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MAXWELL QUASI-VARIATIONAL INEQUALITIES IN SUPERCONDUCTIVITY

IRWIN YOUSEPT*

Abstract. This paper is devoted to the mathematical modeling and analysis of a hyperbolic Maxwell
quasi-variational inequality (QVI) for the Bean-Kim superconductivity model with temperature and
magnetic field dependence in the critical current. Our analysis relies on local (resp. global) bounded-
ness and local (resp. global) Lipschitz continuity assumptions on the critical current with respect to
the temperature (resp. magnetic field). Emerging from the Euler time discretization, we analyze the
corresponding H(curl)-elliptic QVI and prove its existence using a fixed-point argument in combination
with techniques from variational inequalities and Maxwell’s equations. Based on the existence result
for the H(curl)-elliptic QVI, we examine the stability and convergence of the Euler scheme, which serve
as our fundament for the global well-posedness of the governing hyperbolic Maxwell QVI.
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1. INTRODUCTION

Ever since the discovery of superconductivity by Heike Kamerlingh Onnes in 1911, various modern applica-
tions and key technologies have been developed. Among many other profound applications, we mention magnetic
resonance imaging, magnetic confinement fusion, and magnetic levitation. Such technological advances are made
possible by superconductors due to their fundamental properties of vanishing electrical resistance and expulsion
of applied magnetic fields (Meissner effect) occurring when the temperature is cooled below the critical temper-
ature. A prominent critical-state model describing the irreversible magnetization process in high-temperature
superconductivity was proposed by Bean [5,6]. His model postulates a nonlinear and non-smooth constitutive
relation between the current density and the electric field through the so-called critical current as follows:

(B1) the current density strength |J| cannot exceed the critical current j.
(B2) the electric field E vanishes if |J| is strictly less than j.
(B3) the electric field E is parallel to the current density J.

Shortly after the publication by Bean [5], Kim et al. [13] revealed and reported on the magnetic field depen-
dency in the critical current density j. = j.(H).

The Bean-Kim model governed by the eddy current equations leads to a parabolic quasi-variational inequality
(QVI). Prigozhin [20] was the first to introduce this formulation. Barrett and Prigozhin [3,4] examined the
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TABLE 1. Critical temperature 6. for several high-temperature superconductors.

Ba-La—Cu-O Y-Ba—Cu-O Hg-Ba-Ca—Cu-O
35K/—238.15°C  93K/—180.15°C  133K/—140.15°C

associated QVT in a scalar two-dimensional (2D) setting and its dual formulation. For the analysis of general
parabolic and elliptic QVTI problems with gradient and curl constraints, we refer to Rodrigues and Santos [21,22]
and Miranda et al. [16]. All these contributions take into account the eddy current approximation of the full
Maxwell formulation leading to problems with a parabolic character. The analysis of Bean’s critical-state model
with displacement current goes back to [12].

This paper is a continuation of the recent papers [32,33] on hyperbolic Maxwell variational inequalities (VI),
including those arising in high-temperature superconductivity and electromagnetic shielding (cf. [14, 27, 28]).
The goal of the present paper is to explore hyperbolic Maxwell QVT arising from the Bean-Kim model (B1)—(B3)
with magnetic field and temperature dependence in the critical current j. = j.(6, H). In particular, temperature
effects are included due to its central importance in the superconductivity phenomena. As reported in [2], the
temperature dependence in the critical current of the Y-Ba—Cu—O bulk superconductor exhibits a continuous
and piecewise smooth structure ([2], Fig. 2). More precisely, it features a linear behaviour of the type (6. — 0),
if the temperature 6 is sufficiently smaller than 6. (see Tab. 1). If 6 is close to 6., then a nonlinear behaviour
of the type (1 — —)3/ 2 is observed, and the critical current vanishes if # > 6.. This behaviour is in agreement
with the theoretical model of granular superconductors [8]. Similarly, Deutscher and Miiller [9] reported on a
temperature dependence of the type (1 — —) in the case of 6 ~ 6. for the critical currents of high-temperature
oxides.

Let T € Rt and Q C R3 be a bounded Lipschitz domain filled with a high-temperature superconductor.
Considering the full Maxwell formulation for the electromagnetic fields, the Bean-Kim model (B1)—(B3) with
Je = je(6, H) leads to the following problem:

eOE—curlH+J =u in Qx(0,7)

wo:H + curl E =0 in Qx (0,7T)

Exn=0 on 90 x (0,T) (1.1)
E(,0)=E, H(-0)= in Q '
|J(x, )] < je(z, 0(z, 1), H( t)) for a.e. (x,t) € Q x (0,T)

J(z,t) - E(z,t) = je(z,0(x,t), H(z,t))|E(z,t)| for a.e. (z,t) € Qx (0,T).

All assumptions for the data involved in (1.1) are summarized in Assumptions 2.1 and 4.1. In particu-
lar, motivated from the experimental measurements [2, 8, 9], our analysis relies on local boundedness and
local Lipschitz continuity assumptions for the critical current with respect to the temperature. On the
other hand, the magnetic field dependency in j. is assumed to be globally bounded and Lipschitz con-
tinuous. This stronger assumption (c¢f. [7] for physical measurement supporting this assumption) seems to
be indispensable in order to handle the notorious hyperbolic QVI-character of (1.1). More precisely, the
variational formulation for (1.1) (see Cor. 5.2) is given by the following hyperbolic Maxwell QVI: Find
(E,H) € WH((0,T), L*()) N L=((0,T), Ho(curl)) x W°((0,T), L*(Q)) N L>=((0,T), X (£2)) such that
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/ eE(t) - (v—E()) +poH(t) - (w—H(t)) +curl E(t) - w — curl H(t) - vdz
Q

+ [ el 00a. ), H(w.0) (0(o)] = B 0)) do > [ ue)- (0= B(o) do Qv

for a.e. t € (0,T) and all (v,w) € L*(Q) x L*(Q)
(E, H)(0) = (Eo, Ho) .

We note that the time derivatives 9, F and 8, H are of class L>=((0,T), L*(Q2)). Thus, for a.c. t € (0,T), both
O:E(t) and 0, H (t) are L*(Q)-functions, and so the multiplication dot 0;E(t) - v (resp. 9, H(t) - w) in (EQVT)
is nothing but Y°_, (0, E(t));v; (resp. Y_0_ (0, H (1)) w;).

In the case of j. = j.(x), (QVI) simplifies to a VI problem, which was originally introduced and discussed
in [30] (c¢f. also [32] for a more general class of hyperbolic Maxwell VI). The pure temperature dependence
Je = je(x,0(x,t)) was considered in the subsequent paper [27] focusing on its fully discrete analysis. The
present paper extends [27,30]: We consider the more realistic case j. = j.(z,0(x,t), H(x,t)) with less regularity
requirement for the data u, 0, and (Eq, Hy). Note that, since our problem features a QVI character, the prior
developed VI-techniques in [27,30,32] cannot be directly applied to (QVI) and require certain extensions.

The first part of this paper is devoted to the following nonlinear PDE-system:

ee—curlh+j5="1 in
ph + curle = ug in Q
exn=0 on 0N (1.2)

for a.e. z € Q

3 ()| < je(x, y(z), h(z))
yh(z))le(x)| for a.e. x € Q,

i(@) - e(r) = je(z, y()

where f, g, and y are given data. The variational formulation of (1.2) in terms of e (see Cor. 3.3) is given by
the following H (curl)-elliptic QVI: Find e € Hy(curl) such that

wav—@+1§4meguwwf%Mwﬂamﬂwuﬂ—wwmdx

> (f+curlg,v—e€)p2q Vv € Ho(curl),

(EQVI)

where the bilinear form a : Hy(curl) x Hy(curl) — R is defined as in (3.3). To derive an existence result for
(1.2), we first drop out the magnetic field dependency in the critical current j.. This leads to a complementarity-
type problem, which we shall study through the theory of variational inequalities. Then, on the basis of the
proposed complementarity-type problem, we formulate (1.2) as a fixed-point problem and show its existence
(Thm. 3.2) by means of the Maxwell compactness embedding theory [19,26] along with the Schauder fixed-point
theorem.

