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MAXWELL QUASI-VARIATIONAL INEQUALITIES IN SUPERCONDUCTIVITY

Irwin Yousept*

Abstract. This paper is devoted to the mathematical modeling and analysis of a hyperbolic Maxwell
quasi-variational inequality (QVI) for the Bean-Kim superconductivity model with temperature and
magnetic field dependence in the critical current. Our analysis relies on local (resp. global) bounded-
ness and local (resp. global) Lipschitz continuity assumptions on the critical current with respect to
the temperature (resp. magnetic field). Emerging from the Euler time discretization, we analyze the
corresponding H(curl)-elliptic QVI and prove its existence using a fixed-point argument in combination
with techniques from variational inequalities and Maxwell’s equations. Based on the existence result
for the H(curl)-elliptic QVI, we examine the stability and convergence of the Euler scheme, which serve
as our fundament for the global well-posedness of the governing hyperbolic Maxwell QVI.
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1. Introduction

Ever since the discovery of superconductivity by Heike Kamerlingh Onnes in 1911, various modern applica-
tions and key technologies have been developed. Among many other profound applications, we mention magnetic
resonance imaging, magnetic confinement fusion, and magnetic levitation. Such technological advances are made
possible by superconductors due to their fundamental properties of vanishing electrical resistance and expulsion
of applied magnetic fields (Meissner effect) occurring when the temperature is cooled below the critical temper-
ature. A prominent critical-state model describing the irreversible magnetization process in high-temperature
superconductivity was proposed by Bean [5, 6]. His model postulates a nonlinear and non-smooth constitutive
relation between the current density and the electric field through the so-called critical current as follows:

(B1) the current density strength |𝐽 | cannot exceed the critical current 𝑗𝑐
(B2) the electric field 𝐸 vanishes if |𝐽 | is strictly less than 𝑗𝑐
(B3) the electric field 𝐸 is parallel to the current density 𝐽 .

Shortly after the publication by Bean [5], Kim et al. [13] revealed and reported on the magnetic field depen-
dency in the critical current density 𝑗𝑐 = 𝑗𝑐(𝐻).

The Bean-Kim model governed by the eddy current equations leads to a parabolic quasi-variational inequality
(QVI). Prigozhin [20] was the first to introduce this formulation. Barrett and Prigozhin [3, 4] examined the
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Table 1. Critical temperature 𝜃𝑐 for several high-temperature superconductors.

Ba–La–Cu–O Y–Ba–Cu–O Hg–Ba–Ca–Cu–O

35K/−238.15∘C 93 K/−180.15∘C 133 K/−140.15∘C

associated QVI in a scalar two-dimensional (2D) setting and its dual formulation. For the analysis of general
parabolic and elliptic QVI problems with gradient and curl constraints, we refer to Rodrigues and Santos [21,22]
and Miranda et al. [16]. All these contributions take into account the eddy current approximation of the full
Maxwell formulation leading to problems with a parabolic character. The analysis of Bean’s critical-state model
with displacement current goes back to [12].

This paper is a continuation of the recent papers [32,33] on hyperbolic Maxwell variational inequalities (VI),
including those arising in high-temperature superconductivity and electromagnetic shielding (cf. [14, 27, 28]).
The goal of the present paper is to explore hyperbolic Maxwell QVI arising from the Bean-Kim model (B1)–(B3)
with magnetic field and temperature dependence in the critical current 𝑗𝑐 = 𝑗𝑐(𝜃,𝐻). In particular, temperature
effects are included due to its central importance in the superconductivity phenomena. As reported in [2], the
temperature dependence in the critical current of the Y–Ba–Cu–O bulk superconductor exhibits a continuous
and piecewise smooth structure ([2], Fig. 2). More precisely, it features a linear behaviour of the type (𝜃𝑐 − 𝜃),
if the temperature 𝜃 is sufficiently smaller than 𝜃𝑐 (see Tab. 1). If 𝜃 is close to 𝜃𝑐, then a nonlinear behaviour
of the type (1 − 𝜃

𝜃𝑐
)3/2 is observed, and the critical current vanishes if 𝜃 ≥ 𝜃𝑐. This behaviour is in agreement

with the theoretical model of granular superconductors [8]. Similarly, Deutscher and Müller [9] reported on a
temperature dependence of the type (1− 𝜃

𝜃𝑐
)2 in the case of 𝜃 ≈ 𝜃𝑐 for the critical currents of high-temperature

oxides.

Let 𝑇 ∈ R+ and Ω ⊂ R3 be a bounded Lipschitz domain filled with a high-temperature superconductor.
Considering the full Maxwell formulation for the electromagnetic fields, the Bean-Kim model (B1)–(B3) with
𝑗𝑐 = 𝑗𝑐(𝜃,𝐻) leads to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜖𝜕𝑡𝐸 − curl𝐻 + 𝐽 = 𝑢 in Ω× (0, 𝑇 )
𝜇𝜕𝑡𝐻 + curl𝐸 = 0 in Ω× (0, 𝑇 )
𝐸 × 𝑛 = 0 on 𝜕Ω× (0, 𝑇 )
𝐸(·, 0) = 𝐸0 𝐻(·, 0) = 𝐻0 in Ω
|𝐽(𝑥, 𝑡)| ≤ 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 )
𝐽(𝑥, 𝑡) ·𝐸(𝑥, 𝑡) = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)| for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).

(1.1)

All assumptions for the data involved in (1.1) are summarized in Assumptions 2.1 and 4.1. In particu-
lar, motivated from the experimental measurements [2, 8, 9], our analysis relies on local boundedness and
local Lipschitz continuity assumptions for the critical current with respect to the temperature. On the
other hand, the magnetic field dependency in 𝑗𝑐 is assumed to be globally bounded and Lipschitz con-
tinuous. This stronger assumption (cf. [7] for physical measurement supporting this assumption) seems to
be indispensable in order to handle the notorious hyperbolic QVI-character of (1.1). More precisely, the
variational formulation for (1.1) (see Cor. 5.2) is given by the following hyperbolic Maxwell QVI: Find
(𝐸,𝐻) ∈ 𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝐻0(curl)) × 𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝑋(Ω)) such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
Ω

𝜖𝜕𝑡𝐸(𝑡) · (𝑣 −𝐸(𝑡)) + 𝜇𝜕𝑡𝐻(𝑡) · (𝑤 −𝐻(𝑡)) + curl𝐸(𝑡) ·𝑤 − curl𝐻(𝑡) · 𝑣 d𝑥

+
∫︁

Ω

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) (|𝑣(𝑥)| − |𝐸(𝑥, 𝑡)|) d𝑥 ≥
∫︁

Ω

𝑢(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥

for a.e. 𝑡 ∈ (0, 𝑇 ) and all (𝑣,𝑤) ∈ 𝐿2(Ω)×𝐿2(Ω)
(𝐸,𝐻)(0) = (𝐸0,𝐻0) .

(QVI)

We note that the time derivatives 𝜕𝑡𝐸 and 𝜕𝑡𝐻 are of class 𝐿∞((0, 𝑇 ),𝐿2(Ω)). Thus, for a.e. 𝑡 ∈ (0, 𝑇 ), both
𝜕𝑡𝐸(𝑡) and 𝜕𝑡𝐻(𝑡) are 𝐿2(Ω)-functions, and so the multiplication dot 𝜕𝑡𝐸(𝑡) · 𝑣 (resp. 𝜕𝑡𝐻(𝑡) ·𝑤) in (EQVI)
is nothing but

∑︀3
𝑗=1(𝜕𝑡𝐸(𝑡))𝑗𝑣𝑗 (resp.

∑︀3
𝑗=1(𝜕𝑡𝐻(𝑡))𝑗𝑤𝑗).

In the case of 𝑗𝑐 = 𝑗𝑐(𝑥), (QVI) simplifies to a VI problem, which was originally introduced and discussed
in [30] (cf. also [32] for a more general class of hyperbolic Maxwell VI). The pure temperature dependence
𝑗𝑐 = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡)) was considered in the subsequent paper [27] focusing on its fully discrete analysis. The
present paper extends [27,30]: We consider the more realistic case 𝑗𝑐 = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) with less regularity
requirement for the data 𝑢, 𝜃, and (𝐸0,𝐻0). Note that, since our problem features a QVI character, the prior
developed VI-techniques in [27,30,32] cannot be directly applied to (QVI) and require certain extensions.

The first part of this paper is devoted to the following nonlinear PDE-system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜖𝑒− curlℎ + 𝑗 = f in Ω
𝜇ℎ + curl 𝑒 = 𝜇g in Ω
𝑒× 𝑛 = 0 on 𝜕Ω
|𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥)) for a.e. 𝑥 ∈ Ω
𝑗(𝑥) · 𝑒(𝑥) = 𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥))|𝑒(𝑥)| for a.e. 𝑥 ∈ Ω,

(1.2)

where f , g, and 𝑦 are given data. The variational formulation of (1.2) in terms of 𝑒 (see Cor. 3.3) is given by
the following 𝐻(curl)-elliptic QVI: Find 𝑒 ∈ 𝐻0(curl) such that

𝑎(𝑒,𝑣 − 𝑒) +
∫︁

Ω

𝑗𝑐
(︀
𝑥, 𝑦(𝑥),g(𝑥)− 𝜇−1(𝑥)curl 𝑒(𝑥)

)︀
(|𝑣(𝑥)| − |𝑒(𝑥)|) d𝑥

≥ (f + curl g,𝑣 − 𝑒)𝐿2(Ω) ∀𝑣 ∈ 𝐻0(curl),
(EQVI)

where the bilinear form 𝑎 : 𝐻0(curl) ×𝐻0(curl) → R is defined as in (3.3). To derive an existence result for
(1.2), we first drop out the magnetic field dependency in the critical current 𝑗𝑐. This leads to a complementarity-
type problem, which we shall study through the theory of variational inequalities. Then, on the basis of the
proposed complementarity-type problem, we formulate (1.2) as a fixed-point problem and show its existence
(Thm. 3.2) by means of the Maxwell compactness embedding theory [19,26] along with the Schauder fixed-point
theorem.

After deriving a well-posedness result for (1.2), we consider the time-discrete problem (P𝑛) associated with
(1.1) based on the implicit Euler scheme (Rothe method). While the existence of (P𝑛) is covered by the devel-
oped existence result for (1.2), the uniqueness is obtained if the time step is sufficiently small. We investigate the
stability analysis of the resulting time-discrete magnetic and electric fields, including their difference quotients
(Lems. 4.5 and 4.6). Differently from Assumption 2.2 of [27], our stability analysis does not rely on any com-
patibility condition for the initial data. We circumvent this issue by introducing an auxiliary current density
(4.2) and initial difference quotients (4.3), that preserve the pivotal QVI structure at the initial time (4.4).
This construction allows us to prove stability and convergence of (P𝑛) leading to our final result (Cor. 5.2)
on the well-posedness for (QVI) for all 𝑢 ∈ 𝐻1((0, 𝑇 ),𝐿2(Ω)), 𝜃 ∈ 𝐻1((0, 𝑇 ), 𝐿2(Ω)) ∩ 𝒞([0, 𝑇 ], 𝐿∞(Ω)), and
(𝐸0,𝐻0) ∈ 𝐻0(curl)×𝑋(Ω) without any compatibility assumption.
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2. Preliminaries

For a given Hilbert space 𝑉 , we use the notation ‖ · ‖𝑉 and (·, ·)𝑉 for a standard norm and a standard
scalar product in 𝑉. By 𝑉 * we denote the dual space of 𝑉 . If 𝑉 is continuously embedded in another normed
linear space 𝑌 , then we write 𝑉 →˓ 𝑌 for the associated injection. A bold typeface is used to indicate a three-
dimensional vector function or a Hilbert space of three-dimensional vector functions. The main Hilbert space
for our analysis is

𝐻(curl) :=
{︀
𝑞 ∈ 𝐿2(Ω)

⃒⃒
curl 𝑞 ∈ 𝐿2(Ω)

}︀
,

where the curl -operator is understood in the sense of distributions. As usual, 𝒞∞0 (Ω) stands for the space of all
infinitely differentiable three-dimensional vector functions with compact support contained in Ω. We denote the
closure of 𝒞∞0 (Ω) with respect to the 𝐻(curl)-topology by 𝐻0(curl). It is well-known that the Hilbert space
𝐻0(curl) admits the following characterization (cf. [32], Appendix A):

𝐻0(curl) =
{︀
𝑞 ∈ 𝐻(curl) | (curl 𝑞,𝑣)𝐿2(Ω) = (𝑞, curl𝑣)𝐿2(Ω) ∀𝑣 ∈ 𝐻(curl)

}︀
=
{︀
𝑞 ∈ 𝐻(curl) | 𝛾𝑡(𝑞) = 0

}︀
,

(2.1)

where 𝛾𝑡 : 𝐻(curl) → 𝐻− 1
2 (𝜕Ω) denotes the tangential trace (cf. [11], Thm. 2.11). We note that 𝛾𝑡(𝑞) = 0

generalizes the boundary condition 𝑞 × 𝑛 = 0 on 𝜕Ω. Another important Hilbert space used in our analysis is

𝑋(Ω) :=
{︀
𝑞 ∈ 𝐻(curl)

⃒⃒
(𝜇𝑞,∇𝜑)𝐿2(Ω) = 0 ∀𝜑 ∈ 𝐻1(Ω)

}︀
. (2.2)

For an almost everywhere positive function 𝛼 ∈ 𝐿∞(Ω), we use the notation 𝐿2
𝛼(Ω) for the weighted 𝐿2(Ω)-space

endowed with the weighted scalar product (𝛼·, ·)𝐿2(Ω).
Let us now formulate the required regularity assumption on the electric permittivity 𝜖 : Ω → (0,∞), the

magnetic permeability 𝜇 : Ω → (0,∞), and the critical current 𝑗𝑐 : Ω× R× R3 → [0,∞).

Assumption 2.1 (Regularity assumption on the material parameters).

