run on a long time period (T = 10) and time spent in each steps (see Tab. 3) of the
algorithm are measured. There are five measured steps:

(0) Computation of the matrix involved in (4.21) as well as the time spend to compute its factorization.
(1c) Prediction in .. Computation of u"; in Step 1 of the algorithm described Section 4.3.4.
(1f) Prediction in Q. Computation of u'; h in the same step.
(2) Transmission. Computation of A} by solving System (4.21).
(3¢) Correction in .. Computation of u"+1 thanks to the first equation of (4.22).
)

(3t

We give in Table 3 the parameters of the experiments as well as the measured times spent in each steps (in
relative values). In the specific chosen configuration the proposed algorithms reaches the final simulation time,
approximately 2.27 (resp. 2.63) times faster for £ = 2 (resp. £ = 3). One can see in Table 3 that the time spent
in the computation of u ;: is constant for the three methods whereas the time spent to compute uc h, u?j;l

and A} decreases by a factor 3 and 4 approximately which is a consequence of the time step increase. Flnally

Correction in Q. Computation of u’; f ! thanks to the second equation.
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TABLE 3. Performance illustration: parameters of the numerical experiments and relative time
spent by the algorithm in each steps.

Scheme (4.10) P, =1 Pp =Py P, =P8

At 2.01x107% 6.01x107* 8.01x107*
Dim(Vc,h) 40040 N 49711 16637 12478
Dim(Vy,) 4224 Step 0 43x107°  25x107*  34x107*
Dim(Ly,) 80 Step 1c 0.61 0.20 0.16
Peon 3.98 x 10° Step 1f 0.11 0.10 0.10
Brn 9.69 x 107 Step 2 0.041 0.013 0.010

Step 3c 0.22 0.072 0.055

Step 3f 0.024 0.047 0.053

Total 1 0.44 0.38

note that the time spent in Step 3f (computation of u}”,;l) increases with ¢ without penalizing too much the
performances, so does Step 0 (computation and factorization of the matrix used in Step 2). This latter step
representing a marginal effort in term of computations.

To sum-up, this case well illustrates the actual performance gain one can expect with this method. Note that

this gain tends to 3 (resp. 4) for £ = 2 (resp. 3) as Dim(Vy¢,,)/Dim(V, 5) tends to zero.

7. COMPARISONS WITH EXISTING APPROACHES

7.1. The fully explicit Local Time Stepping of [26]

The computational code used to obtain the results of this section is available as supplementary material
at the web link [44].

In [19,26], an explicit Local Time Stepping Algorithm is proposed and is proved to be second order convergent
for the L?-norm. It is used in the context of solving the following semi-discrete wave equation:

d2
@U/h + Ahuh = fh' (71)
From formula (12) of [26] with p = 2 one can derive the following scheme
Tt — 2l !
At?

At? W
+ | An — WAhPhAh up = [y, (EX-2b)

where Py, : V), — V), is a restriction operator on a region discretised with a fine grid (with an overlap of one
element in our computations). Notice that this algorithm amounts to solving a leap-frog scheme for the kernel
of P, and to a modified scheme for the complement. Moreover, from Algorithm 1 (page 1000) of [26] we can
deduce a variant of (EX-2b),
w20l !
At?

At? A
+ (Ah - wAhPhAh) up = fr — TGAhPhﬁLL’ (EX-2)

_ 1
where f7' can be defined in two ways, denoting f,?+2 = fr(t" + At/2) we set

fr=gn (B 2 ) s - PO @) o =51 0) (7.2)
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FIGURE 10. Space-time convergence plots for the LTS explicit scheme. The analytical solution
is a propagating pulse.

The choice (7.2a) gives exactly the Algorithm 1 of [26] while the more simple choice (7.2b) gives similar observed
convergence behavior and so will be used in what follows.

In the following we present a numerical assessment, in a one-dimensional setting, of local time stepping
procedures that have the same computational cost: the stabilised explicit scheme (4.6) of Section 4.2, the
scheme (EX-2) and its variant (EX-2b).

The considered case is the same as in Section 5 with x4 = 1 (homogeneous medium). More precisely, we solve
up to time T' = 0.5, the equation

0Pu—0*u=f, xin (-0.5-0.5), (7.3)

with homogeneous Neumann boundary condition. The discretisation parameters are oo = 0.99 and ¢y = 2. The
purpose of these tests is to quantify the relative L? and H'-errors with respect to three chosen continuous
analytical solutions associated with adequate source terms or initial data.