After deriving a well-posedness result for (1.2), we consider the time-discrete problem (P,,) associated with
(1.1) based on the implicit Euler scheme (Rothe method). While the existence of (P,,) is covered by the devel-
oped existence result for (1.2), the uniqueness is obtained if the time step is sufficiently small. We investigate the
stability analysis of the resulting time-discrete magnetic and electric fields, including their difference quotients
(Lems. 4.5 and 4.6). Differently from Assumption 2.2 of [27], our stability analysis does not rely on any com-
patibility condition for the initial data. We circumvent this issue by introducing an auxiliary current density
(4.2) and initial difference quotients (4.3), that preserve the pivotal QVI structure at the initial time (4.4).
This construction allows us to prove stability and convergence of (P,) leading to our final result (Cor. 5.2)
on the well-posedness for (QVI) for all w € H((0,T), L*(Q)), € H'((0,T), L*(Q)) N C([0,T], L>=(Q)), and
(Eo, Hy) € Hy(curl) x X () without any compatibility assumption.
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2. PRELIMINARIES

For a given Hilbert space V, we use the notation [ - [ and (-,)v for a standard norm and a standard
scalar product in V. By V* we denote the dual space of V. If V is continuously embedded in another normed
linear space Y, then we write V — Y for the associated injection. A bold typeface is used to indicate a three-
dimensional vector function or a Hilbert space of three-dimensional vector functions. The main Hilbert space
for our analysis is

H(curl) :={q € L*(Q) ’ curlqg ¢ L2(Q)}7

where the curl-operator is understood in the sense of distributions. As usual, C;°(£2) stands for the space of all
infinitely differentiable three-dimensional vector functions with compact support contained in 2. We denote the
closure of C3°(Q2) with respect to the H (curl)-topology by Ho(curl). It is well-known that the Hilbert space
H(curl) admits the following characterization (cf. [32], Appendix A):

H(curl) = {q € H(curl) | (curlq,v)>q) = (¢,curlv)z>q) Vv € H(curl)}
= {q € H(curl) | 7:(q) = 0},

where v : H(curl) — Hié(ﬁﬂ) denotes the tangential trace (c¢f. [11], Thm. 2.11). We note that v(q) = 0
generalizes the boundary condition g x n = 0 on 992. Another important Hilbert space used in our analysis is

(2.1)

X(Q) :={q € H(curl) | (uq,V§)r2@) =0 Voe H (Q)}. (2.2)

For an almost everywhere positive function a € L>(Q), we use the notation L2 (Q) for the weighted L*(€2)-space
endowed with the weighted scalar product (a-,-)g2(q)-

Let us now formulate the required regularity assumption on the electric permittivity ¢ : @ — (0,00), the
magnetic permeability p: Q — (0,00), and the critical current j. : Q x R x R? — [0, 00).

Assumption 2.1 (Regularity assumption on the material parameters).
(A1) We suppose that €, n € L>(Q) and there exist positive constants 0 < ¢ <€ and 0 < u < i such that
e<e(x)<e foraexeQ and p<p(xr)<p forae e

(A2) For every fized (y,h) € R x R, j.(-,y,h) : Q@ — R is Lebesgue measurable.
(A3) For every M > 0, there exists a constant C(M) > 0 such that

0 < Jje(z,y,h) < C(M)

for a.e. x € Q and all (y,h) € [-M, M] x R3.
(A4) For every M > 0, there exists a constant L(M) > 0 such that

le(2, 41, ha) = je(, y2, ho)| < LIM)(lyr — ya| + [~n — hal)
for a.e. x € Q and all (y1, h1), (y2, h2) € [-M, M] x R3.

Note that (A3) and (A4) require the global boundedness and the global Lipschitz continuity of j. : Q x
R x R?® — [0,00) with respect to the third component (magnetic field). An example for the magnetic field
dependency satisfying (A3) and (A4) is

B ex(ea + cslh]*) ! (2.3)

for some positive constants c1,ca,c3 > 0 and some exponent s > 1. The mapping (2.3) is obviously globally
bounded. Furthermore, the Lipschitz continuity holds true as its derivative is globally bounded. As confirmed
by physical measurement [7], such a model (2.3) is reasonable for describing the magnetic field dependency in
critical currents of certain superconductors.
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Remark 2.2. Our analysis can be extended to the case where the critical current explicitly depends on the
time variable, i.e., j. :  x [0,T] x R x R?® — [0, 00). In this case, for every fixed (t,y,h) € [0,T] x R x R3, the
function j.(-,t,y,h) : 2 — R is assumed to be Lebesgue measurable. Moreover, we replace (A3)—(A4) by

0 < je(z,t,y,h) < C(M)
lje(z,t1, 91, h1) — Je(@, t2, ya, ho)| < L(M)(|t1 — to| + |y1 — ya| + [h1 — hal)

for a.e. x € Q and all (t,y,h), (t1,y1,h1), (t2,y2, h2) € [0,T] x [-M, M] x R3.
3. WELL-POSEDNESS FOR (EQVI)

We start our investigation by examining the following complementarity-type problem.

Lemma 3.1. Let Assumption 2.1 be satisfied. Then, for everyy € L=(2) and (f,g, z) € L*(Q)x X () x L*(Q),
the complementarity-type problem

ee—curlh+j5="1 in

ph + curle = ug in Q

exn=0 on 0N (3.1)
|7 ()] < je(z,y(x), z(x)) for a.e. x € Q

Jj@) - e(x) = je(z,y(x), z(x))|e(x)| for a.e. z € Q

admits a unique solution (e, h,j) € Ho(curl) x X (Q2) x L™ () satisfying

_1 _1 1 _1 € 1
k| x @) <€ ||f||L‘i(Q) T2 HgHLi(Q) + (ﬁ 2+ 62) £+ CurlgHLi(Q) + \/:C (Hy||L°°(Q)) 12]=. (3.2)

Proof. Let y € L®(Q) and (f, g, 2) € L*(Q) x X (Q) x L*(Q). We introduce a continuous and coercive bilinear
form
a: Ho(curl) x Hy(curl) = R, a(u,v) := (¢ 'curlu, curlv)Lz(Q) + (6w, v) 2 » (3.3)

and a convex and continuous functional
U:L*(Q) R, U(v):= /Qjc(ffay(ff)az(x))lv(ff)\ dz.
The classical result [15] implies that the variational inequality
ale,v—e)+¥(v) - V(e) > (f +curlg,v —e)r>q) Yv € Hy(curl) (3.4)
admits a unique solution e € Hy(curl). Setting v = 0 and v = 2e in (3.4), we obtain
a(e,e) + ¥(e) = (f + curlg, e) (). (3.5)
Applying this identity to (3.4) implies
U(v) > L(v) := (f + curlg,v)p2(q) —ale,v) Vv € Hy(curl). (3.6)
Therefore, as L : Hg(curl) — R is linear and ¥ : LQ(Q) — R is sublinear, i.e.,
V(v +w) < U(v) + T(w), TU(tv)=tT(v) Yo,we L*(Q), Vt>0,
the Hahn-Banach theorem ([23], Thm. 3.2) yields the existence of j € L?(Q) such that

(j,v)Lz(Q) = L(v) Vv € Hy(curl) (3.7)
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(4. V)12 < ¥(v) Vo e L*Q). (3.8)
According to the definition, equation (3.7) is equivalent to

(n 'curle, curlv)Lz(Q) =(f+curlg—j —ce,v) Vv e Hy(curl). (3.9)

Consequently, the distributional definition of the curl-operator yields that

1 1

w curle € H(curl) with curly ‘curle =f + curlg — j — ee. (3.10)

