Maxwell quasi-variational inequalities in superconductivity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1545-1568

This paper is devoted to the mathematical modeling and analysis of a hyperbolic Maxwell quasi-variational inequality (QVI) for the Bean-Kim superconductivity model with temperature and magnetic field dependence in the critical current. Our analysis relies on local (resp. global) boundedness and local (resp. global) Lipschitz continuity assumptions on the critical current with respect to the temperature (resp. magnetic field). Emerging from the Euler time discretization, we analyze the corresponding H(curl)-elliptic QVI and prove its existence using a fixed-point argument in combination with techniques from variational inequalities and Maxwell’s equations. Based on the existence result for the H(curl)-elliptic QVI, we examine the stability and convergence of the Euler scheme, which serve as our fundament for the global well-posedness of the governing hyperbolic Maxwell QVI.

DOI : 10.1051/m2an/2021028
Classification : 35L85, 35Q60
Keywords: Maxwell quasi-variational inequality, well-posedness, Bean-Kim critical-state model, high-temperature superconductivity
@article{M2AN_2021__55_4_1545_0,
     author = {Yousept, Irwin},
     title = {Maxwell quasi-variational inequalities in superconductivity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1545--1568},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021028},
     mrnumber = {4292300},
     zbl = {1490.35473},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021028/}
}
TY  - JOUR
AU  - Yousept, Irwin
TI  - Maxwell quasi-variational inequalities in superconductivity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1545
EP  - 1568
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021028/
DO  - 10.1051/m2an/2021028
LA  - en
ID  - M2AN_2021__55_4_1545_0
ER  - 
%0 Journal Article
%A Yousept, Irwin
%T Maxwell quasi-variational inequalities in superconductivity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1545-1568
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021028/
%R 10.1051/m2an/2021028
%G en
%F M2AN_2021__55_4_1545_0
Yousept, Irwin. Maxwell quasi-variational inequalities in superconductivity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1545-1568. doi: 10.1051/m2an/2021028

[1] A. Alphonse, M. Hintermüller and C. N. Rautenberg, Stability of the solution set of quasi-variational inequalities and optimal control. SIAM J. Control Optim. 58 (2020) 3508–3532. | MR | Zbl | DOI

[2] J. Aponte, H. C. Abache, A. Sa-Neto and M. Octavio, Temperature dependence of the critical current in high- T c superconductors. Phys. Rev. B 39 (1989) 2233–2237. | DOI

[3] J. W. Barrett and L. Prigozhin, A quasi-variational inequality problem in superconductivity. Math. Models Methods Appl. Sci. 20 (2010) 679–706. | MR | Zbl | DOI

[4] J. W. Barrett and L. Prigozhin, Sandpiles and superconductors: nonconforming linear finite element approximations for mixed formulations of quasi-variational inequalities. IMA J. Numer. Anal. 35 (2015) 1–38. | MR | Zbl | DOI

[5] C. P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8 (1962) 250–253. | Zbl | DOI

[6] C. P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys. 36 (1964) 31–39. | DOI

[7] M. Ciszek, B. A. Glowacki, S. P. Ashworth, A. M. Campbell, W. Y. Liang, R. Flükiger and R. E. Gladyshevskii, AC losses and critical currents in Ag/(Tl, Pb, Bi)-1223 tape. Phys. C: Supercond. Appl. 260 (1996) 93–102. | DOI

[8] J. R. Clem, B. Bumble, S. I. Raider, W. J. Gallagher and Y. C. Shih, Ambegaokar-Baratoff–Ginzburg-Landau crossover effects on the critical current density of granular superconductors. Phys. Rev. B 35 (1987) 6637–6642. | DOI

[9] G. Deutscher and K. A. Müller, Origin of superconductive glassy state and extrinsic critical currents in high-tc oxides. Phys. Rev. Lett. 59 (1987) 1745–1747. | DOI

[10] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, with contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. In: Vol. 194 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000). | MR | Zbl