7.1.1. Propagating pulse

The first considered case is a propagating pulse as described in Section 5. In Figure 10 are displayed the
relative L? and H'-errors between the solutions of the three numerical schemes (Scheme (4.6), (EX-2) and
(EX-2b)) and the analytical solution, with respect to the mesh size h (note that At goes to zero with h because
of Assumption 3.2).

7.1.2. Quasi-static solution

We choose vanishing initial data for the wave equation (7.3) and choose f such that the solution is smooth

and given by
t—T1
e, =g (7).
0

with 7 = 0.1, tg = 0.25 and

z? (z + %)2 xz <0,

g9(x) = )

22 (z—14)7 z>0,
Note that the solution reaches a static state after time ¢ > 0.35. The obtained convergence curves are displayed
in Figure 11. One can see that the three schemes behave similarly in terms of convergence in the L2-norm,
however the scheme (EX-2b) is less accurate in the H!-norm. More precisely, half an order of convergence is
lost.
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FIGURE 11. Space-time convergence plots for the LTS explicit schemes. The analytical solution
is static for ¢ > 0.35.
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FIGURE 12. Space-time convergence plots for the LTS explicit schemes. The analytical solution
is constant in space.

7.1.3. Spatially constant solution

We choose vanishing initial data for the wave equation (7.3) and choose f such that the solution is smooth

and given by
u(z,t) :h(tt_T> .
1

with 7 = 0.1 and ¢; = 0.8. The analytical solution is therefore constant in space. The obtained convergence
curves are displayed in Figure 12. Again, one the one hand, one can see that the three schemes behave similarly
in terms of convergence in the L?-norm. On the other hand, it is this time the scheme (EX-2) which is less
accurate in the H'-norm (half an order of convergence is lost).

7.2. The implicit LTS of [17]

In equations (13.74)—(13.76) of [17], we find an algebraic formulation for conservative local time stepping.
This formulation is written for the system of elastodynamics written in a first order form in time. However,
by elimination of the variable corresponding to the velocity, one can show that the algebraic formulation is
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equivalent to the following system

23n+1 _ 22371—1 + Zgn—3 . . J2n+1 _ J2n—3
M, N + K - Ol =0, (7.4a)
22n+1 _ 22277, + Eanl J2n+1 _ J2n71
f f f 2n *
M, Ky —onl— 2, 7.4b
f AL + K2y 7 SAL (7.4b)
2271, _ 222%—1 + 227),—2 J2”+1 o J2'n.—3
g e — K - O =0 (7.4c)
CX2 T+ Opzimtt = 0. (7.4d)

In this formulation the unknowns ¢ and X% are vectors corresponding to stresses in a coarse and fine region
respectively and, J" are vectors corresponding to normal stresses, K. and K are stiffness matrices (equal
respectively to Bi M, !B, and B}M;cle with the notation given in [17]), M, . and M, ; are mass matrices.
Now we aim at eliminating intermediate steps in the evaluation for the fine region, more precisely, the sequence
of even iterates {¥3"} for n > 0. To do so, we write (7.4b) centered at time #*" and subtract two times equation
(7.4c) centered around #*"~! and add the equation (7.4b) centered at time ¢?"~2. We obtain

2n+1 2n 2n—1 2n—2 2n—3
DA _4pin 4 6n2T! —4n 2 452
At?

M, + Ky |3 - omint 4 w22~

Now we use the fact that
Ein—‘rl o 42?77, 4 GEin—l _ 42?71—2 + 2?7),—3 B E?n—‘—l o 22?@—1 4 E?n—.?o 4

At2 At2 NE

2n 2n—1 2n—2
o B3 - amirt 2]
(7.5)
and therefore we obtain
2n+1 2n—1 2n—3
Ef - 22f + Ef
At?

4
Mo,y + {Kf - Atho,f} (Z?n -+ Z?‘n_2> =0

Now using (7.4c), we replace the quantity inside the parenthesis
2n+1 2n—1 2n—3
by — 28+ X
At?

Moy ¢

2 4 -1 2n—1 B e A
A Ky = o Mg | =My S+ MO ———— ) = 0.