(A1) We suppose that 𝜖, 𝜇 ∈ 𝐿∞(Ω) and there exist positive constants 0 < 𝜖 ≤ 𝜖 and 0 < 𝜇 ≤ 𝜇 such that

𝜖 ≤ 𝜖(𝑥) ≤ 𝜖 for a.e. 𝑥 ∈ Ω and 𝜇 ≤ 𝜇(𝑥) ≤ 𝜇 for a.e. 𝑥 ∈ Ω.

(A2) For every fixed (𝑦, ℎ) ∈ R× R3, 𝑗𝑐(·, 𝑦, ℎ) : Ω → R is Lebesgue measurable.
(A3) For every 𝑀 > 0, there exists a constant 𝐶(𝑀) > 0 such that

0 ≤ 𝑗𝑐(𝑥, 𝑦, ℎ) ≤ 𝐶(𝑀)

for a.e. 𝑥 ∈ Ω and all (𝑦, ℎ) ∈ [−𝑀,𝑀 ]× R3.
(A4) For every 𝑀 > 0, there exists a constant 𝐿(𝑀) > 0 such that

|𝑗𝑐(𝑥, 𝑦1, ℎ1)− 𝑗𝑐(𝑥, 𝑦2, ℎ2)| ≤ 𝐿(𝑀)(|𝑦1 − 𝑦2|+ |ℎ1 − ℎ2|)

for a.e. 𝑥 ∈ Ω and all (𝑦1, ℎ1), (𝑦2, ℎ2) ∈ [−𝑀,𝑀 ]× R3.

Note that (A3) and (A4) require the global boundedness and the global Lipschitz continuity of 𝑗𝑐 : Ω ×
R × R3 → [0,∞) with respect to the third component (magnetic field). An example for the magnetic field
dependency satisfying (A3) and (A4) is

ℎ ↦→ 𝑐1(𝑐2 + 𝑐3|ℎ|𝑠)−1 (2.3)

for some positive constants 𝑐1, 𝑐2, 𝑐3 > 0 and some exponent 𝑠 > 1. The mapping (2.3) is obviously globally
bounded. Furthermore, the Lipschitz continuity holds true as its derivative is globally bounded. As confirmed
by physical measurement [7], such a model (2.3) is reasonable for describing the magnetic field dependency in
critical currents of certain superconductors.
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Remark 2.2. Our analysis can be extended to the case where the critical current explicitly depends on the
time variable, i.e., 𝑗𝑐 : Ω× [0, 𝑇 ]× R× R3 → [0,∞). In this case, for every fixed (𝑡, 𝑦, ℎ) ∈ [0, 𝑇 ]× R× R3, the
function 𝑗𝑐(·, 𝑡, 𝑦, ℎ) : Ω → R is assumed to be Lebesgue measurable. Moreover, we replace (A3)–(A4) by

0 ≤ 𝑗𝑐(𝑥, 𝑡, 𝑦, ℎ) ≤ 𝐶(𝑀)
|𝑗𝑐(𝑥, 𝑡1, 𝑦1, ℎ1)− 𝑗𝑐(𝑥, 𝑡2, 𝑦2, ℎ2)| ≤ 𝐿(𝑀)(|𝑡1 − 𝑡2|+ |𝑦1 − 𝑦2|+ |ℎ1 − ℎ2|)

for a.e. 𝑥 ∈ Ω and all (𝑡, 𝑦, ℎ), (𝑡1, 𝑦1, ℎ1), (𝑡2, 𝑦2, ℎ2) ∈ [0, 𝑇 ]× [−𝑀,𝑀 ]× R3.

3. Well-posedness for (EQVI)

We start our investigation by examining the following complementarity-type problem.

Lemma 3.1. Let Assumption 2.1 be satisfied. Then, for every 𝑦 ∈ 𝐿∞(Ω) and (f ,g, 𝑧) ∈ 𝐿2(Ω)×𝑋(Ω)×𝐿2(Ω),
the complementarity-type problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜖𝑒− curlℎ + 𝑗 = f in Ω
𝜇ℎ + curl 𝑒 = 𝜇g in Ω
𝑒× 𝑛 = 0 on 𝜕Ω
|𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥)) for a.e. 𝑥 ∈ Ω
𝑗(𝑥) · 𝑒(𝑥) = 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥))|𝑒(𝑥)| for a.e. 𝑥 ∈ Ω

(3.1)

admits a unique solution (𝑒,ℎ, 𝑗) ∈ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω) satisfying

‖ℎ‖𝑋(Ω) ≤ 𝜖
1
2 ‖f‖𝐿2

1
𝜖

(Ω) + 𝜇−
1
2 ‖g‖𝐿2

𝜇(Ω) +
(︁
𝜇−

1
2 + 𝜖

1
2

)︁
‖f + curl g‖𝐿2

1
𝜖

(Ω) +
√︂
𝜖

𝜖
𝐶
(︀
‖𝑦‖𝐿∞(Ω)

)︀
|Ω| 12 . (3.2)

Proof. Let 𝑦 ∈ 𝐿∞(Ω) and (f ,g, 𝑧) ∈ 𝐿2(Ω)×𝑋(Ω)×𝐿2(Ω). We introduce a continuous and coercive bilinear
form

𝑎 : 𝐻0(curl)×𝐻0(curl) → R, 𝑎(𝑢,𝑣) :=
(︀
𝜇−1curl𝑢, curl𝑣

)︀
𝐿2(Ω)

+ (𝜖𝑢,𝑣)𝐿2(Ω) , (3.3)

and a convex and continuous functional

Ψ : 𝐿2(Ω) → R, Ψ(𝑣) :=
∫︁

Ω

𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥))|𝑣(𝑥)|d𝑥.

The classical result [15] implies that the variational inequality

𝑎(𝑒,𝑣 − 𝑒) + Ψ(𝑣)−Ψ(𝑒) ≥ (f + curl g,𝑣 − 𝑒)𝐿2(Ω) ∀𝑣 ∈ 𝐻0(curl) (3.4)

admits a unique solution 𝑒 ∈ 𝐻0(curl). Setting 𝑣 = 0 and 𝑣 = 2𝑒 in (3.4), we obtain

𝑎(𝑒, 𝑒) + Ψ(𝑒) = (f + curl g, 𝑒)𝐿2(Ω). (3.5)

Applying this identity to (3.4) implies

Ψ(𝑣) ≥ 𝐿(𝑣) := (f + curl g,𝑣)𝐿2(Ω) − 𝑎(𝑒,𝑣) ∀𝑣 ∈ 𝐻0(curl). (3.6)

Therefore, as 𝐿 : 𝐻0(curl) → R is linear and Ψ : 𝐿2(Ω) → R is sublinear, i.e.,

Ψ(𝑣 + 𝑤) ≤ Ψ(𝑣) + Ψ(𝑤), Ψ(𝑡𝑣) = 𝑡Ψ(𝑣) ∀𝑣,𝑤 ∈ 𝐿2(Ω), ∀𝑡 ≥ 0,

the Hahn–Banach theorem ([23], Thm. 3.2) yields the existence of 𝑗 ∈ 𝐿2(Ω) such that

(𝑗,𝑣)𝐿2(Ω) = 𝐿(𝑣) ∀𝑣 ∈ 𝐻0(curl) (3.7)
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(𝑗,𝑣)𝐿2(Ω) ≤ Ψ(𝑣) ∀𝑣 ∈ 𝐿2(Ω). (3.8)

According to the definition, equation (3.7) is equivalent to(︀
𝜇−1curl 𝑒, curl𝑣

)︀
𝐿2(Ω)

= (f + curl g − 𝑗 − 𝜖𝑒,𝑣) ∀𝑣 ∈ 𝐻0(curl). (3.9)

Consequently, the distributional definition of the curl-operator yields that

𝜇−1curl 𝑒 ∈ 𝐻(curl) with curl𝜇−1curl 𝑒 = f + curl g − 𝑗 − 𝜖𝑒. (3.10)

Together with (︀
𝜇
(︀
𝜇−1curl 𝑒

)︀
,∇𝜑

)︀
𝐿2(Ω)

=⏟ ⏞ 
(2.1)

(𝑒, curl∇𝜑)𝐿2(Ω) = 0 ∀𝜑 ∈ 𝐻1(Ω),

equation (3.10) implies 𝜇−1curl 𝑒 ∈ 𝑋(Ω). Thus, defining ℎ := g − 𝜇−1curl 𝑒 ∈ 𝑋(Ω), it follows immediately
from (3.10) that 𝜖𝑒− curlℎ + 𝑗 = f . Next, let us show that

|𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥)) for a.e. 𝑥 ∈ Ω. (3.11)

Suppose that there exists a Lebesgue measurable set 𝜔 ⊂ Ω of non-zero measure such that 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥)) <
|𝑗(𝑥)| for a.e. 𝑥 ∈ 𝜔. Then setting 𝑣𝜔 := 𝑗

|𝑗|𝜒𝜔 ∈ 𝐿2(Ω) in (3.8), where 𝜒𝜔 denotes the characteristic function
of 𝜔, leads to a contradiction∫︁

𝜔

𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥)) d𝑥 <
∫︁

𝜔

|𝑗(𝑥)|d𝑥 = (𝑗,𝑣𝜔)𝐿2(Ω) ≤ Ψ(𝑣𝜔) =
∫︁

𝜔

𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥)) d𝑥.

Consequently, the inequality (3.11) is valid. In particular, the properties (3.11) and (A3) with ℎ = 𝑧(𝑥) yield
that

|𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥)) ≤ 𝐶(‖𝑦‖𝐿∞(Ω)) for a.e. 𝑥 ∈ Ω,

and so 𝑗 ∈ 𝐿∞(Ω). Inserting now 𝑣 = 𝑒 in (3.9) and taking (3.5) into account, it follows that

0 =
∫︁

Ω

𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥))|𝑒(𝑥)| − 𝑗(𝑥) · 𝑒(𝑥) d𝑥. (3.12)

As a result of (3.11) and (3.12), we obtain

𝑗(𝑥) · 𝑒(𝑥) = 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥))|𝑒(𝑥)| for a.e. 𝑥 ∈ Ω.

In conclusion, the triple (𝑒,ℎ, 𝑗) ∈ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω) is a solution of (3.1).
Let us prove the a priori estimate (3.2). First, equation (3.5) implies

‖𝜖 1
2 𝑒‖2𝐿2(Ω) + ‖𝜇− 1

2 curl 𝑒‖2𝐿2(Ω) ≤ ‖𝜖
− 1

2 (f + curl g)‖2𝐿2(Ω), (3.13)

from which it follows that

‖𝜇 1
2 ℎ‖𝐿2(Ω) = ‖𝜇 1

2 g − 𝜇−
1
2 curl 𝑒‖𝐿2(Ω) ≤ ‖𝜇

1
2 g‖𝐿2(Ω) + ‖𝜖− 1

2 (f + curl g)‖𝐿2(Ω). (3.14)

Also, the inequalities (3.13) and (3.11) together with (A3) imply

‖𝜖− 1
2 curlℎ‖𝐿2(Ω) = ‖𝜖 1

2 𝑒 + 𝜖−
1
2 (𝑗 − f)‖𝐿2(Ω)

≤ ‖𝜖− 1
2 (f + curl g)‖𝐿2(Ω) + 𝜖−

1
2𝐶(‖𝑦‖𝐿∞(Ω))|Ω|

1
2 + ‖𝜖− 1

2 f‖𝐿2(Ω).
(3.15)
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From (3.14) and (3.15), we come to the conclusion that

‖ℎ‖𝑋(Ω)

= ‖ℎ‖𝐻(curl) =
√︁
‖𝜇− 1

2𝜇
1
2 ℎ‖2

𝐿2(Ω)
+ ‖𝜖 1

2 𝜖−
1
2 curlℎ‖2

𝐿2(Ω)

≤ 𝜇−
1
2 ‖𝜇 1

2 ℎ‖𝐿2(Ω) + 𝜖
1
2 ‖𝜖− 1

2 curlℎ‖𝐿2(Ω)

≤ 𝜇−
1
2 ‖𝜇 1

2 g‖𝐿2(Ω) +
(︁
𝜇−

1
2 + 𝜖

1
2

)︁
‖𝜖− 1

2 (f + curl g) ‖𝐿2(Ω) + 𝜖
1
2

(︁
𝜖−

1
2𝐶
(︀
‖𝑦‖𝐿∞(Ω)

)︀
|Ω| 12 + ‖𝜖− 1

2 f‖𝐿2(Ω)

)︁
.

Uniqueness. Suppose that (̃︀𝑒, ̃︀ℎ,̃︀𝑗) ∈ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω) is another solution of (3.1), i.e., it satisfies

𝜖̃︀𝑒− curl ̃︀ℎ + ̃︀𝑗 = f (3.16)

𝜇̃︀ℎ + curl̃︀𝑒 = 𝜇g (3.17)

|̃︀𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥)) for a.e. 𝑥 ∈ Ω (3.18)̃︀𝑗(𝑥) · ̃︀𝑒(𝑥) = 𝑗𝑐(𝑥, 𝑦(𝑥), 𝑧(𝑥))|̃︀𝑒(𝑥)| for a.e. 𝑥 ∈ Ω. (3.19)

From (3.16) and (3.17) together with (2.1), we obtain that

𝑎 (̃︀𝑒,𝑣 − ̃︀𝑒) +
(︁̃︀𝑗,𝑣 − ̃︀𝑒)︁

𝐿2(Ω)
= (f + curl g,𝑣 − ̃︀𝑒)𝐿2(Ω) ∀𝑣 ∈ 𝐻0(curl).

On the other hand, the properties (3.18) and (3.19) imply∫︁
Ω

̃︀𝑗(𝑥) · (𝑣(𝑥)− ̃︀𝑒(𝑥)) d𝑥 ≤
∫︁

Ω

𝑗𝑐 (𝑥, 𝑦(𝑥), 𝑧(𝑥)) (|𝑣(𝑥)| − |̃︀𝑒(𝑥)|) d𝑥 = Ψ(𝑣)−Ψ(̃︀𝑒) ∀𝑣 ∈ 𝐻0(curl).