Together with

(1 (p 'curle) ,V¢)L2(Q)\z/(e7curl V)2 =0 Ve H' (),
(2.1)

equation (3.10) implies p~lcurle € X (£2). Thus, defining h := g — pu~tcurle € X(Q), it follows immediately
from (3.10) that ee — curlh + j = f. Next, let us show that

17(2)] < je(z,y(x), z(x)) for a.e. z €. (3.11)

Suppose that there exists a Lebesgue measurable set w C €2 of non-zero measure such that j.(z,y(v), 2(z)) <
|7(x)| for a.e. x € w. Then setting v,, := ‘;—.‘Xw € L*(Q) in (3.8), where y,, denotes the characteristic function
of w, leads to a contradiction

/ el y(e), 2(z)) dz < / §(@)]dz = (7, v0) g2y < U(vs) = / el y(@), 2(2)) de.

w

Consequently, the inequality (3.11) is valid. In particular, the properties (3.11) and (A3) with h = z(z) yield
that

3 (@) < el@,y(2), 2(2)) < C([yllLe@) for ae e,

and so j € L™ (). Inserting now v = e in (3.9) and taking (3.5) into account, it follows that
0= /Qjc(x,y(x),z(x))|e($)\ —J(z) - e(z)da. (3.12)
As a result of (3.11) and (3.12), we obtain

j(@) - e(x) = je(z,y(x), z(x))|e(x)| for a.e. xz € Q.

In conclusion, the triple (e, h,j) € Ho(curl) x X (Q) x L*(Q) is a solution of (3.1).
Let us prove the a priori estimate (3.2). First, equation (3.5) implies

leb el + i Feurle|2a g < e (£ + curlg)|2s(), (3.13)
from which it follows that
1 1 _1 1 _1
ln2hllp2) = [ln2g — p~ 2curlel|p2 (o) < |p2gllL2) + |l 2 (f + curlg)|| L2(q)- (3.14)
Also, the inequalities (3.13) and (3.11) together with (A3) imply

_1 1 1.
le”2curlh|[g2(q) = [[eze + €72 (j — f)[[2() (3.15)
1 —1 1 _1 :

< [le72 (f 4 curlg)|p2(o) + € 2 C(llyllLe(@)IU? + e 2] 22 (o)
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From (3.14) and (3.15), we come to the conclusion that

1Rl x @

-1 1 1 1
= Ihllzeur) = \/”“ 2p2h| e +lleze zcurl b7 g
1 1 1, _1
< p 2 [|p2h| g2 ) +€2[le 2curl hf| 2o

<p b glpa + (h + ) e d (£ 4 curlg) o) + € (€ 2C (Iyllze) 191 + 1l o)) -

Uniqueness. Suppose that (€, h,j) € Ho(curl) x X (Q) x L>(9) is another solution of (3.1), i.e., it satisfies

ce—curlh+j=1f (3.16)
ph + curl € = pug (3.17)

15 ()| < jo(,y(2), z(z)) for a.e. z € Q (3.18)

3(3:) ce(x) = je(z,y(x), z(x))|e(x)] for a.e. x € Q. (3.19)

From (3.16) and (3.17) together with (2.1), we obtain that

a(e,v—e)+ (j,'v _E)Lz(Q) = (f+curlg,v—€)r2) Vv € Ho(curl).

On the other hand, the properties (3.18) and (3.19) imply

/ E(x) (v(z) —e(z)) daz < / Je (zyy(x), z(z)) (Jv(z)| — |e(z)]) de = ¥(v) — ¥(e) Vv € Hy(curl).
Q Q
Altogether, we see that € € H(curl) satisfies

a(e,v—e)+¥(v)—V(e) > (f+curlg,v—e)rzq Vve H(curl).

But, we know that e € Hy(curl) is the unique solution of the above variational inequality, and hence e = e.
Employing this identity and (3.17) yields h = h. Then, the identities € = e and h = h imply j = j. This
completes the proof. O

Theorem 3.2. Let Assumption 2.1 be satisfied. Then, for every y € L®(Q) and (f,g) € L*(Q) x X (Q), the
nonlinear PDE-system

ece—curlh+j="f in ©

pwh + curle = ug in

exn=0 on 9N (3.20)
|7 (2)| < je(z,y(x), h(z)) for a.e. x € Q

j(@)-e(z) = je(z,y(z), h(z))|e(x)] for a.e. z € Q

admits a solution (e, h,j) € Ho(curl) x X (2) x L*(2). Under the smallness condition L(||y||L~(a)) < 2,/ef;
the solution of (3.20) is unique.

Proof. Let y € L>®(Q) and (f,g) € L*(Q) x X (). We introduce the operator
F:L*(Q) — L*(Q), =z~ h,

that assigns to every function z € L*(Q2) the unique solution h € X (Q) of the complementarity-type problem
(3.1). Let us prove that F is Lipschitz continuous. To this aim, let z1,2z2 € LZ(Q), and let (e;, h;,j;) €
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H(curl) x X(Q) x L(Q) denote the unique solutions of (3.1) associated with z = z; for ¢ = 1,2. By
definition,

e(eg —ez) —curl (hy —hg)+3;, — 3, =0 (3.21)
i (hy — hg) + curl (e; — e2) =0, (3.22)

from which it follows that
(n'curl (e; — es), curl (e; — 62))L2(Q) +(e(e1—e2),(e1 — €2)) 2y = (2 — J1,€1 —€2) o2y (3.23)
On the other hand, according to (3.1), the right-hand side of the above identity satisfies
(Jo—Jdr.e1— e2)L2(Q)

Z/QJ'Q(JS)-61(96)—jg(ﬂs)~ez(w)—j1(w)-el(x)+j1(x)-eQ(x)dw
= /sz(x) -e1(r) — je (z,y(2), 22(2)) [e2(2)] — Je (2, y(2), 21(x)) le1(2) + 7. (2) - €a(x) dz
< / Je (2, y(x), 22(2)) (lex ()] — lex(2)]) — Je (z, y(x), 21 (2)) (Jex ()] — |ex(2)]) dz
Q
zéjc(m,y(z)vzz(m))*jc (z,y(2), z1(2)) (|e1(z)] — |ex(x)]) dz
\S//QL (Iyllz= () [22(2) — z1(2)[le1(z) — ea(x)| dx

(A4)

L (||yHL°°(Q))2
de

IN

1
21 = 2220y + €% (€1 — €2) T2
Applying the above inequality to (3.23) yields
LAyl ()*

1 1
1% (hy = ho)[[ T2y = [l Zcurl (e1 — e3)|[F2(q) < i 21 = 22ll72 (0
(3.22) -
from which it follows that
Lyl =)
IF(z1) = F(z2)llp20) < TM()HA — zollpa) V1,22 € LA(Q). (3.24)

Let i denote the embedding X () — L*(Q2) and

_1 _1 _1 _1
K:= {q € X(Q) ‘ lallx @) < €IfllLz @) + 1 2l8llr2 ) + (g 2 +€2) If + curlg]r2 (o)

+ \EC (1yll o< (02)) |Q|%} .

By K := cl(K), we denote the closure of K with respect to the L*(2)-topology. Obviously, K is nonempty
and convex. Moreover, as the embedding i : X () — L?*(Q) is compact [19,26] and K C X () is bounded,
the set K = ¢l(K) c L*(Q) is compact. Also, thanks to the a priori estimate (3.2) and the previously proven
(Lipschitz) continuity result (3.24), the operator F' is continuous from K to itself, i.e., F' : K — K. In conclusion,
the Schauder fixed-point theorem is applicable and guarantees the existence of a fixed point h € K, i.e.,
F(h) = h. Thus, in view of the definition of the operator F', the PDE-system (3.20) admits a solution (e, h,j) €
Hy(curl) x X (Q) x L=(Q). Finally, if L (|lyl|r=@)) < 2,/ep, then the uniqueness of the solution follows from
(3.24). O
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Let us close this section by presenting the variational formulation of (3.20) in terms of e:

Corollary 3.3. Let Assumption 2.1 be satisfied. Then, for every y € L>(Q) and (f,g) € L*(Q) x X (), the
H (curl)-elliptic quasi-variational inequality

ale,v—e)+ /Qjc (z,y(x),g(z) — p~ (v)curle(@)) (jv(z)| - |e(=)]) do

> (f+curlg,v—e)2) Vv € H(curl)

(EQVI)

admits a solution e € Ho(curl). Furthermore, e € Hy(curl) is a solution to (EQVI) if and only if it is a
solution to (3.20). Thus, if L(||yll=(a)) < 2\/€8, the solution of (EQVI) is unique.