4At
Dividing by 4 the previous equation and rearranging terms we obtain
2n+1 2n—1 2n—3
YT =28+ B 7. _ (2At)2
(2At)2 T 16

where I; is the identity matrix in the appropriate vector space. Let us denote

Mo,y

=0, (7.6)

J2n+1 _ J2n73
—1 2n—1 *
KfMo_,f} {KfEf —Cf}

4At

J2n+1 _ J2n—3
ANt
then collecting (7.4a), (7.4d) and (7.6), one can show that the following system holds

Uzt —2up + Up~!

Uy = Z?"_l, Ur .=y Ar:=2At and A":=

My 5 KU — CFA™ =0,
Uptt —2up + U Ar?
f f f T —1 n xAn] __
Mo’,f ATQ + If_716 K.fMo',f [Kfo_CfA :I—O)

CUM + Gt =0.
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This new formulation of system (7.4) shows that the local time stepping proposed in [17] is in fact equivalent to
the scheme developed in Section 4.2 (compare the above equations with (4.6)). Therefore the local time stepping
proposed in [17] can be seen as a transmission problem between two second order schemes, one of which having
a relaxed stability condition by adding stabilising terms. The computational burden of the schemes we propose
in Section 4.3 is equivalent to the one of the schemes proposed in [17]. In fact we conjecture that, the local
time stepping of [17] can be recast in the formalism of Section 4.3 with P, = 75177(. It has to be noted that the
schemes in [17] are not proven to be second order convergent (in space and time) for the H!-norm which is in
accordance with the convergence results of Section 5.3.

8. CONCLUSIONS

In this work we have presented and analysed a family of second order in time discretisation strategy for
linear wave equations. We have shown that they correspond to either locally implicit schemes or to local time
stepping. For the analysis we have considered the case of smooth solutions. Then, we have shown that, if a
well-defined stability condition holds, then second order space-time convergence property holds in the context
of abstract Galerkin approximations of the wave equation. Finally, we have presented 1D numerical convergence
results that confirm the obtained theoretical results. As far as local time stepping strategies are concerned, after
comparisons with existing methods we have confirmed the interest of the proposed approach since, in terms
of accuracy, it yields second order convergence results in the H!-norm (contrary to [17,19]) and in terms of
computational cost, it is equivalent to the method proposed in [17].

APPENDIX A. CONVERGENCE RESULT FOR THE SEMI-DISCRETE PROBLEM

In Section 2.1 we have assumed that the solution to the continuous problem satisfies some extra-regularity in
time. One can expect that, in general, existence and uniqueness results of solutions for source term and initial
data do not immediately provide the adequate time regularity. Such extra regularity can be obtained in several
ways. A simple one is to assume that initial data are null and the source term is smooth and vanishes at the
initial time. More precisely, let m € N* and assume f € W™1(0,T; H) and £ (0) = 0 for m € N such that
n < m, then it is expected that the unique solution of Problem 2.4 with null initial data belongs to

(w,\) € C™(0,T;; H)nC™([0,T];V) x C™ *([0,T];L). (A.1)

Such result is obtained by straightforward differentiation in time of the variational formulation. If initial data do
not vanish then the question of the regularity of solution in time is more intricate since the initial data should
be sufficiently smooth in space (or in a abstract framework, it should belong to the domain of some unbounded
operator). Moreover, the same question arises at the semi discrete level, since it is not clear that the continuous
result in general transfers to the semi-discrete setting.

Existence and uniqueness results for the semi-discrete problem are generally a direct consequence of the
results obtained at the continuous level, and the uniform estimates of Assumption 2.2 are obtained by energy
techniques.

To obtain smooth semi-discrete solutions one can assume again that initial data are null and the source term
is smooth and vanishes at the initial time, then one can define the source term for the semi-discrete problem as
follows: the source term f,(¢) is chosen at every time ¢ as the orthogonal projection of f(¢) in V', with respect
to the scalar product of H, i.e., f,(t) € V} and

(FalD)on) = (F(B)vn), on € Vi (42)
From this definition we deduce that if f € W™1(0,T; H) then f, € W™(0,T;V},) and

Z/ dt"f" ’dt<Z/

e f0)] .
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Then, one can prove that the semi-discrete solution is smooth in time by first differentiating in time the
semi-discrete variational formulation and second, by using the standard existence, uniqueness and regularity
results for wave propagation problems for the successive time derivatives of the solution.