Altogether, we see that ̃︀𝑒 ∈ 𝐻0(curl) satisfies

𝑎 (̃︀𝑒,𝑣 − ̃︀𝑒) + Ψ(𝑣)−Ψ (̃︀𝑒) ≥ (f + curl g,𝑣 − ̃︀𝑒)𝐿2(Ω) ∀𝑣 ∈ 𝐻0 (curl) .

But, we know that 𝑒 ∈ 𝐻0(curl) is the unique solution of the above variational inequality, and hence ̃︀𝑒 = 𝑒.
Employing this identity and (3.17) yields ̃︀ℎ = ℎ. Then, the identities ̃︀𝑒 = 𝑒 and ̃︀ℎ = ℎ imply ̃︀𝑗 = 𝑗. This
completes the proof. �

Theorem 3.2. Let Assumption 2.1 be satisfied. Then, for every 𝑦 ∈ 𝐿∞(Ω) and (f ,g) ∈ 𝐿2(Ω) ×𝑋(Ω), the
nonlinear PDE-system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜖𝑒− curlℎ + 𝑗 = f in Ω
𝜇ℎ + curl 𝑒 = 𝜇g in Ω
𝑒× 𝑛 = 0 on 𝜕Ω
|𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥)) for a.e. 𝑥 ∈ Ω
𝑗(𝑥) · 𝑒(𝑥) = 𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥))|𝑒(𝑥)| for a.e. 𝑥 ∈ Ω

(3.20)

admits a solution (𝑒,ℎ, 𝑗) ∈ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω). Under the smallness condition 𝐿(‖𝑦‖𝐿∞(Ω)) < 2√𝜖𝜇,
the solution of (3.20) is unique.

Proof. Let 𝑦 ∈ 𝐿∞(Ω) and (f ,g) ∈ 𝐿2(Ω)×𝑋(Ω). We introduce the operator

𝐹 : 𝐿2(Ω) → 𝐿2(Ω), 𝑧 ↦→ ℎ,

that assigns to every function 𝑧 ∈ 𝐿2(Ω) the unique solution ℎ ∈ 𝑋(Ω) of the complementarity-type problem
(3.1). Let us prove that 𝐹 is Lipschitz continuous. To this aim, let 𝑧1, 𝑧2 ∈ 𝐿2(Ω), and let (𝑒𝑖,ℎ𝑖, 𝑗𝑖) ∈
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𝐻0(curl) × 𝑋(Ω) × 𝐿∞(Ω) denote the unique solutions of (3.1) associated with 𝑧 = 𝑧𝑖 for 𝑖 = 1, 2. By
definition,

𝜖 (𝑒1 − 𝑒2)− curl (ℎ1 − ℎ2) + 𝑗1 − 𝑗2 = 0 (3.21)
𝜇 (ℎ1 − ℎ2) + curl (𝑒1 − 𝑒2) = 0, (3.22)

from which it follows that(︀
𝜇−1curl (𝑒1 − 𝑒2) , curl (𝑒1 − 𝑒2)

)︀
𝐿2(Ω)

+ (𝜖 (𝑒1 − 𝑒2) , (𝑒1 − 𝑒2))𝐿2(Ω) = (𝑗2 − 𝑗1, 𝑒1 − 𝑒2)𝐿2(Ω) . (3.23)

On the other hand, according to (3.1), the right-hand side of the above identity satisfies

(𝑗2 − 𝑗1, 𝑒1 − 𝑒2)𝐿2(Ω)

=
∫︁

Ω

𝑗2(𝑥) · 𝑒1(𝑥)− 𝑗2(𝑥) · 𝑒2(𝑥)− 𝑗1(𝑥) · 𝑒1(𝑥) + 𝑗1(𝑥) · 𝑒2(𝑥) d𝑥

=
∫︁

Ω

𝑗2(𝑥) · 𝑒1(𝑥)− 𝑗𝑐 (𝑥, 𝑦(𝑥), 𝑧2(𝑥)) |𝑒2(𝑥)| − 𝑗𝑐 (𝑥, 𝑦(𝑥), 𝑧1(𝑥)) |𝑒1(𝑥)|+ 𝑗1(𝑥) · 𝑒2(𝑥) d𝑥

≤
∫︁

Ω

𝑗𝑐 (𝑥, 𝑦(𝑥), 𝑧2(𝑥)) (|𝑒1(𝑥)| − |𝑒2(𝑥)|)− 𝑗𝑐 (𝑥, 𝑦(𝑥), 𝑧1(𝑥)) (|𝑒1(𝑥)| − |𝑒2(𝑥)|) d𝑥

=
∫︁

Ω

𝑗𝑐 (𝑥, 𝑦(𝑥), 𝑧2(𝑥))− 𝑗𝑐 (𝑥, 𝑦(𝑥), 𝑧1(𝑥)) (|𝑒1(𝑥)| − |𝑒2(𝑥)|) d𝑥

≤⏟ ⏞ 
(A4)

∫︁
Ω

𝐿
(︀
‖𝑦‖𝐿∞(Ω)

)︀
|𝑧2(𝑥)− 𝑧1(𝑥)||𝑒1(𝑥)− 𝑒2(𝑥)|d𝑥

≤
𝐿
(︀
‖𝑦‖𝐿∞(Ω)

)︀2
4𝜖

‖𝑧1 − 𝑧2‖2𝐿2(Ω) + ‖𝜖 1
2 (𝑒1 − 𝑒2) ‖2𝐿2(Ω).

Applying the above inequality to (3.23) yields

‖𝜇 1
2 (ℎ1 − ℎ2)‖2𝐿2(Ω) =⏟ ⏞ 

(3.22)

‖𝜇− 1
2 curl (𝑒1 − 𝑒2)‖2𝐿2(Ω) ≤

𝐿(‖𝑦‖𝐿∞(Ω))2

4𝜖
‖𝑧1 − 𝑧2‖2𝐿2(Ω),

from which it follows that

‖𝐹 (𝑧1)− 𝐹 (𝑧2)‖𝐿2(Ω) ≤
𝐿(‖𝑦‖𝐿∞(Ω))

2√𝜖𝜇
‖𝑧1 − 𝑧2‖𝐿2(Ω) ∀𝑧1, 𝑧2 ∈ 𝐿2(Ω). (3.24)

Let 𝑖 denote the embedding 𝑋(Ω) →˓ 𝐿2(Ω) and

K :=
{︂

𝑞 ∈ 𝑋(Ω)
⃒⃒⃒⃒
‖𝑞‖𝑋(Ω) ≤ 𝜖

1
2 ‖f‖𝐿2

1
𝜖

(Ω) + 𝜇−
1
2 ‖g‖𝐿2

𝜇(Ω) +
(︁
𝜇−

1
2 + 𝜖

1
2

)︁
‖f + curl g‖𝐿2

1
𝜖

(Ω)

+
√︂
𝜖

𝜖
𝐶
(︀
‖𝑦‖𝐿∞(Ω)

)︀
|Ω| 12

}︂
.

By 𝒦 := 𝑐𝑙(K), we denote the closure of K with respect to the 𝐿2(Ω)-topology. Obviously, 𝒦 is nonempty
and convex. Moreover, as the embedding 𝑖 : 𝑋(Ω) →˓ 𝐿2(Ω) is compact [19, 26] and K ⊂ 𝑋(Ω) is bounded,
the set 𝒦 = 𝑐𝑙(K) ⊂ 𝐿2(Ω) is compact. Also, thanks to the a priori estimate (3.2) and the previously proven
(Lipschitz) continuity result (3.24), the operator 𝐹 is continuous from 𝒦 to itself, i.e., 𝐹 : 𝒦 → 𝒦. In conclusion,
the Schauder fixed-point theorem is applicable and guarantees the existence of a fixed point ℎ ∈ 𝒦, i.e.,
𝐹 (ℎ) = ℎ. Thus, in view of the definition of the operator 𝐹 , the PDE-system (3.20) admits a solution (𝑒,ℎ, 𝑗) ∈
𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω). Finally, if 𝐿

(︀
‖𝑦‖𝐿∞(Ω)

)︀
< 2√𝜖𝜇, then the uniqueness of the solution follows from

(3.24). �
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Let us close this section by presenting the variational formulation of (3.20) in terms of 𝑒:

Corollary 3.3. Let Assumption 2.1 be satisfied. Then, for every 𝑦 ∈ 𝐿∞(Ω) and (f ,g) ∈ 𝐿2(Ω) ×𝑋(Ω), the
𝐻(curl)-elliptic quasi-variational inequality

𝑎 (𝑒,𝑣 − 𝑒) +
∫︁

Ω

𝑗𝑐
(︀
𝑥, 𝑦(𝑥),g(𝑥)− 𝜇−1(𝑥)curl 𝑒(𝑥)

)︀
(|𝑣(𝑥)| − |𝑒(𝑥)|) d𝑥

≥ (f + curl g,𝑣 − 𝑒)𝐿2(Ω) ∀𝑣 ∈ 𝐻0(curl)
(EQVI)

admits a solution 𝑒 ∈ 𝐻0(curl). Furthermore, 𝑒 ∈ 𝐻0(curl) is a solution to (EQVI) if and only if it is a
solution to (3.20). Thus, if 𝐿(‖𝑦‖𝐿∞(Ω)) < 2√𝜖𝜇, the solution of (EQVI) is unique.

Proof. Let 𝑦 ∈ 𝐿∞(Ω) and (f ,g) ∈ 𝐿2(Ω) ×𝑋(Ω). According to Theorem 3.2, the PDE-system (3.20) admits
a solution (𝑒,ℎ, 𝑗) ∈ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω). The equalities 𝜖𝑒− curlℎ + 𝑗 = f and ℎ = g− 𝜇−1curl 𝑒 as
well as (2.1) imply

𝑎(𝑒,𝑣 − 𝑒) + (𝑗,𝑣 − 𝑒)𝐿2(Ω) = (f + curl g,𝑣 − 𝑒)𝐿2(Ω) ∀𝑣 ∈ 𝐻0(curl). (3.25)

On the other hand, the conditions for 𝑗 in (3.20) yield

(𝑗,𝑣 − 𝑒)𝐿2(Ω) ≤
∫︁

Ω

𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥))|𝑣(𝑥)| − 𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥))|𝑒(𝑥)|d𝑥. (3.26)

Inserting ℎ = g−𝜇−1curl 𝑒 in (3.26) and applying the resulting inequality to (3.25), we see that 𝑒 ∈ 𝐻0(curl)
is a solution to (EQVI).

Now, suppose that 𝑒 ∈ 𝐻0(curl) is a solution to (EQVI), i.e., it satisfies

𝑎(𝑒,𝑣 − 𝑒) +
∫︁

Ω

𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥))(|𝑣(𝑥)| − |𝑒(𝑥)|) d𝑥 ≥ (f + curl g,𝑣 − 𝑒)𝐿2(Ω) ∀𝑣 ∈ 𝐻0(curl)

with ℎ := g − 𝜇−1curl 𝑒. The above problem coincides with (3.4) for 𝑧 = ℎ. Therefore, according to the proof
of Lemma 3.1, there exists a 𝑗 ∈ 𝐿∞(Ω) such that⎧⎪⎨⎪⎩

𝜖𝑒− curlℎ + 𝑗 = f
ℎ = g − 𝜇−1curl 𝑒 ∈ 𝑋(Ω)
|𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥)) for a.e. 𝑥 ∈ Ω
𝑗(𝑥) · 𝑒(𝑥) = 𝑗𝑐(𝑥, 𝑦(𝑥),ℎ(𝑥))|𝑒(𝑥)| for a.e. 𝑥 ∈ Ω.

In conclusion, the triple (𝑒,ℎ, 𝑗) ∈ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω) is a solution to (3.20). �

4. Time-discrete problem

This section is devoted to the analysis of the time-discrete problem associated with (1.1) on the basis of the
implicit Euler scheme. Let us begin by stating the required regularity assumption for the applied current source
𝑢 : Ω × [0, 𝑇 ] → R3, the temperature distribution 𝜃 : Ω × [0, 𝑇 ] → R, and the initial data 𝐸0 : Ω → R3 and
𝐻0 : Ω → R3.

Assumption 4.1. Suppose that

𝑢 ∈ 𝐻1
(︀
(0, 𝑇 ),𝐿2(Ω)

)︀
→˓ 𝒞

(︀
[0, 𝑇 ],𝐿2(Ω)

)︀
𝜃 ∈ 𝐻1

(︀
(0, 𝑇 ), 𝐿2(Ω)

)︀
∩ 𝒞 ([0, 𝑇 ], 𝐿∞(Ω))

(𝐸0,𝐻0) ∈ 𝐻0 (curl)×𝑋(Ω).

In Assumption 4.1 and all what follows, we use the abbreviation 𝑢(𝑡) = 𝑢(·, 𝑡). This notation is also used for
other functions acting in Ω× (0, 𝑇 ).
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Remark 4.2. In real applications, the temperature distribution 𝜃 is specified by the solution of heat equations.
For instance, ⎧⎨⎩𝜕𝑡𝜃 −∆𝜃 = 𝑓 in Ω× (0, 𝑇 )

∇𝜃 · 𝑛 = 0 on 𝜕Ω× (0, 𝑇 )
𝜃(0) = 𝜃0 in Ω.

(4.1)

If 𝜃0 ∈ 𝐷(∆) := {𝑦 ∈ 𝐻2(Ω) | ∇𝑦 · 𝑛 = 0 on 𝜕Ω}, 𝑓 ∈ 𝑊 1,1((0, 𝑇 ), 𝐿2(Ω)) or 𝑓 ∈ 𝒞([0, 𝑇 ], 𝐷(∆)), and Ω is
of class 𝒞1,1, then the classical semigroup theory (see, e.g., [10], Cors. 7.6 and 7.8) implies that (4.1) admits a
unique solution 𝜃 ∈ 𝒞1([0, 𝑇 ], 𝐿2(Ω)) ∩ 𝒞([0, 𝑇 ], 𝐷(∆)). In particular, 𝜃 satisfies Assumption 4.1.