Proof. Let y € L>=(Q) and (f,g) € L*(Q) x X(Q). According to Theorem 3.2, the PDE-system (3.20) admits
a solution (e, h,j) € Ho(curl) x X (Q) x L>=(Q). The equalities ee — curlh +j = f and h = g — u"!curle as
well as (2.1) imply

ale,v—e)+(j,v—e)r2q) = (f +curlg,v —e)r2) Yv € Hy(curl). (3.25)

On the other hand, the conditions for j in (3.20) yield
(J,v—e)rxg) < /Qjc(x,y(x),h(x))lv(x)l — Je(w,y(2), h(z))|e(x)| dz. (3.26)

Inserting h = g — u~'curle in (3.26) and applying the resulting inequality to (3.25), we see that e € Hg(curl)
is a solution to (EQVI).
Now, suppose that e € Hy(curl) is a solution to (EQVI), i.e., it satisfies

ale,v —e) + /Q]C(x,y(m),h(a:))ﬂv(xﬂ — le(x)])dz > (f 4 curlg, v — e)2(q) Yv € Ho(curl)

with h := g — u~'curle. The above problem coincides with (3.4) for z = h. Therefore, according to the proof

of Lemma 3.1, there exists a 7 € L>(2) such that

ee—curlh+j5=f

h=g—plcurle € X(Q)

9 (@) < jel,y(x), h(z)) for a.e. z € Q
j(z)-e(z) = je(z,y(x), h(x))|e(x)| for a.e. z € Q.

In conclusion, the triple (e, h,j) € Ho(curl) x X (2) x L>(1) is a solution to (3.20). O

4. TIME-DISCRETE PROBLEM

This section is devoted to the analysis of the time-discrete problem associated with (1.1) on the basis of the
implicit Euler scheme. Let us begin by stating the required regularity assumption for the applied current source
u : Q x [0,T] — R3, the temperature distribution 6 : Q x [0,7] — R, and the initial data Eg : @ — R? and
H,: Q— R3.

Assumption 4.1. Suppose that
we H' ((0,7),L*()) — € ([0,T], L*(Q))
0 H"((0,7),L*()) NC([0,T], L>())
(Eo,Ho) e H, (curl) X X(Q)

In Assumption 4.1 and all what follows, we use the abbreviation w(t) = w(-, ). This notation is also used for
other functions acting in Q x (0,T).
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Remark 4.2. In real applications, the temperature distribution 6 is specified by the solution of heat equations.
For instance,
O — A= f inQx (0,
VO-n=0 on 99 x (
6(0) = b, in Q.

T)
0,T) (4.1)

If p € D(A) == {y € H*(Q) | Vy-n =00on 90}, f € WH((0,7),L*(2)) or f € C([0,T],D(A)), and Q is
of class Ch!, then the classical semigroup theory (see, e.g., [10], Cors. 7.6 and 7.8) implies that (4.1) admits a
unique solution § € C1([0,T], L*(Q)) N C([0,T], D(A)). In particular, 6 satisfies Assumption 4.1.

Now, under Assumption 4.1, we introduce an auxiliary current density

Jo(z) := |Eg(x)|30(9379(9370)aH0(=’L’>) }f |Eo(z)| # 0 (4.2)
0 if |[Eo(z)| =0

and set

SE° := ¢! (u(0) + curl Hy — Jg), 0H?:= —p 'curl E,. (4.3)
Thus, in view of (4.2) and (4.3), it holds that

e0E° — curl Hy + Jo = u(0) in Q

pSH® + curl Eg = 0 in Q (4.4)

|Jo(z)| < je(z,6(x,0), Ho(z)) for a.e. x € Q )

Jo(z)  Eo(x) = je(x,0(x,0), Ho(x))|Eo(x)| for a.e. x € Q.
The property (4.4) is crucial for our subsequent analysis since it allows us to include the initial data (Eq, Hg)

in the time-discrete problem without any modification of the underlying QVI structure. Let us now formulate
the time-discrete problem: For every n € N, we consider

T
O=to<tr <...<t,=T with tx:=k=— Vke{0,...,n}
n

and

e0E" — curl H* + J% = u(ty,)

pdH" + curl E* = 0

[T ()| < jelz, 0(z, ty,), H"(x)) for a.e. x € Q (P,)

J*(z) - B*(x) = jo(x,0(x, ty), H"(2))|E*(z)|  for a.e. 2 € Q "

E'=E, H°=H, J'=J,

k=0,...,n,
where

Ek _ Ek*l Hk- _ kal
k._ k._

We note that (P,,) at the initial step k& = 0 is readily satisfied due to (4.4).

Theorem 4.3. Let Assumptions 2.1 and 4.1 be satisfied. Then, for every n € N, the time-discrete problem
(P,) admits a solution {(E*, H* J*)}?_, ¢ Ho(curl) x X(Q) x L>(Q). If n € N is sufficiently large, then
the solution of (P,) is unique.
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Proof. Thanks to Assumption 4.1, the existence result for (P,) is an immediate consequence of Theorem 3.2.
Thus, it remains to prove that, for all sufficiently large n € N, the solution of (P,,) is unique. To show this, let
us notice that for every k = 1,...,n, (E*, H*, J*) € Ho(curl) x X (Q) x L*°() is a solution to

€

—e—curlh 4 j = in Q
n
_1Th—|—curle:ug’C in
n
exn=0 on 0N (4.6)

l7(2)| < je(w,0(z,tr), h(x)) for a.e. z € Q
Jj(z)-e(x) = jc(z,0(z,tr), h(x))|le(z)] for a.e. x € Q

with £% == u(t) + 5+ E* ' € L*(Q) and g* := L H"*"' € X(Q). Analogously to the proof of Theorem 3.2,
we introduce the fixed-point mapping Fj, : L*(Q) — L*(2) associated with (4.6). Due to the presence of the
time step n~'7T in (4.6), we obtain as in (3.24) that the mapping Fj, : L*(Q2) — L*(Q) has the Lipschitz

constant —UPledorieo@n) Phys for every n € N satisfying n > —elfletorniiz@) g 12(Q) o L2(Q)

2n\/ep 2\/EE
turns out to be a contraction. In conclusion, the Banach fixed-point theorem implies that (4.6) admits a unique

solution. 0

In the following, we shall make use of the classical discrete Gronwall lemma. For the convenience of the
reader, we recall it in the following lemma:

Lemma 4.4. Let {ar}2, and {bp}72, be sequences of nonnegative real numbers satisfying

m—1
am§c+2akbk vm e N
k=0
for some constant ¢ > 0. Then, it holds that
m—1
am < cexp (Z bk> VYm € N.
k=0

Lemma 4.5. Let Assumptions 2.1 and 4.1 be satisfied. Furthermore, let n € N, and let {(Ek7 H” Jk)}gzl -
H(curl) x X(Q) x L>(Q) denote a solution to (P,). Then, for allm =1,...,n, it holds that

k=1

< (e+ 1) (I1Bol3 20 + | Holl3z o) + 27%€ 1wl 0.y 22 ) - (4.7)

Proof. Let m € {1,...,n} and k € {1,...m}. The first equality of (P,,) implies

E'—E*! ko 7k ok k
<€M — CurlH + J 7.E L2(Q) = (u(tk), E )LQ(Q) . (48)