For the sake of completeness we now give the proof of Theorem 2.3 that is rather standard and is inspired
from the one given in [1].

Proof of Theorem 2.3. By assumption there exists a solution to (2.3) such that (2.7) holds (or (A.1) with m = 3).
Then, System (2.8) can be recast as: find (up(t), \n(t)) € Vi x Ly, solution to

2

P (wn,vp) + alun, vp) + b(vn, An) = (Fr,vn)  va € Vi, (A.3)

b(wn, pn) =0 pn € Ly,

We introduce the elliptic projection i, (t) of w(t) defined as: for (w(t), A(t)) € V x L find (@, (t), A(£)) € Vi x Ly,
such that, for some C, > 0 sufficiently large,

{ Co (itn, — w,vp) + a(tey, —w,vp) + b(wp, A —A) =0 v, € Vi, (A4)

b(fth — u,,uh) =0 n € Ly,

Notice that @, can be seen as the solution to a static problem of mixed type and depends on the time ¢ only
because the terms uw and A do so. Therefore, @, inherits directly from w and A its regularity in the parameter ¢.

Since the inf-sup condition (2.10) is satisfied and because of the ellipticity and continuity of a(-,-) (see
Eq. (2.2)) one can use standard results on mixed problem — see [6] — to show that for all ¢ € [0, T, there exists
C' independent of h such that, for m € {0,1, 2},

am am
L - ull<c( it
Hdtm th dtmuH = (vhlgvh

m

v, — —ul|| + inf
dgm H HhE€LR

m

A
dim

Hh —

L) . (A.5)

The strategy is now to obtain an estimation of ||u, — %y||. One can show, using (A.3), (2.4) and (A.4) that

d2 R . ~
FTe] (wp — wp,vp) + alup, — wp,vy) + b ('Uha A — Ah)
d2
= *@(ﬂh*uvvh)+(fh*f,vh)+ca (@p —u,vp)  vp € Vy,
b(up — p, up) =0 i € Lp,

By standard energy estimates, one can show that there exists C' independent of T" and & such that

2 2

tES[Ig)T] ( %uh(t) — %ﬂh(t) +a (Uh(t) — ﬁh(t), uh(t) — ﬂh(t))>

2 2

< <‘u1,h - %'&h(o) +a (ug,p, — wn(0),uo,n — ﬁh@)))

d? d?

+0 [ (1) - i)+ | S5an0) ~ S| + 170 - 501
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This estimate can be further simplified by deducing first a control in the norm | - | of the discrepancy which is
obtained thanks to the following estimation, for all ¢ € [0, T7,

guh(t) _

lup (t) — ap(t)| < |uno — wp(0)] + T sup pr

t€[0,T]

ﬁh(t)‘ ,

second, by introducing another scalar C' independent of T" and h such that,
a(uo,n — n(0), wo,, — wn(0)) < Cllugn —an(0)|?

and third using the ellipticity of the bilinear form a(,-). We obtain,

X d . X
sup.[funt) ~ (0] < € (funs = Gan )] + o — a0 0]
te[0,T] t

0 s (Jan(0) - w0 + | ()~ Jzu)| + 17,0 - 701 )

t€[0,T) dt?

for another positive scalar C' independent of and h. Finally, the result of the theorem is a consequence of (A.5)
and the triangle inequality that is used after writing

up — wp = (uh—u)—i—(u—'&h).
Note that a similar decomposition is used to deal with the estimation of the initial conditions. O

APPENDIX B. PROOF OF THE DISCRETE GRONWALL’S LEMMA

The purpose of this section is to provide a proof of the discrete Gronwall’s lemma (3.42). Let

m—1
w"hi=A+ B Y (v (B.1)
n=1
Suppose that for all m > 1,
™t <™t (B.2)

(i) Suppose that w™~! = 0 then v™~! = 0 which proves the result.
(ii) Suppose that w™~! % 0. Then

w™ —w™ ' = B(™)Y? < B(wm™)? (B.3)
by hypothesis. Then
(@™ = @™ )"2) (@™ + (@) < B (@) + (1)) (B.4)
since w™~1 > 0. Therefore
(W™ < B+ (wm )2 (B.5)

By summation we get
1/2

(™Y < (wm™)? < (w®)"" +mB. (B.6)

Since w® = A we get the expected result.
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