Now, under Assumption 4.1, we introduce an auxiliary current density

𝐽0(𝑥) :=
{︂

𝐸0(𝑥)
|𝐸0(𝑥)|𝑗𝑐(𝑥, 𝜃(𝑥, 0),𝐻0(𝑥)) if |𝐸0(𝑥)| ≠ 0
0 if |𝐸0(𝑥)| = 0

(4.2)

and set
𝛿𝐸0 := 𝜖−1 (𝑢(0) + curl𝐻0 − 𝐽0) , 𝛿𝐻0 := −𝜇−1curl𝐸0. (4.3)

Thus, in view of (4.2) and (4.3), it holds that⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜖𝛿𝐸0 − curl𝐻0 + 𝐽0 = 𝑢(0) in Ω
𝜇𝛿𝐻0 + curl𝐸0 = 0 in Ω
|𝐽0(𝑥)| ≤ 𝑗𝑐(𝑥, 𝜃(𝑥, 0),𝐻0(𝑥)) for a.e. 𝑥 ∈ Ω
𝐽0(𝑥) ·𝐸0(𝑥) = 𝑗𝑐(𝑥, 𝜃(𝑥, 0),𝐻0(𝑥))|𝐸0(𝑥)| for a.e. 𝑥 ∈ Ω.

(4.4)

The property (4.4) is crucial for our subsequent analysis since it allows us to include the initial data (𝐸0,𝐻0)
in the time-discrete problem without any modification of the underlying QVI structure. Let us now formulate
the time-discrete problem: For every 𝑛 ∈ N, we consider

0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑇 with 𝑡𝑘 := 𝑘
𝑇

𝑛
∀𝑘 ∈ {0, . . . , 𝑛}

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜖𝛿𝐸𝑘 − curl𝐻𝑘 + 𝐽𝑘 = 𝑢(𝑡𝑘)
𝜇𝛿𝐻𝑘 + curl𝐸𝑘 = 0
|𝐽𝑘(𝑥)| ≤ 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡𝑘),𝐻𝑘(𝑥)) for a.e. 𝑥 ∈ Ω
𝐽𝑘(𝑥) ·𝐸𝑘(𝑥) = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡𝑘),𝐻𝑘(𝑥))|𝐸𝑘(𝑥)| for a.e. 𝑥 ∈ Ω
𝐸0 = 𝐸0, 𝐻0 = 𝐻0, 𝐽0 = 𝐽0

𝑘 = 0, . . . , 𝑛,

(P𝑛)

where

𝛿𝐸𝑘 :=
𝐸𝑘 −𝐸𝑘−1

𝑛−1𝑇
and 𝛿𝐻𝑘 :=

𝐻𝑘 −𝐻𝑘−1

𝑛−1𝑇
∀𝑘 ∈ {1, . . . , 𝑛}. (4.5)

We note that (P𝑛) at the initial step 𝑘 = 0 is readily satisfied due to (4.4).

Theorem 4.3. Let Assumptions 2.1 and 4.1 be satisfied. Then, for every 𝑛 ∈ N, the time-discrete problem
(P𝑛) admits a solution {(𝐸𝑘,𝐻𝑘,𝐽𝑘)}𝑛

𝑘=1 ⊂ 𝐻0(curl) ×𝑋(Ω) × 𝐿∞(Ω). If 𝑛 ∈ N is sufficiently large, then
the solution of (P𝑛) is unique.
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Proof. Thanks to Assumption 4.1, the existence result for (P𝑛) is an immediate consequence of Theorem 3.2.
Thus, it remains to prove that, for all sufficiently large 𝑛 ∈ N, the solution of (P𝑛) is unique. To show this, let
us notice that for every 𝑘 = 1, . . . , 𝑛, (𝐸𝑘,𝐻𝑘,𝐽𝑘) ∈ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω) is a solution to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜖

𝑛−1𝑇
𝑒− curlℎ + 𝑗 = f𝑘 in Ω

𝜇

𝑛−1𝑇
ℎ + curl 𝑒 = 𝜇g𝑘 in Ω

𝑒× 𝑛 = 0 on 𝜕Ω
|𝑗(𝑥)| ≤ 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡𝑘),ℎ(𝑥)) for a.e. 𝑥 ∈ Ω
𝑗(𝑥) · 𝑒(𝑥) = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡𝑘),ℎ(𝑥))|𝑒(𝑥)| for a.e. 𝑥 ∈ Ω

(4.6)

with f𝑘 := 𝑢(𝑡𝑘)+ 𝜖
𝑛−1𝑇 𝐸𝑘−1 ∈ 𝐿2(Ω) and g𝑘 := 1

𝑛−1𝑇 𝐻𝑘−1 ∈ 𝑋(Ω). Analogously to the proof of Theorem 3.2,
we introduce the fixed-point mapping 𝐹𝑘 : 𝐿2(Ω) → 𝐿2(Ω) associated with (4.6). Due to the presence of the
time step 𝑛−1𝑇 in (4.6), we obtain as in (3.24) that the mapping 𝐹𝑘 : 𝐿2(Ω) → 𝐿2(Ω) has the Lipschitz
constant 𝑇𝐿(‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω)))

2𝑛
√

𝜖𝜇 . Thus, for every 𝑛 ∈ N satisfying 𝑛 >
𝑇𝐿(‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

2
√

𝜖𝜇 , 𝐹𝑘 : 𝐿2(Ω) → 𝐿2(Ω)
turns out to be a contraction. In conclusion, the Banach fixed-point theorem implies that (4.6) admits a unique
solution. �

In the following, we shall make use of the classical discrete Gronwall lemma. For the convenience of the
reader, we recall it in the following lemma:

Lemma 4.4. Let {𝑎𝑘}∞𝑘=0 and {𝑏𝑘}∞𝑘=0 be sequences of nonnegative real numbers satisfying

𝑎𝑚 ≤ 𝑐+
𝑚−1∑︁
𝑘=0

𝑎𝑘𝑏𝑘 ∀𝑚 ∈ N

for some constant 𝑐 > 0. Then, it holds that

𝑎𝑚 ≤ 𝑐 exp

(︃
𝑚−1∑︁
𝑘=0

𝑏𝑘

)︃
∀𝑚 ∈ N.

Lemma 4.5. Let Assumptions 2.1 and 4.1 be satisfied. Furthermore, let 𝑛 ∈ N, and let {(𝐸𝑘,𝐻𝑘,𝐽𝑘)}𝑛
𝑘=1 ⊂

𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω) denote a solution to (P𝑛). Then, for all 𝑚 = 1, . . . , 𝑛, it holds that

‖𝐸𝑚‖2𝐿2
𝜖(Ω) + ‖𝐻𝑚‖2𝐿2

𝜇(Ω) +
𝑚∑︁

𝑘=1

(︁
‖𝐸𝑘 −𝐸𝑘−1‖2𝐿2

𝜖(Ω) + ‖𝐻𝑘 −𝐻𝑘−1‖2𝐿2
𝜇(Ω)

)︁
≤ (𝑒+ 1)

(︁
‖𝐸0‖2𝐿2

𝜖(Ω) + ‖𝐻0‖2𝐿2
𝜇(Ω) + 2𝑇 2𝜖−1‖𝑢‖2𝒞([0,𝑇 ],𝐿2(Ω))

)︁
. (4.7)

Proof. Let 𝑚 ∈ {1, . . . , 𝑛} and 𝑘 ∈ {1, . . .𝑚}. The first equality of (P𝑛) implies(︃
𝜖
𝐸𝑘 −𝐸𝑘−1

𝑛−1𝑇
− curl𝐻𝑘 + 𝐽𝑘,𝐸𝑘

)︃
𝐿2(Ω)

=
(︁
𝑢(𝑡𝑘),𝐸𝑘

)︁
𝐿2(Ω)

. (4.8)

On the other hand, the second equality of (P𝑛) yields

(︁
curl𝐻𝑘,𝐸𝑘

)︁
𝐿2(Ω)

=⏟ ⏞ 
(2.1)

(︁
𝐻𝑘, curl𝐸𝑘

)︁
𝐿2(Ω)

= −

(︃
𝐻𝑘,

𝐻𝑘 −𝐻𝑘−1

𝑛−1𝑇

)︃
𝐿2

𝜇(Ω)

. (4.9)
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Applying the inequality 𝐽𝑘(𝑥) ·𝐸𝑘(𝑥) = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡𝑘),𝐻𝑘(𝑥))|𝐸𝑘(𝑥)| ≥ 0 for a.e. 𝑥 ∈ Ω and (4.9) to (4.8), we
obtain that

𝑚∑︁
𝑘=1

(︂(︁
𝐸𝑘 −𝐸𝑘−1,𝐸𝑘

)︁
𝐿2

𝜖(Ω)
+
(︁
𝐻𝑘 −𝐻𝑘−1,𝐻𝑘

)︁
𝐿2

𝜇(Ω)

)︂
≤

𝑚∑︁
𝑘=1

𝑇

𝑛

(︁
𝑢(𝑡𝑘),𝐸𝑘

)︁
𝐿2(Ω)

. (4.10)

The first sum involving the electric field can be written as follows:

𝑚∑︁
𝑘=1

(︁
𝐸𝑘 −𝐸𝑘−1,𝐸𝑘

)︁
𝐿2

𝜖(Ω)
=

𝑚∑︁
𝑘=1

‖𝐸𝑘 −𝐸𝑘−1‖2𝐿2
𝜖(Ω) +

𝑚∑︁
𝑘=1

(︁
𝐸𝑘 −𝐸𝑘−1,𝐸𝑘−1

)︁
𝐿2

𝜖(Ω)

=
𝑚∑︁

𝑘=1

‖𝐸𝑘 −𝐸𝑘−1‖2𝐿2
𝜖(Ω) + ‖𝐸𝑚‖2𝐿2

𝜖(Ω) − ‖𝐸0‖2𝐿2
𝜖(Ω) −

𝑚∑︁
𝑘=1

(︁
𝐸𝑘 −𝐸𝑘−1,𝐸𝑘

)︁
𝐿2

𝜖(Ω)
,

where we have used the summation by parts formula. A similar result holds also for the second sum in (4.10).
Altogether, we obtain

‖𝐸𝑚‖2𝐿2
𝜖(Ω) + ‖𝐻𝑚‖2𝐿2

𝜇(Ω) +
𝑚∑︁

𝑘=1

(︁
‖𝐸𝑘 −𝐸𝑘−1‖2𝐿2

𝜖(Ω) + ‖𝐻𝑘 −𝐻𝑘−1‖2𝐿2
𝜇(Ω)

)︁
≤ ‖𝐸0‖2𝐿2

𝜖(Ω) + ‖𝐻0‖2𝐿2
𝜇(Ω) + 2

𝑚∑︁
𝑘=1

𝑇

𝑛
𝜖−1/2‖𝑢(𝑡𝑘)‖𝐿2(Ω)‖𝐸𝑘‖𝐿2

𝜖(Ω)

≤ ‖𝐸0‖2𝐿2
𝜖(Ω) + ‖𝐻0‖2𝐿2

𝜇(Ω) + 2
𝑚∑︁

𝑘=1

𝑇

𝑛

(︂
𝑇𝜖−1‖𝑢(𝑡𝑘)‖2𝐿2(Ω) +

1
4𝑇
‖𝐸𝑘‖2𝐿2

𝜖(Ω)

)︂

≤ ‖𝐸0‖2𝐿2
𝜖(Ω) + ‖𝐻0‖2𝐿2

𝜇(Ω) + 2𝑇 2𝜖−1‖𝑢‖2𝒞([0,𝑇 ],𝐿2(Ω)) +
𝑚∑︁

𝑘=1

1
2𝑛
‖𝐸𝑘‖2𝐿2

𝜖(Ω). (4.11)

In particular, the estimate (4.11) implies

1
2
‖𝐸𝑚‖2𝐿2

𝜖(Ω) ≤ ‖𝐸0‖2𝐿2
𝜖(Ω) + ‖𝐻0‖2𝐿2

𝜇(Ω) + 2𝑇 2𝜖−1‖𝑢‖2𝒞([0,𝑇 ],𝐿2(Ω)) +
𝑚−1∑︁
𝑘=1

1
2𝑛
‖𝐸𝑘‖2𝐿2

𝜖(Ω),

and consequently, by Lemma 4.4, we obtain that

1
2
‖𝐸𝑘‖2𝐿2

𝜖(Ω) ≤
(︁
‖𝐸0‖2𝐿2

𝜖(Ω) + ‖𝐻0‖2𝐿2
𝜇(Ω) + 2𝑇 2𝜖−1‖𝑢‖2𝒞([0,𝑇 ],𝐿2(Ω))

)︁
𝑒 ∀𝑘 = 1, . . . ,𝑚. (4.12)

Applying (4.12) to (4.11), we come to the conclusion that the estimate (4.7) is valid for all 𝑚 = 1, . . . , 𝑛. �

In the following, for simplicity, we use the notation 𝑗𝑘
𝑐 := 𝑗𝑐(·, 𝜃(𝑡𝑘),𝐻𝑘). According to (P𝑛), it holds for all

𝑘 = 0, . . . , 𝑛 that

|𝐽𝑘(𝑥)| ≤ 𝑗𝑘
𝑐 (𝑥) and 𝐽𝑘(𝑥) ·𝐸𝑘(𝑥) = 𝑗𝑘

𝑐 (𝑥)|𝐸𝑘(𝑥)| for a.e. 𝑥 ∈ Ω. (4.13)

Our next goal is to analyze the stability property for 𝛿𝐸𝑘 and 𝛿𝐻𝑘. In our analysis, we shall make use of the
following constants:

𝛼 := ‖𝛿𝐸0‖2𝐿2
𝜖(Ω) + ‖curl𝐸0‖2𝐿2

1
𝜇

(Ω) + 𝑇𝜖−1
[︁
2𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀2 ‖𝜕𝑡𝜃‖2𝐿2((0,𝑇 ),𝐿2(Ω)) + ‖𝜕𝑡𝑢‖2𝐿2((0,𝑇 ),𝐿2(Ω))