On the other hand, the second equality of (P,,) yields

(curl Hk,Ek) - (Hk,curlEk) - (B, T—— . (4.9)
L2(Q)~~ L2(Q) n=1T ,
(2:1) L2(9)
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Applying the inequality J*(z) - E*(x) = j.(z, 0(z, t1.), H* (2))|E* ()| > 0 for a.e. z € Q and (4.9) to (4.8), we
obtain that

i ((Ek a Ek_l’Ek)Lam * (Hk ~HTLH k)ﬂ ﬂ)) = i% ( )L2<Q) ' (4.10)

k=1 k=1
The first sum involving the electric field can be written as follows:

m

k k—1 k k k—1 k k—1 k—1
> (B -ELEY) L =2 B B o+ 2 (B~ 58 )i

3

P = k=1
_ Z HEk _ Ek_l”ig(ﬂ) n ||Em||3:§(52) _ HEOHiE(Q) — Z (Ek _ Ek_l’Ek)ﬁ(Q) )
P k=1 ‘

where we have used the summation by parts formula. A similar result holds also for the second sum in (4.10).
Altogether, we obtain

||Em||2Lg(Q) + ||HmH2Lg(Q) + Z (HEk - Ek*l”ig(n) + || H" - Hkil”iﬁ(ﬂ))
k=1
2 2 T —1/2 k
<1 Bollzzo) + [ Hollzz o) + 2y —e w2 @) 1 E ez @)
k=1

T _ 1
< IBolf o) + Hollg o +2 3 = (T fultl o + 1B e
k=1

< [1Bol|Z2 () + HolZ2 o) + 272%™ \lu\lc([oT]Lz(Q))+Z ”Ek”L?(Q) (4.11)

In particular, the estimate (4.11) implies

m—1
m 1
*HE IZ2(0) < [1BollZ2(0) + HolIZ2 o) + 27 [ullE 0.1y, 22()) + Z 2 1" 22 0);
and consequently, by Lemma 4.4, we obtain that
SIE 220y < (1BolZagoy + 1ol o) +27% Nl o gy ) ¢ Vh=1,om.  (412)

Applying (4.12) to (4.11), we come to the conclusion that the estimate (4.7) is valid for allm=1,...,n. O

In the following, for simplicity, we use the notation j* := j.(-,6(ty), H*). According to (P,,), it holds for all
k=0,...,n that

|J*(z)] < j¥(z) and J*(z)- EF(z) = j*(x)|EF(z)| for a.e. z € Q. (4.13)

Our next goal is to analyze the stability property for dE* and §H". In our analysis, we shall make use of the
following constants:

_ 2
= 0B 32 (g + leurl Bo|13s o + T [2L (I6lleqom,ce0) 100132 0,19, 2y + 1900113 0.7y, 262y |
I

-1 _— 2
ﬁ = QmaX{Q,QTZH 1§ 1L(H9||C([07T17Lm(9))) } (414)
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Lemma 4.6. Let Assumptions 2.1 and 4.1 be satisfied. Furthermore, let n € N satisfying n > [, and let
((E*, H", J*)}n_ © Hy(curl) x X(Q) x L®(Q) denote a solution to (P,). Then, for all m = 1,...,n, it
holds that
. . _
§||5E HQLE(Q HCUT]E ||L2 @ T Z ISE* — 6E* 1||2L§(Q) (4.15a)
k=1
+ Z Jeurl (E* — B*1) |32 o) < o (1+ Bexp(8))
k=1 ”
[6H™ 520y < 20 exp(3) (4.15D)
m — 1
[eurl H™ |2 () < /2€aexp(B) + ||ulle o,y + 12120 ([0]leo,r1,@))) - (4.15¢)
Proof. Let m € {1,...,n} and k € {1,...m}. By the first equality in (P,,), we obtain
(6Ek _§EFL 6Ek> - (curl (H’“ - Hk_l) ,6Ek> + (Jk _ gkt 6E’“>
L2(Q) L?(Q) L*(Q)
= (w(ty) — w(tp 6E’“) :
(u( k)~ ulth), L2(Q)
On the other hand, from the second equality in (P,,), we know that
k k—1 k T/ 4 k k
(curl (H - H ),5E ) =—— (M curl E” curldE )
L2(Q) n L*(Q)
=— (curl E*. curl (Ek — Ek71>) .
L3 (Q)
m
Combining the above two identities results in
Z (5Ek SEF 1,5Ek) + Z (curl E* curl (E’C — Ekil))
L (Q) L3 ()
k=1 k=1 1
m m
=Y (s - gt eE) (wt) = u(tn1),0B%) .
Z ( Lz(Q) + Z k u( k— 1) LZ(Q)
k=1 k=1
Then, similarly to the previous lemma, the summation by parts formula implies
||5Em||3:g(9) - ||5E0H3:3(9) + Z I6E" — 5Ek71H2L§(Q)
k=1
+ chrlEm”ii(Q) — [|curl EOH%& @t Z [curl (Ek - Ekil) ||ii(ﬂ)
m k=1 m
(4.16)

- 2]; (Jk_l —J*, 5Ek)L2(Q) +2;; (u(tk) - u(tk,l),éEk)L2(m .
11

=:1
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Let us derive an appropriate upper estimate for I. According to (4.5) and (4.13), it holds that

g1 _ gk 5Ek) _ ﬁ/ JE1. gk _ k=1 gkl ik gkl _ ki gk g
( : o A e | |+ Je | E”|dz

- T
n h— . _
=5 [ G =) (184 - B ) da

< / GE = G¥6E da.
Q

n e I _ . _ .
<—/ij ER| - A BN 4 jE B B de

Then, as a consequence of (A4), the second equality of (P,), and Young’s inequality, we obtain

(751 - gt 0B")

L2(Q)

_1 e— .
e 2|55 — K| 2y |0 E"|

IN

L2(9Q)

. 9 1/2
L (10lleqo.m 1) ( /Q (16 (2 t11) = 0 ) | + [ () = H(2)]) d:c) 16B* |2 0

IN

_ 2 1
< e 'L ([0llcqory.Loo))” nllOER) — 0 (th—1) 1720y + @Hfmk”ig(m

_ 2 T? 1
+ e 'L (110lleo,r1.Lo0 () ;||5Hk\|f:2(m+%H5Ek\\3:g(n)
2

_ 2 T 1
< e 'L ([6llco.r).Lo9))) (ng(tk) — 0 (tr—1) [I72() + m”curl Ek”i’i (Q)> + %||5Ek||ig(9)-
st I

Since § € H'((0,T), L*(9)), it holds for all k = 1,...,n that

ty
10(tk) — 0 (tk—1) [|2(0) S/ 10:0(8) || L2 () 2
k—1

tk
< </ |3t9(t)||21;2(9)dt)
te—1

[MES
=
[N

[ e [ 10000y
e -V - t L3(Q)

Therefore,
m n tr
SO nl0(k) — 0 (b ) [2oey < TS / 1000(8) 20t = THOOI2 2 029 1500
k=1 k=1"tk—1

Collecting all above estimates, we arrive at

(ko1 ks gk 2
I= 22 (J - J"6E )LQ(Q) < =2L (10lle (o, 11,2 (22))) <||5t9||2L2((o,T),L2(Q))
=t (4.17)