[11] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). | MR | Zbl | DOI

[12] F. Jochmann, Well-posedness for Bean’s critical state model with displacement current. J. Math. Anal. Appl. 362 (2010) 505–513. | MR | Zbl | DOI

[13] Y. B. Kim, C. F. Hempstead and A. R. Strnad, Magnetization and critical supercurrents. Phys. Rev. 129 (1963) 528–535. | DOI

[14] A. Laurain, M. Winckler and I. Yousept, Shape optimization for superconductors governed by H ( curl ) -elliptic variational inequalities. SIAM J. Control Optim. 59 (2021) 2247–2272. | MR | Zbl | DOI

[15] J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493–519. | MR | Zbl | DOI

[16] F. Miranda, J.-F. Rodrigues and L. Santos, Evolutionary quasi-variational and variational inequalities with constraints on the derivatives. Adv. Nonlinear Anal. 9 (2020) 250–277. | MR | Zbl | DOI

[17] S. Nicaise and F. Tröltzsch, A coupled Maxwell integrodifferential model for magnetization processes. Math. Nachr. 287 (2014) 432–452. | MR | Zbl | DOI

[18] S. Nicaise and F. Tröltzsch, Optimal control of some quasilinear Maxwell equations of parabolic type. Discrete Contin. Dyn. Syst. Ser. S 10 (2017) 1375–1391. | MR | Zbl

[19] R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z. 187 (1984) 151–164. | MR | Zbl | DOI

[20] L. Prigozhin, On the Bean critical-state model in superconductivity. Eur. J. Appl. Math. 7 (1996) 237–247. | MR | Zbl | DOI

[21] J. F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000) 153–169. | MR | Zbl | Numdam

[22] J. F. Rodrigues and L. Santos, Quasivariational solutions for first order quasilinear equations with gradient constraint. Arch. Ration. Mech. Anal. 205 (2012) 493–514. | MR | Zbl | DOI

[23] W. Rudin, Functional analysis, 2nd edition. International Series in Pure and Applied Mathematics. McGraw-Hill Inc, New York (1991). | MR | Zbl

[24] F. Tröltzsch and A. Valli, Optimal control of low-frequency electromagnetic fields in multiply connected conductors. Optimization 65 (2016) 1651–1673. | MR | Zbl | DOI

[25] F. Tröltzsch and A. Valli, Optimal voltage control of non-stationary eddy current problems. Math. Control Relat. Fields 8 (2018) 35–56. | MR | Zbl | DOI

[26] N. Weck, Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46 (1974) 410–437. | MR | Zbl | DOI

[27] M. Winckler and I. Yousept, Fully discrete scheme for Bean’s critical-state model with temperature effects in superconductivity. SIAM J. Numer. Anal. 57 (2019) 2685–2706. | MR | Zbl | DOI

[28] M. Winckler, I. Yousept and J. Zou, Adaptive edge element approximation for 𝐇 ( curl ) elliptic variational inequalities of second kind. SIAM J. Numer. Anal. 58 (2020) 1941–1964. | MR | Zbl | DOI

[29] I. Yousept, Optimal control of quasilinear 𝐇 ( curl ) -elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51 (2013) 3624–3651. | MR | Zbl | DOI

[30] I. Yousept, Hyperbolic Maxwell variational inequalities for Bean’s critical-state model in Type-II superconductivity. SIAM J. Numer. Anal. 55 (2017) 2444–2464. | MR | Zbl | DOI

[31] I. Yousept, Optimal control of non-smooth hyperbolic evolution maxwell equations in type-II superconductivity. SIAM J. Control Optim. 55 (2017) 2305–2332. | MR | Zbl | DOI

[32] I. Yousept, Hyperbolic Maxwell variational inequalities of the second kind. ESAIM: COCV 26 (2020) 34. | MR | Zbl | Numdam

[33] I. Yousept, Well-posedness theory for electromagnetic obstacle problems. J. Differ. Equ. 269 (2020) 8855–8881. | MR | Zbl | DOI

Cité par Sources :