]︁
𝛽 := 2 max

{︁
2, 2𝑇 2𝜇−1𝜖−1𝐿

(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀2}︁
. (4.14)



MAXWELL QUASI-VARIATIONAL INEQUALITIES 1557

Lemma 4.6. Let Assumptions 2.1 and 4.1 be satisfied. Furthermore, let 𝑛 ∈ N satisfying 𝑛 ≥ 𝛽, and let
{(𝐸𝑘,𝐻𝑘,𝐽𝑘)}𝑛

𝑘=1 ⊂ 𝐻0(curl) × 𝑋(Ω) × 𝐿∞(Ω) denote a solution to (P𝑛). Then, for all 𝑚 = 1, . . . , 𝑛, it
holds that

1
2
‖𝛿𝐸𝑚‖2𝐿2

𝜖(Ω) +
1
2
‖curl𝐸𝑚‖2𝐿2

1
𝜇

(Ω) +
𝑚∑︁

𝑘=1

‖𝛿𝐸𝑘 − 𝛿𝐸𝑘−1‖2𝐿2
𝜖(Ω) (4.15a)

+
𝑚∑︁

𝑘=1

‖curl
(︁
𝐸𝑘 −𝐸𝑘−1

)︁
‖2𝐿2

1
𝜇

(Ω) ≤ 𝛼 (1 + 𝛽 exp(𝛽))

‖𝛿𝐻𝑚‖𝐿2
𝜇(Ω) ≤

√︀
2𝛼 exp(𝛽) (4.15b)

‖curl𝐻𝑚‖𝐿2(Ω) ≤
√︀

2𝜖𝛼 exp(𝛽) + ‖𝑢‖𝒞([0,𝑇 ],𝐿2(Ω)) + |Ω| 12𝐶
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀
. (4.15c)

Proof. Let 𝑚 ∈ {1, . . . , 𝑛} and 𝑘 ∈ {1, . . .𝑚}. By the first equality in (P𝑛), we obtain(︁
𝛿𝐸𝑘 − 𝛿𝐸𝑘−1, 𝛿𝐸𝑘

)︁
𝐿2

𝜖(Ω)
−
(︁
curl

(︁
𝐻𝑘 −𝐻𝑘−1

)︁
, 𝛿𝐸𝑘

)︁
𝐿2(Ω)

+
(︁
𝐽𝑘 − 𝐽𝑘−1, 𝛿𝐸𝑘

)︁
𝐿2(Ω)

=
(︁
𝑢(𝑡𝑘)− 𝑢 (𝑡𝑘−1) , 𝛿𝐸𝑘

)︁
𝐿2(Ω)

.

On the other hand, from the second equality in (P𝑛), we know that

(︁
curl

(︁
𝐻𝑘 −𝐻𝑘−1

)︁
, 𝛿𝐸𝑘

)︁
𝐿2(Ω)

= −𝑇
𝑛

(︁
𝜇−1curl𝐸𝑘, curl 𝛿𝐸𝑘

)︁
𝐿2(Ω)

= −
(︁
curl𝐸𝑘, curl

(︁
𝐸𝑘 −𝐸𝑘−1

)︁)︁
𝐿2

1
𝜇

(Ω)
.

Combining the above two identities results in

𝑚∑︁
𝑘=1

(︁
𝛿𝐸𝑘 − 𝛿𝐸𝑘−1, 𝛿𝐸𝑘

)︁
𝐿2

𝜖(Ω)
+

𝑚∑︁
𝑘=1

(︁
curl𝐸𝑘, curl

(︁
𝐸𝑘 −𝐸𝑘−1

)︁)︁
𝐿2

1
𝜇

(Ω)

=
𝑚∑︁

𝑘=1

(︁
𝐽𝑘−1 − 𝐽𝑘, 𝛿𝐸𝑘

)︁
𝐿2(Ω)

+
𝑚∑︁

𝑘=1

(︁
𝑢(𝑡𝑘)− 𝑢(𝑡𝑘−1), 𝛿𝐸𝑘

)︁
𝐿2(Ω)

.

Then, similarly to the previous lemma, the summation by parts formula implies

‖𝛿𝐸𝑚‖2𝐿2
𝜖(Ω) − ‖𝛿𝐸

0‖2𝐿2
𝜖(Ω) +

𝑚∑︁
𝑘=1

‖𝛿𝐸𝑘 − 𝛿𝐸𝑘−1‖2𝐿2
𝜖(Ω)

+ ‖curl𝐸𝑚‖2𝐿2
1
𝜇

(Ω) − ‖curl𝐸0‖2𝐿2
1
𝜇

(Ω) +
𝑚∑︁

𝑘=1

‖curl
(︁
𝐸𝑘 −𝐸𝑘−1

)︁
‖2𝐿2

1
𝜇

(Ω)

= 2
𝑚∑︁

𝑘=1

(︁
𝐽𝑘−1 − 𝐽𝑘, 𝛿𝐸𝑘

)︁
𝐿2(Ω)⏟  ⏞  

=:I

+ 2
𝑚∑︁

𝑘=1

(︁
𝑢(𝑡𝑘)− 𝑢(𝑡𝑘−1), 𝛿𝐸𝑘

)︁
𝐿2(Ω)⏟  ⏞  

=:II

. (4.16)
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Let us derive an appropriate upper estimate for 𝐼. According to (4.5) and (4.13), it holds that

(︁
𝐽𝑘−1 − 𝐽𝑘, 𝛿𝐸𝑘

)︁
𝐿2(Ω)

=
𝑛

𝑇

∫︁
Ω

𝐽𝑘−1 ·𝐸𝑘 − 𝑗𝑘−1
𝑐 |𝐸𝑘−1|+ 𝑗𝑘 ·𝐸𝑘−1 − 𝑗𝑘

𝑐 |𝐸
𝑘|d𝑥

≤ 𝑛

𝑇

∫︁
Ω

𝑗𝑘−1
𝑐 |𝐸𝑘| − 𝑗𝑘−1

𝑐 |𝐸𝑘−1|+ 𝑗𝑘
𝑐 |𝐸

𝑘−1| − 𝑗𝑘
𝑐 |𝐸

𝑘|d𝑥

=
𝑛

𝑇

∫︁
Ω

(︀
𝑗𝑘−1
𝑐 − 𝑗𝑘

𝑐

)︀ (︁
|𝐸𝑘| − |𝐸𝑘−1|

)︁
d𝑥

≤
∫︁

Ω

|𝑗𝑘−1
𝑐 − 𝑗𝑘

𝑐 ||𝛿𝐸
𝑘|d𝑥.

Then, as a consequence of (A4), the second equality of (P𝑛), and Young’s inequality, we obtain(︁
𝐽𝑘−1 − 𝐽𝑘, 𝛿𝐸𝑘

)︁
𝐿2(Ω)

≤ 𝜖−
1
2 ‖𝑗𝑘−1

𝑐 − 𝑗𝑘
𝑐 ‖𝐿2(Ω)‖𝛿𝐸𝑘‖𝐿2

𝜖(Ω)

≤ 𝜖−
1
2𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀(︂∫︁
Ω

(︁
|𝜃 (𝑥, 𝑡𝑘−1)− 𝜃 (𝑥, 𝑡𝑘) |+ |𝐻𝑘−1(𝑥)−𝐻𝑘(𝑥)|

)︁2

d𝑥
)︂1/2

‖𝛿𝐸𝑘‖𝐿2
𝜖(Ω)

≤ 𝜖−1𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀2
𝑛‖𝜃(𝑡𝑘)− 𝜃 (𝑡𝑘−1) ‖2𝐿2(Ω) +

1
4𝑛
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω)

+ 𝜖−1𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀2 𝑇 2

𝑛
‖𝛿𝐻𝑘‖2𝐿2(Ω) +

1
4𝑛
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω)

≤ 𝜖−1𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀2(︃
𝑛‖𝜃(𝑡𝑘)− 𝜃 (𝑡𝑘−1) ‖2𝐿2(Ω) +

𝑇 2

𝑛𝜇
‖curl𝐸𝑘‖2𝐿2

1
𝜇

(Ω)

)︃
+

1
2𝑛
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω).

Since 𝜃 ∈ 𝐻1((0, 𝑇 ), 𝐿2(Ω)), it holds for all 𝑘 = 1, . . . , 𝑛 that

‖𝜃(𝑡𝑘)− 𝜃 (𝑡𝑘−1) ‖𝐿2(Ω) ≤
∫︁ 𝑡𝑘

𝑡𝑘−1

‖𝜕𝑡𝜃(𝑡)‖𝐿2(Ω)d𝑡

≤

(︃∫︁ 𝑡𝑘

𝑡𝑘−1

‖𝜕𝑡𝜃(𝑡)‖2𝐿2(Ω)d𝑡

)︃ 1
2
(︃∫︁ 𝑡𝑘

𝑡𝑘−1

1 d𝑡

)︃ 1
2

=

√︂
𝑇

𝑛

(︃∫︁ 𝑡𝑘

𝑡𝑘−1

‖𝜕𝑡𝜃(𝑡)‖2𝐿2(Ω)d𝑡

)︃ 1
2

.

Therefore,

𝑚∑︁
𝑘=1

𝑛‖𝜃(𝑡𝑘)− 𝜃 (𝑡𝑘−1) ‖2𝐿2(Ω) ≤ 𝑇

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

‖𝜕𝑡𝜃(𝑡)‖2𝐿2(Ω)d𝑡 = 𝑇‖𝜕𝑡𝜃‖2𝐿2((0,𝑇 ),𝐿2(Ω)).

Collecting all above estimates, we arrive at

I = 2
𝑚∑︁

𝑘=1

(︁
𝐽𝑘−1 − 𝐽𝑘, 𝛿𝐸𝑘

)︁
𝐿2(Ω)

≤ 𝑇

𝜖
2𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀2(︂‖𝜕𝑡𝜃‖2𝐿2((0,𝑇 ),𝐿2(Ω))

+
𝑇

𝜇

𝑚∑︁
𝑘=1

1
𝑛
‖curl𝐸𝑘‖2𝐿2

1
𝜇

(Ω)

)︂
+

𝑚∑︁
𝑘=1

1
𝑛
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω).

(4.17)
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Similarly, by virtue of 𝑢 ∈ 𝐻1((0, 𝑇 ),𝐿2(Ω)), we deduce that

II = 2
𝑚∑︁

𝑘=1

(︁
𝑢(𝑡𝑘)− 𝑢 (𝑡𝑘−1) , 𝛿𝐸𝑘

)︁
𝐿2(Ω)

≤ 2
𝑚∑︁

𝑘=1

𝜖−
1
2 ‖𝑢(𝑡𝑘)− 𝑢 (𝑡𝑘−1) ‖𝐿2(Ω)‖𝛿𝐸𝑘‖𝐿2

𝜖(Ω)

≤
𝑚∑︁

𝑘=1

𝜖−1𝑛‖𝑢(𝑡𝑘)− 𝑢 (𝑡𝑘−1) ‖2𝐿2(Ω) +
𝑚∑︁

𝑘=1

1
𝑛
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω)

≤ 𝑇

𝜖
‖𝜕𝑡𝑢‖2𝐿2((0,𝑇 ),𝐿2(Ω)) +

𝑚∑︁
𝑘=1

1
𝑛
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω).

(4.18)

Now, applying (4.17) and (4.18) to (4.16) yields

‖𝛿𝐸𝑚‖2𝐿2
𝜖(Ω) + ‖curl𝐸𝑚‖2𝐿2

1
𝜇

(Ω) +
𝑚∑︁

𝑘=1

(︂
‖𝛿𝐸𝑘 − 𝛿𝐸𝑘−1‖2𝐿2

𝜖(Ω) + ‖curl
(︁
𝐸𝑘 −𝐸𝑘−1

)︁
‖2𝐿2

1
𝜇

(Ω)

)︂

≤ 𝛼+
𝑚∑︁

𝑘=1

𝛽

𝑛

(︃
1
2
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω) +
1
2
‖curl𝐸𝑘‖2𝐿2

1
𝜇

(Ω)

)︃ (4.19)

with 𝛼, 𝛽 as in (4.14). Since 𝑛 ≥ 𝛽, (4.19) implies

1
2
‖𝛿𝐸𝑚‖2𝐿2

𝜖(Ω) +
1
2
‖curl𝐸𝑚‖2𝐿2

1
𝜇

(Ω) ≤ 𝛼+
𝑚−1∑︁
𝑘=1

𝛽

𝑛

(︂
1
2
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω) +
1
2
‖curl𝐸𝑘‖2𝐿2

1
𝜇

(Ω)

)︂
,

and so, by the discrete Gronwall lemma (Lem. 4.4),

1
2
‖𝛿𝐸𝑘‖2𝐿2

𝜖(Ω) +
1
2
‖curl𝐸𝑘‖2𝐿2

1
𝜇

(Ω) ≤ 𝛼 exp(𝛽) ∀𝑘 = 1, . . . ,𝑚. (4.20)

Thus, the estimate (4.15a) follows immediately from (4.19) and (4.20). Now, according to (P𝑛), we have

‖𝛿𝐻𝑘‖𝐿2
𝜇(Ω) = ‖𝜇 1

2 𝛿𝐻𝑘‖𝐿2(Ω) = ‖𝜇− 1
2 curl𝐸𝑘‖𝐿2(Ω) = ‖curl𝐸𝑘‖𝐿2

1
𝜇

(Ω) (4.21)

and

‖curl𝐻𝑘‖𝐿2(Ω) = ‖𝜖𝛿𝐸𝑘 − 𝑢(𝑡𝑘) + 𝐽𝑘‖𝐿2(Ω) ≤ 𝜖
1
2 ‖𝛿𝐸𝑘‖𝐿2

𝜖(Ω) + ‖𝑢‖𝒞([0,𝑇 ],𝐿2(Ω)) + |Ω| 12𝐶
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀
,

(4.22)
where we have also used (4.13) and (A3). Applying (4.20) to (4.21), (4.22) implies finally (4.15b)
and (4.15c). �

5. Well-posedness for (QVI)

For each 𝑛 ∈ N, let {(𝐸𝑘,𝐻𝑘,𝐽𝑘)}𝑛
𝑘=0 ⊂ 𝐻0(curl)×𝑋(Ω)×𝐿∞(Ω) denote a solution to (P𝑛) according to

Corollary 4.3. Then, we define piecewise linear and continuous in time functions ̂︀𝐸𝑛 and ̂︁𝐻𝑛 as follows:

̂︀𝐸𝑛(𝑡) :=
𝑡− 𝑡𝑘−1

𝑛−1𝑇
𝐸𝑘 +

𝑡𝑘 − 𝑡

𝑛−1𝑇
𝐸𝑘−1 for all 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] and all 𝑘 = 1, . . . 𝑛

̂︁𝐻𝑛(𝑡) :=
𝑡− 𝑡𝑘−1

𝑛−1𝑇
𝐻𝑘 +

𝑡𝑘 − 𝑡

𝑛−1𝑇
𝐻𝑘−1 for all 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] and all 𝑘 = 1, . . . 𝑛.