T~1 1
# 23 el B ) + Y CIOE
— k=1 H k=1

o |
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Similarly, by virtue of uw € H((0,T), L*(R)), we deduce that
m m l
-2y ( (te) — u(tp_1),0E )LZ(Q 23" e 3 lultn) — u (1) L2 () I0E* | £2 (o)
k=1 k=1
m B m 1
<D nllultn) — ) ooy + 0 I (118)
k=1 k=1
T k
z”atu”u((o:r L2(Q)) +Z I6E*|Z2(0-
Now, applying (4.17) and (4.18) to (4.16) yields
I6E™ 320, + leurl E™ [, o + > (||§Ek — SE" Y2, o) + [|eur] (Ek - E’H) ||2LQI(Q))
- =t (4.19)
p
+ Z - *||5Ek||L2 @ t5 ||CUI‘IE ||L2 (@)
k=1
with a, 8 as in (4.14). Since n > 3, (4.19) implies
m |2 1 m|2 gy ﬁ k
SIOE™ z20) + 5llcurl E™ |72 (o) < @+ o *||5E 220y + 5 ||C111”1E ||L2 )
z k=1
and so, by the discrete Gronwall lemma (Lem. 4.4)
~I6E*|2 50 + 1chmE‘cn2 <aexp(B) Vk=1,...,m 4.2
2 )t 3 1 () S @ exXp ey M (4.20)
Thus, the estimate (4.15a) follows immediately from (4.19) and (4.20). Now, according to (P,,), we have
k BT g T k _ k
10H|[zz2(0) = ln26H"||L2() = ln~ 2 curl E¥||p2(q) = [lcurl E¥|| 2 (q) (4.21)
and
1 1
leurl H"||2(q) = [|6E* — u(ty) + T*| p2) < € 10E*|| 20y + lulleor), L2 + 19212 C (||9||C([0,T],Lw(a)2)2)
where we have also used (4.13) and (A3). Applying (4.20) to (4.21), (4.22) implies finally (4.15b)
and (4.15¢). O

5. WELL-POSEDNESS FOR (QVI)

For each n € N, let {(E*, H*, J*)}?_, C Ho(curl) x X (Q) x L>(£2) denote a solution to (P,,) according to
Corollary 4.3. Then, we define piecewise linear and continuous in time functions E and H as follows:

=~ t—te_ tp —t
E,(t)=—2E" 4+ 2 EF1 forallt € [ty_i, ) andall k=1,...n

n=1T TL_lT (5 1)
— t—tp— t ’
H,(t) = n_lleHk + H’“ Y forall t € [ty_1,t;] and all k= 1,.
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Here, we recall that ¢, = Zk. By our construction (5.1), it holds for all n € N that E,c Whee((0,T), Ho(curl))

and H, € W1*((0,T), X(Q)) with

R Ek _ Ek—l

atEn(t> = W = (SEk YVt € (tkfl,tk) Vk = ]., ...
P Hk: _ kal

atHn(t):W:(SHk vte(tk_l,tk) szl,n

Next, we introduce piecewise constant in time functions E.,,, H,,, J,, u, and 0,:

E,(t) := E* for all t € (tj_1,tx] and all k =1, ...

( ]
t ( ]
) = JF for all t € (tp—1,t;] and all k =1, ...
> 35

n
H,(t):=H" forallte (t)_,tx] andallk=1,...n
u,(t) :=u(ty) forallte (tp_1,tx]andallk=1,...n

n.

0,(t) :=0(ty) forallte (tg_1,tx) andallk=1,...

We note that Assumption 4.1 guarantees that

A s = w22 o2).L20)) = 0 (100 = Ollz2(0.7). £2()) = 0-

For simplicity, we use the notation

Jen (@, t) := je(z,0p (2, t), Hy(2,t)) for a.e. (x,t) € 2 x (0,T) and all n € N.

In view of (P,), (5.2), (5.3), and (5.5) imply for all n € N that

e@tEn —curlH, +J, =u,

woH, +curl E, =0

[T n(x,t)| < Jen(z,t) for a.e. (z,t) € Q x (0,T)
Jn(z,t) - En(x,t) = je, (2, 8)|En(z,t)|  for a.e. (z,t) € 2 x (0,T).

Theorem 5.1. Under Assumptions 2.1 and 4.1, (1.1) admits a wunique solution

(5.2)

S

W ((0,T), L*()) N L>((0,T), Ho(eurl)) x WH>((0,T), L*(2)) N L=((0,T), X (€2)) x L=((0,T), L>(%)).

Proof. Step 1. By definition, the assumption (A3) and Lemmas 4.5 and 4.6, the sequences

[B.)" cw>((0,1), L*(@) nC(0,T], Hy(curl))

{H.}~ cw=.n).L2@)ne.1. x (@)

{E, )22, € L=((0,T), Ho(curl))
{Hn},Z1 € L=((0,7), X ()
{Tn}nzy € L((0,7), L=(Q))

are bounded. Therefore, after selecting subsequences,

~

E, — E weakly star in L>°

o~

((0
H, -— H weakly star in L>°((0
HE, — OE weakly star in L>°((0
o,H, — 0,H weakly star in L% ((0
((0
((0
((0

(curl)) as n — oo

7 )

g

0

() asn — o0
2(Q)) as n — oo
2(Q)) as n — oo

) )

) )

N

T)
T)
T)
T)
T)
T)
T)

E, —~E weakly star in L>°((0,T"), Ho(curl)) as n — oo
H, —~H weakly star in L>°((0,7), X (2)) as n — o0
J, —~J weakly star in L>®((0,7), L*(Q)) as n — oo



MAXWELL QUASI-VARIATIONAL INEQUALITIES 1561

for some E € W1°°((0,T), L*(Q2)) N L=((0,T), Hy(curl)), H € W1°((0,T), L*(Q2)) N L=((0,T), X (Q)),
E € L*>~((0,T),Ho(curl)), H € L>*((0,T7),X (), and J € L*>((0,T), L>(Q)). Note that in (5.7), we
use LY((0,T), Ho(curl))* = L*>=((0,T), Ho(curl)) and similar identifications for other L!-Bochner spaces.
According to (5.1)—(5.3) and Lemma 4.6, it holds for all n > 3 that

s < V2l + Fesp ()

.....

yeeey

which yields R -
Jim [|Ey — Enllp(o.r),L2(0) = Im[|Hn = HallL<(0,1),22(2)) = 0- (5.8)

Thus, the properties (5.7) and (5.8) imply

E =FE c W">((0,T), L*(Q)) N L=((0,T), Hy(curl)) (59)
H =H e W"((0,T), L*()) N L=((0,T), X ()). '
Altogether, in view of (5.4), (5.6), (5.7), and (5.9), the weak limit (E, H, J) satisfies
e E —curlH+J =u
(5.10)
uwoH + curl E = 0.

Step 2. Thanks to (5.9), possibly after a modification on a set of [0,7] with measure zero, it holds that
E, H < C([0,T], L*(R2)). On the other hand, as X (Q) — L*() is compact, the Aubin-Lions lemma yields
the compactness of the embedding H*((0,T), L*(Q))NL>®((0,T), X (R2)) < C([0,T], L*(Q)). For this reason,

o~

H, — H inC([0,T],L*(Q)) as n — oc. (5.11)
In particular, as ﬁn(O) = H| for all n € N, the above convergence implies
H(0) = Hy. (5.12)

We underline that Ho(curl) < L?() is not compact so that the convergence of {En}ff’:l in C([0, T], L*(2))
cannot be expected. However, we will show that

~

E,(T) = E(T) weakly in L*(Q) as n — oo (5.13)

holds after selecting a subsequence, and
E(0) = Ey. (5.14)

By virtue of Lemma 4.5, the sequence {E"}52, C L*() is bounded. Thus, after selecting a subsequence,
it holds that
E" ~ Er weakly in L*(Q) as n — oo (5.15)

for some E € L*(€2). We introduce the function ¢ : [0, 7] — [0,1], ¢ = . By definition and employing the
classical integration by parts formula, we have

/Q B vdy = /Q B (T) - v daep(T) — /Q eB,,(0) - v dap(0)

~

= /OT (/Q eatﬁ;n(t).vdw(twr/ eE,(t) ~vdxgo'(t)> dt VneN, Vuve L*Q).