(5.1)
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Here, we recall that 𝑡𝑘 = 𝑇
𝑛 𝑘. By our construction (5.1), it holds for all 𝑛 ∈ N that ̂︀𝐸𝑛 ∈𝑊 1,∞((0, 𝑇 ),𝐻0(curl))

and ̂︁𝐻𝑛 ∈𝑊 1,∞((0, 𝑇 ),𝑋(Ω)) with

𝜕𝑡
̂︀𝐸𝑛(𝑡) =

𝐸𝑘 −𝐸𝑘−1

𝑛−1𝑇
= 𝛿𝐸𝑘 ∀𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘) ∀𝑘 = 1, . . . 𝑛

𝜕𝑡
̂︁𝐻𝑛(𝑡) =

𝐻𝑘 −𝐻𝑘−1

𝑛−1𝑇
= 𝛿𝐻𝑘 ∀𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘) ∀𝑘 = 1, . . . 𝑛.

(5.2)

Next, we introduce piecewise constant in time functions 𝐸𝑛, 𝐻𝑛, 𝐽𝑛, 𝑢𝑛 and 𝜃𝑛:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐸𝑛(𝑡) := 𝐸𝑘 for all 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘] and all 𝑘 = 1, . . . 𝑛
𝐻𝑛(𝑡) := 𝐻𝑘 for all 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘] and all 𝑘 = 1, . . . 𝑛
𝐽𝑛(𝑡) := 𝐽𝑘 for all 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘] and all 𝑘 = 1, . . . 𝑛
𝑢𝑛(𝑡) := 𝑢(𝑡𝑘) for all 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘] and all 𝑘 = 1, . . . 𝑛
𝜃𝑛(𝑡) := 𝜃(𝑡𝑘) for all 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘] and all 𝑘 = 1, . . . 𝑛.

(5.3)

We note that Assumption 4.1 guarantees that

lim
𝑛→∞

‖𝑢𝑛 − 𝑢‖𝐿2((0,𝑇 ),𝐿2(Ω)) = lim
𝑛→∞

‖𝜃𝑛 − 𝜃‖𝐿2((0,𝑇 ),𝐿2(Ω)) = 0. (5.4)

For simplicity, we use the notation

𝑗𝑐𝑛(𝑥, 𝑡) := 𝑗𝑐(𝑥, 𝜃𝑛(𝑥, 𝑡),𝐻𝑛(𝑥, 𝑡)) for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ) and all 𝑛 ∈ N. (5.5)

In view of (P𝑛), (5.2), (5.3), and (5.5) imply for all 𝑛 ∈ N that⎧⎪⎪⎨⎪⎪⎩
𝜖𝜕𝑡
̂︀𝐸𝑛 − curl𝐻𝑛 + 𝐽𝑛 = 𝑢𝑛

𝜇𝜕𝑡
̂︁𝐻𝑛 + curl𝐸𝑛 = 0

|𝐽𝑛(𝑥, 𝑡)| ≤ 𝑗𝑐𝑛(𝑥, 𝑡) for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 )
𝐽𝑛(𝑥, 𝑡) ·𝐸𝑛(𝑥, 𝑡) = 𝑗𝑐𝑛(𝑥, 𝑡)|𝐸𝑛(𝑥, 𝑡)| for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).

(5.6)

Theorem 5.1. Under Assumptions 2.1 and 4.1, (1.1) admits a unique solution (𝐸,𝐻,𝐽) ∈
𝑊 1,∞ (︀(0, 𝑇 ),𝐿2(Ω)

)︀
∩𝐿∞((0, 𝑇 ),𝐻0(curl))×𝑊 1,∞((0, 𝑇 ),𝐿2(Ω))∩𝐿∞((0, 𝑇 ),𝑋(Ω))×𝐿∞((0, 𝑇 ),𝐿∞(Ω)).

Proof. Step 1. By definition, the assumption (A3) and Lemmas 4.5 and 4.6, the sequences{︁̂︀𝐸𝑛

}︁∞
𝑛=1

⊂𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝒞([0, 𝑇 ],𝐻0(curl)){︁̂︁𝐻𝑛

}︁∞
𝑛=1

⊂𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝒞([0, 𝑇 ],𝑋(Ω))

{𝐸𝑛}∞𝑛=1 ⊂ 𝐿∞((0, 𝑇 ),𝐻0(curl))
{𝐻𝑛}∞𝑛=1 ⊂ 𝐿∞((0, 𝑇 ),𝑋(Ω))
{𝐽𝑛}∞𝑛=1 ⊂ 𝐿∞((0, 𝑇 ),𝐿∞(Ω))

are bounded. Therefore, after selecting subsequences,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

̂︀𝐸𝑛 ⇀ ̂︀𝐸 weakly star in 𝐿∞((0, 𝑇 ),𝐻0(curl)) as 𝑛→∞̂︁𝐻𝑛 ⇀ ̂︁𝐻 weakly star in 𝐿∞((0, 𝑇 ),𝑋(Ω)) as 𝑛→∞
𝜕𝑡
̂︀𝐸𝑛 ⇀ 𝜕𝑡

̂︀𝐸 weakly star in 𝐿∞((0, 𝑇 ),𝐿2(Ω)) as 𝑛→∞
𝜕𝑡
̂︁𝐻𝑛 ⇀ 𝜕𝑡

̂︁𝐻 weakly star in 𝐿∞((0, 𝑇 ),𝐿2(Ω)) as 𝑛→∞
𝐸𝑛 ⇀ 𝐸 weakly star in 𝐿∞((0, 𝑇 ),𝐻0(curl)) as 𝑛→∞
𝐻𝑛 ⇀ 𝐻 weakly star in 𝐿∞((0, 𝑇 ),𝑋(Ω)) as 𝑛→∞
𝐽𝑛 ⇀ 𝐽 weakly star in 𝐿∞((0, 𝑇 ),𝐿2(Ω)) as 𝑛→∞

(5.7)
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for some ̂︀𝐸 ∈ 𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝐻0(curl)), ̂︁𝐻 ∈ 𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝑋(Ω)),
𝐸 ∈ 𝐿∞((0, 𝑇 ),𝐻0(curl)), 𝐻 ∈ 𝐿∞((0, 𝑇 ),𝑋(Ω)), and 𝐽 ∈ 𝐿∞((0, 𝑇 ),𝐿∞(Ω)). Note that in (5.7), we
use 𝐿1((0, 𝑇 ),𝐻0(curl))* ∼= 𝐿∞((0, 𝑇 ),𝐻0(curl)) and similar identifications for other 𝐿1-Bochner spaces.
According to (5.1)–(5.3) and Lemma 4.6, it holds for all 𝑛 ≥ 𝛽 that

‖̂︀𝐸𝑛 −𝐸𝑛‖𝐿∞((0,𝑇 ),𝐿2
𝜖(Ω)) ≤

𝑇

𝑛
max

𝑘=1,...,𝑛
‖𝛿𝐸𝑘‖𝐿2

𝜖(Ω) ≤
𝑇

𝑛

√︀
2𝛼(1 + 𝛽 exp(𝛽))

‖̂︁𝐻𝑛 −𝐻𝑛‖𝐿∞((0,𝑇 ),𝐿2
𝜇(Ω)) ≤

𝑇

𝑛
max

𝑘=1,...,𝑛
‖𝛿𝐻𝑘‖𝐿2

𝜇(Ω) ≤
𝑇

𝑛

√︀
2𝛼 exp(𝛽),

which yields
lim

𝑛→∞
‖̂︀𝐸𝑛 −𝐸𝑛‖𝐿∞((0,𝑇 ),𝐿2(Ω)) = lim

𝑛→∞
‖̂︁𝐻𝑛 −𝐻𝑛‖𝐿∞((0,𝑇 ),𝐿2(Ω)) = 0. (5.8)

Thus, the properties (5.7) and (5.8) imply{︃
𝐸 = ̂︀𝐸 ∈𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝐻0(curl))

𝐻 = ̂︁𝐻 ∈𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝑋(Ω)).
(5.9)

Altogether, in view of (5.4), (5.6), (5.7), and (5.9), the weak limit (𝐸,𝐻,𝐽) satisfies{︂
𝜖𝜕𝑡𝐸 − curl𝐻 + 𝐽 = 𝑢

𝜇𝜕𝑡𝐻 + curl𝐸 = 0.
(5.10)

Step 2. Thanks to (5.9), possibly after a modification on a set of [0, 𝑇 ] with measure zero, it holds that
𝐸,𝐻 ∈ 𝒞([0, 𝑇 ],𝐿2(Ω)). On the other hand, as 𝑋(Ω) →˓ 𝐿2(Ω) is compact, the Aubin–Lions lemma yields
the compactness of the embedding 𝐻1((0, 𝑇 ),𝐿2(Ω))∩𝐿∞((0, 𝑇 ),𝑋(Ω)) →˓ 𝒞([0, 𝑇 ],𝐿2(Ω)). For this reason,

̂︁𝐻𝑛 → 𝐻 in 𝒞([0, 𝑇 ],𝐿2(Ω)) as 𝑛→∞. (5.11)

In particular, as ̂︁𝐻𝑛(0) = 𝐻0 for all 𝑛 ∈ N, the above convergence implies

𝐻(0) = 𝐻0. (5.12)

We underline that 𝐻0(curl) →˓ 𝐿2(Ω) is not compact so that the convergence of {̂︀𝐸𝑛}∞𝑛=1 in 𝒞([0, 𝑇 ],𝐿2(Ω))
cannot be expected. However, we will show that

̂︀𝐸𝑛(𝑇 ) ⇀ 𝐸(𝑇 ) weakly in 𝐿2(Ω) as 𝑛→∞ (5.13)

holds after selecting a subsequence, and
𝐸(0) = 𝐸0. (5.14)

By virtue of Lemma 4.5, the sequence {𝐸𝑛}∞𝑛=1 ⊂ 𝐿2(Ω) is bounded. Thus, after selecting a subsequence,
it holds that

𝐸𝑛 ⇀ 𝐸𝑇 weakly in 𝐿2(Ω) as 𝑛→∞ (5.15)

for some 𝐸𝑇 ∈ 𝐿2(Ω). We introduce the function 𝜙 : [0, 𝑇 ] → [0, 1], 𝑡 ↦→ 𝑡
𝑇 . By definition and employing the

classical integration by parts formula, we have∫︁
Ω

𝜖𝐸𝑛 · 𝑣 d𝑥 =
∫︁

Ω

𝜖̂︀𝐸𝑛(𝑇 ) · 𝑣 d𝑥𝜙(𝑇 )−
∫︁

Ω

𝜖̂︀𝐸𝑛(0) · 𝑣 d𝑥𝜙(0)

=
∫︁ 𝑇

0

(︂∫︁
Ω

𝜖𝜕𝑡
̂︀𝐸𝑛(𝑡) · 𝑣 d𝑥𝜙(𝑡) +

∫︁
Ω

𝜖̂︀𝐸𝑛(𝑡) · 𝑣 d𝑥𝜙′(𝑡)
)︂

d𝑡 ∀𝑛 ∈ N, ∀𝑣 ∈ 𝐿2(Ω).
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Then, passing to the limit 𝑛→∞, we obtain from (5.7), (5.9), and (5.15) that∫︁
Ω

𝜖𝐸𝑇 · 𝑣 d𝑥 =
∫︁ 𝑇

0

(︂∫︁
Ω

𝜖𝜕𝑡𝐸(𝑡) · 𝑣 d𝑥𝜙(𝑡) +
∫︁

Ω

𝜖𝐸(𝑡) · 𝑣 d𝑥𝜙′(𝑡)
)︂

d𝑡

=
∫︁

Ω

𝜖𝐸(𝑇 ) · 𝑣 d𝑥𝜙(𝑇 )−
∫︁

Ω

𝜖𝐸(0) · 𝑣 d𝑥𝜙(0) =
∫︁

Ω

𝜖𝐸(𝑇 ) · 𝑣 d𝑥 ∀𝑣 ∈ 𝐿2(Ω),

from which it follows that 𝐸𝑇 = 𝐸(𝑇 ), and consequently

̂︀𝐸𝑛(𝑇 ) = 𝐸𝑛 ⇀ 𝐸𝑇 = 𝐸(𝑇 ) weakly in 𝐿2(Ω) as 𝑛→∞.

Similarly, introducing the function 𝜓 : [0, 𝑇 ] → [−1, 0], 𝑡 ↦→ 𝑡−𝑇
𝑇 , we deduce that∫︁

Ω

𝜖𝐸0 · 𝑣 d𝑥 =
∫︁

Ω

𝜖̂︀𝐸𝑛(𝑇 ) · 𝑣 d𝑥𝜓(𝑇 )−
∫︁

Ω

𝜖̂︀𝐸𝑛(0) · 𝑣 d𝑥𝜓(0)

=
∫︁ 𝑇

0

(︂∫︁
Ω

𝜖𝜕𝑡
̂︀𝐸𝑛(𝑡) · 𝑣 d𝑥𝜓(𝑡) +

∫︁
Ω

𝜖̂︀𝐸𝑛(𝑡) · 𝑣 d𝑥𝜓′(𝑡)
)︂

d𝑡

→
∫︁ 𝑇

0

(︂∫︁
Ω

𝜖𝜕𝑡𝐸(𝑡) · 𝑣 d𝑥𝜓(𝑡) +
∫︁

Ω

𝜖𝐸(𝑡) · 𝑣 d𝑥𝜓′(𝑡)
)︂

d𝑡

=
∫︁

Ω

𝜖𝐸(𝑇 ) · 𝑣 d𝑥𝜓(𝑇 )−
∫︁

Ω

𝜖𝐸(0) · 𝑣 d𝑥𝜓(0) =
∫︁

Ω

𝜖𝐸(0) · 𝑣 d𝑥 ∀𝑣 ∈ 𝐿2(Ω),

from which it follows that 𝐸(0) = 𝐸0. In conclusion, the conditions (5.13) and (5.14) are valid.
Step 3. We verify the conditions

|𝐽(𝑥, 𝑡)| ≤ 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 )

𝐽(𝑥, 𝑡) ·𝐸(𝑥, 𝑡) = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)| for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).
(5.16)

The convergence properties (5.8) and (5.11) imply

𝐻𝑛 → 𝐻 in 𝐿∞((0, 𝑇 ),𝐿2(Ω)) as 𝑛→∞. (5.17)

Then, in view of (A4), (5.4), (5.5), and (5.17), we obtain

lim
𝑛→∞

∫︁ 𝑇

0

∫︁
Ω

|𝑗𝑐𝑛(𝑥, 𝑡)− 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|2 d𝑥d𝑡

≤ lim
𝑛→∞

2𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀2 (︁‖𝜃𝑛 − 𝜃‖2𝐿2((0,𝑇 ),𝐿2(Ω)) + ‖𝐻𝑛 −𝐻‖2𝐿2((0,𝑇 ),𝐿2(Ω))

)︁
= 0.

In other words,
𝑗𝑐𝑛 → 𝑗𝑐(·, 𝜃,𝐻) in 𝐿2

(︀
(0, 𝑇 ),𝐿2(Ω)

)︀
as 𝑛→∞. (5.18)

Now, suppose that there exists a Lebesgue measurable set 𝑄 ⊂ Ω× (0, 𝑇 ) of non-zero measure such that

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) < |𝐽(𝑥, 𝑡)| for a.e. (𝑥, 𝑡) ∈ 𝑄.

This inequality together with the weak convergence (5.7) and the convergence (5.18) leads to a contradiction:∫︁∫︁
𝑄

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) d𝑥d𝑡 <
∫︁∫︁
𝑄

|𝐽(𝑥, 𝑡)|d𝑥d𝑡

=⏟ ⏞ 
(5.7)

lim
𝑛→∞

∫︁∫︁
𝑄

𝐽𝑛(𝑥, 𝑡) · 𝐽(𝑥, 𝑡)
|𝐽(𝑥, 𝑡)|

d𝑥d𝑡 ≤⏟ ⏞ 
(5.6)

lim
𝑛→∞

∫︁∫︁
𝑄

𝑗𝑐𝑛
(𝑥, 𝑡) d𝑥d𝑡 =⏟ ⏞ 

(5.18)

∫︁∫︁
𝑄

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) d𝑥d𝑡.
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We come therefore to the conclusion that

|𝐽(𝑥, 𝑡)| ≤ 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ). (5.19)

Next, let 𝑘 ∈ N. The convergence (5.18) together with the weak convergence (5.7) implies∫︁ 𝑇

0

∫︁
Ω

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))
|𝐸(𝑥, 𝑡)|2

|𝐸(𝑥, 𝑡)|+ 𝑘−1
d𝑥d𝑡 = lim

𝑛→∞

∫︁ 𝑇

0

∫︁
Ω

𝑗𝑐𝑛(𝑥, 𝑡)
𝐸(𝑥, 𝑡)

|𝐸(𝑥, 𝑡)|+ 𝑘−1
·𝐸𝑛(𝑥, 𝑡) d𝑥d𝑡

= lim inf
𝑛→∞

∫︁ 𝑇

0

∫︁
Ω

𝑗𝑐𝑛(𝑥, 𝑡)
𝐸(𝑥, 𝑡)

|𝐸(𝑥, 𝑡)|+ 𝑘−1
·𝐸𝑛(𝑥, 𝑡) d𝑥d𝑡

≤ lim inf
𝑛→∞

∫︁ 𝑇

0

∫︁
Ω

𝑗𝑐𝑛(𝑥, 𝑡)|𝐸𝑛(𝑥, 𝑡)|d𝑥 d𝑡

=⏟ ⏞ 
(5.6)

lim inf
𝑛→∞

∫︁ 𝑇

0

∫︁
Ω

𝐽𝑛(𝑥, 𝑡) ·𝐸𝑛(𝑥, 𝑡) d𝑥d𝑡.

Passing to the limit 𝑘 →∞, the monotone convergence theorem implies∫︁ 𝑇

0

∫︁
Ω

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)|d𝑥d𝑡 ≤ lim inf
𝑛→∞

∫︁ 𝑇

0

∫︁
Ω

𝐽𝑛(𝑥, 𝑡) ·𝐸𝑛(𝑥, 𝑡) d𝑥d𝑡. (5.20)

Let us investigate the right-hand side of the above inequality. According to (5.10),

(𝜕𝑡𝐸(𝑡),𝐸(𝑡))𝐿2
𝜖(Ω) + (𝜕𝑡𝐻(𝑡),𝐻(𝑡))𝐿2

𝜇(Ω) + (𝐽(𝑡),𝐸(𝑡))𝐿2(Ω) = (𝑢(𝑡),𝐸(𝑡))𝐿2(Ω)

holds for a.e. 𝑡 ∈ (0, 𝑇 ). Integrating this identity over the time interval [0, 𝑇 ] and employing (5.12) as well
as (5.14), we obtain

‖𝐸(𝑇 )‖2𝐿2
𝜖(Ω)+‖𝐻(𝑇 )‖2𝐿2

𝜇(Ω)+2
∫︁ 𝑇

0

(𝐽(𝑡),𝐸(𝑡))𝐿2(Ω)d𝑡 = ‖𝐸0‖2𝐿2
𝜖(Ω)+‖𝐻0‖2𝐿2

𝜇(Ω)+2
∫︁ 𝑇

0

(𝑢(𝑡),𝐸(𝑡))𝐿2(Ω)d𝑡.

(5.21)
In a similar manner, we deduce from (5.6) that

‖̂︀𝐸𝑛(𝑇 )‖2𝐿2
𝜖(Ω) + ‖̂︁𝐻𝑛(𝑇 )‖2𝐿2

𝜇(Ω) + 2
∫︁ 𝑇

0

(𝐽𝑛(𝑡),𝐸𝑛(𝑡))𝐿2(Ω) d𝑡 = ‖𝐸0‖2𝐿2
𝜖(Ω) + ‖𝐻0‖2𝐿2

𝜇(Ω)

+ 2
∫︁ 𝑇

0

(︁
𝐻𝑛(𝑡), curl ̂︀𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

−
(︁̂︁𝐻𝑛(𝑡), curl𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

(5.22)

+
(︁
𝑢𝑛(𝑡), ̂︀𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

+
(︁
𝐽𝑛(𝑡),𝐸𝑛(𝑡)− ̂︀𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

d𝑡.

Applying (5.21) and (5.22) leads to

2
∫︁ 𝑇

0

(𝐽𝑛(𝑡),𝐸𝑛(𝑡))𝐿2(Ω) d𝑡 = I𝑛 + II𝑛 + 2
∫︁ 𝑇

0

(𝐽(𝑡)− 𝑢(𝑡),𝐸(𝑡))𝐿2(Ω) d𝑡 (5.23)

with

I𝑛 := ‖𝐸(𝑇 )‖2𝐿2
𝜖(Ω) + ‖𝐻(𝑇 )‖2𝐿2

𝜇(Ω) − ‖̂︀𝐸𝑛(𝑇 )‖2𝐿2
𝜖(Ω) − ‖̂︁𝐻𝑛(𝑇 )‖2𝐿2

𝜇(Ω)

II𝑛 := 2
∫︁ 𝑇

0

(︁
𝐻𝑛(𝑡), curl ̂︀𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

−
(︁̂︁𝐻𝑛(𝑡), curl𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

+
(︁
𝑢𝑛(𝑡), ̂︀𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

+
(︁
𝐽𝑛(𝑡),𝐸𝑛(𝑡)− ̂︀𝐸𝑛(𝑡)

)︁
𝐿2(Ω)

d𝑡.
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As a consequence of (5.11) and (5.13), the first term I𝑛 satisfies

lim sup
𝑛→∞

I𝑛 ≤ ‖𝐸(𝑇 )‖2𝐿2
𝜖(Ω) + ‖𝐻(𝑇 )‖2𝐿2

𝜇(Ω) + lim sup
𝑛→∞

(︁
−‖̂︀𝐸𝑛(𝑇 )‖2𝐿2

𝜖(Ω) − ‖̂︁𝐻𝑛(𝑇 )‖2𝐿2
𝜇(Ω)

)︁
≤ ‖𝐸(𝑇 )‖2𝐿2

𝜖(Ω) − lim inf
𝑛→∞

‖̂︀𝐸𝑛(𝑇 )‖2𝐿2
𝜖(Ω) ≤ 0.

Furthermore, thanks to (5.4), (5.7), (5.8), (5.9), (5.11), and (5.17), passing to the limit 𝑛→∞ in the second
term II𝑛 leads to

lim
𝑛→∞

II𝑛 = 2
∫︁ 𝑇

0

(𝑢(𝑡),𝐸(𝑡))𝐿2(Ω)d𝑡.

Invoking the above convergence results, we obtain from (5.23) that

lim inf
𝑛→∞

∫︁ 𝑇

0

(𝐽𝑛(𝑡),𝐸𝑛(𝑡))𝐿2(Ω)d𝑡 ≤ lim sup
𝑛→∞

∫︁ 𝑇

0

(𝐽𝑛(𝑡),𝐸𝑛(𝑡))𝐿2(Ω)d𝑡 ≤
∫︁ 𝑇

0

(𝐽(𝑡),𝐸(𝑡))𝐿2(Ω)d𝑡. (5.24)

As a result of (5.24) and (5.20),∫︁ 𝑇

0

∫︁
Ω

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)| − 𝐽(𝑥, 𝑡) ·𝐸(𝑥, 𝑡) d𝑥 d𝑡 ≤ 0.

On the other hand, thanks to (5.19),

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)| − 𝐽(𝑥, 𝑡) ·𝐸(𝑥, 𝑡) ≥ 0 for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).

Combining the above two inequalities, we arrive at

𝐽(𝑥, 𝑡) ·𝐸(𝑥, 𝑡) = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)| for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).

In conclusion, (5.16) is valid.
Collecting all the previously proven results (5.10), (5.12), (5.14) and (5.16), we come to the conclusion
that the weak limit (𝐸,𝐻,𝐽) ∈ 𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝐻0(curl)) × 𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩
𝐿∞((0, 𝑇 ),𝑋(Ω))× 𝐿∞((0, 𝑇 ),𝐿∞(Ω)) is a solution to (1.1).

Step 4. We complete the proof by verifying the uniqueness. Suppose that (̃︀𝐸,̃︁𝐻, ̃︀𝐽) ∈ 𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩
𝐿∞((0, 𝑇 ),𝐻0(curl))×𝑊 1,∞((0, 𝑇 ),𝐿2(Ω))∩𝐿∞((0, 𝑇 ),𝑋(Ω))×𝐿∞((0, 𝑇 ),𝐿∞(Ω)) is another solution of
(1.1), i.e., it satisfies

𝜖𝜕𝑡
̃︀𝐸 − curl̃︁𝐻 + ̃︀𝐽 = 𝑢 in Ω× (0, 𝑇 )

𝜇𝜕𝑡
̃︁𝐻 + curl ̃︀𝐸 = 0 in Ω× (0, 𝑇 )̃︀𝐸(·, 0) = 𝐸0, ̃︁𝐻(·, 0) = 𝐻0 in Ω̃︀𝐽(𝑥, 𝑡) · ̃︀𝐸(𝑥, 𝑡) = 𝑗𝑐

(︁
𝑥, 𝜃(𝑥, 𝑡),̃︁𝐻(𝑥, 𝑡)

)︁
|̃︀𝐸(𝑥, 𝑡)| for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 )

|̃︀𝐽(𝑥, 𝑡)| ≤ 𝑗𝑐

(︁
𝑥, 𝜃(𝑥, 𝑡),̃︁𝐻(𝑥, 𝑡)

)︁
for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).

(5.25)

In view of (5.25) and (1.1), (𝑒,ℎ) :=
(︁̃︀𝐸 −𝐸,̃︁𝐻 −𝐻

)︁
fullfils

(𝜕𝑡𝑒(𝑡), 𝑒(𝑡))𝐿2
𝜖(Ω) + (𝜕𝑡ℎ(𝑡),ℎ(𝑡))𝐿2

𝜇(Ω) +
(︁̃︀𝐽(𝑡)− 𝐽(𝑡), 𝑒(𝑡)

)︁
𝐿2(Ω)

= 0 a.e. 𝑡 ∈ (0, 𝑇 ).