Q
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Then, passing to the limit n — oo, we obtain from (5.7), (5.9), and (5.15) that

/QEET cvde = /OT (/Q €O E(t) - vdro(t) + /Q cE(t) -degp’(t)) dt
= /Q eE(T) -vdap(T) — /QeE(O) ~vdap(0) = /QeE(T) ~vdz Vv e L*(Q),

from which it follows that Er = E(T), and consequently

~

E,(T)=E" —~ Er = E(T) weakly in L*(Q) as n — oo.

Similarly, introducing the function ¢ : [0,T] — [~1,0], t — =L, we deduce that

/QeEo~vdx:/ﬂe@n(T)~vdm/z(T)—/QeEn(0)~vdo:w(O)

:/T (/ O E,(t) - vd:cz/)(t)—k/ﬂeﬁ’n(t)-Udm//(t)) dt
—>/ (/ €O E(t) vdxtﬂ(t)—l—/ﬂeE(t)-vdxz//(t)) dt

:/eE(T)-vdxw(T)—/ eE(o)-vdw(o)z/eE(o)-vdx o € L2(Q),
Q Q Q

from which it follows that E(0) = Ey. In conclusion, the conditions (5.13) and (5.14) are valid.
Step 3. We verify the conditions

[T (2, )| < je(z,0(z,t), H(x,t)) for a.e. (z,t) € @ x (0,T) (5.16)
J(z,t) - E(x,t) = jo(x,0(x,t), H(z,t))|E(x,t)| for a.e. (x,t) € Qx (0,7T). ’
The convergence properties (5.8) and (5.11) imply
H, — H in L>*((0,T),L*(Q)) as n — oo. (5.17)
Then, in view of (A4), (5.4), (5.5), and (5.17), we obtain
T
Jim / / e (2:8) — jol, B(, ), H (2, £))[2 d dt
n—eeJo o Ja
. 2
< lim 2L ([|0llcqo.11,2 (<)) (H@n = 0l1220,m).22 () + I1H n — HH%Q((@,T),L%Q))) =0.
In other words,
Jen — Je(-w0, H) in L? ((0,T),L*()) as n — oo. (5.18)

Now, suppose that there exists a Lebesgue measurable set Q C 2 x (0,7") of non-zero measure such that
Je(z,0(x,t), H(z,t)) < |J(z,t)| for a.e. (x,t) € Q.

This inequality together with the weak convergence (5.7) and the convergence (5.18) leads to a contradiction:

//jc(a?,ﬁ(x,t),H(a:,t))dxdt </ 1T (2, 1)| dadt
Q

= nh_)rr;@ // :2| S) nh_)rr;o//jc z,t) dzdt //jc z,0(z,t), H(z,t))dzdt.

518) Q
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We come therefore to the conclusion that
|J(x,t)] < je(zx,0(x,t), H(x,t)) for a.e. (x,t) € Qx(0,T). (5.19)

Next, let k € N. The convergence (5.18) together with the weak convergence (5.7) implies

/ /cheﬂ?t H(z, ))|E|E(x ) dxdt = lim/ /]ant (x 2 -E,(x,t)dxdt

(z, )] + k=1 n=o0 [ Bz, t)] + k=t
e _ E@t)
—hnnigf/ /]r:n @ t)|+k 7 En(r,t)drdt
Sliminf/ /an(:U,t)|En(z,t)|dxdt
= hmlnf/ / (z,t) (x,t) da dt.
(5.6)

Passing to the limit £ — oo, the monotone convergence theorem implies

T
/0 /Qjc(amQ(x,t),H(x7t))|E(:E,t)|dx dt < hmlnf/ / (z,t) (z,t) dadt. (5.20)

Let us investigate the right-hand side of the above inequality. According to (5.10),
(OE(t), E(t))r2(0) + (O:H (), H(t)) £2(0) + (J (1), E())L2(0) = (u(t), E(t))2(a)

holds for a.e. t € (0,T). Integrating this identity over the time interval [0,7] and employing (5.12) as well
as (5.14), we obtain

T T
||E(T)||i§(9)+||H(T)H%ﬁ(Q)+2/0 (J(0), E(t))p2()dt = ||E0H2L§(Q)+||H0H2L§(Q)+2/O (u(t), E(t))L2(a)dt.
(5.21)
In a similar manner, we deduce from (5.6) that
T
IEw (D) 720y + IHA(D) 720y +2 [ (Tnlt), Bu(t)) 2oy dt = [ BollL2 () + 1 HollZ2 )
€ m 0 € m
T -~ —~
+2 /O (Hn(t),curlEn(t))LQ(Q) - (Hn(t),curlEn(t)>L2(Q) (5.22)
E E,(t)— E :
(@) Ba®) L, o+ (00, Balt) = Bu)
Applying (5.21) and (5.22) leads to
T T
2 /0 (Tnt), Ent)) g2y At = L + 1, + 2 /O (I (t) = ult), B()) go g dt (5.23)

with
L, = | E(T)|[12(0) + ”H(T)”QLi(Q) - ||En(T)||2L2(Q) - HHn(T)||2Lﬁ(Q)
T o~ —~
10, := 2 / (Hn(t)7curlEn(t)> - (Hn(t),curlEn(t))
0

+ (w0, Ba(®) |, (Jalt), Ealt) = Bu(t)) oy &

L*(Q) L*(Q)

L*(Q)
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As a consequence of (5.11) and (5.13), the first term I,, satisfies

limsup L, < [|E(T)| 720 + HH(T)H%Z(Q) + lim sup (—HEn(T)||2L§(Q) - ||Hn(T)||2Li(Q))

n—oo

< 1B(T) 320y — liminf | B, (T)||q) < 0.

Furthermore, thanks to (5.4), (5.7), (5.8), (5.9), (5.11), and (5.17), passing to the limit n — oo in the second
term II,, leads to

T
lim II,, = 2/ (u(t), E(t))L2(o)dt.
n—oo 0
Invoking the above convergence results, we obtain from (5.23) that

T T T
hminf/ (Jn(t), En(t))L2(0)dt < 1im8up/ (Jn(t), En(t) p2(o)dt S/ (J(t), E(t)L2odt.  (5:24)
0 0 0

n— o0 n—00

As a result of (5.24) and (5.20),

/OT/Qjc(x,9(x,t),H(x,t))|E(x,t)| —J(z,t) - E(z,t)dzdt <0.

On the other hand, thanks to (5.19),
Je(z,0(x,t), H(z,t))|E(z,t)| — J(x,t) - E(z,t) >0 for a.e. (z,t) € Q x (0,T).
Combining the above two inequalities, we arrive at
J(x,t) - E(x,t) = jo(x,0(x,t), H(z,t))|E(x,t)| for a.e. (x,t) € Qx (0,7T).

In conclusion, (5.16) is valid.
Collecting all the previously proven results (5.10), (5.12), (5.14) and (5.16), we come to the conclusion
that the weak limit (E, H,J) € WbH((0,T), L*(Q)) N L=((0,T), Ho(curl)) x W>°((0,T), L*(Q)) N
L>((0,T), X(92)) x L*>((0,T), L>(£)) is a solution to (1.1).

Step 4. We complete the proof by verifying the uniqueness. Suppose that (E, H, j) e Whe((0,T), L*(Q)) N
L>®((0,T), Ho(curl)) x Wh>((0,T), L*(Q)) N L=((0,T), X (Q)) x L=((0,T), L*°(Q)) is another solution of
(1.1), i.e., it satisfies

e@tg—curlﬁ—i—j:u in Qx (0,7)

,tiatH +curl E =0 in Qx(0,T)

F(,O) :~E07 H(,O) :HO N _ in Q (525)
J(z,t) E(z,t) = j. (x,@(a:,t),H(x,t)) |E(z,t)| for ae. (x,t) € Qx (0,T)

T (z,1)] < ji (x,e(x,t),ﬁ(x,t)) for a.e. (z,t) € Q x (0, 7).

In view of (5.25) and (1.1), (e, h) := (E _E,H- H) fullfils

(Dre(t), e(D) 20y + (Ouh(t), (1)) 12 ) + (J(t) —J),e(t) =0 aete(0,7).