Since 𝑒(0) = ℎ(0) = 0, integrating this equality over the time interval yields

‖𝑒(𝑡)‖2𝐿2
𝜖(Ω) + ‖ℎ(𝑡)‖2𝐿2

𝜇(Ω) = 2
∫︁ 𝑡

0

(𝐽(𝑠)− ̃︀𝐽(𝑠), 𝑒(𝑠))𝐿2(Ω)d𝑠 ∀𝑡 ∈ [0, 𝑇 ]. (5.26)
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Invoking the conditions for 𝐽 and ̃︀𝐽 , the right-hand side of the above equality satisfies∫︁ 𝑡

0

(︁
𝐽(𝑠)− ̃︀𝐽(𝑠), 𝑒(𝑠)

)︁
𝐿2(Ω)

d𝑠

=
∫︁ 𝑡

0

∫︁
Ω

𝐽(𝑥, 𝑠) · ̃︀𝐸(𝑥, 𝑠)− 𝑗𝑐 (𝑥, 𝜃(𝑥, 𝑠),𝐻(𝑥, 𝑠)) |𝐸(𝑥, 𝑠)|

+ ̃︀𝐽(𝑥, 𝑠) ·𝐸(𝑥, 𝑠)− 𝑗𝑐

(︁
𝑥, 𝜃(𝑥, 𝑠),̃︁𝐻(𝑥, 𝑠)

)︁
|̃︀𝐸(𝑥, 𝑠)|d𝑥d𝑠

≤
∫︁ 𝑡

0

∫︁
Ω

𝑗𝑐 (𝑥, 𝜃(𝑥, 𝑠),𝐻(𝑥, 𝑠))
(︁
|̃︀𝐸(𝑥, 𝑠)| − |𝐸(𝑥, 𝑠)|

)︁
+ 𝑗𝑐

(︁
𝑥, 𝜃(𝑥, 𝑠),̃︁𝐻(𝑥, 𝑠)

)︁(︁
|𝐸(𝑥, 𝑠)| − |̃︀𝐸(𝑥, 𝑠)|

)︁
d𝑥d𝑠

≤
∫︁ 𝑡

0

∫︁
Ω

(︁
𝑗𝑐 (𝑥, 𝜃(𝑥, 𝑠),𝐻(𝑥, 𝑠))− 𝑗𝑐

(︁
𝑥, 𝜃(𝑥, 𝑠),̃︁𝐻(𝑥, 𝑠)

)︁)︁
|𝑒(𝑥, 𝑠)|d𝑥d𝑠

≤⏟ ⏞ 
(A4)

𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀ ∫︁ 𝑡

0

∫︁
Ω

|ℎ(𝑥, 𝑠)| |𝑒(𝑥, 𝑠)|d𝑥d𝑠

≤ 𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀(︂ 1
2𝜖

∫︁ 𝑡

0

‖𝑒(𝑠)‖2𝐿2
𝜖(Ω)d𝑠+

1
2𝜇

∫︁ 𝑡

0

‖ℎ(𝑠)‖2𝐿2
𝜇(Ω)d𝑠

)︂
∀𝑡 ∈ [0, 𝑇 ].

Applying this inequality to (5.26), the Gronwall lemma yields that 𝑒 ≡ ℎ ≡ 0.
�

Corollary 5.2. Let Assumptions 2.1 and 4.1 be satisfied. Then, the hyperbolic Maxwell quasi-variational
inequality ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
Ω

𝜖𝜕𝑡𝐸(𝑡) · (𝑣 −𝐸(𝑡)) + 𝜇𝜕𝑡𝐻(𝑡) · (𝑤 −𝐻(𝑡)) + curl𝐸(𝑡) ·𝑤 − curl𝐻(𝑡) · 𝑣 d𝑥

+
∫︁

Ω

𝑗𝑐 (𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) (|𝑣(𝑥)| − |𝐸(𝑥, 𝑡)|) d𝑥 ≥
∫︁

Ω

𝑢(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥

for a.e. 𝑡 ∈ (0, 𝑇 ) and all (𝑣,𝑤) ∈ 𝐿2(Ω)×𝐿2(Ω)
(𝐸,𝐻) (0) = (𝐸0,𝐻0)

(QVI)

admits a unique solution

(𝐸,𝐻) ∈𝑊 1,∞ (︀(0, 𝑇 ),𝐿2(Ω)
)︀
∩ 𝐿∞ ((0, 𝑇 ),𝐻0(curl))×𝑊 1,∞ (︀(0, 𝑇 ),𝐿2(Ω)

)︀
∩ 𝐿∞ ((0, 𝑇 ),𝑋(Ω)) ,

which is exactly the unique solution to (1.1).

Proof. Uniqueness. Suppose that(︀
𝐸1,𝐻1

)︀
,
(︀
𝐸2,𝐻2

)︀
∈𝑊 1,∞ (︀(0, 𝑇 ),𝐿2(Ω)

)︀
∩𝐿∞ ((0, 𝑇 ),𝐻0(curl))×𝑊 1,∞((0, 𝑇 ),𝐿2(Ω))∩𝐿∞ ((0, 𝑇 ),𝑋(Ω))

are solutions to (QVI), and let (𝑒,ℎ) :=
(︀
𝐸1 −𝐸2,𝐻1 −𝐻2

)︀
. Setting (𝑣,𝑤) =

(︀
𝐸2,𝐻2

)︀
(𝑡) (resp. (𝑣,𝑤) =(︀

𝐸1,𝐻1
)︀

(𝑡)) in (QVI) for
(︀
𝐸1,𝐻1

)︀
(resp. in (QVI) for

(︀
𝐸2,𝐻2

)︀
) yields∫︁

Ω

−𝜖𝜕𝑡𝐸
1(𝑡) · 𝑒(𝑡)− 𝜇𝜕𝑡𝐻

1(𝑡) · ℎ(𝑡) + curl𝐸1(𝑡) ·𝐻2(𝑡)− curl𝐻1(𝑡) ·𝐸2(𝑡) d𝑥

+
∫︁

Ω

𝑗𝑐
(︀
𝑥, 𝜃(𝑥, 𝑡),𝐻1(𝑥, 𝑡)

)︀ (︀
|𝐸2(𝑥, 𝑡)| − |𝐸1(𝑥, 𝑡)|

)︀
d𝑥 ≥

∫︁
Ω

−𝑢(𝑡) · 𝑒(𝑡) d𝑥 for a.e. 𝑡 ∈ (0, 𝑇 )
(5.27)
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and∫︁
Ω

𝜖𝜕𝑡𝐸
2(𝑡) · 𝑒(𝑡) + 𝜇𝜕𝑡𝐻

2(𝑡) · ℎ(𝑡) + curl𝐸2(𝑡) ·𝐻1(𝑡)− curl𝐻2(𝑡) ·𝐸1(𝑡) d𝑥

+
∫︁

Ω

𝑗𝑐
(︀
𝑥, 𝜃(𝑥, 𝑡),𝐻2(𝑥, 𝑡)

)︀ (︀
|𝐸1(𝑥, 𝑡)| − |𝐸2(𝑥, 𝑡)|

)︀
d𝑥 ≥

∫︁
Ω

𝑢(𝑡) · 𝑒(𝑡) d𝑥 for a.e. 𝑡 ∈ (0, 𝑇 ).
(5.28)

Adding (5.27) and (5.28) together implies∫︁
Ω

−𝜖𝜕𝑡𝑒(𝑡) · 𝑒(𝑡)− 𝜇𝜕𝑡ℎ(𝑡) · ℎ(𝑡) d𝑥

+
∫︁

Ω

(︀
𝑗𝑐
(︀
𝑥, 𝜃(𝑥, 𝑡),𝐻1(𝑥, 𝑡)

)︀
− 𝑗𝑐

(︀
𝑥, 𝜃(𝑥, 𝑡),𝐻2(𝑥, 𝑡)

)︀)︀ (︀
|𝐸2(𝑥, 𝑡)| − |𝐸1(𝑥, 𝑡)|

)︀
d𝑥 ≥ 0 for a.e. 𝑡 ∈ (0, 𝑇 ).

As a consequence,

1
2

d
d𝑡
‖𝑒(𝑡)‖2𝐿2

𝜖(Ω) +
1
2

d
d𝑡
‖ℎ(𝑡)‖2𝐿2

𝜇(Ω) ≤
∫︁

Ω

|𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻1(𝑥, 𝑡))− 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻2(𝑥, 𝑡))||𝑒(𝑥, 𝑡)|d𝑥

for a.e. 𝑡 ∈ (0, 𝑇 ).
(5.29)

On the other hand, the Lipschitz property (A4) yields that∫︁
Ω

|𝑗𝑐
(︀
𝑥, 𝜃(𝑥, 𝑡),𝐻1(𝑥, 𝑡)

)︀
− 𝑗𝑐

(︀
𝑥, 𝜃(𝑥, 𝑡),𝐻2(𝑥, 𝑡)

)︀
||𝑒(𝑥, 𝑡)|d𝑥 ≤ 𝐿

(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀ ∫︁
Ω

|ℎ(𝑥, 𝑡)| |𝑒(𝑥, 𝑡)|d𝑥

≤
𝐿
(︀
‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω))

)︀
2

(︁
𝜖−1‖𝑒(𝑡)‖2𝐿2

𝜖(Ω) + 𝜇−1‖ℎ(𝑡)‖2𝐿2
𝜇(Ω)

)︁
for a.e. 𝑡 ∈ (0, 𝑇 ).

(5.30)
Applying (5.30) to (5.29) results in

𝐿(‖𝜃‖𝒞([0,𝑇 ],𝐿∞(Ω)))
2

(︁
𝜖−1‖𝑒(𝑡)‖2𝐿2

𝜖(Ω) + 𝜇−1‖ℎ(𝑡)‖2𝐿2
𝜇(Ω)

)︁
≥ 1

2
d
d𝑡
‖𝑒(𝑡)‖2𝐿2

𝜖(Ω)+
1
2

d
d𝑡
‖ℎ(𝑡)‖2𝐿2

𝜇(Ω) for a.e. 𝑡 ∈ (0, 𝑇 ).

In view of this inequality and 𝑒(0) = ℎ(0) = 0, it follows that 𝑒 ≡ ℎ ≡ 0, and so (QVI) admits at most only
one solution.
Existence. According to Theorem 5.1, the PDE-system (1.1) admits a unique solution (𝐸,𝐻,𝐽) ∈
𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝐻0(curl)) ×𝑊 1,∞((0, 𝑇 ),𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ),𝑋(Ω)) × 𝐿∞((0, 𝑇 ),𝐿∞(Ω)).
Thus, since we have proved that (QVI) admits at most only one solution, the assertion is valid, once we can
prove that the solution (𝐸,𝐻) of (1.1) satisfies (QVI).

Multiplying the first equality in (1.1) by 𝑣 − 𝐸(𝑡), with 𝑣 ∈ 𝐿2(Ω), and the second equality in (1.1) by
𝑤 −𝐻(𝑡), with 𝑤 ∈ 𝐿2(Ω), and then integrating the resulting equalities over Ω, we obtain∫︁

Ω

𝜖𝜕𝑡𝐸(𝑡) · (𝑣 −𝐸(𝑡))−
∫︁

Ω

curl𝐻(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥+
∫︁

Ω

𝐽(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥 =
∫︁

Ω

𝑢(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥∫︁
Ω

𝜇𝜕𝑡𝐻(𝑡) · (𝑤 −𝐻(𝑡)) d𝑥+
∫︁

Ω

curl𝐸(𝑡) · (𝑤 −𝐻(𝑡)) d𝑥 = 0 for a.e. 𝑡 ∈ (0, 𝑇 ).

Then, adding them together, it follows that∫︁
Ω

𝜖𝜕𝑡𝐸(𝑡) · (𝑣 −𝐸(𝑡)) + 𝜇𝜕𝑡𝐻(𝑡) · (𝑤 −𝐻(𝑡)) d𝑥+
∫︁

Ω

curl𝐸(𝑡) ·𝑤 − curl𝐻(𝑡) · 𝑣 d𝑥

+
∫︁

Ω

𝐽(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥 =
∫︁

Ω

𝑢(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥 for a.e. 𝑡 ∈ (0, 𝑇 ) and all (𝑣,𝑤) ∈ 𝐿2(Ω)×𝐿2(Ω).

(5.31)



MAXWELL QUASI-VARIATIONAL INEQUALITIES 1567

On the other hand, according to (1.1), 𝐽 and 𝐸 satisfy the Bean’s critical-state law

|𝐽(𝑥, 𝑡)| ≤ 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡)) for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 )
𝐽(𝑥, 𝑡) ·𝐸(𝑥, 𝑡) = 𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)| for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).

Consequently, it holds for all 𝑣 ∈ 𝐿2(Ω) and almost all 𝑡 ∈ (0, 𝑇 ) that∫︁
Ω

𝐽(𝑡) · (𝑣 −𝐸(𝑡)) d𝑥 =
∫︁

Ω

𝐽(𝑥, 𝑡) · 𝑣(𝑥) d𝑥−
∫︁

Ω

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)|d𝑥

≤
∫︁

Ω

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝑣(𝑥)|d𝑥−
∫︁

Ω

𝑗𝑐(𝑥, 𝜃(𝑥, 𝑡),𝐻(𝑥, 𝑡))|𝐸(𝑥, 𝑡)|d𝑥.

Applying this inequality to (5.31), we conclude that (𝐸,𝐻) satisfies (QVI). �

Remark 5.3. (i) As pointed out in the introduction, the eddy current approximation of the Bean critical-state
model leads to a parabolic quasi-variational inequality [3]. While the existence for the corresponding two-
dimensional case is guaranteed, no uniqueness result was derived in [3]. In the case of the original Maxwell
formulation (QVI), the uniqueness is satisfied thanks to the Lipschitz property (A4).

(ii) Our result extends [27, 30] due to the following reasons: First, we allow for simultaneous temperature and
magnetic field dependence in the critical current. Second, our result holds true for all right-hand side
𝑢 ∈ 𝐻1((0, 𝑇 ),𝐿2(Ω)) and initial data (𝐸0,𝐻0) ∈ 𝐻0(curl)×𝑋(Ω) without any compatibility condition.

6. Further discussions

The achieved well-posedness results open a way to analyze the temperature and voltage control in the magne-
tization process of type-II superconductivity. This leads to a state-constrained optimal control problem governed
by (QVI). This problem requires a substantial extension of the developed results [17,18,24,25,29,31] along with
the recent results on the optimal control of QVI [1].

Acknowledgements. This work was supported by the German Research Foundation (DFG grants YO159/2-2 and
YO159/4-1).
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