) L2(Q)
Since e(0) = h(0) = 0, integrating this equality over the time interval yields

le(®)Iz2 ) + Hh(t)HQLi(Q) = 2/0 (J(s) — JI(s),e(s))L2yds Vt € [0,T]. (5.26)
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Invoking the conditions for J and J , the right-hand side of the above equality satisfies

[ (=360, as
= /;/QJ(%S) - E(z,5) — jo (z,0(z, ), H(,5)) | E(z, )]

+ 3 (@,5) Blas) — o (2,00,5), H(z,s)) | Bz, )| dzds
</Ot/9jc (2.0(x,5), H(z,5)) (1B, )| = |E(2,9)]) + je (2,6, 5), H(z,5)) (|E(,5)| - |E(x,5)|) duds
< /Ot /Q (s (2,602, 5), H(z,9) — . (2,6(0,5), Fl(@.5)) ) le(z,5)] dods
L(IWIc([omLLw(ﬂ)))/ot/QIh(x,s)le(x,s)|dxd5

<
~—
(A4)

1 [t 1 [t
< L(10leqom.i) (5 [ 1e@lemas+ 5 [ 106 mds) e.1]

Applying this inequality to (5.26), the Gronwall lemma yields that e = h = 0.
(Il

Corollary 5.2. Let Assumptions 2.1 and 4.1 be satisfied. Then, the hyperbolic Mazwell quasi-variational
imequality

/ ehE(t)- (v—E(t)) + poeH(t) - (w— H(t)) + curl E(t) - w — curl H(t) - vdz
Q

+ [ e w00, t), Bz, ) (0(a)| = 1B 0)) d > [ (o) (0= B@) da (QVI)

for a.e. t € (0,T) and all (v, w) € L*(Q) x L*(Q)
(E,H)(0) = (Eo, Ho)

admits a unique solution
(E,H) e W' ((0,T),L*()) N L>® ((0,T), Ho(curl)) x W ((0,T), L*(2)) N L> ((0,T), X (%)),
which is exactly the unique solution to (1.1).
Proof. Uniqueness. Suppose that
(E' H"),(E*>,H?) € W"> ((0,T), L*(2))NL> ((0,T), Ho(curl)) x W">°((0,T), L*(2))NL*> ((0,T), X (22))

are solutions to (QVI), and let (e, h) := (E' — E*, H' — H?). Setting (v,w) = (E*, H?) (t) (resp. (v,w) =
(E',H") (1)) in (QVI) for (E', H") (resp. in (QVI) for (E® H?)) yields

/ —eOE\(t) - elt) — pdH' () - h(t) + curl E\(t) - H2(t) — curl H'(t) - E>(t) da
@ (5.27)
+ / je (z,0(z,t), H (z,1)) (|E*(2,t)| — |E(z,1)]) dz > / —u(t)-e(t)dz for a.e. t € (0,T)
Q Q
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and

/ CRE(t) - e(t) + pd H2(1) - h(t) + curl BX(t) - H'(t) — curl H2(t) - E'(t) dz
Q (5.28)

+ / je (z,0(z,t), H?(z,1)) (|E*(z,1)| — |E*(z,t)|) dz > / u(t) - e(t)dz for a.e. t € (0,T).
Q Q

Adding (5.27) and (5.28) together implies
/Q—eﬁte(t) -e(t) — poth(t) - h(t)dz

+/Q (Je (w,@(m,t),Hl(x,t)) — Je (:v,@(x,t),H2(:c,t))) (|E2(x,t)\ — |E1(x,t)|) dz >0 for a.e. t € (0,T).
As a consequence,

1d 2 . 2
3 €O e + 5 51RO @ < [ 1o, 6.6 H' (0) = oo, 6o, 0). B 0. 0) el )| o
for a.e. t € (0,T).

(5.29)

On the other hand, the Lipschitz property (A4) yields that

/Qljc (,0(x,t), H'(2,1)) — je (w79(fc7t),H2(xat))||6(w7t)|dxSL(||9||c<[o,T],Loo(m>)/th(fvvt)lle(x,t)ldw

L (|6 o
< (H ||C([072T]7L (Q))) <§71”e(t)”if(ﬂ) +H71”h(t)”ii(ﬂ)) for a.e. t € (O,T)
(5.30)
Applying (5.30) to (5.29) results in
L(16llcqo,m1,2 ) [ i 1d 1d
’ (e ooy + 17 1RO ) = 5 e iy g IR0 3 g Tor ae. t € (0.7).

In view of this inequality and e(0) = h(0) = 0, it follows that e = h = 0, and so (QVI) admits at most only
one solution.
Ezistence. According to Theorem 5.1, the PDE-system (1.1) admits a unique solution (E,H,J) €
WL ((0,T), L*(Q)) N L>=((0,T), Ho(curl)) x Wheo((0,T), L*(Q)) N L>®((0,T), X () x L>((0,T), L>=(Q)).
Thus, since we have proved that (QVI) admits at most only one solution, the assertion is valid, once we can
prove that the solution (E, H) of (1.1) satisfies (QVT).

Multiplying the first equality in (1.1) by v — E(t), with v € L*(Q), and the second equality in (1.1) by
w — H(t), with w € L? (€2), and then integrating the resulting equalities over 2, we obtain

/Qeé)tE(t) (- E(t)) - /chrlH(t) (v— BE(t)) dz + /

Q

J(t) - (v—E(t)) de = / u(t) - (v— E(t)) do

Q

/ uOrH(t) - (w— H(t)) da —|—/ curl E(t) - (w— H(t)) dzr =0 for a.e. t € (0,T).
Q Q

Then, adding them together, it follows that
/ e E(t) - (v—E(t)) + pocH(t) - (w— H(t)) do + / curl E(t)-w —curl H(t) - vdx
Q Q

—l—/QJ(t) (v—E(t)) dz = /Qu(t) (v — E(t) dz for a.e. t € (0,T) and all (v, w) € L*(Q) x L*(Q).
(5.31)
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On the other hand, according to (1.1), J and FE satisfy the Bean’s critical-state law

[T (x,t)] < je(z,0(z,t), H(x,t)) for a.e. (x,t) € Q x (0,T)
J(z,t) - E(z,t) = je(z,0(x,t), H(z,t))|E(z,t)| for a.e. (z,t) € Qx(0,T).

Consequently, it holds for all v € L*(Q) and almost all t € (0,T) that
[ 30 (0~ B@) do= [ I.0)-vie)do~ [ Gulo.0la,t), H )| B, ds
Q Q Q
< [ il 0o 0). B 0D o(@)] do — | oo, Oz t), H () B, )]
Q Q

Applying this inequality to (5.31), we conclude that (E, H) satisfies (QVT). O

Remark 5.3. (i) As pointed out in the introduction, the eddy current approximation of the Bean critical-state
model leads to a parabolic quasi-variational inequality [3]. While the existence for the corresponding two-
dimensional case is guaranteed, no uniqueness result was derived in [3]. In the case of the original Maxwell
formulation (QVT), the uniqueness is satisfied thanks to the Lipschitz property (A4).

(ii) Our result extends [27,30] due to the following reasons: First, we allow for simultaneous temperature and

magnetic field dependence in the critical current. Second, our result holds true for all right-hand side
uw e H'((0,T), L*(R2)) and initial data (Eg, Hy) € Ho(curl) x X (Q) without any compatibility condition.

6. FURTHER DISCUSSIONS

The achieved well-posedness results open a way to analyze the temperature and voltage control in the magne-
tization process of type-II superconductivity. This leads to a state-constrained optimal control problem governed
by (QVI). This problem requires a substantial extension of the developed results [17,18,24,25,29,31] along with
the recent results on the optimal control of QVI [1].

Acknowledgements. This work was supported by the German Research Foundation (DFG grants YO159/2-2 and
YO159/4-1).
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